
NASA Technical Memorandum 102412

AIAA-90-0744

Flight Software Development
for the Isothermal Dendritic

Growth Experiment

Laurie H. Levinson and Edward A. Winsa

Lewis Research Center

Cleveland, Ohio

and

Martin E. Glicksman

Rensselaer Polytechnic Institute

Troy, New York

Prepared for the

28th Aerospace Sciences Meeting

sponsored by the American Institute of Aeronautics and Astronautics

Reno, Nevada, January 8-11, 1990

I ASA

iq .' / cj ?

Line! Js

FLIGHT SOFTWARE DEVELOPMENT

FOR THE

ISOTHERMAL DENDRITIC GROWTHEXPERIMENT

Laurie H. Levinson, Edward A. Hlnsa, and Martin E. Glicksman
NASA Lewis Research Center, Cleveland, Ohio

*Rensselaer Polytechnlc Institute, Troy, New York

ABSTRACT

The Isothermat Dendritic Growth Experiment (IDGE)

is a microgravity materials science experiment

schedulecl to fly in the cargo bay of the shuttle on

the United States Microgravity Payload (USMP)

carrier. The experiment wilt be operated by real-

time control software which wilt not only monitor

and control onboard experiment hardware, but wilt

also communicate, via downlink data and uptink

commands, with the Payload Operations Control

Center (POCC) at NASA George C. Marshall Space

Flight Center (MSFC). The software development

approach being used to in_otement this system, which

will be the focus of this paper, began with

software functional requirements specification.

This was acconI>lished using the Yourdon/DeMarco

methodology as supplemented by the Ward/Mellor

real-time extensions. The requirements

specification in combination with software

prototyping was then used to generate a detailed

design consisting of structure charts, module

prologues, and Program Design Language (PDL)

specifications. This detailed design wilt next be

used to code the software, followed finally by

testing against the functional requirements. The

result will be a nKx_utar real-time control software

system with traceability through everyphase of the

development process.

INTRCX)UCTION

The Isothermal Dendritic Growth Experiment (IDGE)

is a microgravity materials science experiment

currently planned for three flights beginning in

1993. It is scheduled to fly on the United States

Microgravity Payload (USMP) carrier located in the

cargo bay of the Space Shuttle (Figure 1). The

experiment, originally proposed by Professor M. E.

Gticksman - now the Principal Investigator - of

Rensselaer Polytechnic Institute, is being designed

and built at the NASA Lewis Research Center (LeRC)
in Cleveland, Ohio. ,2

The scientific olojective of the IDGE is to test

current mathematical models which predict dendrite

growth velocity and tip radius in a solidifying

metal melt as functions of dendrite physical

properties and metal melt properties. The data

Figure 1. The IDGE, mounted on the USMP carrier in

the Space Shuttle cargo bay and shown along with its

mission payload coraplem_nt.

being gathered will provide the means to verify the

existing moriels or, in the event these nxx_els should

prove flawed, to correct them. Correct models

could Lead ultimately to improved techniques for

commercial metal prcx:luction, since virtually all

metals and alloys solidify from the molten state by

a dendritic process.

The IDGE technical objective is to build and fly an

al_oaratus that meets all IDGE scientific

requirements, as well as all Space Shuttle safety

and interface requirements. In terms of the

software development effort, this in_oties the

development of a system which will operate the

experiment autonomously, will recover automatically

from most system faults, will accept in_xJt data

from the Space Acceleration Measurement System

(SAMS), will communicate with the Payload

Operations Control Center (POCC) both via downlink

dataanduptink coemands,andwill be easily

maintainable over the Lifetime of the experiment

(nominally, three flights). Autonomous operation

of the experiment will, in this case, include such

features as precise temperature control° ofd)oard

image analysis, 35 mm camera control, inter-

processor communication among three onboard

processors, and onboard storage of all critical

science data.

OVERVIEW

The Software Development Life Cycle

When developing a complex software system such as

that described above for the IDGE, the development

process is com_nty broken clown into five basic

stages: analysis, design, co(ling, testing, and

maintenance. Because these five stages cover the

entire range of activities that may take place over

the Lifetime of a software system, they are,

together, referred to as the software development

Life cycle. Of the five stages which make _q0 this

Life cycle, the first four relate to initial system

development, white the final stage - maintenance -

refers to any changes which must be made to the

system following its initial co_r_pLetion.

Maintenance aside, it is generally recommended that

approximately 50_ of the available resources (i.e.,

time and money) be allocated to analysis and

design, approximately 15% to coding, and

al:_oroximateLy 35_ to testing.

