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CHARACTERISTICS,DISTRIBUTIONANDGEOLOGIC/TERRA ASSOCIATIONS
OF SMALL DOME-LIKE HILLS ON VENUS

J.C. Aube/e, Dept. of Geol. Sciences, Brown University, Providence, R.I. 02912

E.N. Slyuta, Vernadsky Institute, USSR Academy of Sciences, Moscow, U.S.S.R.

Introduction. Approximately 22,000 small dome-like hills have been recognized on the northern 20% of the surface

of Venus imaged by Venera 15/16. These features have been described [1] as generally circular in planimetric

outline, with a range in basal diameter from the effective resolution of the Venera Images (1-2km) up to 20 kin.

General Characteristics, The small hills have been called domes [1,2.] following the lunar nomenclature, be-

cause of their broad apparent form. The nomenclature used here, "small dome-like hills", Is preferred because of

the strict volcanological definition of a dome and terrestrial lithologic connotations. The actual number of these

features, and their true range of diameter and modal diameter Is unknown; since there is undoubtedly a population,

of unknown size, of dome-like hills _t km that cannot be resolved in the Venera images. The maximum diameter

of 20 km is, in a sense, an artificially imposed size range since similar features occur on Venus In the 20 to 100 km

diameter range. However the 20 km cutoff reflects a significant change in the overall number of edifices, and In

number versus basal diameter frequency distribution. Using diameter measurements in the along-range direction,

best estimate modal diameter was determined for a typical cluster of small dome-like hills in Tethus Regio [3]. The

444 total ranged in basal diameter from 2-8 km, with a mode of 3-4 kin. Based on constraints on the appearance

of features Imaged by this radar system, individual dome-like hill slopes are all less than 10 _. Assuming these

slopes, simple geometric models Imply maximum height of approximately 1 kin, and average height less than 1 kin.

Recent radarclinometrlc data confirms these estimates [4] ; profiles of seven small dome-like hills, ranging In basal

diameter from 7.2 to 19.2 km, show a slope that is slightly Convex near the summit, relatively uniform (maximum

slope 5 °) on the flank, and slightly concave (minimum slope 1_) near the base. The maximum height ranges from

150 to 650 m; and increased height is generally related to increased basal diameter, with some variations. Most of

the small dome-like hills show no individually associated features; however, a small number exhibit summit pits, low

basal topographic rises or platforms, and radial or lobe-like bright features. Summit pits are infrequently observed

In dome-like hills larger In basal diameter than 8 km, and more frequently in ones larger than 15 kin. The total

number with visible summit pits is less than 5%. Bright circular aureoles, without apparent topographic relief,

appear to be associated with small dome-like hills northeast of Atalanta Planitia.

Dome Distribution. Slyuta, et al [2,5] have produced dome density contour maps and find that most dome-like

hills occur In groups of several tens within areas of 103 km2. Adjacent groups form clusters consisting of 10-20

groups within areas of 105 km2. The greatest concentration of clusters of dome-like hills occurs In the general area

of 60_N, 1200E. Major concentrations of clusters are located in Tethus Reglo (65°N, 110_E), Atalanta Planitla

(60ON, 155_E), Ananke Tessera (55'_N, 138°E), and Akkruva Colles (from Niobe Planitia, 35_N, 130_E, to Allat

Dorsa, 65_N,70OE). In general, these major areas of cluster concentration are approximately equidimenslonal in

areal extent, with the exception of Akkruva Colles which is elongated in the NW-SE directions. Akkruva is also

associated with a linear positive gravity anomaly of 25 regal in the Pioneer Venus data set. The cluster concentra-

tions in Tethus, Ananke and Akkruva are associated with broad regional topographic highs. However, many small

groups or clusters of groups occur on low plains or Inside circular depressions and the cluster concentration In

Atalanta occurs in the general area of the topographically lowest region of Venus. Within a specific cluster, the

dome-like hills appear to occur In relatively evenly scattered groups. Counts in a representative cluster In the Tethus

Regio region show that overall density of the dome-like hills, within a specific cluster, Is _=_ 0.4/100 km2 and maxl-

mum density Is 1.0/100 km2 [3]. A few dome-like hills appear to exhibit alignment due to mlnor local structural

control, but there is no evidence of large-scale structural control or dominant trend directions.

Terrain Unit and Geologic Feature Associations. Almost all of the areas of cluster concentration occur on

mottled plains units designated as "rolling plains interpreted to be of volcanic origin" [6]. The outline of the major

region of cluster concentration also generally corresponds to the Plains-Corona-Tessera Assemblage described by

Head [7]. Major clusters frequently occur on plains units at the margins of areas of tessera, while very small groups

occasionally occur in intra-tessera plains near the margins of large tessera units. Where it Is posstble to evaluate
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GEOLOGY OF SOUTHERN GUINEVERE PLANITIA, VENUS, 13ASED ON
ANALYSES OF GOLDSTONE RADAR DATA; R. E. Arvidson, J. J. Plaut,

McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences,

Washington University, St. Louis, Missouri 63130, R. F. Jurgens, R. S. Saunders,
M. A. Slade, Jet Propulsion Laboratory, Pasadena. California 91103

The ensemble of forty-one backscatter images of Venus acquired by the S Band
(12.6 cm) Goldstone radar system covers approximately 35 million square kilometers
and includes the equatorial portion of Guinevere Planitia, Navka Planitia, Heng-O
Chasma, and Tinatin Planitia, and parts of Devana Chasma and Phoebe Regio. The

images and associated altimetry data combine relatively high spatial resolution (I to 10
km) with small incidence angles (less than 10 degrees) for regions not covered by either
Venera Orbiter or Arecibo radar data. Systematic analyses of the Goldstone data show
that: (a) Volcanic plains dominate, including groups of small volcanic constructs, radar
bright flows on a NW-SE arm of Phoebe Regio and on Ushas Mons and circular
volcano-tectonic depressions. The radar bright, flow-like features have length scales
similar to those seen in Venera Orbiter and Arecibo data covering Sedna Planitia. The
relative abundance of volcanic features is similar to that found in Venera radar images

in northern Guinevere Planitia and in Sedna Planitia; (b) Some of the regions imaged

by Goldstone have high radar cross sections, including the flows on Ushas Mons and
the NW-SE arm of Phoebe Regio, and several other unnamed hills, ridged terrains, and
plains areas. While some of the high returns are probably associated with surfaces
tilted toward the radar nadir, other regions with high cross sections are not associated
with obvious topography and retain high values over a range of incidence angles.
These areas expose materials with high dielectric constants. The global trend observed
in Pioneei'-Venus data, where higher elevations are found to preferentially expose such
materials, may be because higher elevations are simply sites of vigorous volcanism and
thus maximum exposure of these materials; (c) A 1000 km diameter multiringed
structure is observed and appears to have a morphology not observed in Venera data.
The northern section corresponds to Heng-O Chasma; (d) A 150 km wide, 2 km deep,
1400 km long rift valley with upturned flanks is located on the western flank of Phoebe

Regio and extends into Devana Chasma. The floor has low backscatter values. At the
low incidence angles for Goldstone observations, backscatter is controlled by quasi-

specular reflections and low returns correspond to surfaces that are rough at length
scales many times the radar wavelength. Thus, rifting processes, assocmted volcanism,
and perhaps mass wasting seem to be ongoing processes that continue to generate
rough topography; (e) A number of structures can be discerned in the Goldstone data,
mainly trending NW-SE and NE-SW, directions similar to those discerned in Pioneer-
Venus topography throughout the equatorial region. The structural orientations suggest
deformation due to a large-scale stress system. For example, with an appropriately thin
lithosphere, equatorial to mid latitude strike-slip faulting may have occurred as the
planet's equatorial bulge relaxed as the spin rate slowed to its present value; and
(f) The abundance of circular and impact features is similar to the plains global average
defined from Venera and Arecibo data, implying that the terrain imaged by Goldstone
has typical crater retention ages, measured in hundreds of millions of years. The rate

of resurfacing is _<4 km/Ga.
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the evidence, it appears that the plains, on which the dome-like hills occur, post-date the formation of the tessera

terrain. Smaller cluster concentrations occur in regions of predominant arachnoids, in the area between Sedna

Planitia and Bell Reglo and in the area south of the ridge belt province at 40°N, 215_E; and also occur at Beta

Reglo. Although domes occur on the plains to the north and south of Ishtar Terra, Lakshmi Ptanum and the horizon-

tal compressional fold belts [8] of Akna and Freyja Montes exhibit one of the lowest densities of small dome-like hills

on Venus. No major concentrations of dome-like hills occur in the major ridge belt areas, although small groups and

isolated dome-like hills occur near the ends of a few ridge belts. Small groups of dome-like hills always appear to

be associated [9] with the following specific geologic features: (1) coronae - dome-like hills occur predominantly

inside the annular concentric ridges of coronae [10]; (2) arachnoids - dome-like hills occur predominantly in the

areas of Ilneations on the plains surrounding and between adjacent arachnoids; (3) intermediate (20-100 kin) sized

hills interpreted to be volcanic constructs - these generally occur as isolated features on plains units near groups or

clusters of small dome-like hills; (4) large volcanic centers (__>100 km) - dome-like hills occur predominantly on the

lower flanks, or beyond the distal edges, of the bright radial markings associated with these centers; (5) calderas -

isolated dome-like hills generally occur on the rims and periphery [ 11 ] ; and (6) large circular features of uncertain

origin - dome-like hills occur predominantly within these features. The spatial association between these specific

geologic features and groups of dome-like hills is ubiquitous, even when one of these geologic features occurs in an

area with low .overall density of small dome-like hills. Geologic mapping provides evidence that formation of the

dome-like hills post-dated the development of tessera terrain; may have coincided with the emplacement of plains

units interpreted to be volcanic; but may have pre-dated the final development of many large volcanic centers found

spatially associated with the dome-like hills.

Discussion. Because they are so numerous, the origin and mechanism of formation of the small dome-like hills of

Venus is a significant question that has implications for the geologic processes and evolution of the planet. Since

many clusters of dome-like hills occur on plains units that are adjacent to, and appear to be younger than, tessera

terrain, it is reasonable to question whether they merely represent partially buried and isolated topography. The

large number of these features, their randomly scattered occurrence, their consistent circularity, the apparent lack

of major structural alignments, and the frequent occurrence of summit pits suggest that the dome-like hills do not

merely represent partially flooded pre-existing ridges. Large volcanic features have been previously recognized on

Venus, such as the calderas in Laksml Planum and the large volcanic edifices associated with Bell Regio. Smooth

plains, frequently appearing to embay other terrain units, have been interpreted to be volcanic in origin. Circular

features, such as corona or arachnoids, have also been Interpreted to be associated in some way with volcanism

[8]. In addition, detailed study of the Venera images has resulted in the recognition of approximately 1000 edifices,

with diameter __>20 km, that are interpreted to be volcanic. As the geologic associations described above have

demonstrated, the small dome-like hills of Venus occur spatially associated with other features which are recog-

nized as volcanic or interpreted to be volcanic by other researchers. The dome-like hills can, therefore, be

reasonably interpreted to be small volcanic edifices themselves. Examples of small edifices, interpreted to represent

predominantly effusive volcanisml Occur on Earth in the form- of i0w Shield volcanoes and seam0unts, and also

occur on Mars and Earth's moon. The morphology of volcanic edifices is a complex function of fundamental vol-

canologioal properties and variables; however, the general appearance and characteristics of these domtnantly

effusive volcanic edifices appear to be similar to those of the Venus dome-like hills [3]. The existence of dome-like

hills (____20 km), intermediate sized volcanic edifices (20-100 km), and large volcanic centers (_'100 kin) Implies a

continuum of volcanic edifices on Venus. There is a distinct distribution of number versus size range such that the

number of edifices increases as the size decreases; this is similar to that observed for volcanic edifices on Earth.

Referertces. [1] Barsukov, V.L. et al, 1986, Proc. LPSC XVl, JGR, 91, B4, D378; [2] Slyuta, E.N., et al, 1988,

LPSC XIX (Abst), 1097; [3] Aubele, J.C., et, al, 1988, LPSC XlX (Abst), 21; [4] Sinilo and Slyuta, 1989, LPSC XX

(Abst), 1016; [5] Slyuta, E.N., et al, 1988, Aston. Vestnik, 22, #4, 287 (in Russian); [6] Barsukov, V.L and

Basilevsky, A., 1986, Piroda, 24; [7] Head, J.W., I989, LPSC XX (Abst), 392; [8] Crumpler, L.S., et al, 1986,

Geology, 14, 1031; [9] Aubele, J.C., 1989, LPSC XX (Abst), 28; [10] Stofan, E.R. and Head, J.W.,1989, Sub-

mitted to Icarus; Stofan, E.R. and Head, J.W., 1988, LPSCXIX (Abst), 1127; [11] Magee, K.P. and Head, J.W.,

1988, LPSC XIX (abst), 711 and 713; Roberts, K.P.M. and Head J.W., 1989, LPSC XX (abst), 910.
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Tessera Terrain: Characteristics and Models of Origin.
D.L. Bindschadler, and J.W. Head, Brown University Dept. of Geological Sciences,

Providence, RI, 02912 (SPAN BRNPSG::BINDSCH)

Tessera terrain consists of complexly deformed regions characterized by sets of ridges and valleys that

intersect at angles ranging from orthogonal to oblique [1], and were first viewed in Venera 15116 SAR data.

Tesserae cover more area (~15% of the area north of 30°N) than any of the other tectonic units mapped from the

Venera data [2,3] and are strongly concentrated in the region between longitudes 0° E and 150 ° E. Tessera terrain

is concentrated between a proposed center of crustal extension and divergence in Aphrodite [4,5] and a region of

intense deformation [6], crustal convergence, and orogenesis in western Ishtar Terra [7,8]. Thus, the tectonic

processes responsible for tesserae are an important part of Venus tectonics. As part of an effort to understand
the formation and evolution of this unusual terrain type, we have compared the basic characteristics of the

tesserae to the predictions made by a number of tectonic models. Here we describe the basic characteristics of

tessera terrain and then briefly discuss the models and some of their basic predictions.

Observational Data

Altimetry and Surface Roughness: Pioneer Venus data show that the regions tessera lie at higher
elevations than surrounding plains, are typically plateau-like in topographic cross section, and are characterized

by high values of rms slope [3] (a measure of roughness at a scale of -0.5 m to 10's of m) [9,10]. Tesserae are
also characterized by greater cm-scale roughness than the plains which we interpret to be due to erosion linked

to extensive deformation and possibly to greater relative age [11]. Craters are sufficiently sparse to make

determination of the relative age of the tasserae unreliable [12].

Gravity Anomalies: For the largest regions of tessera, line of sight (LOS) gravity data may be used to

infer depths of compensation. Of the three largest regions of tessera (Tellus Regio, Laima Tessera and Fortuna

Tessera) LOS gravity data extend far enough north for Tellus, partly cover Laima Tessera, and do not cover
Fortuna Tessera. Anomalies associated with the ~2.5 km of topography in Tellus are < 5 regal, leading Sjogren et

al. [13] to suggest that the region is compensated at shallower depths than most large-scale uplands in the

equatorial region. Anomaly values over Laima Tessera are also < 5 regal [13].
Morphology: Examination of Venera data for the large regions of tessera reveals three morphologic

subtypes for the terrain. These are the sub-parallel ridged terrain (Tsr), trough and ridge terrain (Ttr), and

disrupted terrain (Tds).
The sub-parallel ridged terrain (Tsr) is similar to ridge belts in that it consists of sub-parallel ridges.

However, Tsr ridges are less sinuous and do not intertwine. Ridges tend to be disrupted along linear zones of
consistent orientation and often form en echelon groups, perhaps indicating strike-slip offset. The three

structural orientations are consistent with compression (ridges) and conjugate strike-slip or shear motion

(lineations). Type locale: Fortuna Tessera, east of Maxwell Montes.
Structures in the trough and ridoe terrain (Ttr) are expressed as troughs in one direction and as ridges

and/or valleys with approximately orthogonal orientations. Troughs appear both as broad (-50kin) and narrow (<

20 km) structures. Ridges occasionally show en echelon offset and tend to be spaced approximately 5 to 10 km

apart. Troughs are spaced at least 10-20 kin). Type locale: Eastern Laima Tessera
The _ (Tds) is characterized by a general lack of continuous ridges or valleys longer than -50

kin. The terrain is often blocky to chaotic in appearance, depending upon the consistency of ridge orientations.

Even if ridge orientations are chaotic, iineations defined by short troughs, ridges and by discontinuities in ridges

preserve consistent orientations over the region of tessera. Disrupted terrain is usually transitional with the Ttr or

Tsr. Type locale: Central Tellus Regio.
Contacts between tessera and plains are characterized by two types of boundaries. In Type I boundaries,

the contact is highly irregular at the 100 km scale, consisting of numerous ovoidal to polygonal plains regions that

often separate small regions of tassera from the main body of a block. Structures within the tessera take on a

subdued appearance near the boundary and show little relation to the shape of the tessera--plains boundary.

Type I boundaries thus appear to be an expression of embayment of the tessera by plains-forming materials.

Type II boundaries are much more regular at the 100 km scale and typically characterized by the presence of the

Tsr subtype of tessera as well as steep topography and the presence of small ridges or ridge belts within the

adjacent plains. These boundaries appear to be places where the tesserae have formed at the expense of the

plains.



Models for Tessera Terrain
D.L. Bindschadler and J.W. Head

Models

A number of models have been suggested for the formation of tessera terrain [2,14,15]. From these and

other tectonic models, we set forth working hypotheses for the formation of tessera, which are divided into three
formational models (those which produce the high topography of the tessera) and two modificational models

(those in which deformation results from high topography).

Horizontal convergence end crustal thickening may be driven by in-plane lithospheric stresses

(as on Earth) or by flow within the mantle of Venus [16,i7]. In general, convergent motion is expected to result in

high topography, steep topographic slopes, and fold-and-thrust deformation at the surface. Crustal

compensation of topography should result in a relatively small LOS anomaly over regions of tessera, given

predicted crustal thicknesses for Venus of <30 km [18]. In addition, both strike-slip and extensional deformation

are observed in terrestrial orogens such as the India-Asia collision and the Andean orogen, and might also be

expected to occur on Venus
Mantle upwelllng may be manifested as the upwelling limb of a convection cell, a long-lived hotspot, or a

diapir-like body. Such an upwelling will result in the formation of a dome-shaped region of high topography,

characterized by extensional deformation, and possibly by volcanism [19]. Relatively large LOS gravity

anomalies are anticipated, unless the characteristic depth of the source is quite shallow. Numerous workers have

identified Beta, Bell, and Atla Regiones as likely surface manifestations of mantle upwelling. Such regions are

thus likely to represent some part of the evolution of any tessera formed due to upwelling.

Seafioor spreading or an analogous process is suggested to occur within Aphrodite Terra [5] and to be

responsible for the structural fabric of Lairna Tessera [20]. On Earth, seafioor spreading results in the formation

of an approximately orthogonal structural fabric consisting of transform faults and fracture zones in one direction,

and abyssal hill topography in the other. Tessera formed near Aphrodite and transported north is predicted to be

old compared to the undeformed plains that surround it. High topography is explained as being due to a relatively

thick crust, suggesting that topography at plains-tessera contacts should be gently sloping. Steep topography

might be expected to occur at transforms due to juxtaposition of lithosphere of different ages and to thermal

stress-supported bending of plate segments [21]. Finally, a common feature of the terrestrial ocean floor are

volcanic seamounts, which may be observable as small domes on the surfaces produced by a spreading

process.

