
r,i?
¢ U

Electronic Prototyping
J. Hopcroft

Cornell University

Ithaca, NY 14853

_::._ , '_

J

Abstract
/

The potential benefits of automation in space are significant. The science base needed to

support this automation not only will help control costa and reduce lead-time in the earth-

based design and construction of space stations, but also will advance the nation's capability

for computer design, simulation, testing, and debugging of sophisticated objects electronically.

Progress in automation will require the ability to electronically represent, reason about,
\ and manipulate objects. This paperdiscusses the development of representations, languages,

_\ editors, and model-driven simulation systems to support electronic prototyping. In particular,
"_.it identifies areas where basic research is needed before further progress can be made.

Introduction

An important aspect of automation is the ability to represent, reason about, and manipu-

late physical objects. This is true in the manipulation of objects in space as well as in the
cost-effectivedesign and manufacture of sophisticatedparts. A sciencebase is needed tofacili-

tate these activities.This science base must support the modeling and editing of three dimen-

sional objects,electronicprototypes,model-driven simulations, and automated designs. In this

paper, the necessary components of the sciencebase are discussed,and a number of examples

are presented which illustratethe benefitsthat would accrue from such research.

Electronic Prototyping

Electronic prototyping isthe process of constructing models of physical objects in a com-

puter to support activitiessuch as computer-aided design, engineering analysis,design verifi-

cation, and automated manufacturing. Electronic prototyping will play an important role in

the design, manufacture and operation of space stations as well as having great commercial

value.

When compared to the current practice of constructing physical prototypes, the develop-

ment and use of electronicprototypes (computer models of objects)offersubstantial advan-

tages, especially with regard to the design of more complex systems. Take the situationof a

satellitewith an antenna that deploys in space: itmay be the case that the antenna will not

support itsown weight under gravity and, thus, itwould be di_cult to construct a prototype

from a physical model. An electronic prototype o_ercomes this difficultyand allows the

integration of design and manufacture. A further advantage occurs should the antenna failto

deploy properly. One would be reluctant to experiment with a procedure that might destroy

the prototype Lfonly a physical prototype isavailable for testinghypothesized dejamming pro-

cedures. However, an electronicprototype eliminates such worries. Furthermore, one can test

hypotheses in parallelon duplicate copiesof the antenna model.

A major component of an electronicmodeRng system is a model-driven simulation. The

system must be able to automatically construct the equations of motion from the geometric

model. The differencebetween such a system and current dynamic simulation systems isthat

during a model-driven simulation a collisiondetection algorithm isrun. Whenever a collision

5"{i59

J
m ml



occurs, the dynamics of the system are edited to account for the new point of contact, and the
simulation continues. Such a system could be used to simulate gripping and approach stra-

tegies for robots, testing designs of multifinger hands, designing algorithms for rotation and

manipulation of objects, and studying walking strategies. The ability to redesign a multi-
fingered grip in a few hours and then simulate the new design provides an enormous advan-

tage over building multifingered grippers in hardware. Of course, promising designs must be
tested in hardware since simulations often miss pertinent factors.

The versatility of an easily programmed system would allow simulation of a person per-

forming jobs in a weightless environment in space to evaluate various procedures or it could be

used to simulate a person on earth allowing us to understand better how tasks are performed.

A spinoff of such research would have an impact on many disciplines. For example, when
designing artificial joints such as a knee, it is important to understand the forces on the joint

as it goes through a range of human activities such as sitting down in a chair, walking up

stairs, or stepping off a curb. Knowing the forces would allow verification that the surface of

the artificial knee would stay in contact with the surface of the bone for a specific individual

with a specific height, weight, and body structure.

One of the first requirements of a modeling system is the ability to construct 3-

dimensional computer representations of rigid objects. Although much is known about solid

models and boundary representations, very little is known about how to effectively construct or
edit a model of a solid. Constructing a mode] of an object such as an automobile crankshaft

from an already existing design may take on the order of a man-month of effort. Clearly, for it

to be economically feasible to construct such models, we must produce the tools necessary to
significantly reduce this effort. These tools are software tools whose development will require

basic research into languages and man-machine interfaces. In order for the cost of construct-

_ng the model to be justifiable, the constructed model must support the entire range of

engineering activities. These activities include calculations of mass and moments of inertia as

well as stress and vib_'ation analyses requiring finite element tcchniques.

In computer automated design, one observes that a part such as a crankshaft has certain

surfaces whose shape is precisely determined by the function of the surface. The shape of other
surfaces is not critical and they can be arbitrarily selected provided that they conform to some

simple criteria. The crankshaft also has certain global constraints on its design. For example,
it must be balanced about certain axes, Thus, one step towards automated design would be to

specify the surfaces that need precise shape along with a clazs of surfaces from which to select

the remainder and have the computer complete the design. The crankshaft design would be

completed by selecting the remaining surfaces from the class of allowable surfaces so as to

satisfy the goal design criteria. An example of the potential savings in time and energy can be
seen from [1] where an estimated savings factor of 20 can be achieved in constructing models

by automating the blending surfaces.

