
The Use of Efficient Broadcast
Protocols in Asynchronous

Distributed Systems

Frank Bernhard Schmuck
Ph.0. Thesis

/ / A a

//” --, - z J5138 8
.2 /’

/ ; I L L :

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

THE USE OF EFFICIENT BROADCAST

PROTOCOLS IN ASYNCHRONOUS DISTRIBLITED

SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
F'rank Bernhard Schmuck

August 1988

The Use of Efficient Broadcast Protocols in Asynchronous Distributed Systems

h a n k Bernhard Schmuck, Ph.D.

Cornell University 1988

Reliable broadcast protocols are important tools in distributed and fault-tolerant

programming. They are useful for sharing information and for maintaining repli-

cated data in a distributed system. However, a wide range of such protocols has

been proposed. These protocols M e r in their fault tolerance and delivery ordering

characteristics. There is a tradeoff between the cost of a broadcast protocol and

how much ordering it provides. It is, therefore, desirable to employ protocols that

support only a low degree of ordering whenever possible. This dissertation presents

techniques for deciding how strongly ordered a protocol is necessary to solve a given

application problem.

JAbAew that there are two distinct classes of application problems: problems

that ca,n be solved with efficient, asynchronous protocols, and problems that require

global ordering. Wehtrduce the concept of a Zincarkztion finction that maps par-

tially ordered sets of events to totally ordered histony W b how to construct

an asynchronous implementation that solves a given problem if a linearization func-

tion for it can be found.

I

-

Wepmve that in general the question of whether a problem has an asynchronous

\

solution is undecidable. Hence there exists no general algorithm that would auto-

matically construct a suitable linearization functia Cor a given problem. Therefore,

we CBRS&P an important subclass of problems that have certain commutativity

properties, Mbjmmmt techniques for constructing asynchronous implementations

for this class These techniques are useful for constructing efficient asynchronous
l,

implementations for a broad range of practical problems.

t

Biographical Sketch

Frank Schmuck was born in Bonn and grew up in Hamburg, West Germany. He

received his B.S. in Physics from the Christian Albrechts Universitlt zu Eel, West

Germany in 1983. He first came to the United States in the fall of 1983 as an
exchange student at the Pennsylvania State University. During his stay there his

interests shifted from Physics to Computer Science, and he decided to stay longer

than originally planned to get a Masters degree, which he received in the spring

1985. After spending half a year working for Siemens in Munich, Germany, he

returned to the United States to pursue a Ph.D. in Computer Science at Cornell

University.

...
lll

To my parents

iv

Acknowledgements

First of all, I wish to express my gratitude to my advisor, Ken Birman, for his

continuous support and encouragement. I would like to thank Sam Toueg and Fred

Schneider for many helpful discussions and comments on this work. I also thank

Dexter Kozen and Lars Wahlbin for serving on my committee. My thanks go to

Patrick Stephenson and David Basin for reading a draft of this dissertation.

I am grateful to my wife, Sabine, who had to leave her friends and family in

Germany to follow me to Ithaca. Finally, I wish to thank all my friends who

made my stay in Ithaca enjoyable, especially David for introducing me to the art

of juggling.

V

Table of Contents

1 Introduction 1
1.1 Distributed Systems . 2
1.2 Objectives . 4
1.3 Outline . 5

2 Reliable Broadcast Protocols 6
2.1 Broadcast Ordering . 7

2.1.1 Unordered Broadcast . 7
2.1.2 FifoBroadcast . 7
2.1.3 Atomic Broadcast . 9
2.1.4 Causal Broadcast . 13

2.2 Reliability . 16
2.2.1 Reliable Bcast, Fbcast, and Cbcast 17
2.2.2 Reliable Abcast . 18

2.3 Summary . 20

3 Formal Model 21
3.1 Formal Problem Specifications . 21
3.2 System Execution Model . 29

3.2.1 Execution Histones . 30
3.2.2 Implementations . 35

3.3 Implementation Correctness . 37
3.4 Externally Observed Histories . 40
3.5 Abcast Implementation . 42
3.6 Summary . 46

.
*

4 Asynchronous Implementations 48
4.1 Causality and Timestamps . 49
4.2 Cbcast Implementation . 54

4.2.1 Correctness of Cbcast Implementation 59

vi

4.2.2 Existence of Cbcast Implementation 64
4.3 Bcast and Fbcast Implementation 69
4.4 summary . 74

5 Commutative Specifications 75
5.1 Undecidability . 75
5.2 Commutative Specifications . 78

5.2.1 Commutativity and Ordering Constraints 78
5.2.2 Applying Commutativity to Runs 82
5.2.3 Proving Acycliuty . 88

5.3 Mixed Implementations . 96
5.4 summary . 100

6 Failures 101
6.1 Integrating Failures into the Model 101
6.2 Client Failures . 106
6.3 Summary . 107

7 Conclusion 108
7.1 Summary and Discussion . 108
7.2 Future work . 109

A An Example: Token Passing 111
A.1 Formal Specification . 111
A.2 Commutativity and Ordering Constraints 114
A.3 Mutudy Exclusive Events . 116
A.4 Acycliuty . 118

B Invocation-Completion Model 120

Bibliography 122

vii

List of Tables

5.1 Liaesrization operator for Si - 77

A.1 Dependencia betw-everrts in the token pMsing specification . . 115

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6

2.7
2.8

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2

6.1

Distributed system .
Unordered broadcast .
FIFO broadcast .
Atomic brosdcaet .
Two-phsse implementation of atomic broadcast i . .
Three-phase implementation of atomic broadcast
Processor pr delivers message o locally without waiting for any mcsI
sageshm pr .
Potentid causality .
Causa broadcast .
A client interacting with a distributed program

ABCAST ioaplementation .

.
Client view of a distributed program
An execution hiatory .

CBCAST implementation .
A locally correct ntn .
BCAST impbentation .
An rtlrmpk run snd one Ot its linearizations
Anex8mplcIllo .
An exmatian history with Mure events

2

8
8
10
10
12

12
14
14

23
24
31
43

56
60
70

83
89

103

ix

Chapter 1

Introduction

Broadcast protocols are useful tools for distributed and fault-tolerant proppmming.

However, a wide range of such protocols has been proposed, mering in their fault

tolerance and delivery ordering characteristics. This thesis describes techniques for

chosing the type of broadcast that will m e z e the performance of an application

without compromising its correctness.

This work was motivated by the ISIS system, a toolkit for building fault-tolerat

distributed applications. All tools provided by ISIS are based on a set of broadcast

communication primitives. These primitives as well as the toois built from them

are made available to the application programmer. One objective of this thesis is

to gain an understanding of the theoretical foundations of the ISIS system, and

thereby help the programmer in selecting and using the tools provided by ISIS. The

interested reader is reterred to (BJ87qBJS881 for a description of ISIS.

1

2

Communication (Communication)

1.1

Figure 1.1: Distributed system

Distributed Systems

A distributed system consists of a set of independent processors, p 1 , . . . , pn, con-

nected by a communication network (see Figure 1.1). In such a system, processors

exchange information only by sending messages. There are several parameters that

determine the characteristics of the system:

0 Network topology: Some pairs of processors can communicate directly.

Messages between other pairs of processors have to be routed through one

or more intermediate processors. A network in which every pair of processors

can communicate directly is called completely connected.

3

0 Message ordering: Some communication protocols do not make any guaran-

tees about the order in which messages are delivered. Other protocols provide

FIFO ordering, i.e., messages are delivered in the order they were sent.

0 Message reliability: Message chaunels may be reliable (all messages sent

are delivered correctly), subject to omission fuilures (messages may be lost),

or subject to Byzuntine fuduns (messages may be lost or corrupted). Fur-

thermore, there may or may not be an upper bound on the time between the

sending of a message and its delivery.

0 Processor reliability: A processor may fail in several ways. It may stop with-

out taking incorrect actions (fuil-stop) [SSSS], fail to send or receive some mes-

sages (omission fudt) [Had84], or behave arbitrarily (Byzantine fa&) [LSP82,

SD83].

In this dissertation we assume a completely connected network with reliable message

delivery. This decision is justifiable on practical grounds: datalink protocols and

network routing protocols satisfping these assumptions are well understood [Tan81].

In general, we do not assume an upper bound on message delays, nor do we assume

that processors have synchronized clocks. A system with these characteristics (un-

bounded message delays, no synchronized docks) is called uaynchronous.

Processors may experience failures, but we restrict ourselves to non-byzaatine

fdure modes. Processor omission faults can be treated in the same way as the

loss of messages in the communication network. Therefore, we consider only crash

failures (fail-stop processors).

4

1.2 Objectives

Many applications running in a distributed system require processors to share in-

formation. Often it is also desirable to replicate information at different sites to

avoid data loss should a failure occur. Useful tools for sharing information and for

maintaining replicated data are reliuble broudcast protocols. Such protocols prop-

agate information from one processor to a set of destination processors in such a

way that all operational destinations receive this information despite failures in the

system. This property is called reliuble messuge deZivery. In addition to this, a

broadcast protocol may also provide a form of message ordering. The strongest

form is atomic ordering. An atomic broadcast protocol guarantees that all messages

are received in the same order everywhere. An example of a weaker form of ordering

is FIFO. A FIFO broadcast guarantees that two messages sent by the same processor

are received everywhere in the order they were sent. Messages sent by different

processors, however, may be received in different orders at different sites.

There is a tradeoff between how much ordering a protocol provides and how much

synchronization delay is necessary to implement this ordering. A FIFO broadcast,

for example, can be implemented efficiently on top of unordered message channels

by adding a sequence number to every message. An atomic broadcast, on the other

hand, is much more costly to implement in the systems we study. It requires two

or more phases of message exchanges between processors before a message can

be delivered. It is, therefore, desirable to employ protocols that support only a

low degree of ordering whenever possible. This dissertation presents techniques

for deciding how strongly ordered a protocol has to be in order to solve a given

application problem.

5

1.3 Outline

This dissertation consists of seven chapters. Chapter 2 describes several different

forms of broadcast protocols known in the literature and discusses their benefits

and costs.

Chapter 3 introduces a formalism for specifping an application problem in a

distributed system, and presents a model for broadcast-based implementations that

solve such problems.

Chapter 4 investigates conditions under which a specification has an asyn-

chronous implementation. It is shown that if such an implementation exists, it

can be expressed in a canonical form.

Chapter 5 proves that in general the existence of an an asynchronous imple-

mentation for a given problem is undecidable. However, we identify a subclass

of specifications that captures a broad range of practical problems. The defining

characteristic of specifications in this class is that they have certain commutativ-

ity properties. We describe methods for finding asynchronous implementations for

specifications in this class.
Chapter 6 examines how processor failures can be integrated into our model and

shows how this dects the results of Chapter 4 and Chapter 5.

Chapter 7 summmhs our results and discusses future extensions of our work.

Throughout the thesis we use an example that is &st introduced in Chapter 3.

Appendix A contains a comprehensive presentation of this example in which we

collect the different elements addressed throughout the thesis into one discussion.

Chapter 2

Reliable Broadcast Protocols

Because this dissertation is about selecting among clif€erent forms of broadcast pro-

tocols, we devote this chapter to giving an overview of several variants of broadcast

protocol.’ Such protocols have two distinct properties:

0 Reliability: The protocol ensures that a message that is broadcast wil l even-

tually reach aJl its destinations, even if failures occur while the protocol is

0 Ordering: Some protocols make guarantees about the order in which different

broadcast messages axe received at different destination sites.

We wi l l describe how these festures can be implemented on top of a network that

provides only point-to-point communication between processors. In our discussion

we will first concentrate on the ordering aspect. The following section will present

different ordering properties and describe how such properties can be implemented -

‘The term “broadcast” is often used to mean that a message is sent to all pro-
cessors in the system. We will use it in the more general sense of sending a message
to some subset of all processors. This is often called a multicast.

6

7

. in a completely reliable system in which processors do not fail. lo Section 2.2 we

wil l examine how the Merent types of protocols can be made fault-tolerant.

2.1 Broadcast Ordering

2.1.1 Unordered Broadcast

The simplest way of broadcasting a message is to just send a copy of that

message to every destination processor individually. This form of broadcast does

not provide any form of ordering. Figure 2.1 illustrates this. It shows a system with

four processors. Time proceeds from left to right, and the diagonal lines represent

messages. The figure shows pr broadcasting two messages (a and b) to p z , p3 , and

p4. The two messages arrive in the same order at pz and p3 , but p4 receives them

in a different order. Because this form of broadcast does not guarantee any specific

order of delivery, we call it an unordered broadcast, or simply BCAST.

2.1.2 Fifo Broadcast

If the underlying communication network provides FIFO message channels, then

the protocol just described wil l satisfjr a stronger ordering property: All messages

broadcast by the same processor wiU be delivered in the same order everywhere,

namely the order they are sent. Even if the network does not provide FIFO mes-

sage channels, it is not =cult to implement FIFO ordering by adding a sequence

number to every message [TanSl]. We call this a FIFO broadcast, or FBCAST for

short. In Figure 2.2, for example, processor pi broadcasts two messages, first a

then b. Processors 4 and p4 receive these messages in the order they were sent.

Broadcasts B2 and B3, however, are sent by Merent processors; such broadcasts

may be delivered in Merent orders at different sites, as shown in the example.

8

.

Pl

P2

P3

b

Figure 2.1: Unordered broadcast

B2 : b
PI

P2

P3

b C
P4 a

Figure 2.2: FIFO broadcast

\\ B 3 : c \\
P2

P3 .
\ " \\" a

b C
P4 a

Figure 2.2: FIFO broadcast .

9

2.1.3 Atomic Broadcast

J.,aasts are often used for updating information that is replicated at several

sites. FIFO ordering may not be enough if different processors broadcast update

messages independently. In this situation, two update messages could be delivered

in different orders at different sites, leading to inconsistencies. This can be avoided

by using a stronger protocol that would guarantee that d messages are delivered

in the same order everywhere, even if they were sent independently by different

processors. Such a protocol is called an atomic broadcast protocol, or ABCAST
for short. Figure 2.3 illustrates the behavior of an ABCAST. It shows two messages

broadcast independently by p1 and p3. Both messages are received in the same

order at 4 and p4 (first b, then u in this example).

There are several well known techniques for implementing ABCAST in asyn-

chronous systems. Figure 2.4 illustrates a protocol due to Chang and Maxemchuk

[CMM] in which every message is broadcast in two phases. A processor wishing to

broadcast a message sends this message to one distinguished processor, say p1 (first

phase). p1 then forwards the' message to its destinations by means of a FBCAST

(second phase). This way all broadcast messages are delivered in the order they

were received and forwarded by p1. A Merent, more spmmetric atomic broadcast

protocol due to Skeen is described in [BJ87b]. This method uses a three-phase

protocol as illustrated in Figure 2.5. Every processor maintains a message delivery

queue; when a broadcast message is received (phase one of the protocol), it is added

to the queue, but not yet delivered to the application program running at that site.

