
N90-14798
REUSE AT THE SOVFWARE PRODUCTIVITY CONSORTIUM

David M. Weiss

Software Productivity Consortium

The Software Productivity Consortium is sponsored by 14 aerospace companies as a

developer of software engineering methods and tools. Software muse and prototyping am
currently the major emphasis areas. The Methodology and Measurement Project in the

Software Technology Exploration Division has developed some concepts for reuse which

they intend to develop into a synthesis process. They have identified two approaches to
software reuse: opportunistic and systematic. The assumptions underlying the systematic

approach, phrased as hypotheses, are the following: the redevelopment hypothesis, i.e.,

software developers solve the same problems repeatedly; the oracle hypothesis, i.e., develop-

ers are able to predict variations from one redevelopment to others; and the organizational

hypothesis, i.e., software must be organized according to behavior and structure to take

advantage of the predictions that the developers make. The conceptual basis for reuse

includes: program families, information hiding, abstract interfaces, uses and information

hiding hierarchies, and process structure. The primary reusable software characteristics arc

black-box descriptions, structural descriptions, and composition and decomposition based

on program families. A good methodology has the following properties:

1. It answers the following key questions at any

point in the development process:
a. What should I do next?

b. What output do I produce?
c. What input and resources do I need to produce it?
d. How do I know when I'm done?

2. It is based on a clear set of principles

3. It leads to quantifiable improvements in productivity and quality

4. It is useful to engineers

5. It promotes Muse
6. It supports a sound business approach

Automated support can be provided for systematic reuse, and the Consortium is developing a

prototype reuse library and guidebook. The software synthesis process that the Consortium is
aiming toward includes modeling, refinement, prototyping, muse, assessment, and new con-

struction. A number of key issues were also discussed.

67

TOPICS

Concepts

- Systematic vs Opportunistic Reuse

- Assumptions Underlying Systematic Reuse

- Underlying Principles

Methodological Considerations

Automated Support

- Reusable Software Libraries

Current Consortium Practice

Direction

- Synthesis

ORGANIZING SOFTWARE FOR REUSE

Opportunistic Reuse - The Garage Sale Approach

- Many individual parts

- Search for part with desired behavior

-- Attributes + Behavioral Description

Systematic Reuse- Systems Approach

- Collections of related parts

- Search for system that meets requirements

-- Attributes + Behavioral Description + Relationships +
Classification

68

ASSUMPTIONS

Redevelopment Hypothesis

- Software developers solve same problems repeatedly

- Solutions are captured as systems

- Variations

-- Devices

-- Algorithms
-- Platforms

-- Functionality

Oracle Hypothesis

- Developer must be able to predict changes

Organizational Hypothesis

Organize according to behavior and structure

Expose structures that make changeable decisions
apparent

Identify common characteristics

69

DESIRABLE SOFTWARE CHARACTERISTICS

Black-box description

- Behavioral approach

• Structural Descriptions

• Composition and decomposition based on collections of parts

CONCEPTUAL BASIS

• Program Families
- Characterize commonalities first

• Inlormation Hiding

- Encapsulate changeable decisions

• Abstract Interfaces

- Behavioral descriptions of modules

• Uses Hierarchy

- Protect subsettability

- Explicit decisions about dependencies

• Information Hiding Hierarchy

- Roadmap for change

• Process Structure

- Performance assessment

- Reconfigurability

70

REUSABLE SOFTWARE CHARACTERISTICS

Black-Box Descriptions

- Behavioral approach, e.g., based on A-7 module

descriptions

Structural Descriptions

- Hierarchical views, based on information hiding and uses

hierarchies

Composition and Decomposition Based On Program

Families

- Families described structurally

Components of families described behaviorally

Many shared subfamilies

71

METHODOLOGICAL CONSIDERATIONS

DEFINITIONS

PROCESS

- Set of activities used to produce and maintain software

METHODOLOGY: Answers to the Questions:

- What do I do next?

- What input do I need to do it?

- What output do I produce.'?

- What resources do I need to produce it?

ATTRIBUTES OF A GOOD METHODOLOGY

72

Answers the key questions

- What do I do next?

- What input do I need to do it?

- What output do I produce?

- What resources do I need to produce it?

Based on a clear set of principles

- Information hiding, hierarchical structuring, etc.