Gravity sliding is defined here as a thin-skinned, predominantly brittle process involving the downslope

movement and deformation of a wedge of material above a decollement. This process is expected to produce

extensional features (e.g. a detachment fault) at or near local topographic highs, with structures becoming

increasingly compressional toward local topographic lows. If topographic slopes are approximately radial about

the highest topography, radial graben would also be expected to form, as observed in the aureole surrounding

Olympus Mons on Mars [22].

Gravitational relaxation of compensated topography is distinguished from gravity sliding as a
predominantly ductile process driven by gradients in vertical normal stress due to surface and/or crust-mantle

boundary topography. In the case of crustally compensated topography, calculations predict extension of high

topography and increasingly compressional deformation toward the edges of a topographic high. Highest rates of

extension occur at the highest elevations, but extension may occur even in relative lows if they lie above the level

of the surrounding plains. If the high topography of the tessera is due to uplift rather than crustal thickness

variations, a somewhat different scenario is predicted, see [19].
Referencee
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DIVERGENT PLATE BOUNDARIES AND CRUSTAL SPREADING ON VENUS:

EVIDENCE FROM APHRODITE TERRA. L.S.Crumpler and J.W.Head, Department of Geological

Sciences, Brown University, Providence, RI 02912

Introduction. The modes of lithospheric heat transfer and the tectonic styles may differ between Earth and

Venus, depending on how the high surface temperature (700K = 430°C), dense and opaque atmosphere (~10 MPa =

100 bars), lack of water oceans, and the other known ways in which Venus differs from Earth, influence basic

lithospheric processes, thermal gradient, upper mantle temperature, thermal and chemical evolution, and convection.

A fundamental question is whether the lithosphere of Venus is horizontally stable, like the other terrestrial planets,
or is mobile like that on Earth. Previous studies have suggested on the basis of the presence of rift-like topography

[1, 2] that Aphrodite Terra may be a zone of relatively recent llthospheric extension and potential volcanism. Large

positive correlations between gravity and topography [3] similarly suggest that the current topography is supported

dynamically by mantle convection perhaps with associated volcanism [4,5,6]. Tectonic deformation in these models
is mainly vertical and the crustal extension is limited, representing either traction from mantle convection beneath

[7] or rifling resulting from stresses associated with gravitational spreading of high-standing regional topography

[8, 9]. Recently, the detailed characteristics of Aphrodite Terra and the equatorial highlands have been analyzed and

interpreted to be analogous to divergent plate boundaries on Earth [9, 10, 11, 12], a model which is distinguished
primarily by the requirement of large horizontal motions of the surface and lithosphere similar to that stsociated will

plate tectonics on Earth. This interpretation is based on (a) the presence of linear discontinuities crossing the

approximately east-west strike of Aphrodite Terra with many of the characteristics of oceanic fracture zones, Co)
bilateral symmetry in directions parallel to these linear discontinuities similar to that associated with (i) evolving

thermal boundary layers and (ii) splitting and separating of features along rise crests by crustal spreading at divergent

boundaries, and (c) a variety of map [11] and geophysical [13] relationships consistent with the presence of features
linked to both crustal spreading and the thermal evolution of lithosphere migrating over great distances laterally

away from a zone of extension and crustal creation.
_rustal s Dreadine and Plate Boundar¢ CharacteristicsJ Zones of crustal spreading and divergent plate

boundary characteristics display organized relationships, many of which may be predicted on the basis of the
existence of rise crest offsets at transform faults and fracture zones in the presence of horizontal divergent motions

of a thermal boundary layer. If Western Aphrodite Terra represented processes similar to a spreading center and

divergent plate boundary, we would expect to see (i) a broad symmetric altimetry associated with a thermal boundary

layer in which regional symmetry and overall altimetry may be approximated as a surface which descends as the

square root of distance and at a rate consistent with the form of a thermal boundary layer , (ii) offset of this

symmetry at nearly right angles along linear transform faults, (iii) continuation of the transform zone beyond the
offset ends of the rise crest as fracture zones, (iv) regional step up or down in altimetry of the surface across the

CSD's depending on the sense of the rise crest offset, and (v) differences between the detailed features of the surfaces

in adjacent rise crest segments which are (vi) individually symmetric about the rise crest and the result of splitting

and drifting apart of topography associated with anomolous crustal production.

Observed Characteristics of Aphrodite Terra. These predicted characteristics of the organized relationship

between divergent plate boundaries processes may be compared with observed altimetric and radar image

characteristics in Western Aphrodite Terra which include (i) broad symmetry which is quantitatively similar to that

predicted for thermal boundary layer topography [14, 15, 16] diverging at rates of a few centimeters per year in the

environment of Venus [17, 18]. Least squares analysis of altimetric profiles show that the plateau-like highlands of
Western Aphrodite are similar also in slope to adjacent lowlands and differ mainly in absolute altitude (Fig. 2)' This

symmetry occurs along linear axes and is also frequently (ii) offset at right angles along through-going and linear
and parallel discontinuities (CSD's) which (iii) can be traced for several thousand kilometers across the highlands and

into the surrounding lowlands. Ahimetric profiles in the lowlands across the CSD's show that there is frequently a

(iv) regional altimetric step up or down across the CSD's depending on whether the horizontal sense of offset across
the CSD moves the rise crest Closer or farther away respectively. Removal of the broad symmetry of a thermal

boundary layer from the altimetric profiles across Aphrodite Terra results in a (v) residual short wavelength

topography which is shown to be symmetric about the same symmetry axis (Fig. 3), and (vi) which differs in

character from one domain to the next.

Conclusions. The variety of characteristics, their detailed integrated relationships, and their predictable

behavior throughout Western Aphrodite Terra are similar to those features known to occur in association with the

terrestrial seafloor at spreading centers and divergent plate boundaries. We conclude that Western Aphrodite Terra

represents the site of crustal Spreading and displays many of the characteristics of divergent plate boundaries [11].
The extent of similar characteristics and processes elsewhere on Venus outside of the 13,000 km long Western and

Eastern Aphrodite Terra rise is unknown at the present, but their presence in other areas of the equatorial highlands,

suggested from recent analysis[12], may be tested with forthcoming Magellan data.
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Figure I. Altimetric map of Aphrodite Terra showing location of identified CSD's and axes of bilateral
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VENUS VOLCANISM: RATE ESTIMATES FROM LABORATORY STUDIES

OF SULFUR GAS-SOLID REACTIONS. K. Ehlers, B. Fegley, Jr., and R.G. Prinn,
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139

Thermochemical reactions between sulfur-bearing gases in the atmosphere of Venus
and calcium-, iron-, magnesium-, and sulfur-bearing minerals on the surface of Venus are
an integral part of a hypothesized cycle of thermochemical and photochemical reactions
responsible for the maintenance of the global sulfuric acid cloud cover on Venus (I-3). As
schematically illustrated in Figure 1, SO2 is continually removed from the Venus .....

atmosphere by reaction with calcium-bearing minerals on the planet's surface. Maintenance
of the global H2SO4 clouds, which are formed by the ultraviolet-sunlight-powered
conversion of SO2 into H2SO4 cloud particles (4), requires a comparable sulfur source to
balance this SO2 sink. The most plausible endogenic source is volcanism, which has
occurred on Venus in the past (5), and which may have led to increased SO2 levels above
the Venus cloud-tops observed by the Pioneer Venus orbiter (6,7). The rate of volcanism
required to balance SO2 depletion by reactions with calcium-bearing minerals on the Venus

surface can therefore be deduced from a knowledge of the relevant gas-solid reaction rates
combined with reasonable assumptions about the sulfur content of the erupted material (gas
+ magma).

We are carrying out a laboratory program to measure the rates of reaction between
SO2 and possible crustal minerals on Venus. At present we have studied the reaction

CaCO3(calcite) + SO2 _CaSO4 (anhydrite) + CO (see Figure 2). Experimental details and
preliminary results have been given by Fegley (8) and Fegley and Prinn (9). We find that

the temperature dependence of the reaction is given by the equation R = 1019.64(+_0.28)

exp(-15,248(+_2970)/T) molecules cm-2s -1 and that the reaction rate exhibits no statistically
significant variation with either 02 or CO2 partial pressure. If this reaction rate represents
the SO2 reaction rate with calcium-bearing minerals on the Venus surface (an assumption
which we are currently investigating by studying SO2 reactions with other minerals such as
anorthite and diopside) then all SO2 (and thus the clouds) in the Venus atmosphere will

disappear in 1.9x106 years unless volcanism replenishes the lost SO2. The Venus surface

composition at the Venera 13, I4, and Vega 2 landing sites implies a volcanism rate of

approximately 1 km 3 yrl; a range of0.4-11 km3yr -1 is implied by assuming S/Si ratios
appropriate for ordinary chondrites or for the terrestrial crust (9).
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Figure 2. Scanning electron micrograph of the fracture surface of a reacted

calcite crystal. The scale bar is 50 micrometers long. The horizontal white

line on the micrograph shows the position of an X-ray line scan for the

element sulfur. The wavy white line shows that sulfur X-rays are produced

only at the reacted surface where grains of the minera[ anhydrite (CaSO 4) are
formed as a result of the gas-solid reaction.
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POTENTIAL FOR OBSERVING AND DISCRIMINATING IMPACT CRATERS
AND COMPARABLE VOLCANIC LANDFORMS ON MAGELLAN RADAR IMAGES.

J.P.Ford, Jet Propulsion Laboratory, California Institute of Technology, Pasadena,
California 91208.

Observations of small terrestrial craters by Seasat synthetic-aperture radar (SAR) at high
resolution (~25 m) and of comparatively large Venusian craters by Venera 15 and 16
images at low resolution (1000-2000 m) and shorter wavelength show similarities in the

radar responses to crater morphology. At low incidence angles (< - 15 deg), the responses
are dominated by large-scale slope effects on the order of meters; consequently it is difficult
to locate the precise position of crater rims on the images. Abrupt contrasts in radar
response to changing slope (hence incidence angle) across a crater produce sharp tonal
boundaries normal to the illumination. Crater morphology that is radially symmetrical
appears on images to have bilateral symmetry parallel to the illumination vector. Craters are

compressed in the distal sector and drawn out in the proximal sector. At higher incidence
angles (> ~ 35 deg) obtained with the viewing geometry of SIR-A, crater morphology
appears less compressed on the images.

At any radar incidence angle, the distortion of a crater outline is minimal across the

medial sector, in a direction normal to the illumination. Only the medial sector may yield an
accurate measure of the diameter, provided there is sufficient contrast to locate the crater

rim. It is important in radar images to distinguish between departures from crater
circularity that are real and image distortion that relates to the scene illumination.

Radar-bright halos surround some craters imaged by SIR-A and by Venera 15 and 16.
The brightness probably denotes the radar response to small-scale surface roughness of the
surrounding ejecta blankets [1, 2, 3]. In some cases the halos appear to be bilaterally
symmetrical about an axis that parallels the illumination vector, with reduced brightness
from the foreslopes to the backslopes.

Similarities in the radar responses of small terrestrial impact craters and volcanic craters

of comparable dimensions (N 2 km diameter, observed by Seasat SAR and SIR-A)
emphasize the difficulties in discriminating an impact origin from a volcanic origin in the
images [4]. Similar difficulties will probably apply in discriminating the origin of small
Venusian craters, if they exist.

Because of orbital considerations, the nominal incidence angle of Magellan radar at the

center of the imaging swath will vary from about 45 ° at 10 ° N latitude to about 16 ° at the

north pole and at 70 ° S latitude. At latitudes from 20 ° N to 10° S the viewing geometry

will approach the SIR-A configuration. North of 60 ° N and south of 40 ° S the viewing

geometry will be analogous to Seasat SAR. At the latitudinal extremities of imaging in both
hemispheres the viewing geometry will approach the Venera 15 __co_figuration.
With this variable viewing geometry, radially symmetrical landforms on Magellan images
can be expected to show outlines that vary with latitude. Impact craters and comparable
volcanic landforms will show bilateral symmetry parallel to the illumination vector and will
appear increasingly compressedtoward higher latitudes.
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CONTRASTING LANDFORM PERCEPTION WITH VARIED RADAR
ILLUMINATION GEOMETRIES AND AT SIMULATED RESOLUTIONS OF VENERA

AND MAGELLAN. J.P.Ford, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California 91208, and R.E.Arvidson, Department of Earth and
Planetary Sciences, Washington University, St. Louis, Missouri 63130..

The high sensitivity of imaging radars to slope at moderate to low incidence angles
enhances the perception of linear topography on images. It reveals broad spatial patterns
that are essential to landform mapping and interpretation. As radar responses are strongly
directional, the ability to discriminate linear features on images varies with their orientation.

Landforms that appear prominent on images where they are transverse to the illumination
may be obscure to indistinguishable on images where they are parallel to it. Linear features
should be examined carefully because faults and other features such as dipping strata, dikes

or linear joint patterns may be expressed in a similar manner on images [ 1]. In the absence
of relief, nontopographic lineaments may appear in response to local contrasts of small-
scale surface roughness [2]. In the case of sand dunes, radar responses are rigorously
constrained by specific angular relations between the illumination and the orientation and
angle of repose of dune faces [3].

Landform detection is also influenced by the spatial resolution in radar images. Seasat

radar images of the Gran Desierto Dunes complex, Sonora, Mexico; the Appalachian Valley
and Ridge Province; and accreted terranes in eastern interior Alaska were processed to
simulate both Venera 15 and 16 images (1000 to 3000 km resolution) and image data
expected from the Magellan mission (120 to 300 m resolution) [4]. The Gran Desierto
Dunes are not discernable in the Venera simulation, whereas the higher resolution Magellan

simulation shows dominant dune patterns and specular reflections from dune faces oriented
normal to the radar illumination. Antiforms and synforms are evident in both simulations
over the Appalachians largely because of patterns produced from differential erosion of the
rocks. The Magellan simulation also shows that fluvial processes have dominated erosion
and exposure of the folds. Mountainous terrains and their degree of erosion are discernable
in both simulations over Alaska, although the Magellan simulation shows that fluvial,
glacial, and eolian processes have all been active in shaping the landscape. Neither
simulation provides evidence that diverse lithotectonic terranes in Alaska were juxtaposed
(i.e. accreted), since the primary evidence needed is lithological, whereas radar returns are

dominated primarily by topography and small-scale surface roughness.
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VENUS SURFACE PROPERTIES DEDUCED FROM RADAR AND RADIOMETRY;

P. G. Ford, MIT Center for Space Research, Cambridge, Mass. 02139

The brightness of surface features on side-looking radar images of Venus is determined by

many factors: the angles of incidence and reflection, polarization, surface geometry and composition,
and so forth. The contribution from surface properties themselves can only be deduced by combining
several types of measurement. For instance, without additional information, it is impossible to distin-

guish the effects of changes in surface roughness from those in dielectric constant.

In common with the Moon and Mars, the surface of Venus appears to scatter radar waves in

two ways: smart-scale surface inhomogeneities, i.e. those smaller than the incident wavelength, depo-
larize and scatter the energy over a wide range of angles. The Pioneer results are best described by
Muhleman's (1) phenomenological function t_m(0)= (0.0188 cos0)/(sin0 + 0.111 cos0) 3, where 0 is

the angle of incidence. When 0 is less than about 20 °, a different mechanism dominates-quasi-
specular scattering from numerous surface "facets". The scattering cross section from this mechanism
depends on the distribution of the tilts of these facets. Pioneer results tend to confirm the Hagfors
model (2) in which surface heights obey a gaussian distribution, while tilts are correlated exponential-
ly, leading to a scattering cross-section ¢_h(0) = I/_Cp (cos40 + Csin20) 3/2. C corresponds to the in-

verse of the mean square of the distribution of meter-scale surface slopes, in radians, and p is the
bulk Fresnel reflectivity of the surface material.

The Pioneer Venus radar mapper experiment made three overlapping sets of measurements of

the equatorial region of Venus from 15°S latitude to 45°N-the backscatter cross section at a range of
incidence angles, the shape and intensity of radar echoes from the nadir, and the microwave bright-

ness temperature of the surface (3). For each element of the surface, these measurements have been
combined as follows- (a) backscatter measurements at several incidence angles serve to locate the da-
turn on the Muhieman curve and determine that fraction of the surface, ct, that is rough at the small
scale; (b) the reflectivity p derived from fitting nadir echoes to the Hagfors curve may be corrected
for the incident energy lost through diffuse scattering; (c) this correction may be verified from the ra-
diometer measurements of the surface emissivity, e, since, for sufficiently rough surfaces, p = (l-e);
(d) finally, the bulk surface dielectric constant, e, may be computed from the relation
p = I(e-1)/(e+l)l 2.

These techniques developed during the analysis of Pioneer Venus data will be used during the

Magellan mission to extract measurements of surface slopes and dielectric constants over all areas
covered by the SAR and altimeter antennae, with a resolution of about 10 kin. A knowledge of the
mechanisms that govem surface scattering will also be useful in the analysis of higher resolution
size-looking radar images, particularly in distinguishing the effects of changing roughness from those

caused by a long-range surface tilt or changing dielectric constant.

1 Muhle_nan" D. O., Radar Scattering from Venus and the Moon, Astron. J., 69, 34-41, 1969.

2 Hagfors, T. A., A study of the depolarization of lunar surfaces, Radio Sci., 2, 445--465, 1967.

3 Pettengi]l, G. H, P. G. Ford, mad B. D. Chapman, Venus: Surface Electromagnetic Properties, J. Geophys. Res., 93,

BI2, 14881-14892, 1988.



A Morphologic Study of Venus Ridge Belts: S.L. Frank and J.W. Head, Department of
Geological Sciences, Brown University, Providence, RI, 02912

Ridge belts, first identified in the Venera 15/16 images [1,2] are distinguished as linear
regions of concentrated, parallel to anastomosing ridges. They are tens to several hundreds of
km wide, hundreds to over one thousand km long, and composed of individual ridges 5-20 km
wide and up to 200 km long. The ridges appear symmetrical in the radar images and are
either directly adjacent to each other or separated by mottled plains. Cross-strike linea-
ments, visible as dark or bright lines, are common within the ridge belts, and some truncate
individual ridges. In places the ridge belt may be offset by these lineaments, but such offset
is rarely consistent across the ridge belt. The angle between the lineaments and the ridge
belts is usually 30 ° to 90 °. Localized plains units from several km to 100's of km wide are
bounded by arcuate ridges, forming elliptical-shaped plains regions within the ridge belts.
Between 0°E and 90°E in the Tessera-Ridge Belt assemblage [3], the ridge belts form an
orthogonal pattern surrounding large blocks of tesserae, while in the Plains-Ridge Belt
assemblage, between 150°E and 250°E , the belts trend predominantly N-S, occasionally
coalescing and dividing to form a fan pattern [3,4]. Ridge belts most often occur at elevations
within 2 km of the planetary mean. Some ridge belts lie on broad highs up to 1.5 km high,
many lie on topographic slopes, and a few occur in topographic depressions. The origin of
these ridge belts is a matter of controversy, with both compressional origins [2,5] and
extensional origins [6] proposed. Once the mode of formation of these ridge belts is under-
stood, their distribution and orientation will help to constrain the homogeneity and orienta-
tion of the stresses over the period of ridge belt formation.