The recipient assigns a temporary "priority number" to the message and returns

this number to the sender of the broadcast (phase two). The recipient chooses this

number to be larger than any number assigned to messages currently queued or

10

B1 : a
Pl rn

P2

P3
a

P4 b a

Figure 2.3: Atomic broadcast

Pl

B2 : b
P2

a

P4
b a

Figure 2.4: Two-phase implementation of atomic broadcast

11

previously delivered.

imum and send? thra

The sender collects all priority numbers, computes their m a -

number to d destination sites (phase three). Every recipient

replaces the temporary priority number by the number just received, and reorders

the queue accordingly. A message is delivered when it has received its final priority

number and no messages with smaller priority number are in the queue.

Atomic ordering makes the design of fault-tolerant distributed applications much

easier, because it reduces the uncertainty caused by message delays and failures in

the system. However, this benefit does not come without cost. The two protocols

described above need two or three phases of communication before an ABCAST

message can be delivered. It is not difticult to prove that in an asynchronous

system (i.e., a system with unbounded message delays), any protocol that guarantees

atomic ordering requires some messages to take at least two hops before they are

delivered. Consider for example a system with two processors, p1 and pr . Processor

p1 broadcasts a message u; at the same time pr broadcasts b. Both message are

addressed to both processors. We claim that either message u needs at least two

hops (to pa and back to p1) before it can be delivered at p1, or message b needs two

hops. Assume the protocol delivers u at p1 in one hop. This means that sends Q

to p r , but it delivers the message locally without waiting for a reply from p~ (See

Figure 2.6). At the time of this local delivery, p1 may not yet know that pa has sent

a broadcast. If the message b from p3 to p1 is delayed long enough, the protocol

will deliver u before b at p1. Similarly, it is possible that at p3 , b wi l l be delivered

before u. But that would violate atomic ordering.

The situation is Merent if there is a known upper bound on message delays. In

such a system it is possible to maintain synchronized clocks [BD87,LMS85,ST87]. In

this case, atomic ordering can be achieved by a method based on timestumps. The

12

B1 : a
Pl

P2

P3

P4
a

Figure 2.5: Three-phase implementation of atomic broadcast

/
0

/
/

Figure 2.6: Processor p i delivers message a locally without waiting for any messages
from pr .

13

sender of a broadcast adds a timestamp to the message that shows the value of its

local clock when the message is sent out. Messages received at a destination site are

delivered to the application program in timestamp order; however, before a message

is delivered, the processor has to wait until it is certain that no more messages with

a lower timestamp will arrive. The amount of time to wait depends on the worst

case message delay and on how closely clocks are synchronized [CASD84). The

disadvantage of this approach is that the delivery of every message is delayed by

the worst case message delay, which is often much larger than the average delay in

a two or three phase protocol.

2.1.4 Causal Broadcast

Because of the inherent cost of atomic broadcast protocols it is natural to look for

protocols that provide stronger ordering than FBCAST but are less expensive than

ABCAST. The causd broadcost (CBCAST for short) is such a protocol. It is based

on the idea of potentid cawdity introduced by Lamport in (Lam78).

The flow of information during the execution of a distributed system can be

used to define a partial order on events occurring in the system. Such events are

the sending of a measage, the receipt of a message, or a local event that only affect

a single processor. Figure 2.7 illustrates this. Events el, e4, ell, and el4 are send-

events, e2,e5,e7,e8,e13,el3, and el5 are receiue-ewe*, and e3,e9, and el0 are Iocd

events. According to Lamport's definition, all events that are connected by a path in

this diagram are potentially ccrwdZy related. Such a path must follow the horizontal

lines (from left to right) or message arrows. For example, e10 is potentially causally

related to el, because there is a path from el to e10 going through e2,e4, and e8

(dotted line in the figure). This dependency is denoted by the symbol "+", i.e.,

14

\ e13

e3 e15

.
P4 -

Figure 2.7: Potential causality I

B1:a B2:b B4:d
P1

n

P3

d C
P4

a

Figure 2.8: Causal broadcast

15

el * elo. Events that are not connect by such a path

is denoted by the symbol "//". For pnmple, es//el*.

are called concurrent. Ths

The relation 'c-+n is called

potential causality or information f i w relation. The name Upotential causality" has

the following explanation. In physics, the Principle of Causality says that a cause

has to precede its effect. Similarly, an event a in a distributed system can affect an

event b at some other processors only if there is a flow of information from a to 6 ,

i.e., if a precedes b under "+".
The ordering properties of a causal broadcast protocol are defined in terms of

this information flow relation. CBCAST guarantees that every processor receives

messages in an order that is consistent with u+n. That is, whenever two CBCAST

send events are related by "+", the protocol ensures that the two messages are

received in the same order everywhere, namely the one given by "+". For example,

in Figure 2.8, broadcasts B1 and B3 are potentially causally related (B1 - B2,

represented by the dotted line in Figure 2.8). Consequently the message a is received

before c at both ps and p4. Broadcasts B3 and B4, on the other hand, are concurrent

(B3//B4). Hence the two messages c and d may be received in Merent orders at

p3 and p4, as shown in this example. Notice that two events at the same processor

are never concurrent. Therefore a causal broadcast also respects FIFO ordering. For

example, in Figure 2.8, B1 + B4; hence message u is received everywhere before d.

There are several ways of implementing causal broadcast that are very similar

to the use of sequence numbers in FBCAST protocols. A processor wishing to broad-

cast a message adds some additional dependency idormation to the message before

sending it to its destinations. This technique is called "piggybacking". The infor-

mation that is added to an outgoing message m consists of a list of other, previously

received messages that precede m under "+". This form of CBCAST protocol is de-

16

c

scribed in detail by Birman and Joseph in [BJ87b]. In a system in which no failures

occur, i' ficient to transmit only message-ID'S, instead of piggybacking whole

messages onto other messages [Pet87]. Using this piggybacking technique causal

ordering can be achieved without multiple phases of message exchanges.

2.2 Reliability

The broadcast protocols as we described them in the previous section only work

correctly if no failures occur. Consider for example the BCAST protocol. If the

sender crashes in the middle of the protocol, the message will reach only a subset

of the destination sites. The situation is even worse for the three-phase ABCAST

protocol. The failure of a single destination site can cause the protocol to block,

preventing all other broadcasts from being received.

So-called reliable broadcast protocols avoid this undesirable behavior. A reliable

broadcast guarantees that every message sent will eventually be received by all

operational destination sites, despite processor failures. We have to qualify this

statement a little. Under certain failure patterns, no protocol can guarantee the

delivery of a broadcast to all operational destinations. For example, the sender

could crash before it actually sent out any messages. Even if the sender manged

to communicate with some other processor before it crashed, this other processor

could experience a failure before! talking to anybody else. In general, a set of failures

in an early stage of a broadcast protocol could wipe out all knowledge about the

message to be sent. What we mean by reliable message delivery is that a message is

delivered to all operational destinations unless the sender fails before the protocol

has terminated, Furthermore, in case the sender fails at some time during the

protocol, message delivery must be all-or-nothing. More precisely:

17

If processor p sends a message rn to a set D of destination sites, then

the system wil l eventually reach one of the fc:. "ing two states:

1. For all q E D: q has received rn or q has crashed.

2. Processor p has crashed, and for all g f D: g has crashed or q will

never receive m.

This property is as0 called atomic message delivery.

We will now look at the different types of broadcast protocols introduced in the

previous section (BCAST, FBCAST, CBCAST, ABCAST) and examhe how they can be

made reliable.

2.2.1 Reliable Bcast, Fbcast, and Cbcast

The simplest reliable broadcast protocol uses a method called flooding or message

difwion. A processor wishing to broadcast a message sends it to aIl destination

sites by means of an (unreliable) BCAST. Every processor that receives the message

forwards it to all other destination sites Using BCAST. This way every destination

will receive multiple copies of the message (one horn the sender and one from each

other destination, if no failures occur); it forwards the message only the first time it

is received and ignores all duplicates. This protocol achieves atomic delivery: Every

processor that receivea the message wil l eventually either succeed in forwarding it

to all other operational destinations or it will fail. Therefore, eventually either

all operational sites have received the message or all sites that ever received the

message have crashed.

By appending a set of sequence numbers to every message, FIFO ordering can

be added to a diffusion protocol. This way we get a reliable FBCAST.

I

18

The same technique can be used to make CBCAST reliable. The CBCAST protocols

we described in Seciioc 2.1.4 work by piggybacking dependency information onto

the broadcast message to be sent out. The use of message diffusion to propagate this

message ensures that the original message contents as well as the dependency infor-

mation are delivered to all operational destination sites. This way causal ordering

can be preserved despite processor failures. For details see [BJ87b].

2.2.2 Reliable Abcast

ABCAST i s a form of consensus protocol, because atomic ordering requires all pro-

cessors to agree on total order on d broadcasts. In [FLP85) Fisher, Lynch, and

Paterson show that it is impossible to achieve consensus in an asynchronous sys-

tem if failures occur. Consequently, it is not possible to implement reliable atomic

broadcast in such a system. The reason for this is that if no upper bound on

message delays is known, a processor failure is indistinguishable from very slow

communication. For example, consider a system with two processors pl and p . ~ . It

is not difficult to prove the impossibility result of [FLP85] for this example: Assume

processor p1 broadcasts a message a with destination p1 ,p2 . At the same time pz

sends a message b, also addressed to both processors. Consider the following three

scenarios:

1. Processor p1 crashes before sending any messages; p i does not fail. Then the

message a must eventudy (say after some time interval d l) be delivered at

Pl.

2. Processor p1 crashes before sending any messages; p1 does not fail. Then the

message b must eventudy (say after some time interval d2) be delivered at

PL.

19

3. Neither of the two processors fails, but the communication network is very

slow; every messages takes at least time d = rnaz(d l ,d2) before it is received.

Up to time d, processor p1 cannot distinguish Scenario 3 from 1. In both cases it

has not yet received any messages from pr , but it does not know if pz has crashed or

is still alive. Therefore, in Scenario 3, p1 will deliver message a after time d l , before

receiving any messages from p z . Similarly b will be delivered at pz before p1 receives

any messages &om p l . But then atomic ordering is violated in this scenario.

Therefore reliable atomic broadcast can only be achieved if we relax the assump

tions about the asynchrony of the system. There are two ways of doing this:

1. Assume that failures can be detected. The ABCAST protocols described in

[CM84] and [BJS'lb] achieve reliability under this assumption. If a proces-

sor participating in an ABCAST protocol experiences a fdure, some other

processor can take over and complete the protocol on behalf of the crashed

processor.

2. Assume there is an upper bound on message delays. In this case a reliable

atomic broadcast can be implemented by combining a diffusion protocol with

the method of timestamps to achieve atomic ordering (CASDM]. However,

the amount of time that a processor has to wait before a message can be

delivered to the application program increases with the number of expected

faitures.

Notice that the second assumption implies the first. If message delays are bounded,

failures can be detected by theouts. In fact, most failure detection mechanisms in

distributed systems rely on timeouts.

2.3

20

Summary

We examined a variety of reliabie broadcast protocols that differ :u the form of

message ordering they provide.

0 Atomic Broadcast (ABCAST):

All messages are delivered in the same order everywhere.

0 Causal Broadcast (CBCAST):

The order in which messages are delivered is consistent with the information

flow relation between broadcast events.

0 Fifo Broadcast (FBCAST):

Broadcasts by the same processor are delivered in the order sent.

0 Unordered Broadcast (BCAST):

Messages are delivered in an arbitrary order.

The stronger the the ordering property of the broadcast, the more costly it is to

implement. An atomic broadcast protocol requires at least two phases of message

exchange, whereas CBCAST, FBCAST, and BCAST can be implemented as one-phase

protocols. Furthermore, in an unreliable system in which processors may experience

failures, ABCAST can only be implemented if failures are detectable or if an upper

bound on message delays is known.

Chapter 3

Formal Model

In this chapter we present a formalism based on events and histones for speafy-

ing problems in a distributed system. We introduce a model for a broadcast-based

distributed implementation and give a definition for the correctness of an imple-

mentation with respect to a problem specification. We illustrate our formalism by

showing that every formal problem has an implementation based on atomic broad-

casts.

3.1 Formal Problem Specificat ions

A program running in a distributed system consists of several components, each

running at a diflerent site, and interacting with each other by sending and receiving

messages. A formal specification for such a program can be given in terms of

its input/output behavior. At each site there are clients (human users or other

programs) that interact with the distributed program. This interaction is typically

described by a procedural interface. A client invokes an operation by passing the

operation name and a set of parameters to the component of the distributed program

21

22

residing at the

its completion,

local site. The program executes the operation, informs the client of

and possibly returns a value ' G &e client. During the execution of the

operation the local component of the program may interact with remote components

of the program. Figure 3.1 illustrates this view of a distributed program.

We distinguish between the implementation of a distributed program and its

behavior as observed by its clients. From a client's point of view the program is

a service that accepts requests from clients at different sites, executes each request

and returns the result to the client. Figure 3.2 illustrates this view of a distributed

program as a centralized service. We use this client view as the basis of our formal

specifications.

Definition 3.1

A formalevent

e =Ai(zl , ..., In) : V

denotes operation A invoked by client i with parameters 11,. . . , I,,, and return-

ing the value v . A formal history

H = (el , e2, * - 9 em)

is a finite, totally ordered sequence of events.

A formal history describes the sequence of operations executed by the service and

the values returned to the clients. A fownd specifidon determines what constitutes

correct behavior of the service, by defining which formal histories of the service are

Zegd. Since we do not want to commit ourselves to any particular logical language for

describing specifications, we simply identify a specification with the set of histories

accepted by it.

-

23

Figure 3.1: A client interacting with a distributed program

24

Centralized
Service

Figure 3.2: Client view of a distributed program

25

Definition 3.2

H+e or He denotes the history obtained by appending the event e to H .

HH' denotes the concatenation of H and H'.

H 5 H' means that H is a prefix of H'.

H l i denotes the projection of H onto client i , that is the subsequence
of H containing all operations invoked by client i.

Definition 3.3

A formal specification is a quadruple S = (n, I, V, S), where n is the number

of clients, I is a set of invocations of the form Ai(z1,. . . , x k) , V is a set of

return values, and S is a set of histories. S must satise the following two

properties:

S is prefix-closed: V H E S: V H' 5 H: H' E S,

S is complete and deterministic:

V H E S: V invocation a E I:

3 unique return value v E V: H + a:v E S.

At this point it is useful to give an example that illustrates our formalism. We will

use this example throughout the rest of this dissertation. Consider the problem of

managing a shared resource in a distributed system. The resource can be accessed

from any site, but we want to ensure that at any given time only one site actually

uses the resource. This problem can be solved by introducing the concept of a token

that is associated with the resource. Only the site that is currently holding the

token is allowed to access the resource. If the current token holder no longer needs

the resource it may pcus the token to some other site. We want to design a token

26

passing service that manages this token. This service would support the following

operations :

QUERY(): BOOLEAN

- returns TRUE if the caller is the current token holder.

