JPL Publication 89-37

.

JAL 111-171-5R 260654 188.

Neptune's Triton: A Moon Rich in Dry Ice and Carbon?

A. J. R. Prentice **Monash University** Victoria, Australia

August 15, 1989

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

CSCL 033

N90-15575

(MARA-CP-186293) NEPTUNE'S TRITUME A MOON RICH IN UPY ICE AND CARDUM

63/91

unclas 0260654

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 89-37	2. Government Accession No.	3. R	ecipient's Catalog No	•	
4. Title and Subtitle		5. R	eport Date	15 1090	
Neptune's Triton: A Moon Rich in Dry Ice		6. Pe	August erforming Organization	15, 1989 Code	
				Durant Mar	
7. Author(s) A.J.R. Prentice		8. Pe	erforming Organization	Keport No.	
9. Performing Organization Name and Address		10. W	10. Work Unit No.		
JET PROPULSION LABORATORY California Institute of Technology		11. C	11. Contract or Grant No. NAS7-918		
4800 Oak Grove Drive Pasadena, California 91109		13. T	13. Type of Report and Period Covered		
12 Security Agency Name and Address					
NATIONAL AFRONAUTICS AND	SPACE ADMINISTRATION		· • • • • • • •		
Washington, D.C. 20546		14. S BI	14. Sponsoring Agency Code BP-889-59-06-53-11		
15. Supplementary Notes					
16. Abstract			and its large cat	ollita	
The encounter of the sp Triton in August 1989 w and chemical compositio publication, we quantif like Pluto and Charon, the gas ring that was s orbit. Ideas of supers gas pressure, temperatu within the protosolar c The calculations lead t body consists of, by ma 29% methanated water ic consistent with that of density for Triton of 2	accerate Voyager 2 with A ill provide a crucial tes n of the outer solar syst y the possibility that Tr originally condensed as a hed by the contracting pr onic convective turbulence re and rat of catalytic s loud, assuming that all (o a unique composition for ss, 18 1/2% solid CO ₂ ice e and 48% of anhydrous re the Pluto-Charon system .20 \ddagger 0.05 g/cm ³ , for sat	t of ic iem. In iton is najor otosola e are u synthes: is in: or Trito e, 4% g: ock. Th and yic cellite	deas regarding the h this pre-encount s a captured moon planetesimal with ar cloud at Neptur used to compute th is of CH_4 , CO_2 and itially present as on, Pluto, Charon raphite, $1/2\%$ CH_4 is mix has a densi- elds a predicted r radius equal to $1/2\%$	which, in he's c(s) c(s) c(s) co. each ice, ity mean l,750 km.	
		ton Ch-4	ement		
17. Key Words (Selected by Author(s			emen.		
Space Sciences (General Astronomy Voyager Project	.)				
19. Security Classif. (of this report)	20. Security Classif. (of thi	s page)	21. No. of Pages	22. Price	
Unclassified	Unclassified		11		

JPL Publication 89-37

Neptune's Triton: A Moon Rich in Dry Ice and Carbon?

A. J. R. Prentice Monash University Victoria, Australia

August 15, 1989

Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California This publication was prepared by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

ABSTRACT

The encounter of the spacecraft Voyager 2 with Neptune and its large satellite Triton in August 1989 will provide a crucial test of ideas regarding the origin and chemical composition of the outer solar system. In this pre-encounter publication we quantify the possibility that Triton is a captured moon which, like Pluto and Charon, originally condensed as a major planetesimal within the gas ring that was shed by the contracting protosolar cloud at Neptune's orbit. Ideas of supersonic convective turbulence are used to compute the gas pressure, temperature and rate of catalytic synthesis of CH₄, CO₂ and C(s) within the protosolar cloud, assuming that all C is initially present as CO. The calculations lead to a unique composition for Triton, Pluto, and Charon: each body consists of, by mass, $18\frac{1}{2}\%$ solid CO₂ ice, 4% graphite, $\frac{1}{2}\%$ CH₄ ice, 29% methanated water ice and 48% of anhydrous rock. This mix has a density consistent with that of the Pluto–Charon system and yields a predicted mean density for Triton of 2.20 ± 0.05 g/cm³, for satellite radius equal to 1,750 km.