The goat of the analysis phase is to obtain

sgreen_nt among all relevant parties as to the

functional requirements of the software system.

This can, alternatively, be thought of as the time

during which the "what" of the system is specified

(in other words, what the system is to do).

In the case of a space experiment such as the IDGE,

functional requirements specification is

acccxnptished using ir_xJt beth from previously

generated documents (e.g., the Science Requirements

Document and the Engineering Requirements Document)

and from discussions with science and engineering

team rnembers. These inl_JtS are then used to

generate a Software Functional Requirements

Document, which is the primary output of the

analysis phase.

On the IDGE project, software functional

requirements were specified using the

Yourdon/OeMarco methodology, as supplemented

by the Ward/Mettor real-time extensions. This

methodology wilL be described in a subsequent

section of this paper.

Des_

The design phase is the timed uring which the "how"

of the software system is specifiod. Using the

output of the analysis phase as input, the system

designer determines precisely how the required

software functions wilt be in1_temented. The

resulting detailed design is specified in a

Software Design Document, which is the primary

output of the design phase.

On the IDGE project, in addition to the ircxJt

provided by the Software Functional Requirements

Document, information gained from software

prototyping is being used as input to the design

process. The reason for this, as welt as a

description of the specific design approach used on

the project, will be provided below.

Codin_

During the coding stage, the previously generated

detailed clesign is used to prockJce the actual

system code which the con_xJter hardware will

execute. While this task may be acccxnp[ished by

the system designer him/herself, it can also be

done by SOlVe else entirely - a coder - provideci

the system has been deve[_ so as to permit such

an approach.

On the IDGE project, engineering code which is

based on the flight system dasign but written by

someone other than the system designer is being

used to test the erKJineering hardware. While the

actual flight code is to be written by the system

designer, for purposes of testing engineering

hardware, this alternative approach has been quite

successful. This experience, as welt as the

circumstances that are corctucive to using such an

approach, wilt be discussed betow.

Testincj

The testing phase always consists of two distinct

types of testing: unit testing and integration

testing, in addition, if software is being

delivered to a custcner, a third type of testing -

acceptance testing - is performed by the customer.

These three types of testing are performed in the

order mentioned, and an error found at any point in

the process necessitates a return to unit testing
once the error has been corrected.

Unit testing refers to the testing performed

individually on each unit of the software system.

During this testing, the goal is to ensure that

every path through a unit's code has been executed

and been shown to provide the desired result.

Integration testing refers to the testing performed

on the entire system, or on some interconnected set

of units in the system, once the individual units

have been tested. The purpose of this type of

testing is to ensure that the system as a whole

functions as expected. Integration testing is thus

functional testing designed to demonstrate that

required system capabilities operate as desired.

The methods used to do unit testing and integration

testing on the IDGE project wilt be discussed

below.

Acceptance testing, as mentioned above, refers to

the testing done once the software system has been

delivered to the customer. On the IDGE project,

however, software is not actually being delivered

to s customer, so ell testing activities will be

carried out during unit and integration testing.

Acceptanoe test ing, therefore, wi l l not be

discussed further.

Maintenance

The maintenance phase of the software development

process covers the entire period of time following

initial system completion. Any change made to the

software during this time, regardless of its

nature, is considered part of this phase of

development. Maintenance, therefore, includes not

only changes made to fix a previously undetected

bug, but also application-specific changes made to

custcwnize a system (e.g., in the case of a space

experiment, mission-specific changes) or upgrades

made due to changes in technology.

While the impact that the IDGE software development

approach has on the maintenance process will be

discussed, a discussion of the maintenance process

itself is beyond the scope of this paper.

FUNCTIONAL REQUIREMENTS SPECIFICATION

System functional requirements specification is the

first, and perhaps the most critical, step in the

software development process. In generating the

specification, the system developer must

communicate with all those involved in the project

and establish the goals for the remainder of the

development effort. In order to accomplish this

task in an effective manner, it is important that

the method used to generate the specification

possess certain characteristics.

Since user-developer coalmJnication is a major

concern at this stage of the development process,

the method chosen should facilitate this

communication and maximize the potential for users

to provide input to the developer. In order to do

so, the method selected should (I) use a vocabulary

with which the users are familiar, and (2) present

a "condensed" version of the system, where certain

details are suppressed in favor of presenting "the

big picture." This latter quality will not only

maximize the probability of users finding

requirements errors during the review process, but

will also allow the developer to take an

incremental approach to development. Such an

approach simplifies the system developer's task by

allowing him/her to take advantage of varying

degrees of abstraction. At the same time, it

provides the ability to compare the system

description at various stages and check for

consistency, thereby helping to ensure proper

development.