0 PASS(X: CLIENTID): RETURNCODE

- pases the token fiom the current token holder to client x.

The PASS operation returns one of three dues : OK, ERRORHOLDER (the

caller is not the current token holder), or ERRORREQUEST (client x did not

request the token).

REQUEST(): RETURNCODE

- request the t0ken.l

The REQUEST operation returns one of three d u e s : OK, ERRORHOLDER (the

caller is already holding the token), or ERRORREQUEST (the caller has already

requested the token).

A complete formal specification is given in Appendix A. Here we will only list a

few histories that illustrate this example.

We assume that initially the token is held by client 1. Consider the history HI:

231 = 93:F, &:Ok, &(3):ok, Q3:T

Q , R , P stand fbr QUERY, REQUEST, and PASS operations; and F stand for the

return dues TRUE and FALSE. sent 3 invokes a QUERY and h d s out that it is

'The request operation is non-blocking. A client that needs the token would
invoke a request operation and then repeatedly issue a QUERY operation until it
returns TRUE.

27

not holding the token. It then decides to request the token. Client 1 (the initial

token holder) passes the token to client 3, and consequently a QUERY by client 3

returns TRUE. We would consider this a legal history, i.e., HI E S.

H2 is an example of an illegal history: although the token has been passed to

client 3, the last QUERY returns FALSE. In this example the token passing service

would have returned the wrong value for the QUERY; therefore H2 4 S.

This history is also illegal: client 3 is passing the token although it is not holding it.

The token passing service behaved incorrectly by returning OK for this operation.

It should instead have returned the value ERRORHOLDER, indicating an error:

H3 = Q3:F, R3:ok, P3(2):ErrorHolder, Q3:F

In our formalism we make a number of implicit and explicit assumptions about

the distributed service.

1. A client invokes only one operation at a time and waits for the operation to

complete before invoking the next one.

2. We assume every operation can be executed as soon as it is invoked. In

particular there are no operations that explicitly wait until another client has

taken a certain action. In our formalism, operations with wait semantics must

be modeled by a "busy wait". The token passing service for example does not

have an operation WAITFORTOKEN. Instead we provide the REQUEST and

QUERY operation. A client waiting for a token would periodically invoke a

QUERY until it returns TRUE. In Appendix B we show formdy that any

28

operation with wait semantics can be modeled in this way. We chose this

model because it is simpler and entails no loss of generality.

3. We require specifications to be prefix-closed. This allows us to decide, at

any time during the execution of a system, whether the service has behaved

correctly so far. In other words, the correctness of an execution up to a given

time does not depend on any future events. The prefix closure of S also

makes it unnecessary to consider infinite histories. An infinite, legal history

is represented in S by all its (finite) prefixes. However, because histories

are finite and specifications are prefix-closed, our formalism can only express

safety properties, not liveness properties [SA85].

4. We only consider deterministic specifications in which the value returned by

an operation is determined completely by the parameters of the operations

and by the previous history. Also, because spedfications are complete, all

operations are t o t d In other words, clients are not restricted to invoke only

"legal" operations. Any specification can be made complete by specifying that

an operation should return a distinguished value ERROR when performed in a

state in which it would otherwise not be legal to execute the operation.

Out specifications Mer from other formal specification methods. In particular,

we do not associate any state ouridles with a service. For example, consider a

service that provides two operations READ and WRITE. Instead of saying that a

WrUTE(X=5) changes the value of some internal variable 2, we specify the effect of

this operation by saying that the next operation READ(X) should return the value

5. Rather than speclrfvlng how an operation changes the internal state of a service,

we specify how the operation af€ects the result of future operations.

In some sense these two approaches for formal specifications are equivalent. In

our formalism the current state of a service is represented by the history of d

operations executed so far. A new operation changes this state by appending an

event to the history. We chose the history-based approach because it does not

assume any spec& internal representation for the state of the service.

3.2 System Execution Model

The main goal of this dissertation is to find out how different forms of broadcasts

can be used to construct a solution to a problem that is speciiied in the formalism we

introduced in the previous section. In this section we present a model for studying

broadcast-based implementations of a service.

In the most general terms, a distributed implementation of a service runs like

this:

0 'A client at processor i invokes an operation a.

0 Processor i starts an agreement protocol among d processors to decide on the

effect of the operation and its return value.

0 When the protocol terminates, the result is returned to the client.

We will show in Section 3.5 that in order to obtain an implementation of any

formally specified problem, it is sufEcient to have agreement protocol establish a

global order on aIl the operations invoked by Merent clients in the system. An

atomic broadcast (ABCAST) does just that. An implementation based on ABCAST

would run like this:

0 A client at processor i invokes an operation u.

30

e Processor i puts the operation (including its parameters) into a message and

broadcasts the message to all sites in the system (including itself).

0 Other processors that receive this message update their local state.

0 When site a receives its own message, it also updates its state axid at that

time computes the result to be returned to the client.

In Section 3.5 we wi l l make this more precise and prove that such an implementation

indeed gives a correct solution for any specification. In Chapter 4 we will then

explore conditions under which it is possible to replace the ABCAST by a more

efficient broadcast protocol that does not require the client to wait for a multi-

phase agreement protocol to finish before it gets back its return value. In the rest

of this section we define our model for broadcast-based implementations and give a

criterion for their correctness with respect to a formal specification.

3.2.1 Execution Histories

An execution of a broadcast-based implementation outlined above can be described

by a picture like Figure 3.3. The horizontal lines show events happening at different

processors. To simplify the model we assume that there is only one client per

processor. There are two Merent types of execution events2.

1. Inuocation euocnb, which denote the invocation of an operation by the local

client. An invocation causes a message to be broadcast to all sites. These

messages are represented by the arrows in the figure.

~

2Note that execution events are different from formal events as in Definition 3.1.
Definition 3.11 in Section 3.2.2 relates these two types of events.

31

F2

P3

P4

32

2. Receive events, which denote the receipt of a message that was broadcast from

some other site. The tip of each arrow represents a receive event in the figure.

Consider, for example, the events at processor 2 in Figure 3.3. The first event is an

operation “u” invoked by the client at that site. The invocation causes the processor

to send out a broadcast, which is represented by the four arrows originating from

the circle at “a”. The end of an arrow represents the receive event that arises

when the broadcast message is delivered at another (or the same) site. A receive

event is labeled by a pair of integers; the first one designates the processor that

sent the broadcast, and the second one counts broadcasts sent from that processor.

The second event at p1 is the receive event (2,1), denoting the delivery of the

fist broadcast from itself. There are three more receive events at p2: (3,1), (1,1)

and (3,2). They denote the delivery of the first broadcast from p3 , the first one

from p l , and the second broadcast from p3. Below we describe such a graphical

representation of an execution in formal terms:

Definition 3.4

An execution sequence E = (El,. . . , E,,) is a collection of totally ordered sets

of invocation and receive events,

E E [(I u N 2) *] ” ,

satisfying the condition:

v inv~(i , j) : t l k : 3 unique receive event (i,i) E &,

where inv,y(i,j) denotes the j’th invocution event in Ej.

We now introduce some terminology and notation:

33

E - u

the j’th event in Ei.

the order of events in E;, i.e., E[i , j] <i E[i, j’] iff j < j ’ .

the j’th invocution event in Ei.

the receive event (i , j) in Ek.

the sequence number of i n v ~ (i , j) in E;,
i.e., if E[i,I] = i n v ~ (i , j) then i n u m ~ (i , j) = 1.

the sequence number of rcvE((2 , j) , k) in Ek.
i.e., if E[k,Z] = rcvE((i,j),k) then rnum~((i,j), k) = 1.

(where u = inv~(i,j) is an invocation event) the execution
history that is identical to E except that u and all its corre-
sponding receive events (rcvE((i, j), IC), for all I C) are deleted.

Definition 3.6

Given an execution sequence E we define the relation ‘‘2” on the events in E:

~ [i , j] 2 ~ [i , j + 11
invg(i , j) 3 rcvE((i, j) , IC) for all i , j , k.

for all i, j.

If a 1$ b we say that a directly precedes b.

An execution like the one in Figure 3.3 can be viewed as a directed graph that has

invocation and receive events as nodes and two types of edges: the horizontal lines

that connect events happening at the same processor and the arrows that represent

broadcast messages. The u+n relation defines the edges in the execution graph. D

For an execution sequence to make sense we need to add a few more restrictions

to Definition 3.4. For example, we need a condition that prevents messages from

flowing backwards in time.

34

Definition 3.7

An exec4on history E = (El,. . . , E,,) is an execution sequence satisfying the

following additional conditions:
--

0 Sequential invocation: Clients invoke operations sequentially, i.e., a

client waits for the present invocation to complete before invoking a new

one:

VZ,j: rcvE((i , j) , i) Ci i n v ~ (i , j + 1)
D

0 Monotonicity of time: The relation is acyclic (messages do not

flow backwards in time):

-3 e l , . . . ,e, E E : el -, e2 + . . . --.) e, --.) el. D D D D

In addition we may specify the ordering properties of the broadcast protocol used

by giving a message ordering crziom. For example, if we are interested in systems in

which an atomic broadcast is used, we would specify an ABCAST-axiom that ensures

that a l l messages are received in the same order everywhere:

Definition 3.8

ABCAST ordering axiom:

V i , j , i’, j’ : V k, I :

r m E ((i , j) , k) <& rmE((i’ , j ‘) , k) * rmE((i , j) , I) < I r cv€((i ’ , j ’) , I).

An execution history that satisfies this ABCAST axiom in addition to the require-

ments of Definition 3.7 would be called an “ABCAST execution history”.

35

3.2.2 Implement at ions

The previous section described a system execution onl; in terms of what operations

clients invoke and when messages are sent and received. It does not specify what

the contents of these messages are, how the recipient processes such a message, or

what values are returned to the client as the result of an invocation. In other words,

we need to specify what the program running at each site does.

We do this by modeling each processor as a state machine that reacts to input

events (invocation events or receive events) by changing its state and generating an

output event (message to be broadcast or d u e returned to the client). This state

machine has two types of transition functions (4 and to), corresponding to the two

types of input events.

Definition 3.9

An implementation is a 8-tuple (n, I, V , M , Q, qo, @, *), where

n

I

V

the number of processors in the system

the set of operations that can be invoked

the set of return values

AM

Q
QO

@ = (41, . . . , qh)

the set of message values

the set of states in which a processor can be

the initial state of all processors

invocation transition functions
4 i : Q x I + Q x M

\k = ($1,. . . , ton) message receive transition functions
$;: Q x M -t Q x V

36

The meaning of the transition functions 4i and q!+- is as follows: When an operation

u E I is invoked by client i, processor i changes its state from q to q’ and broadcasts

the message m, where (q’, m) = &(q, a). When such a message is received at site

j , processor j changes its state from q to q’ , where (q‘, v) = $j(q, m). The return

value for this operation is v ; at the site where the operation was invoked this value

is passed to the client; at the other sites it is ignored. We will use superscripts

s ,m,u to refer to the state, message, and return value of t$ and $, respectively, as

defined below:

Given such a formal implementation, we can take an execution history and deter-

mine what messages are sent and what values are returned to the client. We start

by giving a definition for computing the state of a processor after a particular event

in an execution history:

Definition 3.10

stat& j]

I qo
i f j = O

$!(stat&, j-l],a) if E[i , j] = a is an invocation event

T#(statE[i, j-I], rn) if E[i , j] = (k, I) is a receive event, where

m = @(statE[k, inums(k, I) - I] , i n v ~ (k , I))

Then stat&, j] defines the state of processor i after E[i , j], the j’th event at that

site. Note that the monotonicity requirement for execution histories (Definition 3.7)

prevents this definition &om being circular. It is now straightforward to give def-

initions that compute the messages being sent, the values returned to clients, the

37

formal events (invocation plus return value as in Definition 3.1) observed by clients,

as well as the sequence of f0rm.l events that any particular client observes:

Definition 3.11

msgE(i,j) = q5l(stat&inums(i,j) - I] , inv~(i , j))

v&(i,j) = $ r (~ t a t ~ [i , m = ~ ((i , j) , 2) - ll ,=m(i,j))

eventg(i,j) = a:v, where a = invs(i,j), and v = v a l ~ (i , j) .

H[E, Z] = (eventE(i, 1),eventg(i,2), . . . , eventE(Z,m)),

where m is the number of invocation events in Ej.

3.3 Implementation Correctness

In Section 3.1 we defined formal problem specifications in terms of totally ordered

histories which record a sequence of events executed by a centralized service. In

our model of distributed implementations, however, there is no centralized service.

Instead of one global history, we have a set of histories H[E, i] containing the subset

of events observed by individual clients. We consider such a distributed implemen-

tation correct if, to the clients, its behavior is indistinguishable from the behavior

of a centralized service which performed the same set of operations. In particular,

the implementation must satisfy the following condition:

For every execution history E, it must be possible to merge all H[E,i]

into one legal, global history H E S.

This ensures that clients cannot distinguish an execution of the distributed im-

plementation kom a centralized one, because they al l see part of a history that

38

would have been generated by a centralized server. This correctness condition is

hie!, similat to the notion of serializability familiar from database theory [BG81,

Pap791.

This condition alone is not enough to ensure that the distributed implementation

behaves as one would expect. We need to add a condition that says something

about the relative order in which events invoked at different processors appear in

the global history H. Consider the token passing example fiom Section 3.1. One

could implement the token service in the following trivial way (recall that client 1

is the initial token holder):

0 QUERY always returns FALSE if it is invoked by any client other than client 1.

0 If invoked by client 1, QUERY returns TRUE until client 1 passes the token.

After the event Pl(j) : ok a QUERY by client 1 dways returns FALSE.

This implementation efktively “loses” the token after the &st pass operation, be-

cause subsequent queries by any client return FALSE. However, notice that the im-

plementation satisfies the correctness condition stated above. An execution history

for this service might generate the following collection of formal histories observed

by clients:

H[E,l] = Q1:T, &(3):0k, Q1:F, Q1:F

H[E,2] = Q2:F, Qs:F,Qs:F, ..., Q2:F

R[E,3] = Q3:F, Qs:F,Qs:F, ..., Q3:F

These three historim can easily be merged in to a legal history:

In other words, by putting the PASS event (and everything following it in H [E , 11)

at the very end of H, we always get a legal merged history.