FOREWORD

This report was written at the Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia. It was originally submitted for publication to *Nature* (London) on July 10, 1989 [designated manuscript no. P07117].

CONTENTS

DISCUSSION	1
REFERENCES	9
TABLE 1. Structural Properties of CO2-rich Model Satellites	8
 FIGURE 1. Relative Number Fractions of CH₄, CO, CO₂, and C(s) in the Outer Layers of the Protosolar Cloud 	11

.

7

U

The encounter of the spacecraft Voyager 2 with Neptune and its large satellite Triton in August 1989 will provide a crucial test of ideas regarding the origin and chemical composition of the outer solar system. In this report we quantify the possibility^{1,2} that Triton is a captured moon which, like Pluto and Charon, originally condensed as a major planetesimal within the gas ring that was shed by the contracting protosolar cloud at Neptune's orbit³⁻⁵. Ideas of supersonic convective turbulence are used to compute the gas pressure, temperature and rate of catalytic synthesis of CH_4 , CO_2 and C(s) within the protosolar cloud, assuming that all C is initially present as CO. The calculations lead to a unique composition for Triton, Pluto, and Charon: each body consists of, by mass, $18\frac{19}{2}$ solid CO_2 ice, 4% graphite, $\frac{1}{2}$ ° CH_4 ice, 29% methanated water ice and 48% of anhydrous rock. This mix has a density consistent with that of the Pluto–Charon system and yields a predicted mean density for Triton of 2.20 ± 0.05 g/cm³.

The greatest clue to Triton's origin lies in its orbit about Neptune: the orbital plane is inclined ~ 159° relative to Neptune's equator, meaning that Triton actually moves in a retrograde sense about the planet. Such an irregularity argues against Triton being a naturally formed moon of Neptune (N) like the regular satellite systems of Jupiter (J), Saturn (S) and Uranus (U)⁶⁻⁸: all of these latter systems orbit the parent body in a prograde sense. Instead, it seems dynamically more likely¹ that Triton was captured from a solar orbit after having first condensed as a major planetesimal within the protosolar cloud. We shall not pursue the capture process in more detail here, beyond pointing out that gas drag within Neptune's primitive envelope of mass ~ 1 M_{\oplus} (Earth mass) no doubt played a major role in securing this event⁹. Triton's current orbital radius ~ 14.2 R_N (R_N = Neptune's equatorial radius) lies well inside the initial radius ~ 25 R_N expected for the proto-planetary envelope, judging from the radial extent of the other regular satellite systems.

Consider now in detail the processes which led to Triton's condensation within the protosolar cloud. Many of the basic physical and chemical features of the planetary system and regular satellite systems can be accounted for if there had existed a large, radial, turbulent kinetic stress $\langle \rho_t v_t^2 \rangle$ within each of the proto-solar/planetary clouds which

formed these systems^{3,5,7,8}. In the simplest representation, $\langle \rho_t v_t^2 \rangle = \beta \rho GM(r)/r$ where ρ is the local gas density, M(r) the total mass interior to radius r, G the gravitation constant, and $\beta = 0.107$ is the turbulence parameter^{10,11}. The total radial stress at any point in the cloud is then

$$\mathbf{p}_{\text{tot}} = \mathbf{p}_{\text{gas}} + \langle \rho_t \mathbf{v}_t^2 \rangle,$$

where $p_{gas} = \rho \Re T/\mu$ is the usual gas pressure, T the temperature, μ the molecular weight, and \Re is the gas constant. Typically, $\langle \rho_t v_t^2 \rangle \sim 30 p_{gas}$ near the outskirts of the cloud, meaning that the convective motions are strongly supersonic there. The inclusion of turbulent stress has two very important consequences. First, on the physical side, it causes a rotating and gravitationally contracting cloud to rid its excess spin angular momentum by shedding a discrete family of orbiting gas rings. The orbital radii R_n (n = 1,2,3,...) of these gas rings, of nearly equal mass m, are related to the mass M_{cl} and moment-of-inertia coefficient f (~ 0.01) of the parent cloud by the equations

$$R_n/R_{n+1} = [1 + m/M_{cl}f]^2.$$
(1)