In addition to the above features, a system

specification approach should also provide ease of

maintenance, so that any necessary changes can be

without difficulty. This is an important

practical consideration, since change is an

inherent part of the specification process.

Furthermore, while the approach used should present

wthe big picture," as mentioned above, It should

also permit the system to be described in

sufficient depth. This can be accomplished by

using an approach which takes advantage of

partitioning and leveling of detail.

Finally, one additional desirable feature - which

might be considered a consequence of those

mentioned thus far - is that the approach used

should be primarily graphical as opposed to

verbal. A graphical approach is not only

consistent with the previously mentioned features

but, in fact, provides an excellent means of

implementing those features.

The Specification Methodology

The type of approach used on the IDGE project to

accon_)tish system functional requirements

specification is described in detail in References

3 and 4, and possesses all of the above-mentioned

desirable characteristics. This approach is

referred to as the Yourdon/DeMarco methodology with

Ward/Metlor real-time extensions.

This method of system specification involves the

development of an essential model, so catted

because it separates the essence of a system from

its implementation. The essential model describes

what a system does and what data it stores

irrespective of the technology used.

As with any model, certain assumptions are made as

part of the modeling process. In this case, three

basic assumptions apply: (1) The technology is

assumed to be perfect, which implies no internal

system errors are generated; (2) the processor is

assumed to have infinite memory, which implies

there are no storage concerns; and (3) the

processor is assumed to have infinite processing

capacity, which implies that processes run in zero

time. By making these three assumptions, all

implementation aspects of the problem are

effectively removed frem consideration.

In generating the essential model, three types of

diagrams may be used: (1) data flow diagrams,

(2) state transition diagrams, and (3) entity

relationship diagrams.

Data flow diagrams (DFDs), as the name indicates,

show the flow of data in the system. The IDGE

essential model consists of twenty-one DFDs.

State transition diagrams (STDs) show the different

states in which the system may be found and

describe the transition from one state to another.

Twenty STDs were required to define the IDGE
essential model.

Entity relmtior=hip disgrNm are used to show the

orQ#nizotion of data in the system, and are most

useful in a system which is very data-intensive.

The IDGE software system is control-oriented rather

than data-oriented, however, and is thus not s

data-intensive system. Cormequentty, no entity

re|lt|onshfp d|agrm Mere prock_. This aspect

of the eesentiat mKcleting process ut|t, therefore,

not be discussed any further. The reader is

referred to Reference 4 should additional

information on the topic be desired.

The ;DGE Essential Nodal

The essential model used to define the system

functional requirements is actual|y composed of two
distinct models: the environmental model, which

describes the environment in which the system

operates, and the behavioral model, which describes

the behavior of the system.

The Environmental Nodet. The LDGE environmental

Bode[consists of two item: (1) the context

diagram, s special type of data flow diagram

which, as the name implies, represents the context

in which the software system operates; and (2) the

event List, which is a List of all the events that

occur in the environment to which the system will

have s pre-ptanned response.

The tDGE context diagram is shown in Figure 2. The

large circle in the center of the diagramrepresents

the software system, while the boxes surrounding it

represent all the external subsystems with which the
software communicates. The Labeled arrows between

the two indicate the net data flows into or out of

the software system.

A portion of the IDGE event List is shown in

Figure3. The external event is listed on the Left,

and the pre-plannedsystemresponse is Listed on the

right.

The Behavioral Nodei. The behavioral model for

the]DGE software system consists of three

components: (1) Leveled data flow diagrams, (2)
state transition diagrams, and (3) a data

dictionary.

s/c CLOCK

SYSTEM
CLOCK

SENSORS

SAMS
EXPERIWENT

S51V
SYSTEM

POCC/

;TRONAUTS/
MSL

#&
\ Requlst

MANAGE
ISOTHERMAL
DENDRITIC

GROWTH
EXPERIMENT

BUBBLE
MEMORY

System System
Data Base Valid Parameters

Commands

ACTUATORS

Did#: 0_'o)

Bubble
Memory R Context Diagram For IDGE Flight Software

Test Da_,o _ Author:. L. Lay|neonDote: 03/16/88

FilM'e 2.

operates.