39

To solve this problem we need to add a condition that prevents events from

being indefinitely deferred in the mersi, ‘ktory H. An event observed by one

client should eventually get a “stable” place in H. We have to define what we mean

by ‘‘eventually’’, since our execution model does not contain real time. Recall that

we are assuming an asynchronous distributed system in which messages may be

delayed arbitrarily. It could be that the broadcast protocol initiated for the PASS

operation terminates quickly at site 1, whereas due to message delays it finishes

much later at sites 2 and 3. In this case we would consider the execution outlined

above an acceptable behavior of a distributed implementation. Therefore we add

the following condition:

Once a broadcast message about an event u has been received at site i,

the event becomes “stable” with respect to other events at site i. That

is, when we construct a legal, global history H by merging individual

processor histories, any event b that was invoked at site i after the

message about u was received at i , must be ordered after u in H.

In other words, we allow an event invoked at another site to be ignored only as long

as the message about it is still in transit. In the token passing example above, this

condition says that as soon as the message about the operation PASSl(3) is received

at site 3, the next QUERY operation should return TRUE.

The next definition summerizes our two correctness conditions for distributed

implementations.

40

Definition 3.12

Y is -
V XBCAST execution history E: 3 H E S:

.ect XBCAST-implementation of specification s = (n, I, v, s) iff:

Correctness: V i : R li = H [E , 21

Liveness: V i , j, k :

rcvE((i, j), k) <) inv~(k, I) + eventg(i, j) < H eventg(k, I)

Here “XBCAST” stands for the type of broadcast used in the implementation. As

discussed above, the second condition (liveness) makes sure that as long as the

broadcast protocol guarantees that every message will eventually be be delivered

everywhere, every operation invoked by a client will eventually be reflected in op-

erations at other sites. In other words, liveness of the broadcast protocol implies

liveness of the implement ation.

3.4 Externally Observed Histories

Our model of execution histories does not contain any notion of red time. This raises

the question: How does an execution history relate to what an external observer

sees during the execution of an implementation? In an asynchronous system it

does not make much sense to talk about time in absolute terms (e.g., milliseconds).

However, we can consider the relative order - in real time - of events occurring

during the execution of an implementation. Imagine an external observer who is

able to monitor all nodes in a distributed system simultaneously. Such an observer

would be able to determine a total order on all invocation and receive events at all

sites. We call this sequence of execution events an ezternal history, Eezt. We can

make the following statement about the relationship between the formal execution

41

history E and the corresponding external history E e d :

1. The formal execution history E already determines a total order on a3l events

that happen at the same processor. Therefore, for all i , the events in E;

appear in exactly the same order in E e d .

2. The relative order of events at Merent processors is not determined by E,

except that a receive event can never precede its corresponding invocation

event, because messages do not flow backwards in time.

We can s d z e this in the following statement:

The external history E,& can be any total order on the events in E

that is consistent with "+". D

Given E e d we can extract an external formal history He& recording all the formal

events during the execution of an implementation in the order they are seen by the

external observer. Notice that our correctness definition does not imply that Hezt

is always legal. However, it ensures that there e ~ t s a legal history that is similar

to Hee, as defined below.

Definition 3.13

H is ~ i m i l ~ to H' (H NN H') if€VZ: H (i = H'li

If clients communicate only through requests to the distributed service, then similar

histories are indistinguishable to all clients. For a correct implementation it wi l l

always be the case that

Vexecution history E: 3 H E S: Hed H

For example, an event u may logically be ordered before b in H (a < H b) , but

physically u could be observed after b, if a and b are events at different processors.

42

Hence the above statement just rephrases the requirement that a correct, distributed

implementation be icd.istzl'guishubZe from a centralized implementation in which the

externally observed history He& is always legal.

3.5 Abcast Implementation

In Section 3.2 we claimed that the strong ordering properties of the atomic broad-

cast provide enough synchronization between processors to solve any problem that

can be specified in our formalism. In this section we will prove this claim. The

purpose of this exercise is twofold. By showing that every problem has an ABCAST

implementation, we demonstrate that our model of broadcast-based implementation

is not too restrictive. Furthermore, in the next chapter we will use methods similar

to the ones in this section to construct implementations based on more efficient

protocols.

Given a formal specification S = (n, I, V, S) we will construct an implementation

that satisfies our Dehition 3.12 of correctness for all ABCAST execution histories.

Figure 3.4 describes this implementation informally in Pascal-like pseudocode. The

implementation is essentially a variation of the state machine approach to replication

as described in (SchM]. The current system state is represented by the sequence of

all operations executed so far (variable 'H' in Figure 3.4). This state, as well as the

execution of client requests, is fully replicated. An operation invoked by a client is

broadcast to every site (including the one at which it was invoked) and is executed

everywhere when it is received. Executing an operation in a state H simply means

adding a new event to H after choosing a suitable return value v , such that the

new history is still legal. The requirement that specifications be deterministic and

complete ensures that there is always exactly one choice for such a value. This,

-

43

Processor i runs the following program:

H := empty;

loop

wait for an invocation by the local dent or the receipt of a broadcast;

if client invoked operation a then

ABCAST uan to all processors;

else if broadcast “u” was received from j then

pick a value v , such that H + a : v E S;

H := H + a : v ;

if j == i then return value v to the client end if

end if

end loop

Figure 3.4: ABCAST implementation

44

and the fact that ABCAST delivers d broadcasts in the same order at every site,

implies that all processors wil l q ! . i ~ - on the same legal history H of events that

have occurred in the system. This history will satisfy the correctness condition in

Definition 3.12. In order to prove this, we translate this implementation into our

formal execution model.

Because specifications are deterministic and complete, we can define an ezecution

finction Xs : S x I + V such that

V H E S , U E Is: v = Xs(H,u) * H + u : v E S,

or in words: Xs computes the correct return value of operation u invoked in state

H. Given a specification S = (n, I, V, S) we define the implementation Ys:

Y s = (n , I , V , I , (I x V) * , & @ , \ k) , i .e . ,M=I, Q = (I x V) * , q o = Q ,

where the transition functions @,\E are defined as follows: When operation a is

invoked at processor i in state H, it does not change its state but broadcasts “a”:

When processor i receives a message containing operation u it executes the operation

by adding the event u:u to its history H; the value u is returned to the client:

$i(H, U) = (H + CU, u), where v = Xs(H, u).

Lemma 3.1

For every ABCAST execution history E of Ys: the find state of all processors is

identical.

Proof: A processor state only changes when a message is received (4: is the

identity function). Because of the ABCAST ordering axiom (Definition 3.8), a l l E;

45

contain the same sequence of receive events. Since all processors start in the same

state qo = 0 and the transition functions

in the same final state. a

Theorem 3.1

'i are identical, a l l processors will end up

Ys is a correct ABCAST dplementat-Jn of specification S.

Proofi We show that for every execution E, the history Hf given by the final

state of processors in E is legal (HI E S) and satiaies the correctness and liveness

conditions of Definition 3.12. We do this by induction on the number of events in

Hf

The base case, Hf = 0 , is trivially satisfied because an empty history is always

legal. This follows from the fact that specifications are prefix-closed.

For the induction step, consider an execution history E such that Hf is non-empty.

Let rcvE((i , j) , 1) be the h t receive event in El. Because of the ABCAST ordering,

rcvE((i , j) , k) is the last event in E, for all k. Let E' = E - invE(i, j) (i.e., E with

i n v ~ (i , j) and rcvE((i , j) ,&) , for all &, deleted). Let H) be the history given by the

final state of processors in E'.

We first show that is legal. By induction hypothesis H) E S. Furthermore,

Hf = H i + U:U, where

v = v d ~ (i , j) = +{(H),u) = Xs(Hi,a).

Therefore H f = Hi + u:v E S follows from the definition of Xs. We complete

the proof by showing that Hf satisfies the correctness and liveness conditions of

Definition 3.12.

46

Correctness: We have to show that Hf li = H [E , i] for all i. By induction hypoth-

esis H) (i = H[E‘, 21. Therefore

Liveness: Let rcvE((2, m), k) < k invs(Z’, m’). We have to show that eventE(Z, m) <

eventE(Z’,m’) in Hf. Case 1 (Z’,m’) = (i, j): In this case eventg(Z’,m’) =

eventE(i,j) is thelast event in “1, and therefore eventg(l,m) < eventE(Z‘,m’) in Hf.

Case 2 (Z’,m’) # (i, j): In this case the two events eventg(2,m) and eventg(Z’,m’)

are both in H) , and by induction hypothesis eventg(Z,m) < eventg(Z’,m’) in H i ,

hence also in Hf. 0

3.6 Summary

We presented two Merent models for a distributed program: one for the formal

specification of the program and one for its implementation.

1. We modeled the behavior of a distributed program as a service that executes

requests on behalf of clients. An execution of such a service is described

as a sequence of events, in which each event denotes the execution of one

client request. We call such an event sequence a formal history. A formal

specification for such a service is a set S that lists all possible legal histories.

2. Our implementation model describes a system as a collection of state ma-

chines. Each processor reacts to input events (invocation events or receive

events) by changing its state and generating an output event (message to be

broadcast or value returned to the client).

47

We then defined the correctness of an implementation with respect to a formal spec-

ification in such a way that clients cannot distinguish the behavior of the distributed

implementation from that of a central server.

To illustrate our formalism and to show that our implementation model is not

too restrictive, we demonstrated that any formal specification has an ABCAST im-

plementation.

Chapter 4

Asynchronous Implementations

In the previous chapter we saw that every formal specification has an ABCAST im-

plementation. In this chapter we address the main questions of this dissertation:

Can we construct more efficient implementations by using broadcast protocols that

provide a weaker form of ordering? For which kinds of problems will this be suc-

cessful?

We start by considering implementations based on a causal broadcast (CBCAST).

We give a necessary and sdc ien t condition for a specification to be implementable

with this type of broadcast. If such an implementation exists it can be expressed in

a standard form. Findly, we show that a CBCAST implementation can be translated

into an implementation based on FBCAST or even unordered broadcasts.

The implementations we construct this way can be characterized as follows:

When a client invokes an operation, the return value can always be computed im-

mediately kom local information. This way the client need not wait for messages

48

49

to arrive at other sites or for replies to make it back; information is propagated

asynchronously to other sites. Therefore we call this type of implementation asyn-

chronow.

4.1 Causality and Timestamps

In Chapter 2 we introduced the idea of Potential Cuwality [Lam78]. In our execution

model we can define this relation as follows.

Definition 4.1

The information flow relation u-+n on the events in an execution history E is

the transitive, reflexive closure of "4".
D

Two events a, b that are not related under u+" ate called concurrent (.//a).

If we interpret an execution history E as a directed graph (the nodes are the invoca-

tion and receive events in E; the edges are given by ''2,) then a -+ b if and only if

there is a path kom u to b in this graph. Because is acyclic (Definition 3.7) the

information flow relation u+n defines a partial order on the events in an execution

history.' The intuitive meaning of this relation is the following. An event a can

affect some other event b only if it precedes b in this partial order. In particular, the

state of a processor after an event b depends only on events that precede b under

"+". This tact is expressed in the next lemma.

lHowever, note that we d&e u+n to be reflexive (Ve E E: e + e), contrary
to the usual definition of a partial order. This notational convenience makes the
later definitions simpler.

50

Definition 4.2

E' is a prefix of E (E' 5 E) iff

(i) E' C E

For an event a E E, we define E[a] (the prefix at a) as follows:

(i) E[aI I E
(ii) Vinvocation event a' E E: a' E E[o] a' -+ a

Lemma 4.1

Let E and E' be two execution histories and a = E [i , j] = E'[i , j] be an event

occurring in both histones (a E E n E').

If E'[a] = E[a] then

(i) statEl[i,j] = s t a t ~ [i , j]

(ii) msgp(i, I) = msgE(i, I) if a = i n v ~ (i , 1) is an invocation event

vdEl(i, Z) = v a l ~ (i , I) if a = rcvE((i , I) , i) is a local receive event

In other words, if we take an execution history E and mod;fy it into a history E' in

such a way that events preceding a under "-+" are unchanged (i.e., E[a] = E'[a])

then the state of processor a after event a as well as the message sent or the value

returned to the client will not be sffected by these modifications. Hence the lemma

tells us that E[u] contabs exactly those events in E that have an effect on the

outcome of a.

Proof: By induction on the number of events in E[a] . In the base case E[a]

contains only a single event, namely a. Then a must be the first event in Ei, i.e.,

51

j = 1; otherwise the event preceding u at i would also be in E[u] . Furthermore,

u cannot be a receive event; otherwise the corresponding invocation event would

precede u under "+"and would be in E[u) . Therefore by Defmition 3.10

s t a t ~ [i , j] = statE[i, 11 = 4i(statE[i , 01, u) = 4i(qo, a).

Because stat,& 01 = statEt[i, 01 = qo we have StdtEt [i , 01 = statg[z, 01. Furthermore

by Defmition 3.11

For the induction step consider E[u] with more than one event. Let s = stat&, j - I]
and s' = statp[i, j - 11. If j = 1 (a is the first event at pi) then s = 3' = qo. Other-

wise let b = E [i , j - 1) and b' = E'[i , j - 11 be the events preceding u at Ei and E,!.

Then b + u and b' + a; hence b E E[u],V E E'[u]. Because E'[u] = E[u] we have

b' = b and E'[b] = E(b] E[u]. By induction hypothesis the state of pi after b is

the same in E and E'; hence again s = s'.

If u is an invocation event then

s t a t ~ [i , j] = d!(s, u) = #(s', u) = s t a t p [i , j] ,

msgE(i, j) = &"(s, u) = #'(s', a) = msgEt(i, j) .

Otherwise u = rcvg((j, I), i) ia a receive event. Let c = hv&, I) and c' = inv~t(j , I)

be the corresponding invocation events in E and E'. Then c --.) a and c' -+ u'. It

follows that c,d E E[u] = E'[u], and therefore c = c' and E'[c] = E[c] . By induction

hypothesis msgE(j, I) = msgEl(j, I) . Therefore

statg[i , j] = t,bl(s, msgE(i, I)) = +f(s', msgp(i , I)) = sta tEt [i , j] ,

52

and if j = i (a local message was received) then

Corollary 4.1

Let E’ 5 E be a prefix of the execution history E. Then

V u = E’[i,j] E E’:

(i) s t a t p [i , j] = s t a t ~ [i , j]

(ii) msgp(i, I) = msgE(i, Z) if a = invs(i , 2) is an invocation event

v d p (i , I) = vaZ~(i , I) if u = rcvE((i, I) , i) is a local receive event

Proot: E’ 5 E implies E’[o] = Eta] for all u E E’. 0

In Section 3.2.2 we defined H [E , 21 to be the sequence of formal events observed

by a particular client in an execution E of an implementation Y. The u+” relation

induces a partial order on on the formal events in the union of all H[E, 21. We call

this partidy ordered set of formal events derived horn E and Y a NIL. It is defined

formally below:

Definition 4.3

Given an execntion history E and an implementation Y we define the run

&(E) to be the set of formal events given by E, partially ordered by u+”:
-

&(E) = {eveatE(i,j) I for all i , j }

with the partial order “+” on R y (E) defined as

53

As in the case of an execution history we use the notation eventR(z,j) to denote the

j ' th event at processor i in a run R.
In (Lam781 Lamport introduced Zogicd timestamps, integers assigned to each

event in such a way that if all events are ordered by their timestamp this order is

consistent with "+". We can generalize this idea to timestamps which are vectors

of integers [S~h85].~ Such timestamps are useful for keeping track of the partial

order of events as the system executes.

