
NASA Contractor Report 184843

ICASE INTERIM REPORT 7

FILE CONCEPTS FOR P-L UO

Thomas W. Crockett

NASA Contract No. NAS1-18107, NAS1-18605
May 1989

(NASA-CR-181843) F I L E CONCEPTS FOR PARALLEL N89-24816
1/0 F i n a l Report (ICASE) 15 p CSCL 098

Unclas
G3/62 0217650

INSTITUTE FOR COMPUTER APPLICATIONS IN S W C E AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronauiics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225 I

ICASE INTERIM REPORTS

ICASE has introduced a new report series to be called ICASE Interim Reports.
The series will complement the more familiar blue ICASE reports that have been
distributed for many years. The blue reports are intended as prcprints of
research that has been submitted for publication in either refereed journals or
conference proceedings. In general, the green Interim Report will not be submit-
ted for publication, at least not in its printed fonn. It will bc used for research
that has reached a certain level of maturity but needs additional refinement, for
technical reviews or position statements, for bibliographies, and for computer
software. The Interim Reports will receive the same distribution as the ICASE
Reports. They will be available upon request in the future, and they may be
referenced in other publications.

Robert G. Voigt
Director

c

i

File Concepts for Parallel VO

Thomas W. Crocketr

Institute for Computer Applications in Science and Engineering

ABSTRACT

The subjcct of I/O has often been neglected in the design of parallel computer systems,

although for many problems UO ram will limit the speedup attainable. The UO problem is

addressed here by considering the role of files in parallel systems. The notion of parallel files

is introduced. Parallel files provide for concurrent access by multiple processes, and utilize

parallelism in the 1/0 system to improve performance. Parallel files can also be used conven-

tionally by sequential programs. A set of standard parallel file organizations is proposed,

bascd on common data partitioning techniques. Implementation strategies for the proposed

organizations are suggcsted, using multiple storage devices. Problem areas are also identified

and discussed.

This work was supportcd by h e National Aeronautics and Space Administration under NASA Contract Nos. NAS1-18107 and NAS1-18605
while the author was in residence at h e Institutc for Computer Applications in Science and Engineering (ICASE).

iii
PRECEDING PAGE BLANK NOT FILMED

File Concepts for Parallel VO

Thomas W. Crockerr

Institute for Computer Applications in Science and Engineering

1. Introduction

During the last decade there has been a dramatic increase in parallel processing research and development.

Dozens of parallel architcctures have been proposed, and many have been built, including a number of commer-

cial systems. Considerable attention has been devoted to such issues as the number and complexity of process-

ing elements, memory organizations. and interco?nection networks. However, the integration of architectural

concepts into complete systems has not received as much attention. Development of practical systems requires

that the interactions among hardware architecture, system software, and application programs be carefully con-

sidered.

One arm that has often been neglected in parallel systems, both at the system software and hardware

architecture levels, is the I/O subsystem. As processing power increases through the use of parallelism, the rate

at which data can be moved between secondary storage and main memory becomes increasingly critical. For

many applications, I/O bottlcnccks can effectively limit the performance improvements attainable through panl-

lelism. This disparity bctwecn processing power and UO rates has become known as the I/O problem. The VO

problem can and should be addressed at several levels, ranging from storage technology through architectures

and systems to algorithms and application design.

In this paper, the I/O problem is considered in a top-down fashion. First, the role of files in parallel sys-

tems is examined, and two categories of parallel files are identified. Then a set of file organizations which are

potentially uscful for parallel programs is proposed. Strategies for implementing these organizations in parallel

across multiple storage devices are suggested, and problem areas and directions for further work are identified.

- 1 -

2. Files in Parallel Systems

For purposcs of this discussion, a general-purpose, MIMD computer architecture will be assumed. It is

also assumcd that, in order to be useful, the system must provide the typical facilities found in modern operating

systems. At a minimum these will include mechanisms for permanent storage of data and interactive manage-

ment of user programs and files. In such an environmenf there is Likely to be a mix of sequential and parallel

programs. Utility software and operating system commands would typically be sequential programs, while .
compute-intensive applications would generally be parallel programs. The usual support for sequential and

direct access files found in conventional systems would be provided.

In addition, there is a need to support files which will be accessed by parallel programs. The term paral-

lelfiles will be used rather loosely to describe these files. It is presumed that parallel files are somehow different

in implementation from conventional files because of the need to maximize transfer rates and to allow con-

current acccss by mulliplc processes. In thinking about these files, it is helpful to consider two ways of viewing

them. Thc global view is thc logical structure of the file perceived as a unit. The global view would typically

be held by operating systcm utilities and other sequential programs. An internal view distinguishes additional

structure used by parallel programs which operate on the file. In some cases, the global and internal views

could be similar.