The IDGE context diagram, which depicts the IDGE software system and the environment in which it

4

ORIGINAL PAGE IS

OF POOR QUALITY

E: -- [_b|e
B: -- Dts_ill

T: -- lrtlNm"

r_ LIST

|_mit Systea lie spe_su

1. _t_t tlr'ns_ _t $ysMm 5taCus J_ t_ l_lttaltzt=_ $_rs_
rJsetl [_ (: _ _a_a t_ I_Ct

[: _m_rt m_f &l_ltl Sjr_t_ CIOcJU

Z. Irev M 41tl hset Max Tim t_ V4tt _" _ 04U Tttm"
Jlyal|ab)@ T; _JilKt afld-U_itll _JU_S'041[i-

). _ MIqwsts [O_ T: Ostl_ _ Bita taclmt
&at|

4. kstz.g_avt/POCC semi T: P_'muss Ca_i_d |ipet
cemMn4

S. S4_ler _J_t_s 1: Cillbrltl TliemJsLoPi
tMIcatl _ stsble at E: _ IttUSe _ P1_iCissi_l
c=}lbrl£f_ _ratur_ _: _ltl_t_t N_ C7_C]4

6. Ie, ler Peld1_s _Jt TIi, t_ It_#_it lli|_T_peracm TW
tndlcjtl t_Itb itlbll II
uelt tlperatvre

7. Tim to sta 7 at uelt Set Tal_tt_Tllperltu_t to CT¢le_Su0ef_e|_
t_n0_aCurt kls elmple4 Telperlr_ll

Stable lath_Tmmerm_re_n_
T: _dt_i c_:Ti PlrletePs
(: 0p4_itl llo=ePs
(: 0etlml_l Jath Telperli_rl $ta_lliZlttM

i. _e, SOr r_idi_l ?: _ PfctuP_ _? Stlm/er
1_Icmte _ stlblo it (: Imiltltl [NMrlt_¢ Gr_tb
sswm-cN1 taeperltu_e Set Itie ¢¢_l_ll,l_li_e /Imilysls Tiler

i. Tim to begln ioage [: /_i17zt _ li_jl _i_i
_i1_ill o¢cvPs 5el KU Tim_to Oo_bt_e k_11_.lls Timer

I0. 55W Imqes IMiclte 0: Imit|itl De_rltlt _Po_h

dlmOl-ltl 9_t_ h41 9: &ulyzl 5_-rv laa_i 01ta
eccuPee4 or R_s Tile _ rlm_te l_It_att~_to_$e_e Tiw
teCe_ buqe _,aT_: : S-
t_N_ _S uplrv4

||. T|I _ tJ_kl _ _: TaLkll

I_ t_ serd to POCC

Figure]. A portio_l of the]DGE event List.

There are twenty leveled DFDs which describe the

IDGE software system. One of these is shown in

Figure 4. The solid circles on the diagram are

referred to as data transformations, because they

show the manner in which data is transformed by the

system. The dashed circle in the center of the

diagram is referred to as a control transformation

because it contains the logic that controls the

processing. That Logic is specified in detail

using a state transition diagram.

On the state transition diagram, Figure 5, the

boxes represent the different states in which the

system can be found. The items listed between each

pair of states give the conditions which will cause

the system to change states - shown above the line

and the actiorm that will occur during the

transition - shown below the Line.

The final component of the behavioral model, the

data dictionary, lists and defines all data flows

shown on the DFDs. The 1DGE data dictionary

contains approximately 275 entries and uses the

notational conventions described in Reference I.

A sample page frem this dictionary fs shown in

Fi gure 6.

Trn

/

Figure 4. The IDGE OFD describing the pause command processing, o_e of twenty Leveled DFDs specified.

E-_

=_P_(

let ItmqrForM_.T=_m--Tm-Pet=e-
Al.J_=t_/u

$_

P_fornn Pa_ _ Pmclmng Enab_ad

T: C_lck Prom Camn'_qlne Stal_

• TE_°ERA_J_ STATUS

Ii_ ea_rm. _e.I c:_m_o w

Figure 5. The STD which describes the pause command processing

control Logic.

Development of the IDGE E_sentiaL NodeL

In developing the IDGE essential modeL, the first

step in the process was to generate a context

diagram Mhich showed the IDGE system in

relationship to the various subsystems in the

environment with which it would communicate.

The next step in the process was then determined by

consideration of the type of system being

developed. As the primary purpose of the IDGE

software system is to control the responses to

various external events, this system is considered

a control-dominated system. When developing the

essential model for such a system, the next step
following context disgrempreparation is generation

of an event List.