If the contraction takes place homologously, meaning that both m/M_{cl} and f are constant, then the radii R_n form a geometric sequence, similar to that of the observed planet/satellite orbital radii.

Second, because the gas pressure in the outer layers of the turbulent cloud $(\beta = 0.107)$ is very much less than that in conventional non-turbulent models, carbon chemistry is shifted into a region where the formation of CO₂ and solid carbon C(s) becomes possible. At low temperatures, the carbon activity $a_{\rm C}$ is controlled by the reaction CH₄ \rightleftharpoons 2H₂ + C(s). We have

$$a_{\rm C} = [p_{\rm CH_4}/p_{\rm H_2}^2]K_1({\rm T}),$$
 (2)

where the p_i 's denote partial pressures and $K_1(T)$ is the equilibrium constant¹². For a fixed ratio of CH₄ to H₂, a_C varies as $1/p_{H_2}$. In a gas of solar composition¹³, graphite can form $(a_C \ge 1)$ only if T ≤ 473 K and $p_{H_2} \le 4 \times 10^{-8}$ bar. At 470 K, a_C for the conventional solar adiabat¹² is 5×10^{-4} , since $p_{H_2} \sim 2 \times 10^{-4}$ bar is so large. That is, graphite formation is impossible here.

Within a turbulent cloud of solar composition whose equatorial radius matches that of Neptune's orbit, $a_C (470 \text{ K}) = 0.82$, when $p_{H_2} = 7.0 \times 10^{-8}$ bar. Graphite formation is thus almost possible. For such a cloud, however, having heavy element abundance $Z = Z_{\odot}$, the total mass of rock and ice condensate within the gas rings shed at the orbits of J, S, U, and N are 9.5, 7.1, 5.2, and 3.8 M_{\oplus} , respectively. If the condensate in each ring were to aggregate into a single planetary core, the masses of the cores would fall short of the values measured by Pioneer 11 (ref. 14), or deduced from planetary interior models¹⁵, by factors of 2.1, 2.6, 2.5, and 4.2, respectively. The same problem occurs in the Galilean system of satellites, where eqn. (1) yields a mass for Io of 3.4×10^{25} g. This falls short of the observed mass¹⁶ by a factor of 2.6. To remedy this deficiency, which is probably due to the simplified treatment of supersonic turbulent stress, it was decided to increase Z by a factor of 2.5. Under these circumstances $a_C > 1$ for all cloud equatorial radii $R_e \gtrsim 3,300 R_{\odot}$, provided thermodynamic equilibrium is achieved.

Consider now the rate of production of CH_4 , C(s) and CO_2 in a cloud which is initially composed of CO. The controlling reaction is $CO + 3H_2 \Longrightarrow CH_4 + H_2O$. For simplicity, we assume a linear equation similar to the Temkin–Pyzhev rate equation for iron–catalysed NH₃ synthesis^{17,18}:

$$dp_{CH_4}/dt = k_2 \left[p_{CO} - p_{CH_4} p_{H_2O} / p_{H_2}^3 K_2(T) \right].$$