The look direction for the Venera system was to the west, so ridges appear as pairs of
bright and dark lineaments, with the bright line to the east of the dark. A major difficulty
with radar imagery, especially at small incidence angles, is foreshortGning, in which the
radar-facing slope is shortened and the away-facing slope lengthened [7]. This effect reaches
a maximum when the look angle (in this case 10°) equals the radar-facing slope. The ap-
parent symmetry of the ridges thus implies either that all the ridges are asymmetrical, with
shallow radar-facing slopes, or that all slopes are considerably shallower than 10°. Since it
is unlikely that all ridges in an area of tens of millions of square kilometers are asymmetri-
cal in the same direction, we conclude that the ridges have gentle slopes and are mostly

symmetrical.

Above, the term 'ridge' has been used in a general sense to refer to a linear rise. In the
following discussion, the use of this term is restricted to rises which have a sharp transition
from bright to dark at the crest, and are 5-15 km wide. These ridges are either continuous
or discontinuous. The continuous ridges are over 30 km long and form coherent ridge belts,
while the discontinuous ridges are less than 30 km long and do not form a coherent ridge belt.
We have divided the continuous ridges into three components [8]. (1) Anastomosing ridges,
in which the individual ridges are sinuous and often meet and cross at small angles, are the
most common component. The ridges in this component are often separated by 5-20 km of
plains, but sometimes form adjacent to one another, with no plains visible in between. (2)
The parallel ridge component also consists of well-defined ridges, often with plains sepa-
rating the individual ridges, but the the ridges are more linear and rarely intersect one
another. (3) Parallel ridged plains are composed of indistinct ridges, some of which do not
have a distinctive bright-dark pattern. The distance between adjacent ridges is usually
greater than 10 km. Broad arches are a fourth component also present within the ridge belts.
They are more than 10 km wide, and there is no sharp bright-dark boundary at the crest,
but rather a gradual transition from light to dark. They are similar to wrinkle ridges on the
moon, Mars, and Earth, with their broadly curving crests, sinuosity and shallow slopes
[9,10]. There are several possible origins for each of these components, ranging from
extension and magmatism to compressional folding and faulting. We are assessing these
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origins by comparing component morphology with compressional and extensional features on
the other terrestrial planets.

Much discussion has surrounded the origin of the ridge belts [5,6]. Evidence for com-
pressional origin discussed by Frank & Head [5] is as follows: (1) the broad morphology of
the arches is similar to the maria wrinkle ridges, which are interpreted to be formed by
compressional and vertical movements [i.e. 9,10,11]; (2) the more detailed morphology of
ridges within the belts is similar to the mountains surrounding Lakshmi Planum, which all
workers have interpreted as compressional [12]; (3) ridge belts and the ridges within them
are generally sinuous, as are compressional features on the Moon and Mars, while exten-
sional features on the Moon and Mars tend to be more linear or broadly arcuate (this is con-
sistent with Anderson's [13] observation that low-angle faults (i.e. thrust faults) tend to
have more sinuous traces than vertical strike-slip faults); (4) lineaments that cut across
ridge belts and adjacent plains often form a conjugate set, trending 60 ° to the ridge belts, and
where there is evidence of some strike-slip motion it is often in a direction consistent with
compression and shortening across the ridge belt (under extensional stresses, one would
expect either a conjugate set of faults at 30 ° to the ridge belts, or transform-type faults
near 90 ° to the ridge trend); (5) the curvature of ridges around the elliptical plains regions
resembles deformation of less competent material around more rigid bodies. In this case the
elliptical plains regions are interpreted as less deformed or undeformed blocks. In addition,
in places the components and topography show an asymmetric pattern across the ridge belts,
as expected In regions of low-angle thrust faults.

Sukhanov and Pronin [6] have proposed that ridge belts are of extensional origin on the
basis of the following evidence: (1) some ridge belts are symmetrical about a central line,
suggesting spreading within the belt; (2) volcanic structures are visible along ridge belts;
(3) where ridge belts cross other structures, these structures are not visible within the
ridge belts; and (4) ridges within belts sometimes turn into graben. These aspects, however,
are not all unique indicators of extension. The graben, for example, are often oriented at an
angle to the overall trend of the ridge belts, and could represent pull-apart basins which
have developed along strike-slip faults. Furthermore, volcanic activity is not limited to
regions of extension, but is common in compressional environments (e.g. island arcs). The
symmetrical pattern, however, is a strong indicator of extensional origin, and the apparent
symmetry of the ridges argues against large-scale thrust faults, although the sinuosity of the
ridges supports low-angle faults.

The nature of deformation within the ridge belts is complex and not fully understood at
present. Some belts show distinct signs of compression, while others have symmetrical
patterns expected tn extensional environments. Thus the ridge belts may have formed by
more than one style of deformation; some may be extensional, while others are compres-
sional. We are now systematically mapping of all the ridge belts, concentrating on symmetry
relationships, in order to determine the locations of compressional and extensional deforma-
tion within the ridge belts.

References: [1] Barsukov, et al (1986) JGR 91, D378-D398. [2] Basilevsky,et al (!986) JGR 91, D399-
D411. [3] Head (1989) LPSC XX392-393. [4] Frank & Head (1989) LPSC XX, 311-312. [5] Frank & Head
(1988) LPSC X/X, 350-351. [6] Sukhanov& Pronin (1989) Proc. LPSC XIX (in press). [7] Sabins (1978)
Remote Sensing--Princip/es and Interpretation;MacDonald(t980) in Remote Sensing in Geology,Siegal&
Gillespie, eds. [8] Frank & Head (1988) LPSC X/X, 348-349. [9] Wetters (1988) JGR 93, 10,236-10,254.
[10] Piescia& Golombek(1986) GSA Bull97, 1289-1299. [11]Lucchitta (1976) Proc. LPSC VII, 2761-2782;
Sharpton & Head (1986) Proc. LPSC XVI//, 307-317. [12] Campbell, et al (i983) Science 22I, 644-647;
Crumpler& Head (1986) Geo/ogy 14, 1031-1034; VorderBruegge& Head (1986) LPSC XVI/, 917-918;
Pronin(1986) Geotektonika4, 24-41 (in Russian).[13] Anderson(1942) TheDynamicsof Fo/dingand Dyke
Formation,with ApplicationtoBritain,Oliver andBoyd,Edinburgh.



N0o-12438
1s

EVIDENCE FOR VOLCANISM IN NW ISHTAR TERRA, VENUS;
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Venera 15/16 radar data for an area in NW Ishtar Terra, Venus (74°N, 313°E; at the intersection
of Akna and Freyja Montes), show an area with moderate radar return and a smooth-textured

surface which embays low-lying areas of the surrounding mountainous terrain (figure.l).
Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast,
detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the
Ishtar Terra highland, exhibits major volcanic1,2,3. 4 and tectonicS, 6 features. It is a smooth-

surfaced plateau (3 to 5.5 km in elevation) surrounded by major mountain belts including Akna,
Freyja, and Maxwell MontesS,6. 7. Volcanic featuresl,Z3. 4 on Lakshmi Planum include calderas of

Colette (130x 180 km) and Sacajawea (120x200 km) Paterae, lava flows (Colett_ flows average 15
km in width, 100-300 km in length3), and associated smaller vents. These volcanoes may be the
surface expression of hot spots, as observed in Hawaii, in which the growing volcanic edifice
deformed the surrounding areasS; alternatively, compressional deformation may have resulted in
crustal thickening and melting, and the formation and deposition of volcanic materials 3.

On the Venera radar image (figure 1) radar brightness is influenced by slope and roughness;
radar-facing slopes (east-facing) and rough surfaces (-8 cm average relief) are bright, while west-
facing slopes and smooth surfaces are dark. The moderate radar return indicates a smooth unit

embaying low-lying areas of the adjacent "ridge-and-trough" terrain; these characteristics are
consistent with a volcanic origin for this unit. To the northwest, bright, lobate features extend
further northwestward more than 300 km. A geologic sketch map (figure 2) shows smooth terrain
for the volcanic units, and the darker units represent adjacent, possibly associated volcanic flows.

A series of semi-circular features, apparently topographic depressions, do not conform in

orientation to major structural trends in this region of NW Ishtar Terra. Topography 9 (figure 3)
shows elevations from about 5.5 km in the SE (toward Lakshmi Planum) to 2 km (to NW). If the
3.0 km elevation is assumed to be the outer boundary of a complex caldera in the center of the

smooth terrain, a feature about 200 x 250 km in size is measured; the smaller depression to the
southeast (an associated vent?) is about 50 km in diameter.

The large depression (caldera?) in NW Ishtar Terra is similar to the calderas of Colette and

Sacaj_/wea Paterae, as all three structures are large irregular depressions. Although Colette and
Sacajawea have been described as shields, their flank slopes are low (<0.5°). All 3 calderas have

depths of 1 to 1.5 km, but the caldera in NW Ishtar is both more complex and larger than Colette
(130x180 km) and Sacajawea (200x120 km). If a relationship between caldera diameter and
magma chamber diameter and depth exists for Venus 10, then the chamber under the NW Ishtar

caldera is larger/deeper than those of Colette and Sacajawea. Although the types and volumes of
volcanic products from the structures and the presence or absence of rifting and associated
volcanism cannot be constrained with Venera data, the large calderas indicate that centralized
eruptions were predominant. Age relationships are difficult to establish; although the muted
appearance and lower relief of Sacajawea support an older age than for Colette, it is not possible to
determine a relative age for the NW Ishtar Terra volcano.

NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure,
possibly more than one eruptive vent, and associated lobed flows at lower elevations. The

morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests
that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this

volcanic center at the intersection of two major compressional mountain belts and the large size of
the caldera (with an inferred large/deep magma source) support a "crustal thickening/melting"
rather than a hot-spot origin for these magmas.

References: 1) Barsukov et al., 1986, LPSC Proc. 16t_h,JG____RR,91, D378; 2) Magee and Head, 1988, LP$(_ XIX,
711; 3) Magee and Head, 1988, LPSC XIX, 713; 4) Gaddis, 1989, LPSC XX, 317; 5) Crumpler et al, 1986,
Geology, 14, 1031; 6) Head, 1988, LPSC XIX, 469; 7) Vorder Bruegge and Head, 1988, LPSC XIX, 1218; 8)
Pronin, 1986, Geotektonika. 4, 26 (in Russian); 9);Frt0karta Veneri B4, Lakshmi Planum, 1987; 10) Wood, 1984,
JGR, v. 89, 8391.
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The geomorphic expression of Mid-Ocean-Ridge (MOR) volcanism in a subaorial setting occurs

uniquely on Earth in Iceland, and the most recent MOR eruptive activity has been concentrated in the
Northeastern Volcanic Zone in an area known as Krafla. Within the Krafla region are many of the key

morphologic elements of MOR-related basaltic volcanism, as well as volcanic explosion craters, sub-

glacial lava shields, tectonic fissure swarms known as gjar, and basaltic-andesite flows with well-

developed ogives (pressure-ridges). Deposits of basaltic tephra and hyaloclastite can also be found,

and an Incipient collapse caldera (Krafla itself) is well-established. The most recent series of

eruptions were of the fissure type, with extensive flows of both a'a and pahoehoe covering a 10 km

long zone to the east of the Gaesafjoll sub-glacial lava shield. The diverse range of pristine basaltic

volcanic constructs that are manifested in the Krafla region has motivated our geomorphic analysis of

the area from the perspective of high-resolution, airborne SAR imagery, in comparison with vertical

airphotos and orbital panchromatic imagery collected by the SPOT satellite. One of our prime

objectives has been to use the synoptic perspective offered by remote sensing imagery of different

kinds to evaluate how severely look-azimuth biasing effects recognition of basic structure and

geomorphology of an active volcanic zone. For this reason, our collaborators on this project, INTERA

Technologies, collected X-band digital SAR imagery at a 15 degree incidence angle (average) and at 8 m

per pixel resolution in three different /ook directions: from the East, West, and South. Since orbital

constraints prevent the Magellan SAR from imaging known venusian volcanic areas of interest (e.g.,at

Beta Regio etc.) at more than one look azimuth, there is a real concern that many diagnostic structures

may appear "invisible" in the Magellan imaging dataset (especially those features oriented parallel to

the look direction). In fact, our experience with one look direction INTERA SAR imagery of the
Reykjanes region in southwestern Iceland clearly indicates that major tension fractures that cut many

of the recent volcanic features such as the lava shields cannot be observed, in spite of their clear

expression in airphotos and orbital SPOT multispectral imagery [Garvin et al., 1989]. Therefore, our

objective has been to quantify the degree to which the basic volcanic and structural features can be

mapped from directional SAR imagery as a function of the look azimuth. To accomplish this, we have

independently mapped the current expression of volcanic and tectonic constructs within the Krafla

region on the E, W, and N-looking SAR images, as well as from SPOT Panchromatic imagery acquired in

1987. The INTERA SAR images were acquired in October of 1988 and provide imagery for the region

that supercedes the most recent airphoto survey conducted by the Landmaelingar Islands Aerial

Photographic Service; thus we have no recent maps to compare with except for those which describe

the various lava flow emplacement episodes from lg81-1984 in the Krafla region. A second phase of

this study (to commence shortly) will involve digital co-registration of the 3 INTERA SAR images

(designated E, W, and N on the basis of their look direction) to the SPOT Panchromatic image. This

analysis will permit an even more quantitative assessment of the degree to which major features can

be observed as a function of look azimuth. We believe that our results will have a bearing on the

reliable interpretation of Magellan images of volcanic zones on Venus, many of which appear (on the

basis of 1 km resolution Venera and Arecibo images) to be of a basaltic, fissure-fed variety (e.g., the

volcanic plains of Sedna etc.).

Our initial observations of the E, W, and N images indicates that fresh a'a lava surfaces are

extremely radar-bright (rough at 3 cm to meter scales) independent of look direction -- this suggests

that these flows do not have strong flow-direction related structures at meter and cm scales, which is

consistent with typical Icelandic a'a lava surfaces in general. The November 1981 Krafla flow has the

most pronounced radar-bright appearance (saturated in the optically correlated INTERA imagery). The

structural expression of the incipient Krafla caldera cannot be observed in any of the SAR images,

independent of look direction. The oriented (mostly N-S) tectonic fissures and cracks (gjar) are well-

expressed at all three look directions; this result is rather surprising given their strong preferred

orientation, but the high spatial resolution and extreme obliquity of the INTERA SAR imagery serves to

enhance the expression of these extensional features, even in the N-looking image. The lava shields
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(I.e. Theistareykjabunga) and the sub-glacial vadetias can all be identified at all three look directions

as well. The appearance of the Hverfjaii tephra ring and nearby Ludent (both ~ 1 km in diameter

craterform structures involving a hydromagmatic eruption phase) are distinctive at each of the three

look directions, although the basal surge deposit that lies beyond the rim crest of these depressions is

quite variable. Our basic impression from a preliminary analysis of the effects of look azimuth biasing

on interpretation of the geology of an active MOR volcanic zone is that up to 30% of the diagnostic
features can be missed at any given look direction, but that having two orthogonal look direction images

is probably sufficient to prevent gross mis-interpretation. In fact, the strong directional orientation of

structural elements within the Krafla region may provide on an end-member test of the effects of

azimuth biasing, as older volcanic zones (on Earth and Venus) may have undergone several eruptive

phases with different structural fabrics (i.e., not just a single N-S fabric as at Krafla). Our analysis is

continuing, and results of our digital co-registration are expected by late 1989, and in time to assist

Magellan scientists with image interpretation. {This research was partially supported through NASA
Code EEL RTOP 677-43-28 to Garvin and Williams. We gratefully acknowledge the cooperation and

support of INTERA Technologies, and Garth Lawrence; we are also grateful for the permission to work

in Iceland granted us by the Iceland National Research Council.}
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Simple impact craters are known to occur on all of the terrestrial planets and the morphologic

expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars,

Mercury, and most recently for Venus [e.g., 1,2]. In addition, the geology of impact crater ejecta

blankets has been shown to reveal details of the physics of the ejecta emplacement process as

manifested by distintive facies and morphologies (e.g. hummocks) [1-3]. The Magellan S-band SAR

dataset to be acquired for Venus is expected to provide 120-360 m resolution images of hundreds to
thousands of craterforms, many of which are likely to be of hypervelocity impact origin. It will be

crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing

smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed

SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these

concepts in mind, we have initiated a study of the quantitative SAR textural characteristics of the

ejecta blanket preserved at Meteor Crater, Arizona, the well-studied 1.2 km diameter simple crater

that formed ~49,000 years ago from the impact of an octahedrite bolide [3,4]. While Meteor Crater

was formed as the result of an impact into wind and water-lain sediments [3] and has undergone

recognizable water and wind-related erosion [3-5], it nonetheless represents the only well-studied

simple Impact crater on Earth with a reasonably preserved CEB. Recent field geomorphic investigations

of the Meteor Crater CEB by Grant and Schultz [6] have challenged the previous work by Roddy and

colleagues [4,5] that suggested about 20% of the ejecta has been removed, and the new, albeit

controversial, evidence indicates that the ejecta is still in a pristine state [6]. Therefore, we are also

interested in exploring whether the scattering behavior of the CEB can provide an independent

perspective on its preservation state and style of erosion. Finally, we have used airborne laser

altimeter profiles of the microtopography of the Meteor Crater CEB [7] to further quantify the sub-

radar pixel scale topographic slopes and RMS height variations for comparisons with the scattering

mechanisms computed from SAR polarimetry. This report summarizes a preliminary assessment of the

L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8

SAR Polarimetry dataset acquired in 1988, and compares the dominant scattering behavior with

microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).
Campbell and colleagues [8] have demonstrated that polarimetric SAR backscatter data from

volcanic lava surfaces can be reasonably represented by a model in which the entire coherent echo

from the surface is separated into quasi-specular (QS), quasi-dihedral (DI), and Bragg-resonant (BR)

components. Details of this approach are summarized in [g], and a general description of the analysis

of multipolarization SAR data in Stokes matrix format is given by van Zyl and colleagues [9-11], and

will not be reviewed here. Campbell and colleagues [8] have convincingly shown that this radar model

produces quantitative information about the relative surface roughness of lava flows, and that it should
be extensible to the Meteor Crater if the CEB can be modelled as dielectrically homogeneous.

Furthermore, they have demonstrated that RMS height variations and other topographic parameters can

be deduced from the types of scattering components. We have used terrain proper[ins computed from

meter-resolution laser altimeter profiles [7] to quantify the Meteor Crater CEB as a function of range

(from the rim crest) and azimuth. For a 500 m long section of the eastern CEB, the RMS height

variations are approximated by a power law of the form: RMS = 0.032 (delta x)^1.06 in

meters, where delta x is the spatial scale over which the RMS height variation is desired. In a similar

manner, the scale-dependent local topographic slope can be described by a power law of the form:

Slope = 6.8 (delta x)^-0.106 in degrees. Thus, the 10 cm spatial-scale RMS height variations

(on the average) for the near-rim ejecta range from 0.14 to 0.47 cm as a function of azimuth around

the crater, and the 1 m scale RMS variations range from 2 to 4.3 cm. At the scale of a 10 m SAR

polarimeter pixel, the RMS height variations range from 23 to 49 cm, with the eastern and

northeastern ejecta the roughest (40-49 cm RMS per 10 m). Local slopes at 10 cm scales vary from 4
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to 8 degrees. Even at 10 m spatial scales, local slopes range from 3.4 to 7.2 degrees as a function of
azimuth around the crater. These values for the Meteor Crater CEB are dramatically different by

factors of up to 10 from similar statistics derived from microtopographic statistics for lava flows

such as SP (AZ). The blocky SP lava flow averages over 18 cm of RMS height variation at 1 m scales,

and 71 cm of RMS relief at 10 m (DC-8 SAR pixel) scales. Local slopes at radar pixel scale average 11

degrees, while those at 1 m scale lengths are typicaJly 36 degrees. Therefore, our prediction is that

the Meteor Crater CEB is much more benign at radar wavelengths than blocky or a'a lava flows.