Definition 4.4

A timestamp t for an event e = eventR(i,j) E R is a vector of n integers with

the following meaning:

t , [k] = 11 {eventR(k,Z) E & I eventR(k,Z) -+ e} 11
i.e., t c [k] is the number of events at k that precede e in the partial order.

The following lemma states that given only the timestamp of two events in a run

one can deduce their order under "4".

Lemma 4.2

Let Q = eventg(i,j) and b = eventR(k,Z) be two events in a run R, and let t ,

and t b be their timestamps. Then

Proof: u = eventR(i,j) is the j'th event invoked at site i . Therefore eventR(i,j') +

a if€ j' 5 j, and hence ta[i] = j .

2The idea of vector timestamps was developed independently by Ladin and
Liskov [LL86].

54

I f u --+ b then by transitivity of "+" eventR(2, j') 4 u for all j' 5 j . Hence ta[i] 2 j

Conversely, let I = t b [i] 2 j . Then there are at least j events at processor i that

precede b under "+". In particular, there must be an event eventR(i,j') + b for

some j' 2 j . which implies that u --* eventR(i,j'), and by transitivity a + b. 0

We will use these timestamps in the implementations we construct in the next

sect ion.

4.2 Cbcast Implementation

The c u w d broadcast protocol described by Birman and Joseph in [BJ87b] is a proto-

col that preserves the information flow relation between events, i.e., whenever two

broadcasts b l , h are related under u+n (b1 + h), the protocol guarantees that bl

wil l be received before everywhere. Concurrent broadcasts may be received in

different orders at different sites. In our formalism we d e h e the ordering properties

of CBCAST by the following axiom:

Definition 4.5

CBCAST ordering axiom:

(i) Causal ordering:

hVE(2,j) -+ i n v ~ (I , m) Vk: rcvE((i,j),k) <) rcvE((Z,m),k)
(5) Immediate local delivery:

V i , j : - 3 u : invE(i,j) < k u <krcv~((i,j),z)

How can we use such a broadcast to construct an implementation for a given spec-

ification s? Our plan is to take the ABCAST implementation from the previous

chapter, replace the ABCAST by a CBCAST, and determine under which condition

55

the implementation will still be correct. In order for this to work it is necessary to

sake two more modifications to the ABCAST implementation:

0 Recall that the correctness of the ABCAST implementation depended on the

fact that all processors agreed on the order of events and therefore construct

the same legal history H. If we use a CBCAST instead of ABCAST this will no

longer be the case. However, using the timestamps introduced in the previous

section it is possible for all processors to keep track of and agree upon the

partidorder of events during the execution of the system. In other words, we

replace the the variable H in Figure 3.4 by a variable R, containing a partially

ordered set of events (a run).

0 Now, in order to execute an operation correctly it is necessary to relate these

runs to globally ordered histories as they appear in a formal specification.

For this purpose we introduce a function that maps partially ordered sets of

events to totally ordered histories. We call this a linearixation operatot; it is

defined formally below.

Definition 4.6

A linearization operator, LIN : 72 + 31 u {I}, is a partial functiono from runs

to histone, such that:

(i) LIN(8) = 0

(5) V R : If H = L I N (R) # I then

V u : a E H * a c R

V a , b E R : a + b + a < H b

4The symbol I denotes an undefined return value, i.e., LIN(R) = I means LIN
is undefined on R.

56

~~ ~~~

Processor i runs the following program:

R :: empty;

t := [o, 0,. . ., 01;
t [i] := 1;

loop

wait for an invocation by the local client or the receipt of a broadcast;

if client invoked operation a then

pick a value u, such that LIN(R + a:u) E S

CBCAST (a:u,t) to all processors;

return u to the client;

else if broadcast (am, t) was received from j then

R := R $t a : u;

tb] := tb] + 1;
end if

end loop

Figure 4.1: CBCAST implementation

For every run R on which L I N (R) is d&ed, LIN linearizes the events in R in a

way that preserves the partial order ((+’’ in R. With these changes, our CBCAST

implementation, in informal pseudocode, looks lite Figure 4.1.

We need to answer two questions.

1. For which kind of specifications will this CBCAST implementation be correct?

We answer this question in Section 4.2.1.

57

2. How general is this implementation? Perhaps there are other methods of con-

,.q a CBCAST implementation that cover a larger class of specifications. s

We address this question in Section 4.2.2.

In order to answer these questions we need to translate the CBCAST implementation

from Figure 4.1 into our execution model.

Definition 4.7
We use the following notation:

R + e the run R with the event e added at the end, i.e., ordered after all
other events in R (V e' E R + e: e' + e).

R ' S R Risapre f ixo fR
R C R h Ve,e'ER: (e-e ' A e ' E R ') * eER!.

The run consisting of dl events preceding e in R, i.e.,
R[e] = (e' E R I e' - e}3

RkI

ET et e the run R with the event e added and ordered according to its
timestamp t e , ie., e 4 eventR(i, k) ++ t e [i] 2 k.

The implementation outbed in Figure 4.1 contains a construct

"pick a value U, such that U N (R + Ai:v) E S"

similar to the one use in Figure 3.4 (ABCAST implementation). In the ABCAST

c8se we used the fact that specifications are complete to argue that such a return

d u e d always exist. ha the CBCAST implementation the argument no longer

3Recd that we defined "+" to be reflexive. Therefore the event e is always
contained in R[e]

58

holds, because, as defined in Definition 4.6, LIN may reorder events in R A; : TI

differently for Merent values of v . Therefore we must place the following restriction

on LIN:

Definition 4.8

A linearization operator LIN is constructive under S = (n, I , V, S) if€

Vruns R such that L I N (R) E S: Vinvocations a E I:

3 a return value v E V: L I N (R + am) E S.

If LIN is constructive under S we can define an ezecution function X S , J I N : S x I +

V (similar to the one used in Section 3.5) with following property:

VR such that L I N (R) E S: V u E I :

v = X s , t l ~ (R , a) a L I N (R + U : V) E S

Given a specification S = (n , I , V, S) and a constructive linearization operator L I N ,

we define the implementation YS,LIN as follows:

where A# denotes the set of $1 partidy ordered subsets of A, i.e., (I x V)# is the

set of all runs than can be constructed &om meats in I x V . T = Nn is the set

of all timestamps (integer d u e d vectors of length n). The transition functions 4;
and 11; are defined aa follows. When operation u is invoked at processor i in state

[R, t] , it does not change its state but broadcasts [c u , t , 21:

59

When processor i receives a message [a:v, s, j], it adds the event a:u to its run R,

and updates its timeschmp vector by incrementing the j'th component; the value u

is returned to the client:

4.2.1 Correctness of Cbcast Implementation

The implementation we defined above has the property that every run &(E) gen-

erated by one of its executions, satisfies a property that we call Zocd correctness:

Definition 4.9

A run R is locally correct under LIN and S, 8

V events e E R : LIN(R[e]) E S

This property can be interpreted as follows. Say e = a:v is an event invoked at

processor i . In a run R = Rys,LIN(E) of a CBCAST execution, the sub- R[e]

contains exactly those events that processor i knows about at the time a is invoked.

This is because e' E R(e] implies e' -+ e; hence the CBCAST ordering guarantees that

the message about e' is received before a is invoked. LIN(Rfe)) E S then means

that processor i executes the operation a in a way that is correct with respect to

its local knowledge.

As stated in the next theorem, our CBCAST bnpkmentation YSJIN will be cor-

rect if the specification S has the property that local correctness always implies

global correctness (i.e., L I N (R) E S).

60

.

P2""""""

p 3

....................... 0

.... 0
Read2:9

0
I ncg (3 Reidg:4

Figure 4.2: A locally correct run

Theorem 4.1

If LIN is constructive and satides

v runs R: R locally correct * L I N (R) E s.

then Y~,LIN is a correct CBCAST implementation of specification S.

Before we present the proof it is useful to give an example for a specification that

does not satisfy this condition. Consider the problem of implementing a simple

counter. Clients can increment the counter by a specified amount (INC(X)) and

read the current value of the counter (READ). It is straight forward to write down

a specification for such a counter: in a legal history H every READ must return the

s u m of d increment values of INC operations preceding the READ in H. Figure 4.2

gives an example of a run R containing INC and READ events (events are represented

by circles, the partial order by the arrows in the figure). This run satisfies local

correctness. Consider for example

R[Rea&:9] = (Inc(1) + Inc(5)/ /Inc(3) + Read:9)

61

There are two ways of linearizing this subrun:

which are both.1egal histories. Similarly one can check that for every event e in

this run, any linearization of R(e] is legal. Therefore R is locally correct no matter

how LIN is defined. But R itself can not be linearized into a legal history: If L I N

orders Incr(5) before Inc3(3) then the event Read3:4 will be illegal; if 17-143) is

ordered before Incl(5) then Reod1:6 is illegal. Hence although R is locally correct

it does not sat* L I N (R) E S (global correctness).

We wi l l give the proof for Theorem 4.1 on page 64 after the following three

lemmas.

Lemma 4.3
(i) E ' s E * Ry(E') 5 R y (E)

(ii) Let e = u:u E Ry(E)[a]. Then

RY(E>kJ = Ry(E[aI).

Proof: Follows from Definition 4.2 and Lemma 4.1. 0

The next lemma makes a statement about the state of a processor in YS,JZN at the

time when a processor completes a client request and returns a d u e to the client.

Lemma 4.4

Let E be a CBCAST execution history and R = R Y ~ , , , ~ (E) . Let e = a:v =

eventg(i , j) beaneventin Randlet E[i,Z] = rcv,y((i,j),i) be thecorresponding

receive event in E. Then

62

In other words, at the time a value is returned to client i the state of pi correctly

ret. - : She timestamp of the event e as well as the run R[e] of all events preceding

e under “+”.

Proot: Let s t a t ~ [i , j] = [r,t].

(i) We will first show that r and R[e] contain the same set of events. Let e’ =

eventg(i’,j’) E r. Then e’ was added to r when pi received a message m = [e’, t‘, 2’1

kom processor i’. Therefore

Because of immediate local delivery (CBCAST axiom, Definition 4.5) this implies

rcv,y((i ’ , j ‘) , i) <i ~ V E (i , j)

Therefore i n v ~ (i ’ , j ’)

This shows r E R[e].

i n v ~ (i , j) . By Definition 4.3 e’ + e in R; hence e’ E R[e] .

Conversely consider e’ = eventg(i’,j’) E R[e]; then e’ + e in R. By Definition 4.3

i n v ~ (i ’ , j ’) --.) i n v ~ (i , j) . Because of causal ordering under the CBCAST axiom

In other words, pi receives the message rn = [e’, t‘, i’] from processor i’ before E[i , I] =

rcvE((i , j) , i) . Hence the event e’ will have been added to r by that time, i.e., e’ E r.

This shows that R[e] r. W e conclude that (M unordered sets of events) r = R[e].

(ii) Next, we show t = timestamp(e). The vector component tb] is incremented

each time pi receives a message from p j . Therefore

t b] = 11 {e’ E r I e’ is an event invoked at p j } 11

63

Part (i) of the proof implies

{e' E r I e' is an event invoked at pj)

= {e' E R(e] I e' is an event invoked at pj}

Therefore by Dehition 4.4, t = timestamp(e)

(iii) Finally, we show that the partial orders in r and R[e] are identad. This follows

immediately from (i) and (ii), because in r events are ordered by timestamp. 0

Lemma 4.5

If LIN is constructive and satisfies

V N n s R: R locally correct =+ L I N (R) E s.

then for every CBCAST execution history E: Rys,,,,(E) is locally correct.

Proof: Let Y = YSJIN. We proceed by induction on the number of events in E.

The base case, E = 0, is trivially satisfied, because an empty run is always locally

correct.

Induction step: consider E # 0. We have to show that LIN(Ry(E)[e]) E S for

every e in &(E). Let u = invg(i, j) be an invocation event in E, and let e = u:v =

eventE (i , j) .
Define E' = E[u], and E" = E' - a. By Lemma 4.3 R[e] = Ry(E') = Ry(E") + u:v.

By induction hypothesis Ry(E") is locally correct and therefore by assumption

LIN(Ry(E")) E S .

By Lemma 4.4 Ry(E") is equal to the "R-part" of the state s t a t ~ [i , j] of processor

i at the invocation event u. The message it sends is determined by 4:

m = #y(Ry(E"), u) = (a d , t , 21, where v' = XS,LIN(Ry(E"), a).

64

Therefore v = v' = x s , , y ~ (R [e] , u) . From the definition of X S J I N it follows that

LIN(R(e1) - Li V (R y (E ") + u:v) E S. O

We now have d the necessary tools to prove the theorem about the correctness of

the CBCAST implementation.

Proof of Theorem 4.1: We show that under the assumption of Theorem 4.1

(local correctness of R implies L I N (R) E S), for every CBCAST execution history

E, the history H = L I N (R y (E)) E S and satisfies the correctness and liveness

conditions of Definition 3.12.

(i) By Lemma 4.5 R y (E) is locally correct and therefore by assumption

H = L I N (R y (E)) E S.

(ii) Correctness: We have to show that H li = H[E, i] for all i.

H lj contains the same set of events as H [E , i] , because H = L I N (R y (E)) . Fur-

thermore, the order <j on Ej is preserved in H, because e <j e' implies e -+ e', and

LIN preserves "-+".

(iii) Liveness: Let rcvE((I, m), I C) < k inv,y(Z', m').

We have to show that eventE(Z,m) < eventg(Z',rn') in H. This follows from

the fact that LIN preserves "-+", because rcvg((Z,m),&) < k invg(Z',m') implies

eventg(l, m) + event&', m'). 0

4.2.2 Existence of Cbcast Implementation

Theorem 4.1 in the previous section gave a sufficient condition for a specification S

to be implementable with CBCAST. In this section we will show that this condition

is not only sdc ien t but also necessary. This will show that our CBCAST implemen-

tation r e d y is the most general implementation based on CBCAST: every problem

65

that has a CBCAST solution is solvable with our implementation. In other words,

the goal of this section is to prove the following theorem.

Theorem 4.2

A specification s has a CBCAST implementation

3 constructive linearization operator LIN:

V runs R: R locally correct 3 L I N (R) E S.