Here k_2 , K_2 are the rate and equilibrium constants. Collision theory¹⁹ yields

$$k_{2} = \frac{3\rho X_{Fe,f}}{\rho_{Fe} a_{Fe}} \left[\frac{\Re T}{2\pi\mu_{CO}}\right]^{1/2} \left[1 + \frac{E}{\Re T}\right] \exp\left[-\frac{E}{\Re T}\right], \qquad (3)$$

where $X_{Fe,f} = 0.487 X_{Fe}$ is the mass fraction of free metallic iron (allowing for FeS formation), $\rho_{Fe} = 7.875 \text{ g/cm}^3$, a_{Fe} is the iron grain radius, and $E_a = 21.3 \text{ kcal/mole}$ is the activation energy²⁰. Although earlier calculations^{21,22} assume that $a_{Fe} = 10^{-2} \text{ cm} - \text{a}$ mean derived from studies of chondritic meteorites²³ – we feel that a much smaller value

is likely to apply to the hot convective interior of the protosolar cloud. Unless $a_{Fe} \lesssim 10^{-5}$ cm, the rate of CH₄ production is negligible and, if $a_{Fe} \gtrsim 2 \times 10^{-6}$ cm, we cannot account for any free CH₄ ice on Pluto's surface²⁴ because H₂O enclathrates all the available CH₄. We therefore adopt $a_{Fe} = 10^{-6}$ cm.

Eqn. (3) can be integrated once the radial velocity $v_e = dR_e/dt$ and initial radius R_0 of the cloud are specified. Now for $R_e \leq R_* \simeq 426 R_0$, the cloud's gravitational energy $\mathscr{E}_{grav} \simeq 3.3 \text{ GM}_{cl}^2/R_e$ exceeds the total energy \mathscr{E}_{eqm} needed to establish a complete hydrostatic and thermodynamic equilibrium. Radial contraction is governed by the rate at which the excess energy $\Delta \mathscr{E} = \mathscr{E}_{grav} - \mathscr{E}_{eqm}$ can be radiated from the surface. Very roughly, $d(\Delta \mathscr{E})/dt \simeq - (GM_{cl}^2/R_e^2)v_e = \mathscr{L}$ where $\mathscr{L} = 2.82\pi\sigma_s R_e^2 T_{eff}^4$ is the luminosity¹¹, and $T_{eff} \simeq 361 (R_*/R_e)^{0.9} K$ is the effective surface temperature. We obtain

$$v_e \simeq 0.0103 \ [R_e/R_*]^{0.4} \ R_{\odot}/yr$$
 (4)

We assume that eqn. (4) is also valid for $R_e \ge R_*$, noting that the formation of a small compact core at the centre can release sufficient energy to stabilize the rest of the cloud³.

Fig. 1 shows the run of methane number fraction f_{CH_4} for a cloud whose initial radius is $R_0 = 7946 R_{\odot}$. This radius was chosen so that the composition of the condensate in the gas ring shed at Neptune's orbit has a compressed density consistent with the observed mean density of the Pluto-Charon system (see below). Choosing $R_0 > 7946 R_{\odot}$ yields a condensate which has too much CH_4 ice and too low a density. Now f_{CH_4} is taken to equal the maximum CH_4 fraction within the cloud of given size R_e . At the cloud surface, where T is least, the rate of production of CH_4 is negligible. In the deep interior, where the rate is large, the thermodynamically favoured state for C is CO. That is, there is a unique depth and temperature T_{max} where f_{CH_4} is a maximum. The values of T_{max} for cloud sizes R_e which match the orbits of J, S, U, and N are 458, 465, 470 and 484 K, respectively. We assume that convective mixing homogenizes the outer layers of the cloud, yielding a uniform composition having mean CH_4 fraction $\overline{T}_{CH_4} = f_{CH_4}$, max. Almost certainly, some CH_4 will be destroyed through downward mixing into regions where CO is

dominant. That is, f_{CH_4} is probably less than f_{CH_4} , max. A more comprehensive study of the effect of mixing on the CH_4 level is outside the scope of this report.