We have applied the model described in [8] to the DC-8 SAR polarimetry (at L-band only) of

Meteor Crater and its CEB (out to 5 crater radii), after having corrected these data for HH and VV

phase errors and cross-talk using algorithms developed by J. van Zyl [11]. In order to evaluate the

effect of dielectric homogeneity of the surface layer in the vicinity of the crater, we have computed

model solutions for E'=4, 6, and 8; for reference, only very dense, competent rocks have dielectric

permittivities as high as E'=8, and there is no obvious physical evidence for high dielectric phases at

the surface of the CEB. A simple color (RGB) composite image involving the QS, BR, and unpolarized

(UN) components of the radar model reveals the dominant textural variations of the CEB. The DI

component is extremely subdued in the CEB, perhaps due to a general absence of natural "corner

reflectors" except at the rim. We examined the differences between the composite BR, QS, and UN

images as a function of dielectric permittivity E', and in correlation with topography and geology. The

E'-,8 model is most sensitive to local variations in surface texture, and best depicts the spatial

variability and asymmetry of the ejecta [3-5]. There is a sense of bilateral symmetry to the ejecta as

revealed in the scattering mechanism images, about an axis oriented E-W. This is not consistent with

the theory of a directed impact from the SE [5], but the effect may be due to an erosional imprint or

radar look azimuth biasing. The expression of the CEB in the composite image (BR,QS,UN) is strongest
to the NE and South/SE, and is most subdued to the West. This is consistent with the results of a radial

topographic analysis of the CEB [7]. A significant component of the scattering in the CEB is represented

by the unpoiarized (UN) echo, although most of terrain appears to behave as QS facets. The E'=8 model

suggests that the "roughest" areas of the ejecta have a higher dielectric permittivity, which is

consistent with their occurrence as isolated ridges of rock outcrops within the more friable (eolian lag

covered) ejecta deposit. An apparenlty random spatial distribution of isolated, lower dielectric regions

exists around the crater, and these areas are not correlated with the limits of the CEB.

Our preliminary examination of the radar scattering characteristics within a partially

preserved impact crater ejecta blanket suggest a few cautions. First, the Meteor Crater ejecta blanket
may not be the ideal analogue for such terrain types on planets such as Venus or the Moon. This is

because of the generally benign nature of the Meteor Crater CEB, at least relative to lava and block

field surfaces. While the scattering behavior of the CEB is distinct from the surrounding terrain, it is

not representative of a blocky surface unit, as is suggested from existing radar observations of

probable venusian impact craters [2]. It is possible that a partially fluidized mode of late-stage ejecta

emplacement at Meteor Crater has subdued the expression of the ejecta block field within one crater

radius from the rim. In spite of the possible uniqueness of the preserved CEB at Meteor Crater, the

suggestion that ejecta blankets may have dielectric permittivities that are larger than their

surroundings warrants further examination in light of enhanced radar reflectivities observed around

probable venusian impact craters. {This work was partially supported by NASAJGSFC DDF 88-04 and

RTOP 677-43-24}.
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This review assesses the potential aeolian regime on Venus as derived from spacecraft

observations, laboratory simulations, and theoretical considerations. The two requirements for
aeolian processes--a supply of small, loose particles and winds of sufficient strength to move
them--appear to be met on Venus. Venera 9, 10, 13, and 14 images show particles considered
to be sand-and-silt size on the surface (1-5). In addition, "dust spurts" (grains 5-50 i.tm in

diameter) observed via lander images (6) and inferred from the Pioneer-Venus nephalometer
experiments suggest that the particles are loose and subject to movement. Although data on
near-surface winds are limited, measurements of 0.3 to 1.2 rn/sec from the Venera lander and

Pioneer-Venus probes (7) appear to be well within the range required for sand and dust
entrainment.

The Venus Wind Tunnel (VWT) is an apparatus used to simulate the movement of
particles on Venus (8); it operates with carbon dioxide gas at 35 bars pressure and 27°C
(ambient laboratory temperature); this produces afluid density (the critical factor in aeolian

processes) that is equivalent to the nominal Venus case of 90 bars at 475°C. Experiments have
been run to determine threshold (e.g., minimum wind speeds) for particle entrainment as a
function of grain size: results show that in the dense venusian atmosphere particles are easily

moved (u, t = 2.8 cm s-1 for -80 _tm grains, the optimum size). However, experiments also
reveal a m6de of aeolian transport unusual on Earth (and presumably unusual on Mars), i.e.,
rolling, in which grains roll along the surface and are not impacted by saltating grains (9). The

threshold wind speed (u,) is about 20% lower than that for saltation, suggesting that aeolian
processes could occur with greater frequency than otherwise expected on Venus.

Once set into motion, what is the potential for transport of surficial material and for
erosion by windblown particles? Experiments show that the flux of grains is lower than
predicted, primarily due to a "choking" effect that occurs in high-density grain flow.
Nonetheless, the velocity of the grains in motion very quickly achieves 75-100% of the wind
speed, in contrast to windblown particles on Earth and Mars (10). Evidently, the coupling of
particles with the atmosphere is directly proportional to atmospheric density.

From analyses of Venera lander images, there was speculation on the existence of various
aeolian bedforms such as ripples and dunes (3). The postulation of the existence of
"microdunes" is supported by simulations that show the development of dunelike features 10-
20 cm long by a few cm high (11). The existence of "slip faces", foreset beds, flow separation,
and distinctive grain size distributions all are appropriate for dunes as opposed to ripples.
However, experiments also show that microdunes and other bedforms developed under
venusian conditions are highly dependent on wind speed, particle diameter, and atmospheric

density. Consequently, the formation and preservation of small bedforms may be limited and
ephemeral.

Aeolian activity involves the interaction of the 1) atmosphere, 2) lithosphere, and 3) loose
particles. Thus, there is the potential for various physical and chemical weathering processes
that can effect not only rates of erosion, but changes in the composition of all three components.
The Venus Simulator is an apparatus used to simulate weathering under venusian conditions at
full pressure (to 112 bars) and temperature (to 800 K). In one series of tests, the physical
modifications of windblown particles and rock targets were assessed and it was shown that
particles become abraded even when moved by gentle winds (12, 13). However, little abrasion
occurs on the target; rather, the comminuted material from the particles readily adheres to the
target faces. Thus, compositional "signatures" for target rocks may be more indicative of the
windblown particles than of the "bedrock".

From these and other considerations, aeolian modifications of the venusian surface may
be expected to occur as weathering, erosion, transportation, and deposition of surficial
materials. Depending upon global and local wind regimes, there may be distinctive "sources"
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and "sinks" of windblown materials. Radar imaging, especially as potentially supplied via the
Magellan mission, may enable the identification of such areas on Venus.
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THOUGHTS ON THE VENUSIAN SURFACE AND EARLY EARTH,

R.B.Hargraves, Department of Geological and Geophysical Sciences,

Princeton University, Princeton, NJ 08544

The possibility that improved understanding of the tectonic style on

Venus may have particular relevance to the Archean Earth, adds to the

interest and excitement of the Magellan mission. The speaker - no expert

on Venus - will present his views of this aspect based on limited reading

and what he learns at this Tutorial.
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ARCHITECTURE OF OROGENIC BELTS AND CONVERGENT ZONES IN WESTERN ISHTAR TERRA, VENUS;

J. W. Head, R. Vorder Bruegge, and L. Crumpler, Dept. of Geological Sciences, Brown University,
Providence, R. I. 02912

Linear mountain belts in Ishtar Terra were recognized from Pioneer-Venus topography 1, and later

Arecibo images showed banded terrain interpreted to represent folds 2. Subsequent analyses 3

showed that the mountains represented orogenic belts 4, and that each had somewhat different

features and characteristics 5,6. Orogenic belts are regions of focused shortening and compresslonal

deformation and thus provide evidence for the nature of such deformation, processes of crustal

thickening (brittle, ductile), and processes of crustal loss. Such information is important in

understanding the nature of convergent zones on Venus (underthrusting, imbrication, subduction?),

the implications for rates of crustal recycling, and the nature of environments of melting and

petrogenesis. In this study we identify and examine the basic elements of four convergent zones and

orogenic belts in western Ishtar Terra, and then assess the architecture of these zones (the manner
in which the elements are arrayed), and their relationships. The basic nomenclature of the

convergent zones is shown in Fig. 1.
Danu Montes ranges in width from about 75 to 175 km and extends for over 1200 km along the

southern and southwestern edge of Lakshmi Planum, rising up to 2.5-3.0 km above the adjacent

plains. It is characterized by parallel to sinuous linear bands interpreted to be folds. The inboard
foreland area of Lakshmi Planum generally tilts slightly upward toward Colette and Sacajawea

calderas, and volcanic plains can be seen to embay parts of the mountains 7. Outboard of Danu, there

is no plateau region, and the terrain descends directly to the base of the adjacent foredeep along

Vesta Rupes, a 50-150 km wide scarp whose base is 2-2.5 km below the elevation of Lakshmi

Planum. Outboard of the foredeep, a broad rise (Ut Rupes) about 200-300 km wide parallels Danu

Montes at a distance of 450-500 km. Danu Montes rises topographically from the west toward the

east, and is most well-developed at the bend at the southeast edge of Lakshmi Planum. At this bend,

and to the east, Clotho Tessera is developed between Danu and Ut Rupes, and the foredeep

characteristic of western Danu is replaced by the complex positive topography of the tessera sloping
down to the adjacent plains. The general direction of compression appears to be normal to the strike

of western Danu Montes, and as Danu turns towards the north it, and the adjacent tessera, are

characterized by a series of parallel linear features interpreted to be strike-slip faults, and the

tessera region appears to be an approximately 300 km wide shear zone. Where Danu is best

developed, it is interpreted to be at least partly transpressional in nature.

Akna Montes trends in a NE direction, ranges in width from about 200-250 km, and extends for

800-900 km along the western edge of Lakshmi Planum, rising up to 2.5-3.0 km above the adjacent

plains. High topography is best developed in its southern half and it is characterized by a series of

features typical of orogenic belts 4. The inboard foreland area of Lakshmi Planum is characterized by

a broad depression opening to the south between Akna and Colette caldera. Volcanic plains can be

seen to embay parts of the mountains, and parts of the orogenic belt has deformed the plains 7.

Outboard of Akna there is a distinctive plateau region (Atropos Tessera) extending about 900-1000

km outboard of Akna. At the western edge of Atropos, the terrain descends slowly to the the

adjacent plains (Snegorochka Planitia) dropping down about 2 km over a distance of several hundred

kin. Neither the outboard scarp, nor the foredeep and rise are distinctly developed here. The

southwestern edge of Atropos Tessera is characterized by a NW trending linear scarp in excess of

1000 km in length against which Akna Monies terminates; this has been interpreted as a shear zone 8

and syntaxis structures 9 are developed where it coincides with Atropos Tessera.

Freyja Montes trends in an EW direction and connects along its western edge with Akna Montes in

a zone characterized by a syntaxis structure 9. Freyja extends over 800 km along the northern edge

of Lakshmi Planum, is 200-300 km wide, and rises up to 2.5-3.0 km above the adjacent plains. High

topography is best developed in its eastern half and like Danu and Akna it is characterized by a series

of features typical of orogenic belts 4. The inboard foreland area of Lakshmi Planum is characterized

by a gentle slope extending to the south and the volcanic plains have been tilted upward and deformed
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into ridged plains 7. Outboard of Freyja there is a distinctive plateau region (Itzpapalotl Tessera)

200-400 km wide characterized by a range of terrain types interpreted to represent compressional

deformation and zones of localized faulting 6. At the northern edge of Itzpapalotl, the terrain

descends abruptly to the adjacent plains dropping down about 3 km over a distance of less than 100

km (Uorsar Rupes), and there is a foredeep filled with young lava plains and an adjacent outboard

rise 6. Freyja Montes and the associated terrain have been interpreted to represent generally N-S

oriented convergence resulting in flexure, underthrusting, and crustal imbrication 6. At its eastern

edge, the topographic trend of the edge of the plateau turns SSE, producing a broad topographic

indentation into Ishtar Terra. Along the western edge of this indentation, the deformation changes

style to produce a series of transpressional ridges.

Maxwell Montes is broader and more equant in planform than the other mountain ranges and rises

over 6 km above the surrounding plain. Although Maxwell shares the common characteristics of an

orogenic belt 4, it also contains distinctive cross-strike structures that have been interpreted to

represent strike-slip deformation of an Akna-like linear mountain range as it was transported

westward between two converging shear zones 5,10. Inboard of Maxwell the plains dip slightly

inward toward Lakshmi, but locally there are depressions in the plains along the base of the steep

Planum-facing scarp. Outboard of Maxwell is an arcuate plateau and the complex and distinctive

structure and topography of Fortuna Tessera 3. The distinctive scarp, foredeep and rise typical of

Danu and Freyja Montes are not readily visible here; instead the deformation is much more

widespread and distributed. Analysis of the Fortuna has lead to the interpretation that it represents

complex deformational patterns associated with convergence, lateral transport of material, and

large-scale ductile deformation and crustal thickening 11

Identification and mapping of the basic elements of convergent zones illustrates the different

architecture of the orogenic belts and suggests that different processes or different levels and styles

of similar processes are operating in different belts. We tentatively order the orogenic belts in a

sequence from simple to complex as follows: Danu, Freyja, Akna, Maxwell. The rise, scarp, and

foredeep characteristic of Danu and Freyja Montes suggests that large-scale flexure 12,

underthrusting13, and crustal loss are typical of these environments. The distinctive altitude

differences between the outboard plains and the foreland region suggest that the orogenic belt

represents the boundary between crusts of two different thicknesses. Akna and Maxwell Montes

display similar topographic elevations both inboard and outboard and this may represent convergence

of crust of more equal thickness, and the consequent emphasis on more distributed deformation and
ductile crustal thickening, particularly in the case of Maxwell Monies.

References: 1) G. Pettengill, etal. (1980) JGR, 85, 8261. 2) D. Campbell etal. (1983) Science,

221, 644. 3) A. Basilevsky etal. (1986) JGR, 91, D399. 4) L. Crumpler et al. (1986) Geoloov. 14,

1031. 5) R. Vorder Bruegge etal. (1989) submitted to JGR. 6) J. Head (1988) _, 467. 7) K.

Magee and J. Head (1988) LPSC XlX, 713. 8) E. Stofan etal. (1987) Earth. Moon. Planets. 38, 183.

9) J. Head (1988) LPSC XlX, 469. 10) R. Vorder Bruegge and J. Head (1988) _, 1218. 11) R.

Vorder Bruegge and J. Head (1988) LPSC XIX, 1220. 12) S. Solomon and J. Head (1989) _,

1032. 13) J. Head (1989) The formation of mountain belts on Venus: Evidence for large-scale

convergence, underthrusting, and crustal imbrication in Freyja Montes, Ishtar Terra, submitted to

Figure 1. Cross section and nomenclature of convergent zones and orogenic belts in the Ishtar

Terra region of Venus.
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DEDUCING THE AGE OF THE DENSE VENUS ATMOSPHERE: R. Kahn, Jet

Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena
CA. 91109

The dense atmosphere of Venus has a discernable effect on the size of impact craters
produced by incoming meteors. This means that if parts of the modern Venus surface are old

enough to preserve the record of crater impacts dating back 3 to 4 billion years, it is possible
to determine whether or not the dense atmosphere was around to shield the surface during the

late heavy bombardment period of solar system history.

Based on simple but reasonable models for crater production, and the effects of
atmospheric drag and breakup on incident meteors, I calculate the expected surface crater size-
frequency distributions for scenarios in which the dense atmosphere formed early and late in

the planet's history. I include models where simple obliteration mechanisms affect the surface
crater populations to varying degrees. If the atmosphere is young, then any uneroded (old)

surfaces will have crater densities upward of 10 .4 km -2, and a ratio of small (4 km) to large

(128 kin) craters near 103, according to the models. If the atmosphere is old, and atmospheric
breakup is the dominant mechanism for destroying incident meteors, then absolute crater
frequencies on the Venus surface will be diminished by several orders of magnitude relative to
the young atmosphere case. If atmospheric drag dominates breakup and the atmosphere is
old, the absolute crater frequency will be lowered by perhaps an order of magnitude relative to
the young atmosphere case, and the ratio of small to large craters will be reduced to a value
near 101,5.

Even when adequate data are available, much work will probably be required to sort out
the effects of surface erosion, which are likely to be regional, from any remaining signature of
the atmospheric history. However, once a large fraction of the Venus surface has been

imaged at kilometer resolutions, as the Magellan Mission promises to do, it may be possible to
make a crude determination of the age of the dense Venus atmosphere.

Such a deduction would be of more than academic interest. Gram for gram, the Earth and
Venus have about the same amount of carbon; on Earth it is in carbonate rocks (limestone)

while on Venus it is in the atmosphere. The single most important question one can ask
about this difference is: 'Did the dense Venus atmosphere form as part of original outgassing,
or did it form later as a result of some climate instability that movcd carbon from the surface

rock into the atmosphere?' Even a very crude determination of the age of the dense Venus

atmosphere would be a step toward answering this question. If the dense atmosphere
postdates the heavy bombardment, core formation, and the period when rapid outgassing of

the planet is most likely, then the possibility that the atmospheric carbon dioxide results from
some instability in climate must be taken seriously.

Reference: R. Kahn (1982) Icarus 49, p.71-85.
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Clotho Tessera, Venus: A fragment of Fortuna Tessera?;

Richard C. Kozak and G.G. Schaber, U.S. Geological Survey, Flagstaff, AZ 86001

Clotho Tessera, adjacent to southeast Lakshmi Planum, may provide

additional evidence for lateral crustal motions, and a model for the origin of

small tessera fragments.

Clotho Tessera and Lakshmi Planum are so noticeably different, and in

such close proximity, it is difficult to derive a reasonable model of their

formation in situ. Squeezing of material out from beneath Lakshmi has been

suggested as an origin for Moira Tessera [I], which is also adjacent to

Lakshmi and 1400 km west of Clotho. However, a logical model of juxtaposition

of the two different terrains, originally from points once distant, can be

made for Clotho and Lakshmi (and perhaps other small tesserae as well).

The 4.5-km-high Danu Montes between Clotho and Lakshmi clearly indicate

convergence. Parallel to the WSW trend of the eastern Danu Montes is a

distinct lineament, across which the character of the terrain changes (in some

places radically), and the tessera ridges appear deflected. The deflection of

ridges along a 50-km segment of this Danu lineament suggests drag caused by

right-lateral offset. At the northeast extent of both Danu Montes and Clotho

Tessera is a 120-km-wide diffuse lineament zone (DLZ) trending southeast.