The required science base for supporting automation is extensive and we can only present

a few examples to illustrate the foundational work that must be done. One of the basic areas
needing further development is the area of representations. Today there are over fifty com-

mercial solid modelers. Most use boundary representations based on polygonal approximations

to the objects, although a number use quadratic surfaces and some use parametric patches.

Very little is understood in terms of the trade-offs between the various approaches. For exam-

ple, using algebraic surfaces requires more computations per face, but using polygonal approxi-

mations requires many more faces to represent an object. Whether the increase in the number

of faces for the polyhedral approach offsets the savings of the simpler computations is an

important question. To resolve it will most likely require the knowledge gained from both the

theoretical studies of the type currently taking place in the computational geometry discipline

and the practical experience obtained from studies using actual modelers.

6O



Another important avenue that needs to be explored is the development of reliable inter-

section algorithms /'or low degree surfaces. To the best of this author's knowledge, no com-

pletely reliable algorithm exists for intersecting a quadratic surface with a quartic surface

such as a torus. One difficulty in the modeling domain is that degeneracies are the rule rather
than the exception. Thus, while many applied mathematicians dismiss ill-conditioned prob-

lems with the statement that the problem should be reformulated, the geometric modeler must

find efficient and numerically reliable techniques for solving ill-conditioned problems. If two

lines [1 and l 2 intersect a third line [3 at points sufficiently close together, one can assume
that the intersection points either coincide or do not coincide. However, once having made an

arbitrary decision, one must insure that at some future point an inconsistent decision is not

made. Developing a theory to determine which decisions are independent would be a major

accOmplishment. Numerous similar questions arise that illustrate the importance of develop-

ing a science base to answer such questions in geometric modeling.

Intersection algorithms tend to have running times that are quadratic in terms of the

number of faces, since every face must be intersected with every other face. A number of

modelers have overcome this by boxing the faces and determining subsets of faces that need

not be intersected with other _ubsets. Empirically, this seems to reduce the execution time of
the algorithm from n 2 to n 3/2. A more promising approach is to find a point on the intersec-

tion and trace the curve of intersection to determine the pairs of faces that need to be inter-

sected. The difficulty is that, at the present state of knowledge, the problem of locating two

faces that intersect is as hard to solve as the intersection problem itself. In particular, if two

objects whose intersection is to be calculated do not intersect, how does the algorithm establish

this fact? One promising approach is to triangulate the space exterior to the two objects. This

process will either show no intersection or determine a point of intersection. Results in compu-

tational geometry suggest that we may soon have techniques to perform triangulations in time
order of nlogn, a substantial savings over the current n 2 algorithms. More important the

nlogn bound is a worst case that is not usually encountered whereas the current n 2 algo-

rithms use time n 2 independent of the intricacies of the problem. Considering. that even sim-

ple objectdomains may involve on the order of I0,000 fac_s,an increase in computing time of a

hundredfold is highly likely. Intersection of objects is just one example of an operation on

objects. What is needed isthe development of the underlying theory to support efficientand

reliable algorithms for calculating Boolean operations, swept volumes, offsets,envelops, tri-

angulations, etc.

Another major area that needs investigation is that of editing objects. Today there are

good editors for text and good editors for programs because we understand the structure oftext

and the structure of programs. Text consists of paragraphs that consist of sentences, sentences

are made up of words, and so on. A good editor makes use of thisstructure. In programming,

good programmers do not start from scratch each time they construct a new program. Rather,

they selecta previous program in one window and use bits and pieces to construct a new pro-

gram in another window. It isessential that in modeling components we develop the abilityto

ceuse pieces of old models. So far this has not happened. A better understanding of the inter-

nal structure of physical objectsneeds to be achieved. For example, consider a cube defined as

the intersection of three slices,an x-slice,a y-slice,and a z-slice.Let the planes defining the

x-slicebe called leR and right,the planes defining the y-slicebe called front and back, and the

planes defining the z-slicebe called the top and bottom. Let the front_right_top vertex be the

intersection of the front, right, and top planes. Now consider graphically editing the cube by

moving the front._right_top vertex. Once the vertex ismoved the three planes must be moved

to maintain the constraint that the front_right_top vertex is the intersectionof the front,right

and top planes. In this case the cuboid changes in dimensions but is stilla cuboid. On the

other hand if the cuboid had been defined with the vertices as basic elements, the edges as

lines connecting certain pairs of vertices, and the faces as being patches, then moving the

61



front._right.-top vertex has a quite different effect. In particular, the coordinates of the vertex
are modified, three edges incident at the vertex change their orientation, and three faces

change from being planar to hyperbolic paraboloids. The cuboid ceases to be a polyhedral fig-

ure and has curved faces.