The rate of production of solid carbon C(s) is assumed to be proportional to that of CH_4 . This leads to $f_{C(s)} = f_{CH_4} [f_{C(s)}/f_{CH_4}]_{eqm}$, where $f_{C(s),eqm}, f_{CH_4,eqm}$ denote the corresponding equilibrium fractions of C(s) and CH_4 at temperature T_{max} . Lastly, the ratio f_{CO_2}/f_{CO} is assumed to equal its equilibrium ratio. This is valid owing to the fairly rapid rate of the gas phase reaction $CO + H_2O \rightleftharpoons CO_2 + H_2$ (ref. 25).

At the orbit of Neptune $f_{CH_4} = 0.153$, $f_{C(s)} = 0.111$ and $f_{CO_2} = 0.143$. These fractions enable us to calculate the abundances of anhydrous rock (MgSiO₃,Fe₃O₄,FeS,Al₂O₃,...), H₂O, etc., in the Neptunian gas ring, noting that O, which is normally tied up as H_2O in a CH_4 -rich atmosphere, or between H_2O and CO in a $CO-rich atmosphere^{21,26}$, is now to be first apportioned to CO and CO_2 . Assuming the Anders and Ebihara heavy element abundances¹³, multiplied by the factor 2.5, the percentage masses of rock, H_2O , CH_4 , CO_2 and C(s) are 1.321, 0.677, 0.201, 0.507 and 0.109%, respectively. All of these materials, except CH₄, fully condense from the gas phase, since the gas ring temperature $T_{N} = 27.4 \text{ K}$ is so low. Of the CH_4 , 52.2% is encaged by H_2O ice, to form $CH_4 \bullet 5.75 H_2O$, whilst only a modest 6.3% can condense out as solid CH_4 ice since the condensation temperature only just exceeds T_N (by 0.1 K!).

The mass fractions of the condensate at Neptune's orbit are thus: rock 0.4835, H_2O_2 ice 0.2478, clathrated CH_4 0.0384, CH_4 ice 0.0046, CO_2 ice 0.1857 and graphite 0.0400. This is the predicted bulk composition of Pluto, Charon, and Triton, assuming that all 3 objects condensed from the Neptunian gas ring. No NH₃ ice is present since the rate of NH₃ synthesis in the protosolar cloud is negligible. That is, all nitrogen exists as N₂. Since no room remains for the incorporation of CO, N₂ and Ar in the H₂O ice, after the energetically favoured²⁷ enclathration of CH₄ has taken place, the satellites should contain very little trace of these species. That is, the atmosphere of Triton should consist mostly of CH₄.

Structural and evolutionary models may now be constructed to estimate the satellite mean densities $\overline{\rho}_{sat}$. These calculations are described only briefly here. First, a set of cold chemically homogeneous models for Charon and Pluto were constructed having radii of 596 and 1142 km, equal to the observed values²⁸. The assumed uniform temperature is $T_s = 45$ K (ref. 29). The values $\overline{\rho}_{Ch} = 1.9984$, $\overline{\rho}_{Pl} = 2.0744$ g/cm³ so obtained have a mass-weighted average of 2.0649 g/cm^3 , which coincides with the observed system mean $\bar{\rho}_{\rm sys} = 2.065 \pm 0.047 \, {\rm g/cm^3}$. This justifies the choice $R_0 = 7946 \, {\rm R}_{\odot}$, mentioned earlier. Next, the cold satellite models were allowed to warm up under the influence of radiogenic heating and thermally evolved for a period of 4,600 Myr. This yielded a present-day temperature profile whose central temperature T_0 , along with the central pressure P_0 , is shown in Table 1. The corresponding values $\bar{\rho}_{sat}$ are also shown. The densities are only slightly less than those of the cold, isothermal models. By choosing a slightly smaller initial cloud radius $R_0 \simeq 7890 R_{\odot}$, one could achieve a slightly less icy, mean densities An estimate of the correct denser, model. hence and $\bar{\rho}_{\rm corr} = \bar{\rho}_{\rm sat} + 0.0066$ g/cm, whose system average coincides with the observed value, is shown in the last column. It should be mentioned that the model of Pluto reported here is cooler than that of McKinnon and Mueller². This is partly due to a lower rock fraction (0.48 vs 0.73), which reduces chondritic heating, and partly because of a higher thermal conductivity, brought about mostly by the presence of graphite³⁰.