These lineaments are traceable for 700 km before they disappear, apparently

buried for almost 500 km by flows from the northeast that are related to a

large volcano-tectonic depression whose southeast rim is roughly defined by

Valkyrie Fossae. Beyond Valkyrie Fossae, a similar lineament zone continues

an additional 800 km southeastward before abruptly terminating 150 km short of

Sigrun Fossae. (The abrupt termination follows a line subparallel to Sigrun

Fossae -- itself nearly perpendicular to the lineament zone -- and is

probably one of the faults which form the Sigrun rift valley). This eastern

segment of the DLZ is 100 km wide near Valkyrie and fans out eastward to as

much as 400 km or more wide near Sigrun.

I suggest that Clotho Tessera was once part of Fortuna Tessera, but was

cut off by a transcurrent fault zone (the DLZ) striking perpendicular to the

Sigrun "rift" [1,2] and carried westward where it collided with Lakshmi Planu_:"

(forming Danu Montes). A gravity anomaly along the southern border of

Lakshmi, in the area of Danu Montes, has been interpreted as indicating

subduction there [3], providing additional supporting evidence for the

collision hypothesis. The Danu Montes right-lateral fault(?) is explained by

the obliquity of the collision of Clotho with Lakshmi (the path of least

resistance for the migrating terrain being toward the southwest).

Diffusion of the DLZ with proximity to Sigrun Fossae may b e due to either

higher ductility near the postulated Sigrun "rift", or to burial by flows away

from the rift nearer to Valkyrie Fossae. (The latter hypothesis is reinforced

by inselbergs of the sheared-type terrain near Valkyrie). If this is indeed

the case, it indicates that the visibilty of transcurrent structures resulting

from crustal movements may be difficult to see in the plains, due to much

higher ductility there and/or to burial by the plains-forming flows.

Other possible examples of migrating tesserae occur elsewhere: small

pieces of Ananke Tessera can be fit back together as though they had rifted

apart, and the spreading apart of Ananke and Virilis Tesserae has been

suggested because of their symmetric locations about the axis of an inferred

spreading zone [4]. Other tessera fragments appear to have been isolated by

rifting, with little, if any, significant lateral motion (e.g., Meni and

Tellus Tesserae, and Tethus and Fortuna Tesserae). The migrating terrain

model for Clotho Tessera supports Sukhanov's [5] interpretation of tesseral

fragments as rafts of lighter Crustal material.
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TECTONISM ON VENUS: A REVIEW; Richard Kozak and Gerald G. Schaber,

U.S. Geological Survey, Flagstaff, AZ 86001.

Venus is more similar to Earth than to any other planet. It has elevated

regions associated with marginal fold and thrust belts, fracture zones that

extend tens of thousands of kilometers, crustal swells and shields that are

hundreds of kilometers in diameter and I to 2 km high, and sublinear

accumulations of volcanic cones and domes that stretch for thousands of

kilometers across the plains. The Venusian surface is, however, distinctly

different from Earth's in that (I) its elevated terrains cannot be

distinguished from its low plains on a hypsometric curve; (2) trenches have

not been found plainsward of the marginal belts; (3) fracture zones bear no

resemblance to mid-oceanic ridges; and (4) some features, such as the ridge-

belt zone near 210 ° E, seem to have no terrestrial analog. Phillips and Malin

(1983) stated that hypsograms may reflect the structure, composition, and

erosion of a planet's lithosphere more than its tectonics. This statement

might be modified as follows: observed global-scale morphology may reflect

less the existence of (plate) tectonics on a planet than the environment in

which the tectonic features were formed. Brass and Harrison (1982) and

Phillips and Malin (1983), among others, have dealt with the problem of how

manifestations of Venusian plate tectonism might differ theoretically from

those of terrestrial plate tectonism, and they put restrictions on what can be

occurring, given the data available.

Kaula and Phillips (1981) and Phillips and Malin (1983) estimated that

current tectonic activity on Venus can be no more than 15% that of Earth's;

other workers, using various approaches, have come to similar conclusions.

Some, such as Phillips et al. (1981), have suggested that plate tectonics on

Venus ceased more than I Ga ago, while others, such as Meissner (1983),

believe that Venus is still in its "alpha" tectonics stage wherein shallow

subduction is dictated by higher temperatures (as is postulated for the early

Earth). The former hypothesis is supported by the crater-age estimates of

Ivanov et al. (1986) and Basilevsky et al. (1987), whereas surface-age

estimates by Shoemaker and Shoemaker (in press) tend to support the latter

contention. Maxwell Montes (about 12 km above mean radius) seems to exemplify

young tectonism, because such relief does not appear capable of having

survived more than a few hundred million years under the the present thermal

environment (Solomon and Head, 1982). Because presently there are good

arguments for both views, the placing of the observed "impact craters" in

context by careful mapping from the Magellan images will go a long way toward

resolving this issue.
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SURFACE COMPOSITION AND PETROLOGY John S. Lewis, Lunar

and Planetary Lab., University of Arizona, Tucson AZ 85721.
The available lines of evidence regarding the bulk composition,

mineralogy and petrology of the surface of Venus are reviewed

critically. The principal sources of data on the surface

chemistry are Earth-based spectroscopic studies and Venera and

Pioneer Venus entry probe studies of the atmospheric composi-

tion, in-situ radiochemical assays for potassium, uranium, and

thorium by Venera landers, and Earth-based radar reflectivity

measurements. The inferential process by which these disparate

tyes of information are used to draw petrological conclusions
is described, with emphasis upon the uncertainties inherent in

such indirect methods. Recent works relevant to the planetary

water budget and the hydrogen isotopic composition of the atmo-

sphere are reviewed because of their intimate connection with

the oxidation and hydration state of surface minerals and the

equilibrium maintenance of hydrogen halides via atmosphere-
surface interactions.
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CRATER IDENTIFICATION AND RESOLUTION OF LUNAR RADAR IMAGES

H. J. Moore, U. S. Geol. Survey, Menlo Park, CA 94025

T. W. Thompson, Jet Propulsion Laboratory, Pasadena, CA 91109

Our study has three principal results: (I) The percentage of craters

that can be identified increases with diameter or relief for any given

resolution, but craters are not identified at all diameters and relief. (2)

Relations between the percentage of identified craters and their dimensions

depend on the slze-frequency distributions of both diameters and rellef and

their interrelations. (3) Identification of craters is strongly dependent on

the resolutions of the radar images. Our data also indicate that crater

identification depends on crater age, that the effect of background terrain is

uncertain, and that angle of incidence of radar illumination has a modest

effect, if any, on crater identification. The ability to recover an actual

crater size-frequency distribution from radar images diminishes with

increasing size of the resolution elements because of the results listed

above. Good agreement between the actual distribution and the one derived

from radar images is attained if the crater diameters are at least I0 times

larger than the resolution of the radar images. Our results are important

considerations in geologic interpretations of radar images because conclusions

about geologic processes, estimates of ages of planetary surfaces based on

crater statistics, and assessments of slze-frequency distributions of other

landforms depend on resolution. We expect that the hlgh-resolution radar

images of Venus to be acquired from orbit during the Magellan mission will

reveal at least 64 times more craters and volcanic landforms than are known

today.

(Abstract from: Moore, H. J. and Thompson, T. W., 1988, Crater

identification and resolution of radar images: Proc. 18th Lunar and Planet.

Sci. Conf., p. 383-395).



31

EXTENSIONAL TECTONISM IN THE SOUTHWESTERN UNITED STATES;

Ivo Lucchitta, U.S. Geological Survey, Flagstaff, Arizona 86001.

The Basin and Range Province of the American Cordillera is a textbook
example of extensional tectonics: regional exposures are good and
structural relations with the more stable terrane to the east provide
useful constraints on models for the extension.

The tutorial will provide a sketch of the development of ideas
regarding the nature of the extensional orogen, with a bias toward western
Arizona and eastern California (with which I am most familiar). The sketch
will be followed by a brief description of salient features, including the
characteristics of the Highly Extended Terranes ('Metamorphic core
complexes'), the 'classic' Basin and Range terrane (horst-and-graben
structure), the Arizona Transition Zone, and the Colorado Plateau, together
with an analysis of models that have been advanced to explain these
terranes and their mutual relationships. If time permits, I will conclude
with my own (probably outrageous) thermomechanical model.
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VENUS: MANTLE CONVECTION, HOTSPOTS, AND TECTONICS
R.J. Phillips, Dept. of Geological Sci., Southern Methodist Univ., Dallas, TX 75275

Introduction. The putative paradigm that planets of the same size and mass
have the same tectonic style led to the adaptation of the mechanisms of terrestrial
plate tectonics as the a priori model of the way Venus should behave. Data ac-

quired over the last decade by Pioneer Venus, Venera:, and ground-based radar
have modified this view sharply and have illuminated our lack of detailed under-
standing of the plate tectonic mechanism.

Earth. For reference, we briefly review terrestrial mechanisms. The ocean
basins make up 70% of the Earth's surface and the vast majority of interior heat
escaping from this region does so from the midocean ridges in the process of
seafloor spreading (more than 60% of the Earth's total heat loss [1]). Hotspot heat
flow (e.g., Hawaii) produces a minor component. The relationship of seafloor
spreading and subduction to mantle convection has long been debated. In one
view, the oceanic lithosphere is the thermal boundal T layer of either upper mantle
or whole mantle convection. Another view is that the lithospheric plates are un-
coupled from the underlying mantle by a low viscosity zone (~ the asthenosphere),
that midocean ridge rifting is a passive phenomenon, and that seafloor spreading
does not directly reflect the underlying mantle convection. Besides the obvious
arguments regarding the midocean ridges, there is considerable debate as to the
direct role of convection in any tectonic process observed on the Earth. This ap-
plies to both hotspot swells such as Hawaii [2] and direct convective coupling into
the lithosphere [3].

Lithospheric evolution is well understood in the terrestrial ocean basins in
terms of a conductively cooling, moving thermal boundary layer, at least for ocean
floor ages less than about 70 Ma. The evolution of continental lithosphere is more
problematical, but might best be understood in terms of arc accretion and composi-
tional stabilization of cratons through the extraction of the basaltic component of
the mantle [4], a process which becomes less efficient through time.

Venus: Lithospheric Divergence. On Venus there is nothing akin to the
Earth in terms of a globally interconnected oceanic ridge system at constant eleva-

tion [5]. It has been suggested that Aphrodite Terra is a region of lithospheric
divergence [6,7,8], but this hypothesis has been strongly challenged [9]. In any
event, the existence of (companion?) subduction zones has not been established by

the observation of trenches, despite imaging radar resolution of a few kilometers
[10]. If a seafloor spreading cycle exists on Venus, then return of crustal material
to the venusian mantle takes place by a process whose surface maI_ifestations are
not easily recognized (e.g., lithospheric delamination [11].)

Venus: Hotspot Model. It has been proposed [12,13] that in the absence of
plate tectonics, hotspots (convective plumes passing their heat flux through a
thermally thinned lithosphere) are the primary way in which Venus removes its

internal heat. This hypothesis is based partly on large apparent depths (> ~ 100
km) of compensation (ADCs), as interpreted from gravity data, of many topograph-
ic features. The implication is that, given the present surface temperature and
chondritic or Earth-like heat sources [13], the compensating density anomalies
supporting topography cannot be passively or isostatically maintained. Hence
they must be part of a convective flow system dynamically supporting hotspot to-
pography. A more recent interpretation [14] suggests that compensation of
regional topographic highs is provided in many places by a combination of thermal
isostasy from a thinned lithosphere [15] and dynamic compensation from sub-

lithospheric flow. The ADC value for any feature furnishes a guide to the relative
contribution of each mechanism.

In summary, Venus may lose most of its heat by conduction through the litho-
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sphere, with enhanced heat loss provided at hotspots [15]. Calculations show that
the hotspot surface area occupies about 35 times the area of the Hawaiian swell.
An additional observation supporting conductive heat loss is that the resurfacing
rate of Venus is low; crater statistics suggest a volcanic flux no greater than 2
km3/yr [16], compared to a value of 17 km3/yr associated with the generation of
oceanic crust on Earth.

Venus: Horizontal Deformation. This tidy picture of the way Venus
works was interrupted by the scenes revealed in high resolution radar images
from Veneras 15/16 and Arecibo. it is clear that certain regions of the planet have

undergone intense tectonic disruption; such deformation is undoubtedly the result
of large-scale compressional and extensional horizontal forces [17,18]. What we do
not know is the aze of the tectonism.

if we cannot _md evidence for lithospheric divergence on Venus, then it would
be fruitful to demonstrate a link between hotspot tectonism and the postulated

large horizontal forces. However, at long wavelengths, where flexural effects may

be unimportant, simple compensated uplift of a lithospheric layer will lead to
tensionalstresses in the "uplands. But there will be no stress in the surrounding
"plains," unless the lithosphere starts to creep. This is because the local potential
energy anomaly associated with topography is supported by local stresses [19].
Out in the plains there is no potential energy anomaly (or defect), Topographic
highs might be expected to spread into the lowlands, particularly by cree k in the
lower portions of a crust. Such effects, however, cannot be expected to aiiect the
plains more than a distance of approximately the horizontal dimension of the
uplift [20].

We can speculate, then, that any link between hotspots (with associated con-
vective flow in the mantle) and horizontal disruption of the lithosphere must be a
direct one; i.e., the tectonic response must occur in the same region as the mantle

dynamical process. We have proposed [21,22] that direct coupling by convective
flow with the lithosphere indeed provides sufficient horizontalstress to induce a

significant tectonic response. The magnitude of the response can be estimated
directly from free air gravity data. Additionally, it has been suggested that the
formation and evolution of Ishtar Terra can be directly related to mantle flow pro-
cesses [17,23,24]. Alternative scenarios for Ishtar Terra require large scale motion
of crust [25], but the driving forces have not been identified. The ridge belts of the
northern plains are a possible region of considerable extension [26], but lack the
thermal topographic signature associated with lithospheric spreading on the
Earth. Alternatively, this activity happened in the geological past, and we are ob-
serving the fossilized tectonic remains.
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RADAR SCATTERING FROM DESERT TERRAINS. PISGAH/LAVIC

REGION, CALIFORNIA: IMPLICATIONS FOR MAGELLAN: J. J. Piaut, R.E.

Arvidson, McDonnell Center for the Space Sciences, Department of Earth and
Planetary Sciences, Washington University, St. Louis. Missouri 63130, S. Wall, Jet
Propulsion Laboratory, 4800 Oak Grove Drive. Pasadena, California 91109.

A major component of the 1988 Mojave Field Experiment (Wall et al., 1988)
involved the simultaneous acquisition of quad-polarization multi-frequency airborne
SAR imaging radar data and ground measurements thought to be relevant to the radar
scattering behavior of a variety of desert surfaces. In preparation for the Magellan
mission to Venus, the experiment was designed to explore the ability of SAR to

distinguish types of geological surfaces, and the effects of varying incidence angles on
the appearance of such surfaces. The airborne SAR system acquired images at
approximately 10 m resolution, at 3 incidence angles (30 ''. 40 °. 50 °) and at 3
wavelengths (P: 68 cm, L: 24 cm, C: 5.6 cm). The polarimetric capabilities of the
instrument allow the simulation of any combination of transmit and receive
polarizations during data reduction (Zebker et al., 1987: vanZyl et al.. 1987).
Calibrated trihedral corner reflectors were deployed within each scene to permit
absolute radiometric calibration of the image data. We will report on initial analyses of
this comprehensive radar data set, with emphasis on implications for interpretation of
Magellan data.

Detailed site characterization and sample collection were conducted at 5
compositionally and/or texturally distinct sites within the Pisgah Volcanic Field/Lavic
Lake area. These included: a smooth undisturbed playa surface: a playa surface
covered with basaltic cobbles; a moderately vegetated alluvial surface: and 2 basaltic
lava flow surfaces of contrasting roughness.

Total (unpolarized) backscattered power values are well-correlated with ground
determin'_tions of wavelength-scale roughness for the various sites. For example,
differences in measured backscattered power between the smooth and cobble-strewn
playa surfaces are minor in P-band (< I dB) and L-band (<4 dB). but are large (>5
dB) in C-band. This is clearly due to the presence of scattering elements (cobbles)
which occur primarily at the scale of the C-band wavelength (5-20 cm). A similar
effect is seen at the two lava flow sites. Backscattered power differences between the

rough (aa) and less rough (pahoehoe) surfaces are >4 dB in P- and L-band but < 2 dB
in C-band. In this case the longer wavelength bands are sensitive to the dominant
roughness differences of the two sites, while the relatively uniform C-band response
results from a common small-scale roughness.

Preliminary analysis of incidence angle effects indicates that all of the surface
types exhibit the expected decrease in backscatter strength with increasing incidence
angle. Future work will examine this effect in more detail, in the context of model
scattering laws. In HH-polarized data. the two playa surfaces are better separated at
large incidence angles, as are the aa and pahoehoe lava flows. Near-range (low
incidence angle) observations suffer from increased speckle noise and saturation from
radar-facing slopes.

Work to be reported in the workshop poster session will address the effects of
incidence angle, look azimuth and resolution on distinguishing among units. Future
work will utilize the unique polarimetric data. along with absolute calibrations at
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multiple wavelengths, to develop and test models for inversion of image data for
extracting geologically important properties of surfaces.
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LAKSHMI PLANUM: A DISTINCTIVE HIGHLAND VOLCANIC PROVINCE; Karl M. Roberts and James W.

Head, Dept. of Geological Sciences, Brown University, Providence, R. I. 02912

Introduction- Lakshmi Planum, a broad smooth plain located in western lshtar Terra and containing two large oval

depressions (Colette and Sacajawea), has been interpreted as a highland plain of volcanic origin. 1"5 Lakshmi is situated 3-5

km above the mean planetary radius and is surrounded on all sides by bands of mountains interpreted to be of compressional

tectonic origin (Fig. 1). 5-7 Four primary characteristics distinguish Lakshmi from other volcanic regions known on the

planet, such as Beta Regio: 1) high altitude, 2) plateau-like nature, 3) the presence of very large, low volcanic constructs

with distinctive central calderas (Colette and Sacajawea), and 4) its compressional tectonic surroundings. Building on the

previous work of Pronin, 5 the purpose of this study is to establish the detailed nature of the volcanic deposits on Lakshmi,

interpret eruption styles and conditions, sketch out an eruption history, and determine the relationship between volcanism and

the tectonic environment of the region. The following is revised and reprinted from a previous abstract, 13 intended as a

review for the Flagstaff Venus Geoscience Workshop. A more detailed, thorough discussion and interpretation of features and

units on Lakshmi Planum may be found in a paper to be submitted to the Journal of Geophysical Research, entitled

"Characterization and Interpretation of Lakshmi Planum, Venus: A Distinctive Highland Volcanic Province."

Observations and lnteroretatjons- On the basis of our detailed mapping we have compiled a province map (Fig 1.) that

illustrates some of the basic characteristics and relationships in Lakshmi Planum. Major shie!ds__a_: Two major caldera

structures (Colette,C; Sacajawea; S) and their circumferential low-shield-forming flow deposits dominate the region. Colette is

130 x 180 km, elongated in a N-S direction, is approximately 1-2 km deep 4,5 and is surrounded by an extensive radiating

system of flows having an average width of 15 kin, and lengths of 100-300 km. The shield structure surrounding Colette is

about 500 x 700 km in dimension and descends about 1 km from the rim to the surrounding plains. Sacajawea is a 200 x 120

km oval-shaped depression elongated in a SW-NE direction, approximately 1.5-2 km deep, and lacks the distinct radial lobate

flow patterns of Colette, although mottled deposits surrounding Sacajawea, and distinct from the undivided plains, have been

mapped extending about 300 km from the center of Sacajawea. The Sacajawea shield structure (defined by the caldera and the

surrounding deposits) is very low (less than 1 km from the rim to the surrounding plains). On the basis of the relative

crispness and distinctiveness of the flows and structures comprising the Colette shield, it is interpreted to be younger than

Sacajawea. 4,5 Elsewhere, we have described the characteristics and relationships of Colette and Sacajawea calderas. 8

A wide range of additional structures interpreted to be volcanic source vents have been mapped including: 1) domes _d

cones, which range from 1-50 km in diameter and include small cones (<10 km diameter) scattered throughout the region;

small domes (10-15 km in diameter) sometimes containing summit depressions and apparently preferentially located in

association with strucutral features (e.g., inside Colette, along a rift associated with Sacajawea, and within the Ridged Terrain);

and low shields, up to 75 km across, almost indiscernable topographically, and containing a summit pit; 2) Diffuse h_o (Fig.