Once the event List has been generated, this List

is used to guide the preparation of the state

transition diagrams. The event List not only helps

to determine what STDs are needed, but also helps
to illuminate the interc_tions between STOs.

Once the STDs have been generated, they are then

used in conjunction with the context diagram to

prepare s set of Leveled DFDs. As the DFDs are

prepared, all data flows on the diagrams are added

to the data dictionary and defined.

To complete the IDGE essential model

in the above-described manner

required the futt-timeeffort of one

software engineer for approximately
nine months. At the corctusien of

this nine month period, s final

draft of the Software Functional

Requirements Document was issued.

This was subsequently signed by the

primary users, indicating

satisfaction with its content.

DESIGN

The purpose of the design phase, as

previously indicated, is to

elaborate on the functional

requirements specification in such

s manner as to describe precisely

how the system requirements will be

implemented. As with the

requirements specificationapproach,

it is highly desirable that the

design methodology chosen permit

comprehension of the system as a

whole and, at the sine time, provide

the ability to describe the system

in s sufficiently detailed and in-

depth manner. As mentioned above,

s methodology which takes advantage

of partitioning and Leveling of

detail has the ability to do just

that.

One such methodology is that

recommended by Nard and Hei ior in

Reference 4. This approach consists of using the

essential model generated daring the analysis phase

to develop _hat is referred to as an implementation

model. Uhite the essential model is technology,-

independent, the implementation model describes the

system as it is actually realized by a specific

technology.

DeveLopment of this implementation model involves

the generation of three distinct models: the

processor modeL, the task modeL, and the module
modeL.

The processor model describes the allocation of the

previously defined processes to individual

processors, along with any inter-processor
interfaces which result from such an allocation.

This model is derived directly from the essential

model, and thus results in a portion of the

essential model being contained in each processor
model.

The task model describes the allocation of each

process sho_n on the processor model to individual

tasks, as well as Shy resulting inter-task

interfaces. This model is therefore a further

refinement of the processor model.

Both the processor model and the task model are

implemented using data flow diagrams.

ORIGINal ;

OF POOR QUALITY

OF POOR QUALITY

_m$or/SK tlMIt= r C_astant -

_$or/A¢ tamt i_r t.al I tints -

lkrm$or/&¢t uater bta -

Sent or__ltjLStoragi bequest •

-eser IleadI -

S4msor_|eldtng_Mlstory-

Shlll_r_enllttorllidi+g -

_uttleE/qT =

Spet CoolTtme •

$_tCoolerOn/0ff -

SOot_Coole__StatusFlag •

_t_Coeler_ttch$1tt_n| -

Itessage tent to the POCr aM dttplayed _1
tke IOG_ 01splay _h_Ch IMlCiteS t_at the
|0_ toft_lrt ts rlldy te e¢cgt tile Test_
Car4

[pm_lr Equal Ion_ConsUlnts I
kth Iteater |est stance |
C4| tbrttten Colstant$ I
Tker_stor _ t f_er O_fset_re IUgf I
[aINKTN Mtnll_ El ¢l of_l_at in|]

$torige ire= comulntag t_e valve If lath
_ln $or/_14_l talr__mt tJnt

ACt u4tor.Cont rol values *
Sen$or_h_l tags_Nt $tory +
$4m$or/ACt==ator_Cm_ tin t$

|n_Jl_ldtate storage for tile Tim to_
Stor_ S4msor._t4 flag

[I_ th_CoeI tag_fluct I1Mr Starer Flag I
II_th be/tgr_C iIr/'qmt beadtI_1 I
Tl_er_ star hldtag I

rhemst_t Flu Id__rissur_]

Storage aria c_t_llnt_ the mat recent
Llth_Coollng I1_c¢ |l_Mlr Stalls Flag va luc.
leith_Heater Current_lHd tag. _lt Ccmler
St4tU$ FII_ V=I_. Ther_ttt_r__dlR_s,
Therllt star leldtltg _Ts, T_e_t_t Flu|d
Prossur_, Averlged The_lstor_htd Ing$.
and Averaged_aetdt ng_GRtt.

$ensor Iteadl_g pmvtde_ by I Iw
reSOlUtion thermistor and used to
detem|ne the shell te_erlturt

E_T Indlcited by the Shuttle clo¢k

tmu a_ount of tt_ that the toot
cooler s_ould re_ltn on

_ctuator CmmandWh|Ch cluse$ t_t spot
cooler t_ be turned On or off

nsor geed|n _lch nd_clte the on/off
St4tut of the spot cooler

ActNtor_Contr_l Yalue _hlch Indicates the
spat cooler sultch settil_l

Figure 6. Sample page fro_ the IDGE data dictiocmry.