Parallel files can also be divided into two categories based on their lifespans and intended usage. The tirst

category consists of standard parallel files. These files outlive the execution of the parallel programs which use

them. Although probably not conventional in implementation, these files must appear conventional to the sys-

tem, or at least have transparcnt mechanisms to transform them into a conventional appearance, so that they can

be used by standard sequential software such as editors, graphics utilities, print spoolers, etc. In other words, the

global vicw must be that of a standard file, allhough p a d e l programs might access them in specialized ways.

Examples in this category include input files, final results, and &tab&. The operating system would be

expected to fully support thesc types of parallel files.

The second category contains specialized parallel files. These files may be either temporary or permanent,

but are uscd only by a single parallel program or closely related set of programs. There need not be a meaning-

ful global view of these files, since they are not intended to be accessed outside the context of a particular

- 2 -

parallel application. This allows greater freedom in tailoring the internal organization to match a particular

algorithm, but renders the filcs less accessible to other software. If the need arises, application-specilic utilities

could be developed to convert these files to standard formats, but the conversion overhead must be weighed

against the performance improvements obtained by using a specialized format. Examples in this category

include temporary files used for inmediate results, checkpointing, and out-of-core storage, as well as per-

manent files used within an application or coordinated set of applications. The operating system would only

need to provide basic operations for constructing and storing these files.

As experience is gained with I/O-intensive parallel applications, it could be expected that common patterns

of file usage will emerge. These patterns should be identified and the most useful ones incorporated into stand-

ardized file organizations supported by the operating system. This same process has already occurred (some-

times to excess) in existing operating systems for sequential computers. A recent example of this process is the

growing acceptance of disk striping [1-4] in high performance systems such as the C r a ~ - 2 ~ , Alliant

=/SeriesTM, Intel iPSC/2TM, and others. Suggestions for standard parallel file organizations are the subject of the

next section.

3. Parallel File Organizations

Problems which arc amenable to parallel processing share the property that they can be largely decoin-

posed into subproblems which may be solved simultaneously, subject to varying degrees of interaction. Often

the decomposition is done by partitioning the problem data into subsets and then assigning the subsets to as

many processcs (or processors) as are available. This partitioning has typically been done on an ad hoc, -

problem-by-problem basis for both memory-resident and external data. Nevertheless, several common partition-

ing patterns have emerged. It seems reasonable to believe that these partitioning schemes would serve as suit-

able bases for parallel file organizations.

Cray-2 is a tradcmark of Cray Rcscarch, Inc.
Alliunf and lX/Series are tradcmarks of Alliant Computer Systems CorporaUa~
Intel and iPSC are trademarks of Intcl Corporation.

- 3 -

At Lhc prcscnt time, partitioning of external data is frequently handled by assigning a separate file to each

process. with each file containing only the data needed for that process. he- and post-processing utilities, with

their attendant overhead, are sometimes needed to partition a global input file into numerous smaller files and to

merge output files into a cohcrent result. This approach was hied on NASA's Finite Element Machine [5], but

was found to be unsatisfactory for more than a handful of processes. There were two major difficulties. First,

just keeping track of the large number of files was burdensome to the programmer. It was not uncommon for an

application to use several separate files per process, and when multiplied by 16 processors, the sheer number of

files became unwieldy, since they all had to be created, modified, and deleted individually. The second problem

was that data stored in a multitude of small files often needed to be treated as a unit by sequential programs, but

the partitionings used by parallel programs were not always conducive to sequential processing. Although both

problems could be eased by pre- and post-processing utilities, these tended to be application-specific, and users

balked at having to write additional programs to manage their data. This experience, coupled with that from

other systems, demonsuatcs the need for standardized operating system file structures which can provide

elficicnt acccss to both parallcl and sequential views of a file.

At this point it is nccessary to define some terminology for use in the following discussion. Afle (includ-

ing a parallel filc) is a collection of logically related data items. Files contain one or more data partitions called

blocks. Blocks as dcGncd here arc logical groupings of contiguous data rather than physical partitions on a

hardware device. Each block is composed of one or more records. A record is the unit of access used by a

program when it issues read or write requests. Each record contains one or more data items. In order to avoid

complications, every record is assumcd to be of the same size. Blocks will ordinarily be equal in size as well,

except that there may bc short blocks at the end of a file.

Sequential file organizations are discussed first, and then direct access organizations are considered.