The only if ("e") direction ia equivalent to Theorem 4.1 which we proved in the

previous section. So, our task is the following: Given some CBCAST implementation

Y of S, we have to derive a linearization operator that satisfies the conditions of

Theorem 4.2. We will do this as follows: Given a run R our linearization operator

will map this run to a history in two steps:

In the first step, we map a run R to an execution history E that has the same set of

invocations as R and the same partial order as R. The second mapping is defined

in terms of the behavior of implementation Y. If Y is correct then there must exist

a legal history H that satisties the correctness and livenem conditions with respect

to E (D&tion 3.12). We map E to this history.

The first mapping is called I'. We want to define this mapping in such a way

that it pr-es the partial order "+" on R. Given R we get a partially ordered

set of invocation events simply by ignoring the return d u e s of the formal events in

R. The execution history E = r (R) will have exactly these invocation events plus

all the corresponding receive events. Notice that in a CBCAST execution history

66

the “-+” relation between invocation events already determines the order of receive

events relative to invocatlLu events in each processor history Ei:

The “*” direction follows from the definition of “+”, the other direction from the

CBCAST ordering axiom (Definition 4.5). Therefore, to completely determine E =

r (R) we only need to speafy the order of the receive events between two invocation

events. The CBCAST ordering axiom already determines a partial order on these

events; to define E = r (R) we can pick any linearization of this partial order. A

topological sort will s d c e . The next definition snmmaxizes this procedure.

Definition 4.10

The function r : ‘12 + E maps a run R to an execution history E in the

following way:

(i) Ej = { u I 3 j , u : u:u = eventR(i,j) E R }

U {(k, I) I 3 k , I : eventR(k, I) E R }

<i is the topological sort of the partial order “+” on the events (ii)
in Ei induced by “+” on R.

The next lemma formally states the properties of this mapping.

Lemma 4.6

Let E = I’(R). Then

(i)
(ii) invE(i, j) --.) invs(i’, j ’) in E e eventlp(i,j) + eventR(i’,j’) in R.

E is a CBCAST execution history.

(iii) R I R r(R)sr(R).

67

Proof:

satisfy these two properties.

(i) and (3) : As discussed above, we constructed r in such a way as to

(iii) Follows kom property (i) and Definition 4.10(ii). 0

We now use r to define a linearization operator LIN derived kom an implementa-

tion of S.

Definition 4.11

Let Y = (n , I , V , M , 8, qo, 0, \k) be a CBCAST implementation of S.

“(R) = {H E S I H is a linearization of R y (r (R)) }

Notice that this definition implicitly assumes that R(R) is non-empty whenever

R = R y (r (q .

Lemma 4.7

If Y is a correct implementation of S then R = R y (r (R)) implies R(R) # 0,

hence LINy is w d defined.

Proof: Let E = I’(R). IfY is correct then there e d s a history H E S that satisfies

the correctness and livaress condition of Definition 3.12. Correctness and liveness

imply that H is a lineazization of R y (E) . Therefore H E R(R) if R = R y (E) . 0

we now proceed to show that if Y is a correct CBCAST implementation of S then

LINy indeed satisfies the conditions of Theorem 4.2.

Lemma 4.8

L I N y is constructive.

68

Proof:

invocation a E I there exists a retc, I value v such that LINy(R + a:v) E S.

Let E = I'(R). If LINy(R) # I, Dehition 4.11 implies R = R y (E) . Consider an

execution E' that is identical to E, except that it has one more invocation event a

at the end, i.e.,

Let R be a run such that LINy(R) E S. We have to show that for every

E! = Ej + a + (i , j + 1)
E; = EA + (i , j + 1)

where j is the number of invocation events in E;

for k # i

Let R' = Ry(E') . Then IT = R + u:v, where v = val,p(i,j + 1). By construction

E' = r(R'). Therefore, by Dehition 4.11 LINy(R + a:v) = LINy(R') E S. a

Lemma 4.9

vruns R: R locally correct * LINy(R) E s.

Proof: Induction on the number of events in R. The base case, R = 0, is trivially

satisfied, because an empty history is always legal.

For the induction step consider R # 0. We have to show that LINy(R) E S,

which, by Definition 4.11, is equivalent to R = R y (E) , where E = I'(R). Let

a:v = eventR(i,j) E R be an event in R which corresponds to the invocation event

a = i n v ~ (i , j) in E. To prove that R = R y (E) we have to show that vaZg(i,j) = v.

Let e be a maximal event in R, and d e h e IT = R[e] and R" = R - {e}. Local

correctness of R implies that LINy(lT) E S and that R" is locally correct. By

induction hypothesis LINy(R'') E S. Therefore, by Dehition 4.11, R' = Ry(E')

and R" = Ry(E") , where E' = r(R') and E" = r(R'').
Case 1 a:u = e: In this case a:v E IT. Because R'
By Lemma 4.1, v d ~ (i , j) = va lp (i , j) = v.

R we have E' 5 E (Lemma4.6).

69

Case 2 u:v # e: In this case u:v E R". Because R" 5 R we have E" 5 E

(Lemma 4.6). Again, by Lemma 4.1 v a l ~ (i , j) = valp(i , j) = v . 0

Proof of theorem 4.2:

",s" direction follows from Lemma 4.8 and Lemma 4.9.

The ''e" direction is equivalent to Theorem 4.1. The

0

4.3 Bcast and Fbcast Implementation

In this section we consider the problem of constructing implementations based on

unordered or FIFO broadcasts (BCAST and FBCAST). We start by investigating

BCAST implementations.

The CBCAST protocol presented in in [BJ87b] implements causal ordering on top

of unordered message channels by a method called "piggybacking". Every broadcast

message is augmented by previous messages it might depend on before the message

is sent out. This way causal ordering can be achieved without multiple phases of

message exchanges. We use this idea to translate our CBCAST implementation kom

Figure 4.1 into equivalent BCAST impfernentation of the same specification. As

in the CBCAST implementation every processor keeps track of d events and thek

partial order. When client i invokes an operation a, processor i not only broadcasts

the event e = u:v, but dso the whole set of events that precede e under "+". An
informa3 description of the BCAST implementation is given in Figure 4.3. In the

rest of this section we wil l translate this implementation into our formal execution

model and show that it is correct under exactly the same conditions for S and LIN
as the CBCAST implementation.

70

Processor i runs the following program:

R := empty;

loop

wait for an invocation by the local client or the receipt of a broadcast;

if client invoked operation a then

pick a value u, such that L I N (R + a:u) E S

R := R + a:u;

BCAST (R) to all processors;

return u to the client;

else if broadcast (R') was received then

R := R U R;
end if

end loop

Figure 4.3: BCAST implementation

71

Given a specification S = (n, I , V, S) and a constructive linearization operator

LIN, we define the implementation YSJIN as follows:

where (I x V)# denotes the set of all runs than can be constructed from events in

I x V. The transition functions q5i and $i are dehed aa follows. When operation a

is invoked at processor i in state R, it adds the event u:v to its run R, and broadcasts

[R + u:v, ?I]:

di(R, u) = (R + u:u, [R + u:u, v]) , where = XS,LIN(R, a)

When processor i receives a message [R,u), it adds d events in IT to its run R,

and the value v is returned to the client:

The next lemma makes a statement about the state of a processor in YSJIN

at time when a processor completes a client request (Le., returns a value to the

client).

Lemma 4.10

Let E be a BCAST execution history and R = R Y ~ , ~ J E) . Let e = u:v =

eventE(i,j) be an event in R and let E[i,I] = invE(i , j) be the corresponding

invocation event in E. Then

statE[i, I] = R[e)

Proof: Let statg[i,j] = r. Proof by induction on the n&r of events in R[e].

Base case: R(e] = {e}. Then u = i n v ~ (i , j) is the first invocation event in E;.

72

Furthermore, there can be no receive events preceding a in Ei; otherwise the corre-

sponding formal events would be in R [e] . Therefore the st.itL of pj before the event

e is qo = 0. Hence r = 0 + e = { e } .

Induction step: consider r with more than one event. Let f E r. Then e’ was

added to r when pi received a message m = r’ with f E r’ from processor 2’. Let

e’ = eventE(i‘,j’) be the invocation that caused p;t to send this message. Then

e’ + e , because rcvs((i’,j’), i) <; invg(i,j). Further more, by induction hypothesis

r‘ = R[e’]; hence f 4 e’. By transitivity f + e . Therefore f E R[e] . This shows

R[e] C r .

Let e’ = eventE(i’,j‘) E R [e] , i.e., e’ --+ e. Then iOv~(i’,j’) + iO~g(i,j). If i’ = i

then e’ was added to r at the invocation inv,y(i,j‘); hence e’ E r. Otherwise, by

definition of “+”(4.1) there must be a receive event rcvs((i”,j”),i) E Ei such that

invE(i’,j’) + inv~(i”,j”) + D rcvE((i”,j”),i) <; inv~(i,j).

Then e’ 4 e“ = eventg(i”,j”). By induction hypothesis the state r’’ of p,tt after

the invocation event i n v ~ (i ” , j ”) is equal to R[e”]. Therefore e’ E r” = msgE(i”,j”).

Therefore, when pj receives the message from pi,, it contains e’ which will then be

added to r . This shows r C R[e]. We conclude that r = R [e] . Q

This lemma is the equivdent of Lemma 4.4 for CBCAST implementations.

Theorem 4.3

If L f N is constructive and satisfies

Vntns R : R locally correct L I N (R) E S.

then YSJIN is a correct BCAST implementation of specification S.

73

Proof:

replaced by Lemma 4.10 0

The proof is the same as for Theorem 4.1 with references to Lemma 4.4

Theorem 4.4

A specification S has a BCAST implementation

3 constructive linearization operator L I N :

Vruns R: R locally correct =+ L I N (R) E S.

Proof: The "e" direction is equivalent to the previous theorem (4.3). The %"

direction follows from theorem 4.2, because every BCAST implementation for S is

also a CBCAST implementation. 0

Corollary 4.2

A specification S has a FBCAST implementation

3 constructive linearization operator L I N :

VrunsR: R l d y c o r r e c t L I N (R) E S .

Proof: The ''-en direction follows from theorem 4.4, because every BCAST im-

plementation for S is also a FBCAST implementation. The ",s" direction follows

from theorem 4.2, because every FBCAST implementation for S is ah0 a CBCAST

implementation. 0

74

4.4 Summary

I

In this chapter we looked at the problem of constructing an implementation for a

formal specification using broadcast protocols that are more efficient than ABCAST.

Let S be the class of all formal specification and let’S,kat be the the subset of s
containing all specifications that have an XBCAST implementation (where XBCAST

stands for ABCAST, CBCAST, . . .). We have shown that s separates into two

distinct subclasses:

We call the second class s- because specifications in this class have implemen-

tations with the following characteristic. When a client invokes an operation it is

always possible to compute the return value immediately horn local information.

This way the client never has to wait for replies from remote sites; information is

propagated asynchronously in the background.

We showed that a spdca t ion S is a member of the class S m if and only

if there elcists a linearization operator for S (Theorem 4.2). This linearization

operator can be used to automatically construct an implementation for S. In the

next chapter we will look at the problem of finding such an operator.

b

Chapter 5

Commutative Specifications

In the previous section we gave a complete characterization for the class of specifica-

tions that have as asynchronous implementation. Unfortunately as we wil l show in

the next section, this class is non-recursive, i.e., in general the question of whether

a specification has an asynchronous implementation is undecidable. This result

shows that we cannot find a general algorithm that would automatically construct

a suitable linearization operator from a given specification. Therefore, we have to

investigate methods that could be applied to certain "simple" subclasses of speci-

fications. In this chapter we explore the possibility of exploiting knowledge about

the commutativity of operations in a spenfication in order to construct linearization

operators.

5.1 Undecidability

Theorem 4.2 reduces the problem of constructing an asynchronous implementation

for a specification S to the problem of finding a linearization operator LIN that

satisfies the condition of Theorem 4.2. Unfortunately this problem is still very hard.

75

76

In fact, the example below shows that the general problem of deciding whether a

specification S has an asynchronous implementation is undecidable.

Consider a system with two processors in which client 1 may invoke a parame-

terless operation a; client 2 may invoke an operation b with one integer parameter.

Define the following class of specifications:

Si = (2, I, V, Si), where

where

hi = {z I z is an encoding of a computation of the

i’th Turing machine, Ti, in which Ti halts}

Lemma 5.1

Sj has an asynchronous implementation if€ the Turing machine Ti never halts.

Proof: Let LIN be a linearization operator that satisfies the condition of Theo-

rem 4.2 for Si. Consider the run

R = a1:o // &):O

77

R

01:o

Table 5.1: Linearization operator for Si

L I N (R)

(01 :O)

a1:o // h(x):O

u1:u // &):u

(ui:O, h (x) : O) for all x E N

I i f u f o or v f 0

u1:o h(x):O

a1:u --+ h (x) : v

h(2):O -+ u1:l (h(z):O, q : 1) for a l l x E N

h (x) : u -+ a1:u

all other R

i fu#Oor v f 1

(ul:O, h(x):O)
I

for all x E N

if u # 0 or u # 0

for some x E N. If LIN is cbnstructive then LIN(0) = 0 E Si implies that there

exists a return d u e u such that LIN(a:u) E Si. The way Si is defined this is

only possible if u = 0. Hence LIN(a1:O) = (u1:O) E Si, and by the same argument

L I N (h (x) : O) = (b(z):O) E Si. Therefore the run R satisfies local conctncss. By

Theorem 4.2 LIN(R) E Si. This is only possible if L f N (R) = (q : O , ~ (z) : O) , and

x 4 hi. But R WM locally correct for any 2. Hence hi = 0, i.e., Ti never halts.

Conversely, assume that Ti neve halts. Define a linearization operator LIN by

Table 5.1. The way Si is defined, a legal history has at most one event at p i and one

event at p z . Consequently a locally correct run can have only two events. Therefore

our table enumerates all possible locally correct runs. It is straight forward to check

78

We start by defining an equivalence relation on histories. Two histories are equiva-

lent if no sequence of future events can distinguish them.

that if hi = 0 then for every row in the table, either the history in the right column

is legal, or the run in the left column violates local correctness. 0

The lemma shows that, if we had a procedure for deciding if Si is simple for a given

i, then we would have solved the halting problem for Turing machines. But since

the halting problem is undecidable we have:

Corollary 5.1

The problem of finding those i for which Si is simple is undecidable.

Fortunately, hardly any problem that arises in real distributed systems has anything

to do with Turing machine computations. In many cases the problem at hand can

be solved despite the undecidability of the general case.

5.2 Commutative Specifications

The difference between an ABCAST execution history and a CBCAST execution his-

tory, is that in the CBCAST case different processors may observe events in different

orders. Therefore, it should be easier to construct a CBCAST implementation if

certain events commute, that is, if their order in a legal history can be reversed

without making the history illegal. We explore this idea in this section.

5.2.1 Commutativity and Ordering Constraints

79

Definition 5.1

Two histories, H and H2 are equivalent (H I H2) iff

V H : H i H E S ++ H 2 H E S .