The module model describes the allocation of system

activities to modules and shotm the hierarchical

organization of these _dutes. The grq_icat

portion of this model is implemented using a type

of diagrm referred to as a structure chart.

Associated with each structure chart is a set of

module specifications, _hich provide a Bore

detailed description of each medute on the

structure chart. A module specification can take

a variety of forms, but is usually verbal, and thus

constitutes a non-graphical portion of the model.

[DGE Design Approach

On the %DGE project, the software design is being

implemented using only the module model portion of

the _ard/NetLor design methodology. There are

basicatLy two reasons for taking this approach.

First, the allocation of system activities to the

different processors yes already decided at the

time the essential model was constructed, and this

information coutd therefore be taken into account

as the essential model was developed. As a result,

the completed essential model provided an accurate

description _ich, for a significant portion of the

system, would require few changes in order to

produce the implementation model. Those portions

not included in or adequately represented by the

essential mode[see_ed to fat[into one of two

categories: Either they were considered to be at

a tou enough Level to be handled exclusively in

the context of the module modeL; or they were felt

to be so complex as to require a more "applied"

approach, i.e., software prototyping. As a result,

it was decided that relatively Little benefit would

be obtained by taking the time to generate the

processor and task models.

The second reason for using this approach is purely

practical in nature: The IDGE flight software is

being imptemented on a three-processor system by

one software engineer. In order to generate the

processor and task moclets, three complete sets of

data ftou diogrm uoutd have to be generated for

each at0deL: one set for each processor. This uoutd

be far too time-consuming a task for one software

engineer, particularly given the tight flight

schedule and the relative Lack of benefit

anticipated, as mentioned above. In Lieu of this,

any comptex subsystems not modeted by the essential

model, such as inter-processor coemJnication among

the three orboard processors, are being handled by

developingprototypesoftware. Given the pa_ticular

situation, this is felt to be a much more efficient

and beneficial use of the avaitable time.

By the same token, however, it should be mentioned

that use of all three design models suggested by

_ard and NelLor might be much more criticat and/or

far more beneficial on a different project,

particularly a targer one. On such a project,

multiple programmers/software engineers woutd, for

example, not only make it more feasible to generate

the increased documentation, but could also create

a much greater need for interfaces to be explicitly

specified.

Development of the /DGE Implementation Node[

The IDGE implementation model consists of three

elements: structure charts (SOs), module prologues,

end Program Design Language specifications (Pals).

The structure chart, Figure 7, provides a

description of the hierarchical structure of the

software system. It not only shows _hat module

invokes _hich Lover Level modules (i.e., "who calls

who"), but also the input and output data passed

between each pair of modules.

Figure 7. Top Level structure chart for the IDGE

flight softMare.

7

SCs are immensely helpful as a visual aid, both in

initial system development and, later, during

maintenance. They are sn excellent mechanism for

obtaining a quick overvie_ of the system structure

as it exists at any Level of the system.

Module prologues contain a summary of all relevant

interface information, as welt as a complete change

history for the module. They are extremely useful

during initial system coding and debugging,

particularly if this is being done by someone other

than the system designer. They can also be quite

helpful to a maintenance programmer, by providing

critical information uhich might otherwise be

missed. The module prologue template being used on

the LDGE project is shot,_ in Figure 8.

o

E._t Oaca:

• •

A_=_,_t Xlm_ Type Usl Oolceqp¢_oe

_e_ll Y|rlabtl_:

V4r,._l. X_ Trp. IIs. Oelcrtptl_

• (xtJ_al noftrs_ca$:

Ua_t NI Pto_ll r,a==

[_vOi I ntJ Rou| Ipal| :

• O_qlot_t MIs¢o_7:

Author Oat,

hies:

r"sc_pt_oe of _aa_!

{k"q_l, a_,.II v,na.r's I o,_

o

o

t

Figure 8. The module prologue template being used

on the IDGE project.

POLs, also referred to as pseudocode, provide a

detailed description of the module Logic, using

structured English to define that Logic. An example
is shown in Figure 9• If the PDLs are

properly, coding of the modules should be greatly

sin_ptified, as all the Logic wilt have been thought
out ahead of time.