Leads to improvements in productivity and quality

- Measurable

Useful to engineers

Promotes reuse

Supports sound business approach

Can be adopted incrementally

OBJECTS SUPPORTING SYSTEMATIC REUSE

• Requirements Specification

• Module Guide

• Abstract Interface Specification

• Allowed-to-Use Hierarchy

• Module Internal Documentation

• Uses Hierarchy

• Process Structure

• Potential Family Members

• Code

• Tests

Design

SOFTWARE EVOLUTION PROCESS

Developers maintain collections of program families

Requirements are identified using families that support:

- simulation, prototyping, modeling, other forms of analysis,

- production of specifications.

Given the requirements for a new system:

- the collections are searched for a family with a member that meets the

requirements,

- modules of the family are adapted and assembled to produce the new

member,

- if no such family exists, a new family is created (rare).

73

AUTOMATED SUPPORT FOR SYSTEMATIC REUSE

• Reuse Library

- Repository for collections of families

• Adaptation Analysis

- Tracing the effects of change

• Construction of specifications

- Editor, browser

- Design representation

• Adaptation Mechanism

- Parameterized module/subset generation

-- Generic, macros

• Modeling

- Performance analysis

• Composition

- System generation

REUSE LIBRARIES

Storage of Life Cycle Objects (LCOs) and their Descriptions

- Requirements

- Module Guide

- Module Interface Specification

- Code

Search Mechanisms

- By Attribute

-- Language, version, author, producing tool, etc.

- By LCO type

- By Relation

-- Hierarchy traversal (uses, information hiding,
composition, etc.)

- By Classification

Object descriptions

Population

74

CURRENT CONSORTIUM PRACTICE

• Guidebook

- Management and Technical Volumes

Reuse Library Prototype

75

Software Technology Exploration Guidebook

Volume 1: Management Guidebook

Table of Contents

August 26, 1988

[. The So['t_arc Technology Exploration Division

II STE {)rRanization and Strategic Plan for 1988

Ill. Cunsortium Configuration Management (No. 7{)0-1)