1, [1]); SE from Colette is a large, dark semicircular feature about 50 km in diameter surrounded by an elongated halo of

diffuse radar-bright deposits that are apparently superimposed on the more distinct flow deposits of Colette. The diffuse

character, the lack of distinctive lobate patterns, the elongation and the superposition of the deposits suggest that they may

be of pyroclastic origin; 3) Vent Complex (Fig. 1, [2]); flanking Sacajawea to the S-SW is a very broad (-200 km diameter)

radar-bright feature that lacks distinctive topographic expression in the currently available altimetry. It appears to be a

localized center of volcanism, characterized by very mottled lobate flow deposits which become more continuous towards a

central region containing numerous volcanic craters and domes.

Plains units dominate the surface of Lakshmi and are interpr 'ted to be volcanic on the basis of their embayment

relationships, their flatness and uniform albedo, and their association with volcanic source vents. Undivided Plains units (PU)

are characterized as smooth low-albedo plains in which individual flow features are not seen in either Venera 15/16 or Arecibo

data. They cover a large part of Lakshmi, and may be derived from the major shields, from the numerous domes and cones, or

from presently buried sources. Grooved Plains (PG) occur in a single patch about 150 km to the north of Sacajawea and are

typified by very t'mely spaced furrows or grooves arranged in sweeping curvilinear sets trending generally N-S but frequently

curving to the NE or NW. This system of faults 5 appears to be extensional in origin, and is embayed by Sacajawea deposits

and undivided plains. _ (PR) are defined by faint bright lineaments on plains material arranged in subparallel sets

that follow the borders of the planum or trend S-SE across it. On the basis of the ridge-like n:_ture of some of these bands,

and their association with the compressional deformation in the surrounding orogenic belts, we have interpreted them to be of

compressional origin. The parallelism of many of these ridged units with the adjacent orogenic belts, and the general tilting

of the ridged plains away from the mountains, strongly suggest that the plains have been involved in at least the latter

phases of deformation producing the orogenic belts.

Structural features and units occur within the plains, as well as dominating the surrounding mountains. RidgedTerrain

(RT) is characterized by a very rough-textured system of ridges and grooves and is concentrated in east central Lakshmi

where, in at least one occurrence, the ridges and grooves are arranged in rhomboidal sets with the small angle subtending

about 35 ° and the bisectrix oriented about N35°W. Virtually all other units are superposed on or embay RT, and we thus

concur with Pronin 5 that this unit is representative of an episode of deformation early in the history Lakshmi. Adjoining

Sacajawea to the SE is a system of linear features interpreted by Pronin 5 to be fault scarps with characteristics similar to

graben, at least one of which contains a volcanic dome. This may be a flanking rift zone similar to those occurring on
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Hawaii, In addition, aseriesof domes and cones appear to be arrayed in a lxeferred orientation, trending E-SE along a line

connecting Colette and Saeajawea.

1) _I._: The range of deposits and structures mapped in Lakshmi Planum indicates that the region is dominated

by at least three styles of volcanism: a) centralized effusivej very large low shield structures (>500 kin) with numerous long
flows and extremely large calderas 8 (100-200 km); b) dis_buted effusive, with a wide range of source vents most typically
forming cones and domes in the 1-50 km diameter size range; although dispersed throughout Lakshmi, many are localized
along structural ta,ends; on the basis of their radar characteristics, most mapped effusive deposits appear to be relatively
smooth at scales of decimeters to meters; c) possible ovroclastic, represented by the Diffuse Halo; if further mapping
confirms apyroclastic origin, this would imply the pr_ence of volatile-rich magmas on Venus. 9

2) Sequence and Geologic History: Formation of the Ridged Terrain was followed by emplacement of plains which were
subsequently deformed to produce the Grooved Plains N of Sa_ajawea. Sacajawea was formed and its related deposits embayed
the Grooved Plains and Ridged Plains. Although brighter than those of Sacajawea, the deposits of the Vent Complex appear

a'uncated by the large caldera; we thus interpret it to be older than Sacajawea. Colette and its associated flows were formed
subsequent to Sacajawea, but it is not known if activity in the two structures overlaps in time. The Diffuse Halo appears to
postdate Colette. Ridged Plains appear to have formed throughout the history of Lakshmi, apparently deforming in response
to compressional deformation and regional tilting in the adjacent mountain ranges. Ivanov et all0 have argued that the radar

brighmess (decimeter to meter scale roughness) associated with fresh impact crater haloes is lost by a smoothing process after
about 120-250 my. If this is true, and bright units on Lakshmi have a similar roughness, then this may imply that at least
some of the volcanism occurred relatively recently.

3) Relation |9 Tectonic Deformation: There is abundant evidence for the synchronicity of volcanism and tectonism
(elongation of calderas, rift zones adjacent to calderas, association of domes and cones with preexisting structure, Grooved
Plains, Ridged Plains of various ages and orientations, etc.). Further analysis is required to determine the sequence of
deformation in the adjacent orogenic belts and its _ to Lakshmi volcanic history, but it tentatively appears that the center
of volcanism has migrated from east to west during the history of Lakshmi. 4) Distinctiveness of Lakshmi Planum" Our
studies further emphasize the unique nature of Lakshmi Planum in terms of its compressional tectonic environment, altitude,

and presence of large low shields with extremely large calderas. No other such volcanic province has yet been identified on
Venus.

5) Ori gin of Lakshmi P]anum: On the basis of the presence of distributed regional compressional dcfo .nnla_ionsurrounding
Lakshmi l_lanum, 6"7,11-12 the sense of tectonic transport in toward Lakshmi from the north 1t and the east, l the evidence
for crustal thickening in Freyja and Maxwell Montes in excess of several tens of kilometers, 11-12 and the topographic

elevation of the plateau itself, we interpret Lakshmi Planum to be the locus of convergence and crustal thickening, and the
volcanic activity there to be linked to melting associated with processes of convergence and crustal thickening. This model
is in contzast to that of Pronin, 5 who attributes the volcanism to a large hot spot upwelling below Lakshmi, and spreading

laterally to cause the surrounding deformation.
References: (1) H. Masursky, et aL (1980) JGR, 85, 8232; (2)V. Barsukov, et al. (1986) JGR, 91, D378; (3)A.
Basilevsky, et al. (1986) JGR, _., D399; (4) E. Stofan e¢ al. (1987) Earth, Moon., 38,183; (5) A. Pronin (1986)
Geotectonica, 4, 26 (in Russian); (6) Campbell et al. (1983) Science, 221. 644; (7) Crumpler el al. (1986) Geology,

1.4, 1031; (8) Magee and Head (I988) Lunar Planet. Sol., XIX, 711; (9) Head and Wilson (1986) JGR, 91, 9407; (10) B.
Ivanov, et al., (1986) JGR, 91. D413; (11) Head (1988) Lunar Planet. Scl., XIX, 467; (12) Vorder Bruegge and Head

(1988) Lunar Planet. Sci_ 1220, (13) Magee'and Head (1988) Lunar Planet. Scl., XIX. 713.oo
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VOLCANISM ON VENUS: LARGE SHIELDS AND MAJOR ACCUMULATIONS OF

SMALL "DOMES"; G.G. Schaber and R.C. Kozak; U.S. Geological

Survey, Flagstaff, Arizona 86001

The outer layers of the Venusian lithosphere appear to

dissipate heat from the interior through mantle-driven thermal

anomalies ("hot spots", "swells"). As a result, Venus exhibits

diverse forms of "thin-skin" tectonism and magmatic transfer to

and extrusion from countless numbers of volcanic centers (e.g.,

shields, paterae, domes) and volcano-tectonlc complexes (e.g.,

coronae, arachnoids) [I]. We will summarize what is known about

the distribution and morphologies of major Venusian shields, and

describe the evidence for possible structural control of major

accumulations as long as 5000 km of small volcanic "domes".

LARGE VENUSIAN SHIELDS- Approximately 40 major shields whose

basal diameters exceed 200 km have been tentatively identified on

Venus between lat 90 ° N. and 65 ° S. from analyses of PV, Venera

15/16, and Earthbased radar data. The gross morphologies and

estimated volumes of ten major shields between lat 30 ° and 90 ° N.

have been determined from Venera 15/16 data [2]. Nine of these

shields have extremely low heights (0.7 to 2.3 km) despite large

basal diameters (300 to 782 km); in this respect, the shields are

similar to highland paterae on Mars (e.g., Hadriacia and Tyrrhena

Paterae) and some paterae (e.g., Ra Patera) on Io. The tenth

shield, Tepev Mons (western Bell Regio), is the notable

exception. This shield is probably young [3]. It has a

substantial height of 5.2 km and a basal diameter of 253 km, and

it possesses a well-defined ring moat resulting from flexure of

the lithosphere below the load [3].

Most large shields within the northern quarter of Venus are

associated with the large concentration of coronae between lat

30 ° and 80 ° N. and long 238 ° and 272 ° and with Lakshmi Planum.

The heights of 30 other shieldlike constructs (basal diameters

>200 km) between lat 30 ° N. and 65 ° S. were found from PV

altimetry to range between 0.8 and 3.9 km (average = 2.9 km).

The larger Venusian shields, unlike the Tharsis shields on Mars,

cannot achieve great heights, probably because of thermal

conditions in the crust and lithosphere.

MAJOR ACCUMULATIONS OF VOLCANIC "DOMES"- Small (2- to 20-km-

diameter) conical and domical landforms ("domes") are abundant on

the surface of Venus; they are probably volcanoes [i]. Slyuta et

al. [4] reported that domes in small "groups" (50-80 km across)

and larger "clusters" (few hundred kilometers across) in some

regions form "accumulations," which can extend for over 5000 km.

Examples of accumulations have been identified in Tethus Regio

and Atalanta and Niobe Planitiae; they are especially well

developed between Akkruva Colles (northeastern Niobe Planitia)

and Allat Dorsa ("Akkruva-Allat") and between Ananke Tesserae and

Akkruva Colles ("Ananke-Akkruva"). Smaller concentrations of

domes are found in Ganiki, Guinevere, Bereghinya, and Snegurochka

Planitiae [4].

The largest lineal accumulation of small domes in the
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northern quarter of Venus, Akkruva-Allat, is best developed at
Akkruva Colles (lat 45°; long 118°). It is 600-1000 km wide and

extends northwest-southeast for over 5000 km from northeastern

Niobe Planitia (fat 40 ° , long 135 ° ) to Allat Dorsa (lat 65 ° , long

70 °) [4]. Most of the Akkruva-Allat heavily domed terrain is

about I km higher than the adjacent smooth plains; a lineal

positive gravity anomaly as great as 25 mgai is associated with

this dome accumulation [4,5]. The concentration of domes in the

middle and southern parts of Akkruva-Allat reaches 2344 domes per

106 km 2, while the average number of domes within the entire area

surveyed by Venera 15/16 (excluding areas of tesserae) is 200 per

106 km 2 [4].

The size, shape, and frequency distribution of domes within

the Akkruva-Allat accumulation are similar to those of seamounts

on the Earth's ocean floor, e.g., in the East Pacific Rise [4, 6-

9]. Syluta et al. [4] concluded that some of the largest

Venusian dome accumulations may be independent tectonic

structures; however, they recognized no large-scale tectonic

dislocations in the Akkruva-Allat and Ananke-Akkruva

accumulations to support the idea that they are analogous to a

linear heat anomaly of the ocean-ridge type. We have, however,

recognized evidence for northeast- and northwest-trending

structural control of these dome accumulations.

Most terrestrial oceanic seamounts are formed on very young,

thin lithosphere that permits the passage of small volumes of

magma; in older, thicker lithosphere, small magma bodies would

cool before reaching the surface, although larger bodies might

not. Thus, smaller seamounts are generally more abundant on the

youngest, thinnest crust near a ridge crest, while the number of

larger seamounts tends to increase on older, thicker crust away

from the ridgecrest [6]. This suggests that small sources of

melt exist near the ridge crests on the ocean floor to supply the

small seamounts; sources of melt may also exist along the

structures controlling the Anake-Akkruva and Akkruva-Allat

accumulations. Such magma sources are likely trapped remnants of

extended heat anomalies originating at considerable depth. The

Magellan image and altimetric data can be used to better

understand the origin of these and other dome accumulations and

to confirm or reject their analogy to an oceanic spreading ridge.
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IMPACT CRATERING AND THE SURFACE AGE OF VENUS: THE PRE-

MAGELLAN CONTROVERSY; G.G. Schaber, Shoemaker, E.M., Shoemaker,

C.S., and Kozak, R.C.; U.S. Geological Survey; Flagstaff, Arizona

86001

The average surface age of a planet is a major indicator of the

level of its geologic activity and thus of the dynamics of its

interior. Radar images obtained by Venera 15/16 from the northern

quarter of the Venus (lat 30 ° to 90 ° ) reveal about 150 features that

resemble impact craters, and they were so interpreted by Soviet

investigators B.A. Ivanov, A.T. Basilevsky, and their colleagues [i,

2]. These features range in diameter from about i0 to 145 km.

Their areal density is remarkably similar to the density of impact

structures found on the American and European continental shields

[3].

The Soviet investigators interpreted the record of apparent

impact craters as indicating a mean age for the observed surface of

Venus of about 1 b.y. (±0.5 b.y.)[l,2,4]. Schaber et al. [5],

however, pointed out that the observed Venusian craters may imply an

average crater-retention age for the region surveyed no greater than

the 450-million-year mean age of the Earth's crust, a result

consistent with the expected thermal and tectonic history of Venus

(whose size and mass, and probable composition are similar to

Earth's).

The basic difference between the Soviet and American estimates

of the average surface age of Venus's northern quarter is due to

which crater-production rate is used for the Venusian environment.

Cratering rates based on the lunar and terrestrial cratering

records, as well as statistical calculations based on observed and

predicted Venus-crossing asteroids and comets, have been used in

both the Soviet and American calculations. The single largest

uncertainty in estimating the actual cratering rates near Venus

involves the shielding effect of the atmosphere. Melosh [6] has

determined that breakup of stony asteroids during penetration of

Venus" atmosphere would inhibit formation of craters much smaller

than 20 km in diameter. In fact, the Venera 15/16 data indicate

that relatively few of the apparent impact craters on Venus are

smaller than 20 km.

Shoemaker and Shoemaker [3] suggested that the size

distribution of Venusian impact craters with diameters >20 km is

similar to the size distribution of young craters on the Moon.

Because most young craters larger than 60 km in diameter on the

Earth and Moon are probably due to cometary impact, most of the

largest impact craters on Venus were also probably produced by

cometary impact [3]. Applying their best estimate of the proportion

of craters produced by asteroid impact, and using the cratering rate

down to 20-km diameter found for the last 120 million years on Earth

[7], Shoemaker and Shoemaker [3] found the mean age indicated for

the surface surveyed by Venera 15/16 to be 210 ± 105 million years,

consistent with Venus' surface age reported earlier by Schaber et

al. [5]. For the largest craters (50-100 km in diameter), assuming

the expected crater production by cometary impact, Shoemaker and

Shoemaker [3] found an average surface age of about 400 million
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years, which they recently concluded [3] is the most probable

average age. Should some fraction of the impact craters identified

by the Soviet scientists ultimately prove to be of volcanic origin

[8], the average surface age could of course be younger.

Statistical evidence for a non-random distribution of the suspected

impact craters on Venus [9-11] strongly suggests the presence of

terrains of different ages that may include regions of active

volcanism and tectonism.
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GEOLOGY OF THE VENUS EQUATORIAL REGION FROM PIONEER VENUS RADAR

IMAGING, D. A. Senske and J, W. Head, Brown University, Providence, RI 02912,

_. The surface characteristics and morphology of the equatorial region of Venus were first described

by Masursky et al. (1) who showed this part of the planet to be characterized by two topographic provinces, rolling
plains and highlands, and more recently by Schaber (2) who described and interpreted tectonic zones in the highlands.

Using Pioneer Venus (PV) radar image data (15" S to 45 ° N), Senske and Head (3,4) examined the distribution,
characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major
equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties

derived from the PV data (5). Included in this classification are: plains (undivided), inter-highland tectonic zones,
tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In

addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. In
this paper, we briefly describe the latter four of the physiographic units along with features interpreted to be coronae.

Ueland rises are defined as broad, radar-dark, topographic highs containing individual peaks which are commonly

radar-bright and express typically 1.0- to 3.0-kin of relief (4). Two regions designated as upland rises are Bell Regio

and Eisila Regio. Bell Regio is a radar-dark topographic rise on which are located four peaks, Api Mons, Nefertiti,

Tepev Mons, and an unnamed peak. On the basis of the presence of both radar-bright and radar-dark flows these
mountains axe interpreted to be volcanoes (4,6). Gravity modeling by Janle et al. (7) suggests a deep apparent depth
of compensation (-200 km) for this region which they interpret along with geologic mapping to indicate support of
topography by dynamic processes in the mantle. The second upland rise, Eisila Regio, length of 8000 kin, forms the

westward extension of Aphrodite Terra. The western part of Eisila Regio is a broad radar-dark topographic rise which

exhibits properties similar to the surrounding plains. Located on the crest of the high topography are two volcanic
mountains, sir Mons and Gula Mons. Flows associated with these volcanoes appear to be of limited extent, forming a
thin veneer, suggesting that this region was not built up entirely by volcanic construction. On the basis of the

interpretation of volcanic deposits representing a thin veneer, the presence of material on broad topographic rises
similar to that on the adjacent plains, and deep apparent compensation, formation of upland rises related to doming due

to thermal uplift is proposed.
Tectonic iunctions are radar-bright highlands located at the convergence of three or more inter-highland

tectonic zones, and axe centers of volcanism possessing individual mountains typically located at the crest of a domal
topographic rise. Features mapped as tectonic junctions include Beta Regio, Atla Regio, Asteria Regio, northern
Phoebe Regio, the region of convergence of Ulfrun Regio and Hecate Chasma, and an elevated region southeast of Atla
Regio. The largest tectonic junctions, Atla Regio and Beta Regio are broad domal topographic rises on which are

located large volcanic edifices, Ozza Mons and Maat Mons in Atla Regio, and Theia Mons and Rhea Mons in Beta
Regio. On the basis of geologic mapping (8,9) and modeling of gravity data (10), these regions have been interpreted
to be associated with deep mantle thermal anomalies. The tectonic junctions located at Asteria Regio and northern
Phoebe Regio possess characteristics similar to Beta and Atla, and may have formed in similar manners, but are

smaller. The combination of inter-highland tectonic zones and tectonic junctions forms an interconnecting network
extending over half the circumference of the planet.