In addition to sin_)tifying the codirKJ process,

however, PDLs are also very helpful to a maintenance

programmer. By providing a textual description of

each ,xxlute, they ease the task of ureters,ending

both the individual modules and the system as a
_,_oL e.

PDLs for the IDGE system are being con_Leted in an

iterative fashion with the SOs. An initial set of

SCs is generated, which is then used to aid in the

initial preparation of the associated PDLs. As

these PDLs are written, they then cause a further

refinement of the SCs, and so on.

{

p.ouS_, - p_rfam p_us_ ¢_i_nd p_ss_n_

Figure 9. PDL for the pause command processing
module.

Generation of the IDGE implementation n_ciel in the

above-descril:_-_dmenner is expectodto take the full-

time effort of one software engineer for

al:_oroximatety two years• At the conclusion of that

period, s Software Design Document containing SCs,

ax)dkJte prologues, sad PDLs for the entire IDGE

flight system will be issued.

Development of this i_lementation _x_det is being

guided by information provided in Heilir Page-

Jones _ "_he Practical Guide to Structured Systems
Design."- This excellent text contains a

description of techniques which can be used in

making the transition from requirements definition

to design, as welt as a discussion of the qualities

that distinguish a _ett-designed system from a

poorly-designed one.

COOING

TDGE Coding Approach

The IDGE flight software, which will run on an IBN

PC-compatible STD bus coal)uter , is being coded in

Turbo Pascal. Code optimization, if required, wilt

be done in 8086 assembler, and the Turbo assent:let

provided with Turbo Pascal used for code assembly.

Coding is expected to take approximately nine

parson-months.

As the project is still in the design phase, no

flight code for the system has as yet been written.

Software to operate the IDGE engineering unit -

engineering code - has, however, been written, and

this was done directly from flight system I_)Ls.

ghite this code is thus based on the flight system

design, it was written by son_ other than the

system designer. This approach was used so as to

allow uork to continue on the flight software

design, while still providing the hardware team

with software to operate the experiment. 51hen the

actual flight code is written, the coding wiLL be

OF. POOR QUALITY

done by the system designer, as it improves

reLiabiLity to have the entire system deveLoped

from start to finish by • single individual;

however, for use in testing engineering hardware,

this alternate approach was tried ancl foLu_cl to be

quite beneficial. The software design work

continued uninterrupted and, at the same time, code

was written for the portion of the system already

designed - at the rate of approximately one module

(averaging approximately thirty Lines of code)

every two to three hours. Since Little debugging

was required, the software system was operational

in a relatively short period of time.

This alternative approach to software development

is currently increasing in popularity. However, to

be most successful, it is important that all three

components of the module model - structure charts,

module prologues, and POLs - be available to the

coder. If any one of these three items is missing,

the efficiency of the ceding process will be

diminished.

TESTING

As previously menti_, two types of testing will

be done on the IDGE project: unit testing and

integration testing.

Unit Testing

Unit testing of IDGE flight software modules will

be accomptishedusing test matrices. A test matrix

is a form on which all possible poths throcKjh a

unit's code are represented. It is generated by

taking every conclitional statement in a unit's PDL

- i.e., every statement for which the path through

the Logic will differ Ioasecl on existing conditions

- and Listing each distinct condition On the form.

The unit is then tested by setting up the initial

conditions so as to guarantee that each of these

paths is taken at Least once. As each loath thr_h

the code is successfully executed, the associated

item on the test matrix is checked off. When all

items have been checked, that unit has completed

unit testing and is ready to be integrated into the

system as a whole.

Integration Testing

Integration testing of the IDGE flight software

wilt begin with a functional test of the system

under nominal operating cocKfitions. Several

con_plete mission profiles will be run, during which

different types of display data will be monitored.

This display data will be used to verify that the

system functional requirements, as specified in the

Software Functional Requirements document, have

been properly implemented. In addition, data taken

and stored ¢_Jring experiment operation will be

checked following each run in order to confirm

proper operation.

Once the unit has been successfully tested under

nominal operating conditions, the system's built-
in fault tolerance features will be tested. This

will be done by deliberately introducing errors

(e.g., by disconnecting various components) and

then oloserving the system's response, as indicated

by the display data.

Testing of the IDGE flight software in this manner

would rmrmally be expected to require the full-

time effort of one software engineer for

approximately eighteen months, flight schedule

realities, however, may mean that testing will

instead need to be con_oleted in three to six

months. As a cormequence, it may be necessary to

increase the project staff during the Latter

portion of the development effort, in order to
accommodate this acceleratecl scheclule.