We can identify the equivalence classes of histories with the states the system can

be in. Dif€erent histories in the same equivalence class represent Merent ways of

reaching the same system state. We use this equivalence relation to distinguish

between read-only events and update events. An event is a read-only event if it does

not change the system state.

Definition 5.2

An event e is read-only ift

V H : H e E S =$ H = " e .

Events that are not read-only are called update events.

Note that whether a particular operation is read-only depends on the outcome (i.e.,

return value) of the operation. Consider, for instance, the PASS operation horn

OUT token passing example. The event Pi(s):ok is an update whereas P;(z) :eH is a

read-only event.

We now turn our attention to specificationti in which update events always com-

mute.

Definition 5.3

Specification S is commutative iff

V H : V a, b update events at different processors:

H a E S A H b E S 3 H a b E S A H ~ E S A H a b z H b a .

Clearly, read-only events always commute with each other, but read-only events

may or may not commute with update events. Consider H a , Hb E S , where a is

read-only and b is an update event. Then Hub E S, otherwise u would not be

read-only. It could be that also Hba E S ; this would mean that the return value in

a is not dected by the update b. Otherwise, if Hba 4 S , then a is affected by b,

i.e., the return value in u is no longer valid if a is ordered after b. We denote this

kind of dependency between two events by the symbol "I+".

Definition 5.4

a is invalidated by b (a w b) 8

3 H : H a E S h H b E S h H b a $ S .

If el w e2 or e2 c--) e1 we also say that there is an ordering constraint between the

two events. From the above discussion it is clear that

Lemma 5.2

If S is commutative then.

u I+ b + a is read-only and b is an update event.

As an example let us consider various different events possible in our token

passing service. The read-only events are

Qi:T, Qi:F, &:el?, &:eR, P;(j) :eH, P ; (j) : eR,

whereas the following are update events:

Note that in the traditional sense, PASS and REQUEST operations do not commute.

81

two events. If th

For example, the history

H - (123:0&, Pi(3):Ok)

would not be legal if we reversed the order of th PASS operation

is invoked before the REQUEST operation it should return ERRORREQUEST instead

of OK. However, according to our definition the token passing specification is com-

mutative. This is because we require two update events o,b to commute only if

both events are legal independent of each other (Ha E S and Hb E S for some H).

Hence the fact that the two events R3:ok and Pl(3):Ok do not commute does not

aEect the commutativity of the specification, because the second event (Pl(3):Ok)

is never legal without the fist. Formally:

-3 H E S: H + R3:ok E S A H + Pi(3):Ok E S
A complete analysis of the token specification shows that any two update events

either commute or have the property that one is never legal without the other (see

Appendix A). Hence the token passing spdca t ion is commutative.

The intuitive reason for defining commutative specifications this way is the fol-

lowing. If there are two updates u,b of this type (b is not legal without u) then

these two events wil l not occur concurrently in an execution. The two events will

dways be r&ted by information flow ((I + b). Because CBCAST preserves "+", a l l

processors win obseme u before b. Therefore it d- not matter whether the two

events commute.

In the token passing spdca t ion there ase two types of ordering constraints:

the first one between certain QUERY and PASS events

\

*\

82

the second one between an unsuccessful PASS event and a request event:

A complete table of dependencies for token passing events is given in the appendix.

5.2.2 Applying Commutativity to Runs

How do the concepts discussed in the previous section help us construct a lineariza-

tion operator for a commutative specification? Our plan is the following:

1. We assume that we can compute the ordering constraints “H” between any

two pairs of events. Given a run R, we construct what we call the closure of

R (K) by adding extra edges to R: For all events a, b E R that are concurrent

in R, we add an edge a + b if the ordering constraint a H b holds.

2. Provided that has no cycles, we define L I N (R) by arbitrarily picking a

linearization H of R. That is, we pick a history H that contains the same

events as R and has a total order that is consistent with “+“and “H”.

Figure 5.1 shows an example of applying this method to a run of the token passing

service. It shows a nm R and its closuie. R is represented by the circles (events) and

solid mows (information flow relation between those events). is given by R plus

the dashed arrows (ordering constraints). We can get a legal history for this run by

ordering all its events in such a way that the partial order given by the solid and

dashed arrows is preserved. The history H given below the diagram shows one pos-

sible linearization. We formalize this method below and show that the linearization

operator defined this way works in the case of commutative specifications.

83

Pi (2):ok Qi:F
.

m.......... .

p3

H = (R2:0k, Q3:F, P1(2):0k, Rs:Ok, Q1:F, q (3) : 0 k , Q3:T)

Figure 5.1: An example run and one of its linearizations

Definition 5.5

The closure x of a run R is the run R augmented by edges between any two

concurrent events a and b, whenever a b, or formally:

a - , b E z e (a + b E R V o / / b E R A o w b)

Definition 5.6

q(R) = {H E S I His a linearization of x)

Recad from Theorem 4.1 that, to show that the CBCAST implementation will be

correct with this lineaxhation operator, we have to prove

LINs(R) E S for every locally correct run R,

where local correctness meam LIN(R(a1) E S for every a E R. As defined above,

LINs, simply picks one possible linearization of x to map a run R to a history.

,

84

Hence in this case local correctness of R implies that every R[a7 (for a in R) has a

legal En-nzation. We call such a run weakZy plausible:

Definition 5.7
-

R is weakly plausible ++ V a E R: 3 legal linearization of R[a] .

-
If not just one, but all linerizations of R[a] are legal, then we call this run strongly

plausible:

Definition 5.8

R is strongly plausible if€

v a E R: 3 legs linearization of

A every linearization of 'R7.f is legal.

The relationship between local correctness under LINs and strong and weak plau-

sibility is the following: Strong plausibility implies local correctness, and local cor-

rectness implies weak plausibility. We wil l show (Lemma 5.4 below) that for com-

mutative specifications these two forms of plausibility are in fact equivalent. Hence

a run is locally correct if and only if it is plausible (strong or weak). Therefore

we only need to show that LINs(R) E S for strongly plausible runs R. The next

lemma wil l allow us to do this.

Lemma 5.3

If R is strongly plausible then every linearization of I? is legal.

Proof: Induction on the number of events in R: Trivially satisfied for empty runs,

because empty histories are always legal. Now assume R non empty:

85

Case 1: If R has a unique maximal element u then R = R[a] , and our claim follows

from Definition 5.8.

Case 2: Let H be an arbitrary linearization of A, let a be the last event in H,

and let 6 # a be a maximal element of R. H can be written as H = H'bHI'u. The

history HI = H'bH" is a linearization of G. By induction hypothesis HI is legal.

Similar, H2 = H'H"a is legal as a linearization of R. Let HI" be equal to H'l,

except that all read-only events are removed from H"'. If b is a read-only event

then

H = H'bH"a H'H''a = Ha E S

and we axe done. Otherwise, b commutes with every event in H"; hence

H'H"'b = - H'bH"' I H'bH'' = Hi E S, and

H'H"'a = H'H"a = H2 E S.

Then H'H% E S , because otherwise there would be an ordering constraint a cs b,

but then a could not be the last event in a linearization of x. Therefore

H = H'bH"a E H'bH"'a E H'H'I'ba E S.

We can now prove that for commutative specifications weak and strong plausibility

are equivalent.

Lemma 5.4

If S is commutative then

(i) Weak and strong plausibility are equivalent.

(ii) Every linearization of B plausible run is equivalent.

86

Proof: (i) We have to show that every weakly plausible run R is also strongly

plausible. Induction on the number 07 events in R: Trivially satisfied for empty

runs, because empty histories are always legal.

Now consider a non-empty, weakly plausible run R. Assume R is not strongly

plausible. Then there must be a left subrun with a legal linearization, say Ha,

such that some other linearization H'a is not legal. These two histories only differ

in the order of events that are concurrent in R[a] . We may transform one into the

other by swapping adjacent concurrent events. Thus we get a sequence of histories

-

Hla, Hza, H3a, ..., Hna, where Hi = H and Hn = HI,

in which Hi and Hi+l M e r only in the order of two adjacent events. If H'a 4 S
then the sequence must contain two consecutive histories,

such that H;a is legal but H;+la is not. Note that H; and H;+l are linearizations

of R' = - a. By induction hypothesis R' is strongly plausible. By Lemma 5.3

H;a and H;+la are both legal. Because specifications are prefix-closed, A b l b and

Abb l must also be legal. If S is commutative then these last two histories are

equivalent, and hence €?ia and Hi+la should either both be legal or both be illegal.

This contradicts our earlier assumption.

(ii) Let H and H' be two linearizations of a plausible run R. We have to show that

H' z H. H and H' Mer in the order of events that are concurrent in R. Again, we

transform one into the other by swapping adjacent concurrent events, leading to a

sequence of histories:

.

HI, H2, H3, . . . , H,,, where Hi = H and Hn = HI.

c-a

87

We C= write Hi and Hi+l

From part (i) we know that R is strongly plausible; hence, by Lemma 5.3, Hi and

Hi+1 are both legal. Therefore their prefixes Ab1 and A b are legal. If one of the

two events (say b l) is a read-only event then

If both events are updates then they must commute. In any case, we have Ablb E

Abbl and therefore Hi 3 Hi+l. By transitivity H E H'. 0

This lemma now allows us to show that the linearization operator we introduced

in this section (Definition 5.6) can be used to construct asynchronous implementa-

tions.

Definition 5.9

A commutative specification S is acyclic iff

V R: R plausible =+ 'K acyclic.

Otherwise we say S is cyclic.

Theorem 5.1

If S is commutative and acyclic then the CBCAST implementation with LINs

as its linearization operator is correct.

Proof: We wi l l show that if every plausible run has an acyclic closure then LINs

is constructive and satisfies t I N s (R) E S for every locally correct run R. The claim

then follows from Theorem 4.2.

88

(i) LINS is constructive: Let R E S,a E I. We have to show that there is a return

value v E V such that LINs(R + a:v) E S . LINs is defined in such a way that the

order of events in H = LINs(R + a:u) is independent of the choice for the return

value u , that is

L I N s (R + a:u) = LINs(R) + mu, for all u such that LINs(R) + u:v E S

Because specifications axe complete (Definition 3.3) LINs(R) E S implies that such

a value always exists.

(G) L I N (R) E S for every locally correct R: Local correctness of R implies that

R is weakly plausible. By Lemma 5.4, R is strongly plausible. By Lemma 5.3,

every linearization of x is legal. If x is acyclic then such a linearization exists, and

“(R) # 0. Hence LINs(R) E S.
-

0

5.2.3 Proving Acyclicity

In Chapter 4 we gave an example of a specification for a simple counter that does

not have a CBCAST implementation. This specification is commutative: READ oper-

ations are read-only and INC operations commute. However, the acyclicity require-

ment in Theorem 5.1 is not satisfied as the example in Figure 5.2 shows. The run

in this figure is plausible; for example

R[Readl : 61 = Inq(1) + Incr(5) + R e d l : 6

has only one lineauization, and this linearization is legal. However the closure of R
has a cycle

InCl(5) + Read1 : 6 H Inc3(3) 4 Read3 : 4 H Incl(5).

As we have already seen in Section 4.2.1, this problem has no asynchronous imple-

ment ation.

1

89

PI

pr

0
0

o................
Reads:4

p 3 ' . . ' ,
Inc3 (3)

Figure 5.2: An example run

In this section we wil l present techniques for deciding whether a s p - d ation

is cyclic or not. We wil l illustrate our techniques by applying them to our token

passing example.

Definition 5.10

Let R be a run with a cycle C in A:

... + e,,,,,,,,,

We call

ei,i -+ ei,2 -t ... + eirni

(for i = 1 ... m) a segment of the cycle.

90

Lemma 5.5

Every cycle in the closure x of a run R has at least two segments.

Proof: Because R itself is acyclic, every cycle in

edge. Consider a cycle with only one segment:

must contain at least one “H”

C = el + e2 ... + e,, I+ el

According to Definition 5.5

concurrent in R. Since el 4 e,, (by transitivity)

0

contains “w” edges only between events that are

cannot contain the edge e,, H e l .

Lemma 5.6

If ?? has a cycle then it also has cycle in which

(i) all segments are concurrent, i.e., a / / b for any two events a and

b in different segments.

every segment has at most two events. (ii)

Proof: (i) Let

91

be a cycle in I?. Assume C has two non-concurrent segments. Then there are two

events a = e;j and b = ekll, such that a + b in R. We can use .Lts ielation to

construct a smaller cycle

The cycle C' has strictly less segments than C, because C' does not contain

which has been replaced by the "short cut" u + b. We repeat this process until the

resulting cycle no longer has non-concurrent segments. Lemma 5.5 ensures that the

process need only be repeated a finite number of times.

(ii) Consider a segment

that has more than two events. Because of the transitivity of "+" this segment caa

be replaced by the shorter segment

92

This lemma expresses the following intuitive idea: The CBCAST implementation

breaks down if two Merent processors take mutually inconsistent actions without

knowing about the others action. The inconsistency of these actions is expressed as

a cycle in a run. The fact that the two processgrs do not know about each other’s

actions is expressed by the corresponding events being concurrent.

Specifications that are acyclic have the property that certain types of events

which are part of ordering constraints can never occur concurrently in a plausible

run. We call such events mutually ezclusive.

Definition 5.11

Two events u and b are mutually exclusive under S if

VR: R plausible 1 a/ /b .

We prove a specification to be acyclic by showing that any cycle in the closure of a

plausible run would contain mutually exclusive events in Merent segments of the

cycle. This would force all cycles to have non-concurrent segments. However, this

contradicts Lemma 5.6, which we just proved.

Let us return to our token passing example. We will now prove that every

plausible run of the token passing specification has an acyclic closure.

Theorem 5.2

Consider the token passing example. Two successful PASS events of the form

a = Pi(z):ok, and b = Pj(y):ok, for i # j

are mutually exclusive.

93

This claim is very intuitive. If two such events were not mutually exclusive there

could be two processors holding the token at the same time, violating the token

passing specification.

Proofi Consider a run R with two concurrent pass events u = P i (s) : O l c and

b = Pj(y):ok. We show that R cannot be plausible by induction on the number of

events in R.

Base case: R contains no events other than u and b. Assume R is plausible. Then

= b must have legal linearizations Ha = (u) and Hb = (b)

respectively. Because processor 1 is the initial token holder Ha = (Pi (2) :Ok) can

only be legal if i = 1. For the same reason Hb is only legal if 3 = 1. But i = j

contradicts the assumption that u and b are concurrent.

= u and

For the induction step consider R with more than two events. Assume R is plausible.

Then and have legal linearizations Ha and Hb respectively. Let R' =

R[a] n R[b]. By induction hypothesis R[a), R(b], as well as R' do not have concurrent

pass events. Therefore we can define the following events:

c = Pr(z):ok

U' = Pi(z):o&

= Pj(y):Ok

The last pass event in IT.

The first pass event after c in R[u].

The &-st pass event after c in R[b].