3.1. Sequential Parallel Files

For all of these organizations, the global view is that of a standard sequential file. However, the internal

organization may be one of the following types. Figure 1 illustrates access patterns for hypothetical parallel pro-

grams consisting of thrce processes.

- 4 -

(a) Sequential.

P3

Pl
P2 2 P3

(c) Interleaved.

(b) Partitioned.

(d) Self-scheduled.

Figure 1. Internal organizadons of sequential parallel files. Blocks are labeled to indicate representa-
tive access patterns for three processes.

Sequential.

(Type S, Figure la.) The file is accessed in sequential order by a single process. This is a standard

sequential file except that a higher than normal transfer rate may be needed since the process reading (or

writing) the file may be doing minimal processing on it. This type of organization is often used when a

particular process is responsible for partitioning data on the fly and assigning it to other processes. In the

case of writing, the designated process is assembling results from the other processes.

- 5 -

Partitioned sequential.

(Type PS, Figure lb.) The filc is partitioned into contiguous blocks, one block per process. Each process

performs its own 1/0 operations within its assigned block. This organization is suitable for many algo-

rithms which partition data in a straightforward way.

Interleaved sequential.

(Type IS, Figure IC.) This is a generalization of the previous type in which processes use non-contiguous

blocks of the file separated by a constant stride. The stride would typically be the number of processes

accessing the file. For some applications each block may contain only a single record, while for others

there could be many records in a block. This organization would be useful for wrapped storage of a

matrix, for example.

Self-scheduled sequential.

(Type SS, Figure Id.) The file is processed sequentially, with each process performing its own I/o opera-

tions. Each I/O request (from whatever process) is guaranteed to reference the next record in the file so

that each request accesses a different record and no record gets skipped. The order of record access is

dctermined by the ordcr in which processes issue UO requests. This organization makes most sense when

thcre is a single rccord per block, but self-scheduling by block for multi-record blocks could be provided

if nccdcd. Self-scheduled input is appropriate for algorithms which select the next available unit of work

for processing, as in a queue with multiple servers. Self-scheduled output can be used when the order of

the results is not important, or when the order is established by appropriate synchronization within the pro-

gram.

3.2. Direct Access Parallel Files

For these iles, the global view is that of a traditional direct access file. The internal view may, however,

be more complex.

Global direct access.

(Type GDA.) This is the most general case. Any process may potentially access any block or record in

the file in any ordcr. Refercnces may be random or may follow some predictable pattern. This

- 6 -

organization could bc uscd to support direct access versions of the S and SS file types. Another use would

be for databascs uscd by parallel programs.

Partitioned direct access.

(Type PDA.) The file is partitioned into blocks, and blocks are assigned to processes. A process accesses

records randomly within blocks assigned to it. The order of block access may be arbihary as well. This

organization is useful for programs which can't fit al l of their data into memory, and are using files for

auxiliary storage. Blocks can be thought of as pages of virtual memory, with the .direct access feature

allowing multiple passes on the data. Direct access versions of the PS and IS partitionings would be sup

ported by the PDA format as well.

Many other direct access organizations are possible but most of them would be variations on the above two with

additional rcstrictions added. For example, it might be useful to distinguish between PDA files which perform

random access within blocks, and an equivalent organization which always accesses records sequentially within

blocks. More expericnce with parallel programs which use direct access files is needed to determine whether

standardization of morc rcstricted organizations can be justified.

4. Implementation Strategies

All of thc proposcd organizations above can be implemented using multiple direct-access storage devices

to obtain parallelism in the 1 / 0 system. Some strategies for doing this are suggested here. In [6] , Dibble et al.

describe an interleaved file system which appears capable of supporting our type S and IS files, and possibly

other organizations as well.

For file types S and SS, disk striping can be used to spread the file across multiple drives, resulting in

higher transfer ratcs. The cntire file is viewed as a string of bytes which is broken into units most appropriate

for the I/O devices involved. Buffers would be used when reading and writing to format the data into logical

records. Some carc is nccdcd in the self-scheduled version to assure proper synchronization without unduly sen-

alizing access. The usc of predictable length records reduces the problem, since file pointers can be adjusted

and buffer areas rcservcd early in an I/O call, thereby allowing the next call from another process to proceed

before the actual data transfer from the first call has completed.

- 7 -

Types PS and IS have obvious implementations if there is one device per process. In the first case, one

device is allocated to each block; in the second case, blocks are interleaved across the devices. This differs

from normal disk striping, since processes are free to proceed at different rates, so that the corresponding blocks

on different disks would not usually be accessed at the same time. When accessing these files using the global

view, the block sizes and interleaving factors are used to determine the order for referencing the disks in order

to provide the appearance of a sequential file.