The final 3 rows of Table 1 list the computed properties of 3 different-sized models of Triton. The radii span the observed range $r_{Tr} = 1,750 \pm 250 \text{ km}^{31}$. The surface temperature is 57 K (ref. 32). Triton is so large that, in the absence of internal convection, T_0 rises to 670 K after 2,800 Myr and equals 581 K at present age. That is, wide-spread melting of ice and internal differentiation of rock and ices would ensue, resulting in a substantial drop in mean density (from 2.2 to 1.8 g/cm^3). We suggest here that the presence of CO₂ ice prevents this outcome. CO₂ ice is a weakly bonded crystal whose isothermal compressibility³³ χ_{CO_2} at 150 K is some $2\frac{1}{2}$ times that of H_2O ice, for the pressures applicable to Triton's interior. The ratio χ_{CO_2}/χ_{H_2O} increases with T. We therefore suggest, following Lupo and Lewis' argument for weak CH₄ ice³⁴, that solid-state

convection quickly wipes out any steep conductive temperature gradients inside Triton and, thereafter, controls the thermal evolution. To model this phenomenon we assume³⁵ that creep sets in as soon as T rises to 0.6 of the CO₂ melting temperature T_m (ref. 36).

On this basis, Triton has a central convective core covering ~ 65% of its mass. The temperature T_0 , T_{core} at the centre and core edge are given in the Table, along with $\bar{\rho}_{sat}$ and the corrected value $\bar{\rho}_{corr}$. From these results we make the prediction that, if Voyager 2 finds Triton's true radius to be 1,750 + Δr km, the observed mean density $\bar{\rho}_{Tr}$ will satisfy the equation

$$\bar{\rho}_{\rm Tr} = 2.20 + 3.00 \times 10^{-4} (\Delta r) + 2.0 \times 10^{-7} (\Delta r)^2 \pm 0.05 \text{ g/cm}^3.$$

The author thanks J.D. Anderson, J.R. Anderson, A.F. Moody and G.K. White for valuable discussions, and Telecom (Australia) for financial support.

Table 1 Structural properties of CO2-rich model satellites								
r _{sat}	P ₀	T ₀	T _{core}	m _{core} /m _{sat}	$\bar{\rho}_{\mathrm{sat}}$	$\bar{\rho}_{\rm corr}$		
(km)	(kbar)	(K)	(K)		(g/cm^3)	(g/cm^3)		
596	2.05	61	_	0.	1.993	1.999		
1142	8.05	132	-	0.	2.068	2.074		
1500	15.5	239	181	0.494	2.133	2.140		
1750	23.0	271	180	0.649	2.196	2.203		
2000	33.6	308	181	0.739	2.284	2.290		