]_itrk halo plains are defined as broad quasi-circular regions of very low radar backscatter located in low lying

areas and extending for hundreds of kilometers (4). A radar-bright circular feature or ring, which itself has a radar-dark
interior is often found in the dark material. In high resolution image data these circular features correspond to craters,
several of which are located on local topographic rises and are surrounded by lobate flow deposits suggesting a
volcanic origin (5). The most extensive regions of dark halo plains are located to the west of Eisila Regio and west of
Atla Regio. In the region west of Eisila Regio the radar-dark material appears to embay areas of higher topography

suggesting emplacement by lava flooding. On the basis of the embayment relations expressed by the radar-dark
material and the presence of deposits associated with the interior craters which are interpreted to be volcanic, it is
suggested that the dark halo plains are regions of smooth lava flows with the interior crater being a source region of
some of these deposits.

Uuland ulateaus are broad, bright to mottled-bright, plateaus covering areas of hundreds of square kilometers

typically bounded by steep scarps standing 1 to 2 kilometers above the surrounding plains (5). Few individual peaks
are present or they are entirely absent. Central troughs similar to those associated with Beta and Aphrodite are not
observed. Specific upland plateaus are located north of Asteria Regio. on the eastern flanks of Beta Regio, at Phoebe
Regio, adjacent to Ovda Regio and Thetis Regio, in the southern hemisphere at Alpha Regio, and at Tellus Regio.

Venera imaging of Tellus Regio shows it to possess a complex tectonic structure of intersecting valleys and ridges and

is mapped as tessera (11). A comparison of radar properties indicate that both upland plateaus and tessera are

characterized by high roughness, low values of uncorrected reflectivity, and that they contain a large percentage of

wavelength-scale (5-50 cm) diffuse scatterers (12). On the basis of topographic signature, radar properties, and

correlations with units mapped as tessera from Venera imaging, it is suggested that areas mapped as upland plateaus are

tectonic units similar to tessera (5).

Within the PV data coronae are characterized by locally elevated topography, narrow radar-bright discontinuous

rims, and radar-dark interiors (13). Similar characteristics are observed for corouae mapped in Mnemosyne Regio from

both Arecibo and Venera radar images (14). On the basis of this characterization, two large circular features interpreted

as coronae are identified in the area imaged exclusively by PV. The first, Pavlova, is located in eastern Eisila Regio

(15" N, 40" E), is elliptical with dimensions of 525 km x 370 km, and is characterized by a 50-km wide discontinuous
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rim which exhibits 200 to 600 m of relief. The discontinuous part of the rim corresponds with flanking topographic

depressions mapped as very dark that are similar to units mapped elsewhere as volcanic plains and suggests that lava
flows have breached the rim. The second (840 km diameter) corona is located to the south of western Eisila Regio
(2.0 ° N, 355.0°). Like PavIova, this structure is characterized by a discontinuous rim which is radar-bright and elevated

to the south while the northern rim possesses no topographic relief and is mottled dark (5). Stratigraphic relations
between the rim and radar-dark interior deposits suggests lava flooding, forming plains, has occurred in the interior of
this structure. From this analysis, we find that the number of large coronae in the equatorial region to be much less
than in the northern high latitudes (14,15).

Discussion and Conclusions. On the basis of variations in structure and morphology, the physiographic

units are divided into three distinct longitudinal zones: upland rises (330 ° to 55°), tectonical],_ .segmented linear

hi_,hlands-ut_land plateaus (55 ° to 145°), and inter-highland tectonic zones-tectonic iunctiop_s (145 ° to 315°). The zone

of upland rises contains the two highland structures of Bell Regio and Eisila Regio whose volcanic nature has been

previously estabYshed (416,7). Eisila Regio is characterized by three distinct regions, western Eisila ,vith its volcanic

peaks Sif Mons and Gula Mons, central Eisila with the volcanic peak Sappho (16,17), and eastern Eisila Regio with its

corona structure, Pavlova. Detailed analysis of western Eisila Regio suggests that the volcanoes and their deposits

represent a thin veneer of material superimposed on a broad topographic high. In addition, ridges in the lowlands

along the eastern flanks of western Eisila Regio are interpreted to be normal faults (18) whose relation to high

topography is consistent with a model of uplift under extension (19). This arrangement of structures and association
with volcanism in western Eisila suggests formation by doming associated with thermal uplift. A similar model has

been previously proposed for Bell Regio (6,7). The region of tectonically segmenledJincar high!ands _

plateaus is made up of the highlands of western Aphrodite and Tellus Regio. Previous studies of the tectonicalty

segmented linear highland of western Aphrodite show it to be characterized by bilaterally symmetric topography and an

en echelon central trough offset in a right lateral sense along cross-strike structural and topographic discontinuities
(CSD's) (20,21). The structure of western Aphrodite is similar to that of terrestrial mid-ocean ridges, and has on this

basis been interpreted to be a site of possible spreading (20,21). The upland plateaus of Tellus Regio and the units

flanking northern Aphrodite form a second distinctive set of highland features in the equatorial region (13). The

location of an upland plateau adjacent to Thetis Regio, a region interpreted to be the site of crustal spreading (20,21),

suggests two possible models for formation of this upland plateau: 1) the plateau is a preexisting old crustal block;

doming and rifting analogous to that of old terrestrial continental crust, followed by spreading as suggested by Head

and Crumpler (20), have split the block and formed the intervening high topography associated with Thetis: 2) the

upland plateau originated by crustal spreading. In this second model, developed by Sotin et al. (22), an increase in

mantle temperature and associated production of thicker crust created the high topography in central Thetis Regio. The

region of inter-highland tectonic zones and tectonic junctions has previously been described as zones of extension (2).

Unlike the upland rises and tectonically segmented linear highlands, which are predominantly linear features striking

east-west, the inter-highland tectonic zones have a variety of orientations forming an interconnecting radial pattern

between tectonic junctions (t3). The presence of a bilaterally symmetric topographic rise with a central trough offset

along CSD's suggests that the inter-highland tectonic zone of eastern Aphrodite is a site of rifting and possible crustal
spreading (23). This and other inter-highland tectonic zones converge at tectonic junctions. Two of these junctions,

Beta Regio and Aria Regio, have been interpreted to be associated with deep mantle thermal anomalies (5,9,10).

The highlands in the equatorial region of Venus form a near-global network of volcanic centers and interconnecting

tectonic zones, composed of several distinctive terrain types. The relationship between tectonic junctions and inter-

highland tectonic zones suggests that the junctions are nodal points of the network. The inter-highland tectonic zones

which extend to the north and do not connect with tectonic junctions die out in this direction. In some places in the
equatorial network crustal spreading may be occurring (inter-highland tectonic zones) (23) whereas at other places

(tectonic junctions) hot spots and thermal uplift activity is apparently occurring. These characteristics and correlations

suggest that both vertical thermal uplift and lateral movement are occurring in the Venus equatorial highlands. In

contrast to the equatorial region, the northern high latitudes are characterized by several broad zones of compression
forming highlands and orogenic belts (24,25).
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VENUS GRAVITY: MEASUREMENTS, REDUCTIONS AND RESULTS; W.L. Sjogren,

Jet Propulsion Laboratory

This presentation will include a description of what gravity data are

and how gravity data measurements are obtained. There will be a brief

discussion of the error sources that corrupt the raw data and how Magellan

data will be superior to the previous Pioneer Venus data set.

A summary of present data coverage and what will be obtained by

Magellan will be shown. The various reduction techniques using spherical

harmonics, line-of-sight profiling and direct mass estimates for local

feature modeling will be described The published results from these

various approaches will be summarized and inferences suggested. There'll

be a list of things we hope to resolve in the MGN extended mission with

new high resolution data. For the consciencious participant at this

conference, he would be in good shape to ask intelligent questions if he

reads the Venus V-gram #14, May 1988.
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VENUS AND THE ARCHEAN EARTH: THERMAL CONSIDERATIONS, N. H. Sleep,

Department of Geophysics, Stanford University, Stanford CA 94305

The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this

regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of
the adiabatic interior of the Earth was 200°C to 300 ° C hotter than the current temperature. Mid-

oceanic ridges thus resembled Iceland to a considerable extent. The oceanic crust was thicker about
20 km. Melting of ascending material began at greater depths than now. Young oceanic crust was
more difficult to subduct and more easily remelted to form continental crust. The global rate of

seafloor spreading, or equivalently the average age of oceanic crust, was similar to now. This is
inferred because the thickness of continental crust accreted in a compressional orogeny scales to the

driving forces available from the decrease in buoyancy of oceanic plates as they cool with age. This
observation further indicates that the increased temperature and decreased viscosity of the adiabatic

interior did not greatly enhance the rate of convection within the Archean Earth.

Preservation biases limit what can be learned from the Archean record. Archean oceanic crust,

most of the planetary surface at any one time, has been nearly all subducted. Pre_reed orogenic
sequences are possibly related to back-arc rifting and subsequent closure. The classic rules for desig-
nating supercrustal rocks ensialic or ensimatic do not apply in such a situation. Similar to a modem
break-up margin, continuous strata overlay both stretched continental crest and nearby oceanic crust.

More speculatively, the core of the Earth has probably cooled more slowly than the mantle.
Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has
increased with time on the Earth. That is, hot material which was ubiquitous in the Archean is now

restricted to distinct hotspots.

The most obvious difference between Venus and the present Earth is thc high surface tempera-

ture and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast
between the adiabatic interior and the surface, which drives convection, is less on Venus than on the

Earth. Both the Earth and Venus are complicated enough that it is not obvious whether the hot litho-
sphere enhances convection within Venus more than the lower temperature contrast will decrease it.
However, it cannot be expected that the hotter lithosphere of Venus enhances convection and affects
tectonics in the same way that the hot interior affected the early Earth.

It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough
that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes

from long-wavelength gravity anomalies. Unlike the Earth, gravity anomalies on Venus are large and

show strong correlation with topography. Upwelling plumes beneath elevation and gravity highs are
thus more massive than plumes on the earth. For such plumes or blobs to be steady-state features,
the viscosity of the interior of Venus must be significantly higher than the viscosity of the Earth's
interior. Otherwise the plumes would have already quickly ascended to the surface and no longer be
present. The most obvious explanation for higher viscosity is lower temperatures in the interior.

The low interior temperatures retard seafloor spreading on Venus. The normal interior tempera-
ture is low enough that ascending material does not melt significantly and a cool lid of crust and
mantle resists spreading. More melting occurs where plumes impinge on the surface. This situation
will not exist on the earth for at least several hundred million years.

The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust
may become ductile enough to permit significant flow between the upper crust and the mantle. There
is thus some analogy to modem and ancient areas of high heat flow on the Earth. Archean crustal
blocks typically remained stable for long intervals and thus overall are not good analogies to the

deformation style on Venus.
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CORONAE ON VENUS: OBSERVATIONS AND MODELS OF ORIGIN; E.R. Stofan, Dept.
Geological Sciences, Brown University, Providence RI 02912

The Venera 15/16 spacecraft revealed a number of features of unknown origin
including coronae, elongate to circular structures with a complex interior surrounded

by an annulus of concentric ridges (1) (Figure 1). Eighteen coronae have been
identified in Venera 15/16 data of Venus (2); an additional thirteen possible coronae
are found in Pioneer Venus and Arecibo data (3). Coronae, with maximum widths of
160 to over 650 km, are found primarily in two clusters in the northern hemisphere
located to the east and west of Ishtar Terra. Another possible cluster is located in
Themis Regio in the southern hemisphere. The majority of coronae are at least

partially raised less than 1.5 km above the surrounding region, and over half are
partially surrounded by a peripheral trough (2, 4).

Coronae are characterized by an annulus of concentric ridges, composing 15-
60% of the radius of a corona (2). Ridges within the annulus are spaced 5-10 km
apart, and vary in length from 10-100's of kilometers. The majority of ridges within
the annulus are interpreted to be compressional in origin (2, 5). The interiors of

coronae are cut by lineaments of compressional, extensional and unknown origin.
Volcanic flows, domes and edifices are found in the interior; flows also frequently
overlap the annulus and pond in the peripheral trough. The distribution and variety of
volcanic landforms indicates that volcanism associated with coronae is not

concentrated at a few large edifices or shields as it is major domal uplifts such as

Beta Regio (6).
A sequence of events for coronae has been determined through mapping (2, S).

Prior to corona formation, regional compression or extension creates bands of
lineaments along which coronae tend to later form (2). During the early stages of
corona formation, relatively raised topography is produced by uplift and volcanic
construction. The interiors of coronae are characterized by central extensional
deformational features and volcanic features that formed in the middle- to late- stages
of evolution. In the final stages of corona evolution, volcanism continues accompanied
by lowering of topographic relief. Some coronae are cut by later regional tectonic
activity. Many of the coronae with the most subdued relief, interpreted to be older,

are located at lower (below 40ON) latitudes.
The evolution of coronae and their general characteristics have been compared

to two models of corona origin: hotspols and sinking mantle diapirs (7) (Figure 2). In
the hotspot or rising mantle diapir model, heating and melting at depth create uplift at
the surface. Uplift is accompanied by central extension, facilitating volcanism.
Gravitational relaxation of the uplifted region follows producing the compressional
features within the annulus and the peripheral trough. Sinking mantle diapirs may
form as a result of a phase transformation at depth (such as the basalt/eclogite
transition) or cooling of the lithosphere, resulting in denser material detaching from
the base of the lithosphere and sinking. Early-time compression is predicted, followed
by uplift, central extension and peripheral compression, and formation of a peripheral
trough. Both models can predict the major characteristics and evolutionary sequence
of coronae. The sinking diapir model does predict an early-time low and central
compression as well as broadening and shallowing of the peripheral trough with time,
all of which are not observed at current data resolution. In addition, the sinking
mantle diapir model predicts more simultaneous formation of the high topography,
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annulus and trough unlike the hotspot or rising mantle diapir model. High resolution
Magellan data will be used to distinguish between the two models of corona origin.
References 1) V.L. Barsukov et aL, JGFt, 91,378, 1986. 2) A.A. Pronin and E.R.
Stofan, in prep., 1989. 3) E.R. Stofan and J.W. Head, in prep., 1989. 4) E.R. Stofan
and J. W. Head, LPSC XVIII, SuppL, 1033. 5) E.R. Stofan and J.W. Head, in review,
Icarus, 1989. 6) E.R. Stofan et al., GSA Bull., 101, 143, 1989. 7) E.R. Stofan et aL,

in prep., 1989.
Figure 1. Venera 15/16 image of Anahit Corona. Anahit is centered at77N, 278, and
is about 430 km across. Figure 2. Diagrams of hotspot or rising mantle diapir and
sinking mantle diapir models of corona origin.
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CRUSTAL DEFORMATION: EARTH VS. VENUS; D.L. Turcotte, Department of

Geological Sciences, Cornell University, Ithaca, NY 14853

It is timely to consider the possible tectonic regimes on Venus both in
terms of what we know about Venus and in terms of deformation mechanisms

operative on the earth. Hopefully the Magellan mission will answer many

questions. Plate tectonic phenomena dominate tectonics on the earth.

Horizontal displacements are associated with the creation of new crust at

ridges and destruction of crust at trenches. The presence of plate tectonics

on Venus is debated 1'z, but there is certainly no evidence for the trenches

associated with subduction on the earth.

An essential question is what kind of tectonics can be expected if there

is no plate tectonics on Venus. Mars and the moon are reference examples.

Volcanic constructs appear to play a dominant role on Mars but their role on

Venus is not clear. Volcanism, either intrusive or extrusive, will lead to

elevated terrains. Elevated terrains will have tensional deviatoric stresses

even if fully compensated 3. For example, 5 km of topography will generate a 700

bar tensional stress in a lithosphere I00 km thick. This mechanism could be

associated with the tensional tectonics associated with Beta Regio and
Aphrodite.

On single plate planets and satellites tectonic structures are often

associated with thermal stresses. Cooling of a planet leads to thermal

contraction and surface compressive features. It should be noted that thermal

stresses are nonrenewable; once relieved by, for example, transient creep they

are gone whereas bending and other stresses are renewable. Thermal stresses

can be very high but the role of relaxation processes is unclear.

Delamination has been proposed for Venus by several authors 4°5

Delamination is associated with the "subduction" of the mantle lithosphere and

possibly the lower crust but not the upper crust. The surface manifestations

of delamination are unclear. There is some evidence that delamination is

occurring beneath the Transverse Ranges in California s. Delamination will

certainly lead to lithospheric thinning and is likely to lead to uplift and

crustal thinning.

A word of caution should be given, however. With all the knowledge of the

earth's surface the plate tectonic hypothesis only evolved in the 1960's. And

even with this hypothesis many aspects of tectonics are still controversial.

For example, does the Eurasian plate override the Indian plate in Tibet. Thus,

even with improved imaging it is likely that many aspects of the tectonics of

Venus will remain a mystery.
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EASTERN ISHTAR TERRA: TECTONIC EVOLUTION DERIVED FROM RECOGNIZED

FEATURES. R.W. Vorder Bruegge and J.W. Head, Dept. of Geo. Sci., Brown Univ., Providence, RI

02912 (SPAN BRNPSG::VBRUEGGE).

Introduction: Previous analyses have recognized several styles and orientations of compressional deformation,

crustal convergence, and crustal thickening in Eastern Ishtar Terra [1-11]. An east to west sense of crustal convergence

through small-scale folding, thrusting, and buckling is reflected in the high topography and ridge-and valley morphology of

Maxwell Montes and the adjacent portion of Fortuna Tessera [5-11]. This east to west convergence was accompanied by up

to 1000 km of lateral motion and large-scale strike-slip faulting within two converging shear zones which has resulted in

the present morphology of Maxwell Montes [5-7]. A more northeast to southwest sense of convergertce through large-scale

buckling and imbrication is reflected in large, northwest-trending scarps along the entire nort,hem boundary of lshtar Terra,

with up to 2 km of relief present at many of the scarps [11,12]. We have previously suggested that both styles of

compression have occurred at the expense of pre-existing tessera regions which have then been overprinted by the latest

convergence event [11]. The difference in style is attributed mostly to differences in the properties of the crust converging

with the tessera blocks. If one, presumably thick, tessera block converges with another tessera region, then the widespread,

distributed style of deformation occurs, as observed in western Fortuna Tessera. However, if relatively thin crust (such as

suggested for the North Polar Plains [13]) converges with thicker tessera regions, then localized deformation occu,'s, as

reflected in the scarps along Northern Ishtar Terra.

Our purpose in this abslxact is to identify the types of features observed in Eastern lshtar Terra. In this abstract and

the accompanying poster presentation, we will describe their potential temporal and spatial relationships, suggest possible

origins for them, and show how the interpretation of some of these features has led to the multiple-style tectonic evolution

model described above.

Craters - These are elliptical or circular depressions described and interpreted as impact craters by Basilevsky and

others [14]. They include: Cleopatra (66NfTE), Fernandez (76N/17E), Rossetti (57Nf7E), Unnamed #1 (75.5N/30E), Ulrique

(76N/55.5E), Frida (68N/55.5E), Unnamed #2 (66.5N/58E).

Montes - Recognized as a very high relief rise or chain of rises [15], these mountain ranges are characterized by

sub-parallel linear ridges and valleys that strike parallel to the trend of the rise and by linear features that cut across the

trend of the ridges and valleys. The ridges and valleys have been interpreted as compressional features [1, 3-5, 16] and the

linear features as Strike-slip faults [5, 16]. The only major mountain chain in Eastern Ishtar Terra is Maxwell Montes,

centered at 65N/4E.