IV. Configuration Management Guidelines for STE

v Guidelines for Document Preparation and Distribution

VI.Guidelines for Writing Project Proposals

VII.Guidelines for Writing Project Reports

Vlll.Guidelines for Writing Risk Reports

IX. University Grant Programs

X. lli_ision Organization Chart

XI.Guidelines for Writing Project Activity Reports

May 27, 1988

May 26, 1988

May 24, 1988

May 30, 1988

May 26, 1988

May 26, 1988

May 26, 1988

August 18, 1988

May 27, 1988

September 1, 1988

August 15, 1988

Software Technology Exploration Guidebook

Volume 2: Technical Guidebook

Table of Contents

Avgust 31, 1988

Xll flow 1o Read This Guictebook

XIII. Principles and Concepts

XIV. Process and Products

XV. Verification of Work Products

XVI. Techniques

XVII. Measuring Process and Products

XVIII. Examples

NIX. Glossary

XX. Bibliography

August 31, 1988

July 19, 1988

August 31, 1988

July 19, 1988

August 31, 1988

July 18, 1988

August 31, 1988

June 29, 1988

July 1, 1988

76

DIRECTION

SYNTHESIS: A PROCESS THAT RELIES ON THE

PRODUCTION OF SOFTWARE FROM

MODELS SPECIFICALLY DESIGNED

FOR REUSE

RELATIONSHIPS AMONG MODELS

Executable Code

Other Work Products

77

ASPECTS OF SYNTHESIS

MODELLING

- APPLICATION

DESIGN

IMPLEMENTATION

• REFINEMENT

SUCCESSIVE APPROXIMATION OF PROBLEM

SUCCESSIVE APPROXIMATION OF SOLUTION

• PROTOTYPING

- REFINEMENT THROUGH ISSUE RESOLUTION

• REUSE

- STANDARDIZED ENGINEERING SOLUTIONS

- SOLUTIONS REPRESENTED IN TERMS OF REUSABLE PARTS

COMPOSITION OF NEW SYSTEMS FROM EXISTING, ADAPTED,

AND NEW PARTS

• ASSESSMENT

- QUANTIFICATION OF APPROXIMATION

• NEW CONSTRUCTION

78

STEPS IN THE SYNTHESIS PROCESS

• SPECIFY REQUIREMENTS

DIRECTLY, IN TERMS OF PRE-DEFINED DOMAIN

VOCABULARY

ANALOGOUSLY, IN TERMS OF DIFFERENCES BETWEEN NEW

NEEDS AND EXISTING SYSTEMS

• MAKE APPLICATION MODEL

- MODEL CONSTRUCTION

- MODEL ASSESSMENT

• blAKE DESIGN MODEL

- SELECTION OF CANONICAL DESIGN

- ADAPTATION OF CANONICAL DESIGN

- INVENTION OF NEW DESIGN

- ASSESSMENT OF DESIGN

• IMPLEMENT

COMPLETION OF NEW AND ADAPTED PARTS

COMPOSITION OF PARTS INTO PROTOTYPES/PRODUCTS

- VERIFICATION

79

SUPPORTING ELEMENTS

• REPOSITORIES

- REUSE LIBRARY

- PROJECT LIBRARY

• R EPRESENTATION TECHNOLOGY

- USER INTERFACE

- SPECIFICATIONS FOR MODELS, DESIGNS, CODE PRODUCTION

• METHODOLOGY

- PROCESS MODEL

- NATURE OF PARTS AND RELATIONS

- MANAGEMENT OF PROCESS

• ARCHITECTURE OF TOOLSETS

- TOOLSET INTEGRATION

80

KEY ISSUES

• HOW TO DO DOMAIN ANALYSIS

- SYSTEMATIC APPROACH

- APPLICATION MODELLING

- RE-ENGINEERING

NOTATIONS AND MECHANISMS FOR MAPPING FROM

APPLICATION MODEL TO SOFTWARE DESIGN

- WHAT NOTATIONS?

- HOW MANY INTERMEDIATE LEVELS?

• HOW TO REPRESENT DESIGNS: PARTS AND THEIR RELATIONS

- WHAT NOTATIONS?

STORAGE, RETRIEVAL, AND SEARCH

RE-ENGINEERING

• HOW TO ADAPT, COMPOSE, AND VERIFY PARTS

- DESIGN PARTS

- CODE PARTS

81

KEYISSUES(CONO

, HOW TO ASSESS DESIGNS AND CODE

- PERFORMANCE

- FUNCTION

- DEPENDABILITY

• HOW TO PRODUCE CODE

- PROTOTYPE

- PRODUCTION

• HOW SHOULD THE ENGINEERS INTERACT IN THE PROCESS?

- INTERFACE

- PROCESSING STEPS

- UNDERSTANDING OF CONTEXT

• HOW SHOULD THE PROCESS BE MANAGED?

• HOW SHOULD THE EFFECTIVENESS BE MEASURED?

- CURRENT STATE

- GUIDE TO IMPROVEMENT

82

PROJECTS

METHODOLOGY, MEASUREMENT, AND MANAGEMENT

DESIGN REPRESENTATION, MAPPING FROM APPLICATION

MODELS, AND COMPOSITION

• DOMAIN ANALYSIS

• REPOSITORIES

• ASSESSMENT

• VERIFICATION

• ADAPTATION

• INTERACTION WITH THE ENGINEERS

PROGRAM FAMILIES

HARDWARE ANALOGIES -- THE IBM 360, DEC PDP-11

• Families of computers

- Same instruction set architecture

(Behavioral description)

- Different implementations

- Same operating system

(Different versions)

• Program family: A set of programs is a program family if

the programs have so much in common that it pays to study

their common characteristics before investigating the special

properties of individual programs.
83

EXAMPLE FAMILY CLASSIFICATION

Tool Families

Process Support

Describing

Composing & Decomposing

Assessing

Retaining

Technology

Data Storage & Retrieval

User Interface

Data Transformation

Configuration

Application Families

Avionics

A-6

A-7

727

737

Communications

Control Systems

Speech Processing

A-7 NAVIGATION FAMILY

Airborne Full ',

alignment navigation

Doppler-
damped
inertial

velocity

1

Doppler
interface

1

.................................... _, 7"'-''

i"
t

Partial /
/

navigation /
/

• /

• /

• /
/

• g'
• /

• ,¢

• /

/,
/

/

/ •
/ "

/ Inertial ",
/

/ platform
/ interface "

J

¢

SINS alignment

SINS
interface

I

84

INFORMATION HIDING

• Module:

• Interface:

• Abstract Interface:

A decision thai is likely to change should be encapsulated in a module

- Changeable decision is the secret

-- data structures

-- algorithms

-- device characteristics

- Basis for Ada packages

An information hiding module is a work assignment

An information hiding module is a black-box

An information hiding module is a set of programs and shared data

An information hiding module is a finite state machine

An interface between two modules is the set of assumptions that the

programmer of one module may make about the other module

An interface that represents many possible actual interfaces

HIERARCHIES AND STRUCTURE

Module Hierarchy

Parts: Modules

Relation: Subsecret

Uses Hierarchy

Parts: Programs

Relation: Uses

Process Structure

Parts: Processes

Relation: Awaits

B is a submodule of A if B's

secret is a subsecret of A's secret

A uses B if A requires the presence of B

A awaits B if A cannot progress until B

progresses

85

A-7 MODULE STRUCTURE

HARDWARE-HIDING MODULE DECOMPOSITION"
EXTENDED COMPUTER MODULE

DEVICE INTERFACE MODULE

BEHAVIOR-HIDING MODULE DECOMPOSITION
FUNCTION DRIVER MODULE
SHARED SERVICES MODULE

SOFTWARE DESIGN MODULE DECOMPOSITION
APPLICATION DATA TYPE MODULE

PHYSICAL MODEL MODULE
DATA BANKER MODULE

SYSTEM GENERATION MODULE m

SOFTWARE UTILITY MODULE--

EXTENDED COMPUTER MODULE
DATA TYPE MODULE
DATA STRUCTURE MODULE
INPUT/OUTPUT MODULE
COMPUTER STATE MODULE
PARALLELISM CONTROL MODULE
SEQUENCE CONTROL MODULE
DIAGNOSTICS MODULE

VIRTUAL MEMORY MODULE (HIDDEN)
INTERRUPT HANDLER MODULE (HIDDEN)

_DEVICE INTERFACE MODULES
AIR DATA COMPUTER
ANGLE OF ATTACK SENSOR
AUDIBLE SIGNAL DEVICE
COMPUTER FAIL DEVICE
DOPPLER RADAR SET
FLIGHT INFORMATION DISPLAYS
FORWARD LOOKING RADAR
HEAD-UP DISPLAY
INERTIAL MEASUREMENT SET
PANEL

PROJECTED MAP DISPLAY SET
RADAR ALITIMETER
SINS
SLEW CONTROL
SWITCH BANK
TACAN
VISUAL INDICATORS
WAYPOINT INFORMATION SYSTEM
WEAPON CHARACTERISTICS
WEAPON RELEASE SYSTEM
WEIGHT ON GEAR

r FUNCTION DRIVER MODULE
AIR DATA COMPUTER FUNCTIONS
AUDIBLE SIGNAL FUNCTIONS
COMPUTER RADAR FUNCTIONS
DOPPLER RADAR FUNCTIONS
FLIGHT INFORMATION DISPLAY FUNCTIONS
FORWARD LOOKING RADAR FUNCTIONS

HEAD-UP DISPLAY FUNCTIONS
INERTIAL MEASUREMENT SET FUNCTIONS
PANEL FUNCTIONS

PROJECTED MAP DISPLAY SET FUNCTIONS
SINS FUNCTIONS
VlSUAL INDICATOR FUNCTIONS
WEAPON RELEASE FUNCTIONS
GROUND TEST FUNCTIONS

--SHARED SERVICES MODULE
MODE DETERMINATION MODULE
STAGE DIRECTOR MODULE
SHARED SUBROUTINE MODULE
SYSTEM VALUE MODULE
PANEL I/O SUPPORT MODULE
DIAGNOSTIC I/O SUPPORT MODULE
EVENT TAILORING MODULE

APPLICATION DATA TYPE MODULE
SYSTEM APPLICATION DATA TYPES
LOCAL APPLICATION DATA TYPES
SHARED APPLICATION DATA TYPES

PHYSICAL MODEL MODULE
EARTH MODEL MODULE
AlRCRAFT MOTION MODULE

86

CHARACTERIZING FAMILIES

• By structure

- module hierarchy, uses hierarchy, process structure

• By function

- navigation, device control

• By application

- avionics, satellite communications

• By technology

- relational database, Monte Carlo simulation

• By ???

Families composed of modules

Modules characterized by externally-visible behavior

- Black-boxes

- Abstract interfaces specify behavior

87

SUMMARY

• Systematic Reuse Based on Families

• Concepts

- Program Families (1976)

- Information hiding (1970)

- Abstraction

- Behavioral specification (1972)

- Hierarchies

• Examples

- A-7 (1980)

• Relations to other technology

- Ada

- Object oriented programming

- Object oriented design

88