References

- 1. McKinnon, W.B. Nature 311, 355-358 (1984).
- 2. McKinnon, W.B. & Mueller, S. Nature 335, 240-243 (1988).
- 3. Prentice, A.J.R. in *The Origin of the Solar System* (ed. Dermott, S.F.) 111-162 (Wiley, London, 1978).
- 4. Prentice, A.J.R. JPL Publication 81-79 (Jet Propulsion Laboratory, Pasadena, 1981).
- 5. Prentice, A.J.R. Proc. astr. Soc. Australia 6, 394-402 (1986).
- 6. Prentice, A.J.R. Proc. astr. Soc. Australia 3, 172-173 (1977).
- 7. Prentice, A.J.R. & ter Haar, D. Nature 280, 300-302 (1979).
- 8. Prentice, A.J.R. & ter Haar, D. Moon Planets 21, 43-61 (1979).
- 9. Pollack, J.B., Burns, J.A. & Tauber, M.E. Icarus 37, 587-611 (1979).
- 10. Prentice, A.J.R. Astr. Astrophys. 27, 237–248 (1973).
- 11. Prentice, A.J.R. Moon Planets 19, 341-398 (1978).
- 12. Lewis, J.S., Barshay, S.S. & Noyes, B. Icarus 37, 190-206 (1979).
- 13. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2363-2380 (1982).
- 14. Hubbard, W.B., MacFarlane, J.J., Anderson, J.D., Null, G.W. & Biller, E.D. J. geophys. Res. 85, 5909-5916 (1980).
- 15. Hubbard, W.B., & MacFarlane, J.J. J. geophys. Res. 85, 225-234 (1980).
- 16. Null, G.W. Astr. J. 81, 1153–1161 (1976).
- 17. Temkin, M. & Pyzhev, V. Acta physicochim. U.R.S.S. 12, 327-356 (1940).
- 18. Norris, R.P. Earth plan. sci. Letts. 47, 43-50 (1980).
- 19. Moore, W.J. Physical Chemistry, 5th Edn. (Longman, London, 1972).
- 20. Vannice, M.A. J. Catalysis 37, 449-461 (1975).
- 21. Lewis, J.S. & Prinn, R.G. Astrophys. J. 238, 357-364 (1980).
- 22. Prinn, R.G. & Fegley, B. Astrophys. J. 249, 308-317 (1981).
- 23. Urey, H.C. & Mayeda, T. Geochim. cosmochim. Acta 17, 113-124 (1959).
- 24. Cruikshank, D.P. & Silvaggio, P.M. Icarus 41, 96-102 (1980).

- 25. Prinn, R.G. & Fegley, B. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S.K., Pollack, J.B. & Matthews, M.S.) (University of Arizona Press, Tucson, in the press).
- 26. Stevenson, D.J. in Uranus and Neptune (ed. Bergstralh, J.T.) 405-423 (NASA, Washington, 1984).
- 27. Lunine, J.I. & Stevenson, D.J. Astrophys. J. Suppl. Ser. 58, 493-531 (1985).
- 28. Tholen, D.J. & Buie, M.W. Astr. J. 96, 1977–1982 (1988).
- 29. Trafton, L., Stern, S.A. & Gladstone, G.R. Icarus 74, 108-120 (1988).
- Anderson, J.D., Campbell, J.K., Jacobson, R.A., Sweetnam, D.N., Taylor, A.H., Prentice, A.J.R. & Tyler, G.L. J. geophys. Res. 92, 14,877-14,883 (1987).
- 31. Lebofsky, L.A., Rieke, G.H. & Lebofsky, M.J. Bull. Am. astr. Soc. 14, 766 (1982).
- 32. Cruikshank, D.L., Brown, R.H. & Clark, R.N. Icarus, 58, 293-305 (1984).
- 33. Manzhelii, V.G., Tolkachev, A.M. Bagatskii, M.I. & Voitovich, E.I. *Phys. stat. sol.*(b), 44, 39-49 (1971).
- 34. Lupo. M.J. & Lewis, J.S. Icarus 42, 29-34 (1980).
- 35. Ellsworth, K. & Schubert, G. Icarus 54, 490-510 (1983).
- 36. Bridgman, P.W. Phys. Rev. 2nd Ser. 3, 153-203 (1914).

Figure 1. Relative number fractions f, in terms of total carbon, of CH_4 , CO, CO_2 and C(s), in the outer layers of the turbulent protosolar cloud, plotted against cloud radius R_e , measured in units of R_{\odot} . C(s) means graphite. R_0 is the initial cloud radius, β the turbulence parameter^{5,10}, Z the total heavy element fraction, and a_{Fe} is the mean radius of the iron grains used in the calculation of the rate of catalytic production of CH_4 from the initial reservoir of CO.

. .

٠ ,