Dorsae (Ridge Belts) - Ridge belts are similar to montes in that they are characterized by sub-parallel linear

ridges and valleys often cut by linear features. However, they differ from montes in that they are more irregular in plan [15]

and have less topographic relief (always less than 3 kin). The nature of these features is uncertain, with compressional [17],

extensional [18], and transpressional origins all possible. Those in and around Eastern Ishtar Terra include: Semuni

(70N/3E-78N/12E), Dyan-Mu (78N/28E-75N/43E), Sel-Anya (84N/'75E-75N/80E), Allat (60N/65E-65N_0E), Kamari

(62N/45E-50N/60E), Ausra (45N/20E-55N/28E), Auska (59N/356E-62Nf2E), and Unnamed #1 (76.5N/56E-71N/84E).

Rupes (Scarps) - These steep scarps are often up to thousands ofkm long and can have over 2 km of relief. They

commonly occur along the edges of highland and tessera areas, often separating regions of highly deformed terrain (such as

tessera) from relatively less deformed areas (such as smooth plains). The nature of these scarps is variable, with some scarps

interpreted to be related to compressional deformation involving large-scale crustal buckling, imbrication, and underthrusting

[12,13], while others may represent fault surfaces associated with rifting [19]. Several dozen unnamed scarps over 100 km

long have been mapped in Eastern Ishtar Terra [11], with particular concentrations occurring along the northern and eastern

flanks and in the central portion of this region (see chasmata).

Chasmata - Chasmata are deep, steep-sided linear depressions [15] with fiat floors that ate often covered by

relatively smooth plains units. Parallel, inward-facing _arps, with up to 2 km of relief define the boundaries of chasmata,

which can be up to 100 km wide and over 1000 km long. The nature of these features is also uncertain, since some have

been interpreted as extensional graben [19], while others may represent incipient suture zones between converging crustal

blocks or slices [12]. Those recognized in and around Eastern lshtar Terra include: Morana (67Nf25E-71N/'25E), Varz

(71N/27E-70N/30E), Lasdona (66N/30E-72N/35E), Daura (74N/50E-73N/55E), Aranyani (73Nf73E-68Nf/4E), Unnamed #1

(73N/28E-69Nf38E), Unnamed #2 (68N/27E-72N/34E), Unnamed #3 (71N/40E-73N/47E).

Fossae - Fossae are long, linear, narrow, shallow, depressions [15]. They differ from chasmata in that they are very

narrow (less than 20 km wide) and lack fiat floors. A simple extensional origin is favored for most of these features, but

some may be graben related to large-scale shearing [4], while others (not previously identified as fossae, but as 'troughs')

may represent strike-slip or shear faults [11]. Three major sets of fossae are recognized around Eastern Tshtar:. Sigrun

(48N/17E-53N/19E), Rangrid (63N/355E-62N/0E), and Manto (-63N/54E-64N/69E).

Syntaxes (No official nomenclature) - Syntaxes on Venus are broad, arcuate, loop-llke features converging at

the apical end and opening at the antapical end, with lengths of 250-600 km and widths of 100-400 km [20]. Individual
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ridges mad valleys between 5 and 20 krn wide and 20 and 300 km long def'me the interiors of these features. On Earth, they

represent a bend in an orogenic belt, such that two or more compressional (ridge) trends form an acute angle at their

intersection. Two such features are recognized in Eastern Ishtar, including: Unnamed #1 (south-opening, apex at 65N/22E)

mad Unnamed #2 (south-opening, apex at 73N/75E).

Septae - These features are broad linear rises, often bounded by steep ropes. They exhibit a mottled appearance

dominated by very narrow (< 5 km) intersecting ridges and/or fossae. Their origin is uncertain. Three are recognized in
Eastern Ishtar: Unnamed #1 (64.5N/'32E-64.5N/'37E), Unnamed #2 (64N/31E-63N/33E), and Unnamed #3 (67N/50E-68N/65E).

Basins - These are broad topographic depressions often bounded by steep scarps, but far less linear than chasmata.

They are usually floored by smooth plains areas, although disrupted areas are often observed within them. Those basins in

and around Eastem Ishtar include: Snegoruchka planitia (North Polar Plains), Audra Planitia (southeast of Ishtar), Unnamed

#1 (centered at 58N/5E, just south of Maxwell Montes), Unnamed #2 (centered at 69N/355E, just north of Maxwell),

Unnamed #3 (74N/gE), Unnamed #4 (72N/11E), Unnamed #5 (65N/26E), and Unnamed #6 (61N/32E).

Chevrons (No official nomenclature) - Chevrons are curved features that consist of either individual or paired

scarps, that are distinct from rupes or chasmata because riley exhibit a sharp change in trend that produces an acute angle [8].
Numerous chevrons are observed concentrated in central Fortuna Tessera [8], where they may represent either syntaxes-like

structures or the sharp edges of individual tectonic blocks. One such chevron opens to the south at 72N/26E.

Tesserae - Tesserae are regions of orthogonal to obliquely oriented sets of ridges and valleys [1]. Three sub-types of

tessera have been identified on Venus [21], including: Sub-parallel ridged terrain (Tsr), Trough and ridge terrain (Ttr), and

Disrupted Terrain (Tds). Tsr consists of sub-parallel ridges and valleys, often disrupted along linear zones, possibly

indicating strike-slip offset. Ttr consists of parallel troughs separated by regions of parallel ridges and valleys oriented

orthogonal to the troughs. Tds lacks continuous ridges or valleys and is often characterized by a blocky appearance.

Tesserae occur as either individual blocks of one sub-type or as large regions made up of a collage or mosaic of tessera

blocks and sub-types. Eastern Ishtar Terra represents one such collage region, with all three sub-types recognized there: Tsr

is recognized just east of Maxwell Montes (65N/15E); Ttr in Eastern Fortuna (70N/59E); and Tds in Central Fortuna

(68N/45E). The origin of tessera is uncertain, though a variety of models have been suggested [22]. We have previously

interpreted the Tsr as resulting from the overprinting of the Ttr through compressional deformation oriented normal to the

strike of the ridges and valleys in the Tsr [11]. This is reflected in the gentle transition from the Ttr pattern to that of the

Tsr in Eastern Fortuna. Similarly, the Tds may result from the gravitational relaxation of Ttr or Tsr in Central Fortuna.

In these ways, one tessera sub-type may be transformed to another.

Discussion. In our previous analyses we have interpreted the deformation in most of Eastern Ishtar Terra to be the

result of several styles and orientations of compressional deformation and crustal thickening [5-11]. The various features in
Eastern Ishtar Terra and their relationships to one another reflect these different styles and orientations. The sub-parallel

ridges and valleys of Maxwell Montes and the Sub-parallel ridged terrain (tessera) of western Fortuna Tessera reflect an

east-west sense of convergence in this region, with deformation characterized by small-scale folding and buckling [5-11].

This sense of convergence may also be reflected in the north-south orientation of the syntaxis structure at 66N/22E, as well

as the numerous north-south chevrons in Central Fortuna Tessera [8], and in the north-south trend of Semuni Dorsa [9,10].

The more northeast-southwest sense of convergence suggested for Northern Ishtar Terra is predominantly characterized by

large-scale buckling and crustal imbrication, which is reflected in the sub-parallel rupes, chasmata, and dorsae striking
west-northwest along this boundary [11-13]. Present analysis is focused on the detailed mapping and synthesis of the units,

features, and their relationships.

References: 1) A.T. Basilevsky et al., (1986) J.G.R., 91, 399.411.2) V.L. Barsukov et aL, (1986) J.G.R., 91,

378-398.3) A.T. Basilevsky, (1986) Geotelaonika, 4, 42-53.4) L.B. Ronca & A.T. Basilevsky, (1986) E.Mfl., 36, 23-39.

5) R.W. Vorder Bruegge et al., Orogeny and large-scale strike-slip faulting: Tectonic evolution of Maxwell Montes, Venus,

submitted to J.GJ_., 1989.6) R.W. Vorder Bruegge et al., (1986) LPSC XVII, 917-918 (abs.). 7) R.W. Vorder Bruegge et al.,
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STRESS DISTRIBUTION AND TOPOGRAPHY OF TELLUS REGIO,

VENUS; Williams, David R., and Ronald Greeley, Department of Geology, Arizona

State University, Tempe, AZ 85287

The Tellus Regio area of Venus represents a subset of a narrow latitude band where Pioneer
Venus Orbiter (PVO) altimetry data (1), line-of-sight (LOS) gravity data (2), and Venera 15/16
radar images (3,4) have all been obtained with good resolution. Tellus Regio also has a wide
variety of surface morphologic features, elevations ranging up to 2.5 km, and a relatively low
LOS gravity anomaly. This area has therefore been chosen in order to examine the theoretical
stress distributions resulting from various models of compensation of the obse_'ed topography.
These surface stress distributions are then compared with the surface morphology revealed in the
Venera 15/16 radar images. Conclusions drawn from these comparisons wi!l enable constraints
to be put on various tectonic parameters relevant to Tellus Regio.

The stress distribution is calculated as a function of the topography, the equipotential
anomaly, and the asst:med model parameters. The topography data is obtained from the PVO
altimetry. The equipotential anomaly is estimated from the PVO LOS gravity data. The PVO
LOS gravity represents the spacecraft accelerations due to mass anomalies within the planet.
These accelerations are measured at various altitudes and angles to the local vertical and therefore
do not lend themselves to a straightforward conversion. A minimum variance estimator of the
LOS gravity data is calculated, taking into account the various spacecraft altitudes and LOS
angles and using the measured PVO topography as an a priori constraint. This results in an
estimated equivalent surface mass distribution, from which the equipotential anomaly is
determined.

Banerdt (6) has solved equations for a global thin elastic shell, representing the elastic
portion of the lithosphere. The assumptions inherent in these solutions are that the shell
thickness is less than about 1/10 the planetary radius, that the shell is isotropic, single-layered,
and continuous, and that the toroidal terms, representing rotational forcing, can be neglected
compared to the poloidal terms, which account for pure loading. Solving these equations
requires one further assumption, which will vary depending on the particular model chosen.
These models currently include: 1) topographic support due entirely to a combination of density
anomalies in the mantle, lithospheric flexure, and the resulting deflection of the crust-mantle
boundary, 2) support due to crustal thickness variations combined with lithospheric flexure and
deflection of the crust-mantle boundary, and 3) a support model where both mamle density
anomalies and crustal thick_mss variations are considered, and the shell flexure is proportional to
the topography. The equations are solved for subsurface mass distribution and lithospheric
flexure using the topography and surface equipotential anomaly as data. We also assume a
lithospheric, crustal, and upper mantle thickness for a given model. The flexure and mass
results are used to solve for a surface stress distribution, which is represented as magnitudes and
directions of principal tensile and compressive stresses.

Banerdt's original formulation (6) solves for the surface spherical harmonic coefficients on
a spherical shell. We have recast the solutions to be applicable to Fourier coefficients in order to
solve for regional scale in addition to global scale stresses. The dependence of the solutions on
spherical shell geometry has been retained. The solutions themselves give the short and
intermediate wavelength stresses generated by topography and flexure in the immediate vicinity
of the Tellus Regio area. These regionally induced stresses are combined with the long-
wavelength global stress field, calculated using the spherical harmonic formulation_ The stress
distribution is then compared to the surface features shown in the high resolution Venera radar
images of the Tellus Regio area.

The Tellus Regio area exhibits a wide range of geological features (figure 1). These
include complex systems of long sub-parallel ridges and grooves (trending in various directions)
and associated wide valleys and flat depressions. A large proportion of the central part of this
region is characterized by a chaotic parquet terrain. The northern and southern margins of the
elevated region are covered with plains-forming material. A preliminary sketch map is being
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preparedfor comparisonwith thestressdistributionresults. Preliminarycalculationsof regional
stressdistribution showclosecorrelationbetweenprincipalstressdirectionsandvarioussurface
features.For thecaseof densityanomaliesin themantleloadingthelithospherefrom below,or
supportingalithosphereloadedat thesurface,unreasonablyhigh stresseson theorderof 1to 3
kbarsresult. If crustal thicknessvariationsare includedin the solution, and the lithospheric
flexureis_assumedto _beproportionalto thetopography,morereasonablevaluesfor theregional
surfacestressesresult, on the order of 0.1 to 0.5 kbar. Assuming a thinner lithosphere
decreasesthe magnitudeof thesestressesonly slightly. Calculations for an end-member
lithospherewith athicknessof only 1km showstressesrangingup to - 0.3 kbar. Variationsin
assumedcrustal thickness have almost negligible effect on the magnitude of the stresses. The
principal tensional and compressive directions are perpendicular to the dominant linear surface
features for values of flexure consistent with a lithosphere loaded from above. Solutions for

regional stresses for a lithosphere loaded from below do not show a good qualitative match
between stress direction and surface morphology.
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THREE AGES OF VENUS CharlesA.Woodand CassandraR.
Coombs, NASA Johnson Space Center, Houston, TX 77058

A central question for any planet is the age of its surface. Based on comparative planet-
ological arguments, Venus should be as young and active as the Earth [Wood and Francis,
1988). The detection of probable impact craters in the Venera radar images provides a tool for
estimating the age of the surface of Venus. Assuming somewhat different crater production
rates, Bazilevskiy et al. (1987) derived an age of 1 _+0.5 billion years, and Schaber et al. (1987}
and Wood and Francis [1988) estimated an age of 200-400 million years. The known impact
craters are not randomly distributed, however (Wood and Francis, 1988; Plaut and Arvidson,
1988), thus some areas must be older and others younger than this average age.

We have derived ages for major geologic units on Venus using the Soviet catalog of impact
craters (Bazflevskiy et al., 1987) and the most accessible geologic unit map (Bazflevskiy, 1989).
Table 1 presents the crater counts [diameters >20 kin), areas, and crater densities for the 7
terrain units and coronae. Our procedure for examining the distribution of craters is superior
to the purely statistical approaches of Bazilevskiv et al. (1987) and Plaut and Arvidson (1988)
because our bins are larger [average s_tze 16 x 106 km 2) and geologically significant.

Crater densities define three distinct groups: relatively heavily cratered (Lakshmi,
mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae),
and essentially uncratered (coronae and domed uplands). Following Schaber et al. [1987). we
use Grieve's (1984) terrestrial cratering rate of 5.4 + 2.7 craters >20 kin/10 9 years/10 6 klTI 2 to

calculate ages for the geologic units on Venus. To improve statistics we aggregate the data into
the three crater density groups, deriving the ages in Table 2. For convenience, the three
similar age groups are given informal time stratigraphic unit names, from youngest to oldest:
Ulfrunlan, Sednalan, Lakshmian.

These results suggest that (1) there are significant differences in the age of units on the
surface of Venus, (2) the age differences are geology dependent (not random), {3) some activity is
extraordinarily young, and (4) geologic activity on Venus may be episodic rather than con-
tinuous, i.e periods of activity were-centered at 330, 150 and 10 m.y. ago. This is different, for
example, from the generally continuous seafloor spreading that has occurred on Earth for the
last 150 m.y. Changes in the pace of activity are also pronounced (Table 2), with approximate
resurfacing rates (in 10 6 kin2/10 9 yr) of 10 during the Lakshmian, 700 during the Sednaian,

and 400 during the Ulfrunian.
The derived ages and photogeologic observations provide evidence concerning the strati-

graphic relations of various units. (a) Recent volcanism (Bazflevskiy et al., 1989) cuts all units
except tesserae, and coronae (also though to be volcanic; Stofan et al., 1988) cut all but tesserae
and Lakshmi and surrounding mountains. The lack of these recent volcanic landforms on
tesserae suggest that either magma generation does not occur under them or that magma can
not rise to the surface (thick or low density crust?). (b) Mountain belts surrounding Lakshmi
are old; the deformation forming them is thus ancient and not contemporary (or crater out-
lines would be distorted). (c) Ridge belts are the same age as (not younger than) the plains which
surround them, thus they are not like active terrestrial spreading ridges which are commonly
of zero age while nearby ocean floor may be tens of millions of years older. (d) Impact craters
are not uniformly distributed within all terrains; some large areas of ridge belts and tesserae
have no detected impact craters, and Lakshmi has most of its impacts concentrated in the
westem haft. (e) The two youngest units - domed uplands and coronae - appear to be superposed
on smooth and rolling plains and ridge belts. One corona cuts domed uplands, and small
patches of domed uplands occur in the middle of tesserae.

The broadscale distribution of time stratigraphic units (Fig. 1) is not random. All but one

patch of the young domed upland is south of roughly 40°N latitude, suggesting a younging
toward the equator. Coronae, which are also very young, are widely dispersed in latitude and
longitude. The oldest unif§ (Lakshrni _arid mountain belts) are tightly clumped in one patch,
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almost like terrestrial Precambrian shields with surrounding greenstone belts.
All of these observations and inferences depend on the distribution of 96 craters >20 km in

diameter on -25% of Venus. Fortunately these speculations can be confirmed, extended or

rejected when the higher resolution, full-planet radar images from Magellan become available.

REFERENCES: Bazllevskly A.T. (1989) Sky and Telescope, April, 1989, 360-368. Bezilev-
ekly A.T., B.A. Ivenov, G.A. Burba, I.M. Chernaya, V.P. Kryuchkov, O.V. Nlkolaeva,
D.B. Campbell, and L.B. Ronca (1987) J. Geophys. Res., 92, 12,869-12,901. Bazllevekly
A.T., V.P. Kryuchkov, N.N. Boblne (1989) Lunar and Planet. ScL Conf. XX, 48-49. Grieve
R.A.F. (1984) Proc. Lunar and Planet. ScL Conf. 14th, in J.Geophys. Res., 89, B403-B408. Plaut
J.J. end R.E. Arvldson (1988) NASA Tech. Mere. 4041, 410-412. Schaber G.G., E.A.
Shoemaker,and R.C. Kozak (1987) Lunar and Planet. ScL Conf. XVIII, 874-875. Stolen, E.R.,
J.W. Head, and E.M. Parmantler (1988) Lunar and Planet. ScL Conf. XIX, 1129-1130. Wood
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TABLE 1: CRATER STATISTICS

Terrain Unit Number of Craters Area [106jLg12I _li_J_L./.AI_
Domed Uplands 0 5.1 0.0
Coronae 0.5 2.3 0.2

Rolling Plains 74 55.8 1.3
Smooth Plains 22 24.8 0.9

Ridge Belts 17.5 13.4 1.3
Tesserae 13 12.6 1.1
Lakshmi 6 2.0 3.0
Mountain Belts 5 1.3 3.8

TABLE 2: TIME -STRATIGRAPHIC UNITS

Domed Uplands_
Coronae

Time-strati_r_Dhic Name

Ulfrunian

._g_,..I Resurfacln_ Rate 2

13 392

Rolling Plains

Smooth Plains

Ridge Belts
Tesserfle

Lakshmi }Mountain Belts

Sednaian 150 710

Lakshmian 330

Units: 1: 106y_, 2: 106km2/lO9yr

Fig.l: Time-stratigraphic map of northern portion of
Venus. U = Ulfrunian (age 10 m.y.); S = Sednaian (150
m.y.), L = Lakshmian (330 m.y.). Unlabeled outlines are
Coronae of Ulfrunian age.

1101

I0 _ .-'I_--_

270" _ - _'_Cj "_. q¢

O"

NASA-JSC