CONCLUDING REMARKS

The software development approach being used on the

IDGE project and described alcove was selected based

on the specific needs of the IDGE project. The

approach used is essentially that described by Ward

and Nettor in Reference 4, but tailored as

appropriate to the circumstances. Tailoring of the

approach is, however, not at all contrary to what

was intended by Ward ancl MeLlor, as they indicate

clearly in the following: "We must emphasize that

the m_deLs we have Laid out above do not constitute

a development methodology for a project. Each

project must tur_..6 or tailor, this general scheme
for its own use."

When future projects are choosing the approach most

appropriate to their needs, it is hope<d that the

IDGE experience, as descrilo_d in this paper, will

be of some assistance.

ACKNOWLEDGEMENTS

The authors would Like to thank Michelte Oriold for

her invaluable assistance in the preparation of

this document.

REFERENCES

I. M. E. Glicksman, E. A. Winsa, R. C. Hahn,

T. A. Lograsso, S. Tirmizi, and M. E. SeLleck,

"Dendritic SoLidification Under Microgravity

Conditions," AIAA 26th Aerospace Sciences

Meeting, RenD, NV, Jan. 1988.

2. E. Winsa, M. GLicksman, G. Kraft, D. Miller,

and R. Abramczyk, "FLight Hardware and Tele-

Operations Supporting the Isothermal Dendritic

Growth Experiment Aboard the Space Shuttle,"

AIAA 27th Aerospace Sciences Meeting, RenD, NV,

Jan. 1989.

3. Tom DeMarco, Structured Analysis and System

Specificatior), Prentice-Hall, EngLet_ooclCliffs,

1979.

4. Paul T. Ward and Stel_hen J. MelLor, Structured

Development for Real-Time Systems, 3 vols.,

Prentice-Halt, Engtewood CLiffs, 1985.

5. MeiLir Page-Jones, The Practical Guide to

Structured SysttHns Design, Yourdon Press, New

York, 1980.

6. Ward and Mellor, Structured Development for

Real-Time Systems, 1:39.

9

Report Documentation PageNalbonalAeronaullcsand
Space Adm_nrstralion

1. Report No. NASA TM-I02412 2. Government Accession No. 3. Recipient's Catalog No.

AIAA-90-0744

4. Title and Subtitle 5. Report Date

Flight Software Development for the Isothermal

Dendritic Growth Experiment

7. Author(s)

Laurie H. Levinson, Edward A. Winsa, and Martin E. Olicksman

9. Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546-0001

6. Performing Organization Code

8. Performing Organization Report No.

E-5170

10. Work Unit No.

694-23-03

11, Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Prepared for the 28th Aerospace Sciences Meeting sponsored by the American Institute of Aeronautics and

Astronautics, Reno, Nevada, January 8-11, 1990. Laurie H. Levinson and Edward A. Winsa, NASA Lewis

Research Center; Martin E. Glicksman, Rensselaer Polytechnic Institute, Troy, New York.

16. Abstract

The Isothermal Dendritic Growth Experiment (IDGE) is a microgravity materials science experiment scheduled to
fly in the cargo bay of the shuttle on the United States Microgravity Payload (USMP) carrier. The experiment

will be operated by real-time control software which will not only monitor and control onboard experiment

hardware, but will also communicate, via downlink data and uplink commands, with the Payload Operations

Control Center (POCC) at NASA George C. Marshall Space Flight Center (MSFC). The software development

approach being used to implement this system, which will be the focus of this paper, began with software
functional requirements specification. This was accomplished using the Yourdon/DeMarco methodology as

supplemented by the Ward/Mellor real-time extensions. The requirements specification in combination with

software prototyping was then used to generate a detailed design consisting of structure charts, module prologues,
and Program Design Language (PDL) specifications. This detailed design will next be used to code the software,

followedfinally by testing against the functional requirements. The result will be a modular real-time control

software_sysrem with traceability through every phase of the development process.

! 17. Key Words (Suggested by Author(s))

Computer systems design; Software development; Software engineering;

Real-time operation; Real-time control; Flight software; Process control;

In-flight monitoring: Computer techniques; Automatic control;

Embedded computer systems; Data flow analysis

18. Distribution Statement

Unclassified- Unlimited

Subject Category 62

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages

Unclassified Unclassified 10

NASA FORM 1626 OCT 86 *For sale by the National Technical Information Service, Springfield, Virginia 22161

22. Price"

A03