For systems with many processors, it may not be practical to allocate a separate storage device for each

processor. In this case, blocks belonging to several processes would be allocated to each device. Seek times are

likely to cause some performance degradation as the drive services requests from different processes. Work is

needed here to dctermine the best ways to allocate space on the disks to minimize this problem.

The proposed direct access organizations can also take advantage of multiple disks to increase perfor-

mance. Some work has alrcady been done in this area. Livny et al. [2] conclude that declustering of files

across multiple drives (disk striping) provides performance improvements in a database context, and that this is

the prefcrrcd organization for most workloads. They show that by splitting blocks across multiple drives rather

than allocating whole blocks to individual drives, contention problems caused by non-uniform access patterns are

reduced. Kim [3] arrives at similar conclusions.

Just as important as the layout of data on disks is the development of appropriate buffering techniques and

I/O software to support both the internal and global views of the files. For striped files, buffering schemes must

be able to merge and split data stre;~ms efficiently. Initial experiments using the S and SS organizations have

shown that buffering overheads can be a significant factor in limiting speedups. The sequential organizations

can mitigate this effect through the use of mulliple buffering and dedicated I/O processors, Since the order of

accesses is predictable, reading ahead and deferred writing can be used to overlap I/O operations with computa-

tion. For direct access methods, buffer caching techniques would be helpful when there is some locality of

reference, as in Lhe PDA organization.

Most of the irnplcmentation strategies suggested above would also yield performance improvements for

sequential programs which access the files using the global view. One exception is the PS organization, in

which all of the data would have to be read from the first disk, followed by all of the data from the second disk,

- 8 -

etc., with no potential for parallelism. IS type files would have a similar problem if block sizes approached or

exceeded the buffer space available.

5. Problem Areas

One difficulty arises when a parallel file needs to be used with multiple intemal views, either by different

programs or by different phases of computation within the same program. For organizations based on striping

this may not be a major problem since the underlying physical structures may be equivalent. In this case it is

sufficient to use differcnt software interfaces to present different organizations. But a serious mismatch occurs,

for example, if a file created with a PS organization needs to be read later with an IS format. One alternative

would be to select one organization or the other and then provide a software interface to present the alternate

view when needed, but wilh degraded performance. A related idea would be to force either the creator or the

consumer to use the global view instead of accessing the file in parallel. A third possibility is to supply conver-

sion utilities to copy from one format to the other, but this could be expensive for large files. Each of these

solutions could bc uscful, dcpending on the situation.

A second complication arises at the boundaries between partitions. In many algorithms, data along parti-

tion boundaries is needed by processes on both sides of the boundary. In other words, the data partitions logi-

cally overlap. One way of dealing with the problem is to replicate boundary data in both of the adjacent parti-

tions in thc filc. This will cause difficulties for the global view of the file, since there will be redundant data

records. An altcrnative is to cache boundary data in memory (if it will fit). This would be helpful if more than

one pass is made through the file. However, since the way in which boundary data is used will be application

dependent, ihe best solution may be to let applications address the problem explicitly, rather than to encumber

-

the operating system with a lot of special cases.

Another serious problem is reliability. As the number of storage devices increases, the mean time between

failure (MTBF) will decrease. This is an issue for large systems in general, but is especially critical for mechani-

cal devices such as disks, which typically have higher error and failure rates than electronic components.

Assuming a h4TBF of 30,000 hour; for each storage device, a file system containing 10 devices could be

*This failure rate is cumnlly achicvcd by commercially available Winchester disks.

- 9 -

expected to fail every 3000 hours (about 3 times per year, on average), which is probably tolerable. A system

with 100 dcvices, on thc othcr hand, would average more than one failure every two weeks, which is not likely

to be acceptable.

For striped filcs, error correcting techniques have been developed which can handle either a single-bit

error in a striped block, or complete failure of a single drive [3]. In this system, parity information is stored on

each drive. and checking codes are stored on one or m m additional drives. However, this method does not

appear to be applicable lo situations in which the disks are being accessed independently, as in the PS and IS

organizations.

Furthermore, if a single drive in a parallel file system fails, it is not sufficient to restore just that disk from

backups. Since each drive contains a slice of every file, all of the disks will have to be rolled back to the same

point in time in ordcr to mainrain consistency. A technique sometimes used to avoid this problem is to replicate

every disk, and perform exactly the same I/O operations on each disk and its "shadow". This effectively pro-

vides up-to-date backups, so that data can be recovered quickly when a drive fails. The drawback is that this

approach is vcry expensive in terms of hardware. Thus, barring improvements in the hardware technology, reli-

ability considerations may tend to limit the amount of parallelism which can be allowed in the IlO system, as

well as the types of file organizations which can be supported across large numbers of devices.