This example illustrates that geometry alone does not capture the nature of a physical

object. In fact; it may well be that for editing purposes an abstraction of the object devoid of

geometry is essential. The editing and reuse of the design is done at the level of the abstrac-

tion, and the geometric properties are then derived from the abstraction. Ultimately, as
models are created, it is clear that some geometric properties will have to be symbolically

recorded. For example, the threads on a screw do not need to be geometrically represented for

most applications. However, they must somehow be represented. As important as the reuse

of previous designs is, surprisingly little research has been devoted to this area; a science base
is almost completely lacking. This is likely to seriously impede the nation's efforts to automate

the design and manufacturing process and will critically affect areas of high technology such

as space exploration.

User interfaces will play an important role in increasing productivity. To illustrate the

effectiveness of well designed user interfaces, consider the example of initializing a simulation

of a man diving off a block. To describe to another person how to place the diver on the block,

one would simply say "place the diver on the diving block". The other person would automati-

cally understand that the diver should be placed with feet on the block, standing in an upright

position, and facing forward with hands at sides. The fact that humans have internal models
of the world allows them to communicate complex situations to others using relatively short

messages. The fact that one human knows by and large how another human will interpret
information allows him or her to structure communications so that the correct interpretation

will be achieved. Computer interfaces are needed that allow the same ease of communication.

With our current software interfaces, describing the initial position of the diver would be

a tedious task. Looking at a very simplistic model, assume the diver has one hundred degrees
of freedom. In this instance, the user would need to specify one hundred parameters.

Although well designed systems have default specifications, it is highly unlikely that default

specifications would greatly reduce the number of parameters needed for the diver. However,

a simple algorithm that takes advantage of partially supplied knowledge to fill in defaults

might make human-to-computer communications almost as effective as communication
between humans. For example, if points A and B on an object were specified to be placed at

A' and B' in space, the algorithm might fix the remaining degrees of freedom by translating

A to A' and then performing a minimum rotation to get B to B', i.e., a rotation in the plane
determined by the points A, B and B'. There would be no extraneous rotation about the AB

axis. The reason a set of simple heuristics such as the above is powerful is that the user

understands how defaults are supplied and quickly learns how to initialize objects with

minimal information. A simulation system with an easy interface for describing models, tasks,

and initial configurations would be a powerful tool for developing such things as a robot arn_

capable of manipulating and repairing satellites in space. The design of such an arm could be

greatly enhanced if one could easily edit a design to try out various ideas and easily specify

procedures for using the arm.

A very promising avenue of research is symbolic specification.Objects can be assembled

and manipulated symbolically by developing automatic naming conventions and inheritance

methods. A human has considerable difficultywith coordinate systems in 3-space. Thus,

rather than trying to specify locationdirectly,locations are specifiedby constraining a feature

of one object to mesh with a feature of another object. This usually requires the computer to

maintain and solve systems of constraints. Research is needed in this area to eliminate the

need to solve arbitrarily complex systems of constraints and to rapidly detect inconsistent

62



systems of constraints.

So far we have talked almost exclusively of objects that are physical entities. In addition

to thinking about physical objects, we must also think of things such as tasks, trajectories, etc.

and understand how to represent and edit them. In using a robot to perform several similar

tasks, it would be preferable to take the code that was developed for one task, edit it, and
reuse it for other tasks. This may be tedious to do at the code level since minute differences in

the tasks may cause considerable differences throughout the code. Representations of the tasks
at some level of abstraction from which code could be automatically produced to drive the robot

would allow simple editing and allow the conversion from one task to another. The idea is a

simple extension of the concept of high level programming; editing the source in the high level

language is enormously easier than editing the machine language object code.

In the above we have tried to illustrate the need for a much better understanding of the

software representations of objects and tasks. In addition, numerous aspects such as motion

planning and configuration spaces, constraint systems, and symbolic computations involving
ideals an_ ;ae Grobner basis _eed a better understanding. Although robotics and automation

deal with physical objectsand are often thought of in terms of control,sensing, and instrumen-

tation, the real nature of the subject has to do with representations, languages, abstraction,

and reasoning. While these are generally computer science concepts, the researchers in robot-

ics tend to have backgrounds in electricaland mechanical engineering. There is a need to

integrate computer science into these fields.The newness of these ideas and the lack of suffi-

cient researchers with training in computer science has contributed to the slow development of

these area3.

rt iscrucial that the nation build the science base to support automation. The greatest

challenge will be the development of the foundations in representations, languages, and user

interfaces for the computing systems involved. A well thought out approach in this area is

strongly needed.

Reference i. Hoffmann, C.M., and Hopcroft, J.E. Automatic Surface Generation in Computer

Aided Design, The Visual Computer 1:2, 1985, 92-100, Springer-Verlag.

53