6. Further Work

The most important fitst step is to assess the generality of the proposed file organizations. They are cer-

tainly useful for at least some parallcl programs, but the range of applicability is unclear. Are some of them so

infrequcntly used that they should be considered spccial-purpose? Are other important views missing? Can

some of the views be combined? In particular, it may be useful to distinguish between file organizations and

access methods on those organizations. In order to incorporate these ideas into an operating system, it will be

important to strike a balance bctween comprehensiveness and simplicity.

Assuming that thcsc or othcr parallcl file organizations are appropriate, the next step is to determine,

analytically and expcrimcntally, the best ways to implement them. The suggestions above need to be evaluated

for a variety of architccturcs. The effort to obtain efficient implementations may also generate ideas for

- 10 -

architectural improvements. The degrce to which I/O parallelism can provide performance improvements needs

to be assessed, and results demonstrated using real applications.

7. Summary

In order to fully realize the promise of parallel computers, I D subsystems need to be developed which

support file structures suitable for parallel programs. These file structures need to provide high performance and

concurrent access, but must also be integrated into operating system environments which provide traditional

capabilities. In order to do this, standardized organizations for parallel files are needed which can support

efficient access by both parallel and sequential pmgtams.

Several file organizations which fit the above criteria have been proposed here, based on commonly used

techniques for partitioning data. Each of these organizations can be implemented in parallel across multiple

storage devices. The degree to which VO can be speeded up with these methods remains to be determined, and

is the subject of ongoing research.

References

[l] K. Salem and H. Garcia-Molina, "Disk Striping," Technical Report 332, Dept. of Electrical Engineering

and Computer Science, Princeton University, Princeton, NJ, Dec. 1984.

[2] M. Livny, S. KhoshaGan. and H. B o d , "Multi-Disk Management Algorithms," Technical Report DB-146-

85, Microelectronics and Computer Technology Corporation, Austin, TX, 1985.
'

[3] M. Kim, "Synchronized Disk Interleaving," IEEE Transactions on Computers, Vol. C-35, No. 11, Nov.

1986, pp. 978-988.

[4] M. Kim and A. Tantawi, "Asynchronous Disk Interleaving," RC 12497, IBM T. J. Watson Research

Center, Yorktown Heights, NY, Feb. 1987.

T. Crockett and J. Knott, "System Software for the Finite Element Machine," CR 3870, National Aeronau-

tics and Space Administration, Washington, DC, Feb. 1985.

[5]

- 11 -

[6] P. Dibble, M. Scott, and C. Ellis, "Bridge: A High-Performance File System for Parallel Processors,"

Proceedings of the 1988 International Conference on Distributed Computing Systems", pp. 154-161.

- 12 -

Report Documentation Page
1. Report No. 2. Government Accession No.

NASA CR-181843
ICASE I n t e r i m Report 7

FILE CONCEPTS FOR PARALLEL I/O
4. Title and Subtitle

3. Recipient's Catalog No. I

I
i
i
i

5. Report Date
May 1989

7. Authoris)
Thomas W. Crocket t

6. Performing Organization Code

8. Performing Organization Report No.
In t e r im Report 7

10. Work Unit No.
505-90-21-01

9. Performing Organization Name and Address
I n s t i t u t e f o r Computer Appl ica t ions i n Science

Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address
Nat iona l Aeronaut ics and Space Adminis t ra t ion
Langley Research Center
Hampton, VA 23665-5225

and Engineer ing

I I
NASA FORM 1626 OCT 86

I I I

11. Contract or Grant No.

NAS1-18107, NAS1-18605
13. Type of Report and Period Covered

Contrac tor Report
14. Sponsoring agency Code

16. Abstract
The s u b j e c t of 1/0 has o f t e n been neglec ted i n t h e des ign of p a r a l l e l

17. Key Words (Suggested by Authoris)l
p a r a l l e l I/O, p a r a l l e l f i l e s ,
d i s k s t r i p p i n g

18. Distribution Statement

62 - Computer Systems

Unc las s i f i ed - Unlimited

Classif. (of this report) 20. Security Classif. (of this page)
Uncl a ss i f i ed

21. No. of pages
19. Secur2 Unc a s s i f i e d 1 6

22. Price

A 0 3