(where possibly, but not necessarily a' = a and/or b' = b.) Note that a'//V because

otherwise either a' or b' would be in R'. Then the histories Ha and Hb have the

form

94

with no pass events between c and a' in Ha and between c and b' in Hb. Then Ha
can only be legal if i = z, otherwise the operation P;(z) should return an error code

e H . For the same re-n Hb is only legal if j = z. Hence i = j , i.e., a' and b' are

events at the same processor. But that contradicts a'//b'. 0

Not only pass operations but any two events that indicate that the caller is the

current token holder are mutually exclusive:

Theorem 5.3

Any two events of the following types are mutually exclusive:

Qj:T, &:ell , P;(z):ok, or Pi(z):eR

The proof is very similar to the one for Theorem 5.2; it is carried out in Appendix A.

Now let us consider the ordering constraints occurring in the token passing spec-

ification. These constraints are of one of the following three types (see Appendix A):

(I) Qj:F c) P'(i):ok

(11) &:eR c) Pj(i):ok

(111) P;(j):eR H Rj:oic

Theorem 5.4

The token passing specification is acyclic.

Proof: Assume not. Let R be a plausible run that contains a cycle. By Lemma 5.6

we may assume that the cycle only has concurrent segments. Consider the ordering

constraint edges ("H") in such a cycle. The cycle cannot contain more than one

edge of type (111), otherwise there would be two pass events in different segments

of the cycle, which is not possible since segments are concurrent and pass events

-

95

are mutually exclusive. For the same reason there cannot be more than one edge of

type (I) or (11) in the cycle. By Lemma 5.5 the cycle has at least two ‘‘I-+’’ edges;

hence it must have exactly one edge of type (1x1) and one of type (I) or (11). Hence

the cycle is of the following form:

C = Pj(i):ok + Ph(2):eR

H R1:ok -, e

H Pj(i):ok

where either e = Qi:F or e = &:eR.

The flrst segment of the cycle consists of the two pass events a = Pj(i):ok and

b = &(l):eR. If R is plausible than has a legal linearization Hb. Because

u -, b, u is in R(b] and therefore also in Hb. Hence & has the form

Notice that the return value eR of the last event (the pass operation failed because

processor 1 did not request the token) indicates that processor k is holding the token

at that time. Therefore Hb must contain a pass event c = Pi(z):ok between the two

events a and b in Hb; otherwise processor i would still be holding the token at the

end of Hb. From Theorem 5.3 we know that c cannot be concurrent with a or b;

hence

Now consider the event e in the second segment of the cycle. Events c and e cannot

be concurrent, because the operations were both invoked at processor i. If c + e

96

we have a + c -+ e; hence a -+ e. If e + c we have e + c -+ b; hence e + b. In

h:~. cases the two segments of the cycle would not be concurrent, contradicting

Lemma 5.6. c1

Let us summaxize OUT techniques for deciding whether a specification is acyclic.

Lemma 5.6 allows us to restrict our search for cycles to certain simple types of cycles

with the following three properties:

1. The cycle has at least two segments, i.e., it contains at least two “c-)” edges.

2. Every segment has exactly two events.

3. All segments are mutually concurrent.

Because of properties 1 and 3, such a cycle must have concurrent events that occur

in an ordering constraint. Therefore we are successful if we can show that events

that are involved in ordering constraints are mutually exclusive, i.e., do not occur

concurrently in a plausible run.

5.3 Mixed Implementations

The techniques we outlined in the previous sections are still useful if a specification is

cyclic or even if it is not strictly commutative. In the case where these techniques fail

to produce a correct asynchronous implementation for a specification S, it is often

not necessary to resort to an implementation that is based on atomic broadcasts

only. Instead, it is often possible to construct a mized implementation in which most

events are propagated with CBCAST and ABCAST is used only for certain “critical”

events. For example, consider a service for managing shared data. If clients are

required to explicitly acquire locks before modifying the data, then only LOCK and

I

97

UNLOCK operations need to be globally ordered. Once a lock is granted the actual

updatas may be propagated asynchronously [JB86]. The techniques developed in

the previous sections of this chapter allow us to identlfy what events are “critical”:

events that do not commute and events that occur in cycles.

In this section we wil l outline how the results from this and the preceding chap-

ter can be generalized to apply to such mixed implementations. We modify our

definition of implementation by adding a parameter A defining the set of “criti-

cal ” operations that must be propagated by an atomic broadcast. That is, an

implementation is now a 9-tuple:

(n, I ,V,M,Q,qo,O, * , A) , where A C I.

We also need a new ordering axiom that defines mixed implementation histones:

Definition 5.12

Ordering axiom for mixed implementations:

(i) Causal ordering:

invE(i, j) 3 inv&rn) =+ V k : rcvE((i , j) ,k) < k rcvg((l,m),k)

(iia) VinvE(i , j) E A: (Global ordering)

V i ’ , j ’ : V k , 1 :

rcv&i,j), k) < k r w ((i ’ , j ’) , k) * rWE((i , j) , 2) < I r c v E ((w) , 2)

(iib) V i n v ~ (i , j) E I - A: (Immediate local delivery)

V i , j : - 3 a : invE(i, j) < k u <) rcvE((i,j),i)

The &om requires that all message delivery must be consistent with “+” (i),

that all message delivery must be globally ordered with respect to messages sent by

atomic broadcast (iia), and that messages sent by CBCAST are immediately delivered

1

98

locally. Notice that if A = 8 (all events propagated by CBCAST) this definition is

equivaled . :ue CBCAST ordering axiom (Definition 4.5).

A mixed implementation is constructed the same way as a CBCAST implemen-

tation, based on a linearization function. However, the correctness condition can

be relaxed, because certain tgpes of runs cannot occur in an execution of a mixed

implementation. We formalize this below:

Definition 5.13

A run R is called permissible under A if events with invocations in A are

globally ordered with respect to all other events:

V e E A x V : Ve’ E R: 1 e//e’.

Lemma 5.7

Let Y be a mixed implementation and let E be a mixed execution history.

Then &(E) is permissible.

Proof: Follows immediately from Definition 5.12 (iia). 0

Because of this property of mixed implementation, the correctness condition that

we established for CBCAST implementation (Theorem 4.1) needs to be satisfied only

for permissible runs:

Theorem 5.5

If LIN is constructive and satisfies

tl permissible runs R : R locally correct =+ LIN(R) E S.

then YS,JIN is a correct mixed implementation of specification S.

1

99

Proof: We show that for every mixed execution history E, the history H =

L I N (R y (E)) is legal and satisfies the correctness and liveness conditions of Defini-

tion 3.12.

Let E be a mixed execution history, and let R = R y (E) . By Lemma 4.5, R is
locally correct. By Lemma 5.7, R is also permissible. Therefore, by assumption,

the history H = LIN(R) is legal. The rest of the proof is exactIy the same as the

proof of Theorem 4.1 on page 64. 0

This theorem also allows us to generalize the results of Section 5.2.2.

Corollary 5.2

If a commutative specification S satisfies the following condition

V permissible R: R plausible + acyclic,

then the mixed implementation under LINs (Definition 5.6) is correct.

In the previous section we demonstrated how to prove that a specification is

acyclic by showing that events that could form a cycle do not occur concurrently

in a plausible run (i.e., are mutually exclusive). Events that could form a cycle but

are not mutually exclusive cause this technique to fail. However, by Corollary 5.2,

a mixed implementation will be correct if such events are propagated by atomic

broadcast, ensuring that they do not occur concurrently in a permissible run.

In a similar way it is posible to extend our results to mixed implementations

in which events that are! not commutative are propagated by atomic broadcast.

100

5.4 Summary

In this chapter we saw lhat in general, the question of whther a linearization op-

erator exists for a given specification is undecidable. Hence there are no general

methods for finding such operators. Therefore, we considered a restricted class

of specifications which we call commutative. We show how to exploit knowledge

about the commutativity of events to construct linearization operators for specifi-

cations in this class. These methods are useful for developing efficient asynchronous

implementations for a broad range of practical problems.

Chapter 6

Failures

In our treatment so far we have assumed a distributed system that is perfectly

reliable. However, one of the main uses of broadcast protocols is in the design of

fault-tolerant programs. In this chapter we will address the problems that arise if

we take processor failures into account.

6.1 Integrating Failures into the Model

In chapters 3 and 4 we showed how to take a formal specification of a centralized

service and use broadcast protocols to construct a distributed implementation of

this service. Now we want to make the distributed service fault tolerant. What we

mean by "fault tolerant" is that even if some processors fail, the behavior of the

distributed service should be indistinguishable from a perfectly reliable centralized

server. As we will see in this section we achieve this goal simply by replacing the

broadcast protocols used in the implementations constructed in Chapters 3 and 4

by reliable versions of the same protocol. In other words, if the broadcast protocol

used in an implementation provides atomic message delivery, the implementations

101

102

will automatically be fault tolerant.

To be more precise, we must failures to our execution model. An execu-

tion history may now contain failure events in addition to invocation and receive

events. We modify our definition of execution histories (definitions 3.4 and 3.7)

accordingly:

Definition 6.1

An unreliable execution history E = (E l , . . . , En) is a collection of ordered sets

of invocation, receive, and failure events,

E E [(I u N2 u {FAIL})* In,
satisfying the following conditions:

(i) Reliable message delivery:

Vinv,y(i, j) : V k: 3 unique receive event (i , j) E Ek
(ii) Sequential invocation:

V i , j : rcvE((i , j) , i) <i inv,y(i, j + 1)
(iii) Monotonicity of time:

D D D D 1 3 e 1 , ..., e , E E : el + e2 + ...
(iv) No invocation events after a failure:

V k: FAIL E E, # 3 invocation event u E Ek : a > k FAIL

e , + e l .

Conditions (i - iii) are exactly the same as in definitions 3.4 and 3.7. For notational

convenience we pretend that a processor that has crashed still receives broadcasts.

Hence a failure is simply an event after which a processor stops sending any new

messages (condition (iv)). Figure 6.1 illustrates such an execution history. Notice

that this model describes an implementation based on reliable broadcast protocols,

103

Pl

P2

P3

FAIL
P4 -

104

#(s ta tg[i , j - l] , u) if E[i , j] = u is an invocation event

$f(stat~[i,j-l],m) if E [i , j] = (k, I) is a receive event, where

m = @(statE[k,inumE(k, I) - l] , inv~(k , I))

because condition (i) in Definition 6.1 ensures atomic message delivery.

The definition of an implementation as an 8- * : Je (n, I, V, M , Q, qo, a,*) remains

unchanged, but we have to speclfy the effect of failure events. We do so by defining

the state of a processor after a failure to be undefined (I), that is we modify the

definition of statE[i,j] as follows:

Definition 6.2

statE(i, j]

i f j = O

if E[i , j] = FAIL

if statg[i , j -I] = I

The definitions of msgE(i, j) , v a Z ~ (i , j) , eventg(i,j), H[E,i] remain the same as

before (Definition 3.11). In aa unreliable system we define an implementation to be

correct if all operutiodsites cannot distinguish its behavior from that of a perfectly

reliable centralized service:

Definition 6.3

Y is a correct XBCAST-implementation of specification s = (n, I , v, s) iff:
V XBCAST execution history E : 3 H E S :

Correctness: V i :

Liveness: V i, j, k :

if FAIL 4 Ei then H li = H[E, i]

rcvE((i , j) , k) < k inv~(k , I) * eventg(i,j) <H events(k, I)

105

The fact that in our execution model message delivery is reliable ensures that

processors tbz: II not fail are not affected by the failure of other processors. This
is expressed in the following lemma:

Lemma 6.1

Let E be an execution history with failure events, and let E' be identical to E

except that all failure events are deleted from it. Then

(i) E' is an well formed execution history.

(ii) V i : if Ei does not contain a failure event then H [E , i] = H[E', i] .

Proof: (i) As an unreliable execution history, E satisfies condition (i - iii) in

Dehition 6.1. Condition (i) ensures that E' is an execution sequence according

to Definition 3.4; conditions (ii, iii) ensure that this execution sequence is a well

formed execution history (Definition 3.7).

(ii) By construction, all invocations in H[E, i] and H[E', i] are identical. Hence we

only have to show that all return values are also the same. Consider the formal

event e = u:v = eventE(i,j) E H [E , i] . Then u = i nv~(i , j) and v = vd,g(i,j).

Let b = E[i , rnumE((i , j) , i) - I] be the corresponding receive event. Recall that

according to Lemma 4.1 valE(i, j) only depends on events that precede b under "+" .
Hence we are done if we can show that E[b] = E'[b]. Assume that E[b] # E'[b].

This is only possible if E[b] contains a failure event f. Because a processor does

not send any messages after it fails, the only events related to a faiture event f are

receive events after f at the same processor. Hence f E E[b] implies that f E Ei

contradicting our assumption that E; does not contain a failure event. 0

106

Theorem 6.1

Every correct implementation of a specification S is &o fault-tolerant.

Proot: Let Y be a correct implementation of S and let E be an unreliable execution

history. Let E' be E with failure events deleted. Because Y is correct, there exists a

history H E S that satisfies the correctness and liveness conditions with respect to

E'. By Lemma 6.1 H[E, i] = H[E', i] for all Ei with no failure events. Therefore H

will also satisfy the correctness and liveness conditions with respect to E as stated

in Dehition 6.3. 0

6.2 Client Failures

A processor failure not only dects a component of a distributed service, but also

the client running at that site. The designer of a distributed service may want to

explicitly spe+ a particular action to be taken if a client fails. In the token passing

service, for example, it is desirable that the token is not lost if its current holder

fails. Hence, we would want to specrfy the behavior of the token passing service in

such a way that the token is automatically transferred to some other client in the

case of a failure.

This problem can be solve within our formalism by treating a client failure like

any other operation invoked by a client. In other words, the spdca t ion is designed

as if a client invoked a special operation U ~ ~ ~ ~ ~ " just before its processor fails. If

the distributed system provides a means of detecting failures, such a specification

can be implemented in the same way as specifications that do not contain client

failures. For example, the ISIS system provides a failure detection and notification

107

mechanism that makes the failure of a processor look as if the processor sent out a

broadcast announcing its de-Lh just before the failure [BJ87b,BJSS86].

6.3 Summary

In this chapter we showed that reliable broadcast protocols can be used to construct

a fault-tolerant distributed service. This approach is very similaz to the method of

replicated state machines described by Schneider in [Sch86].

Chapter 7

Conclusion

7.1 Summary and Discussion

We considered a variety of reliable broadcast protocols that M e r in the form of

message ordering they provide: atomic broadcast (ABCAST), causal broadcast (CB-

CAST), FIFO broadcast (FBCAST), and unordered broadcast (BCAST). The stronger

the ordering property of the protocol the more costly its implementation. There is a

fundamental difference between atomic broadcast and the other forms of broadcasts.

An atomic broadcast protocols requires at least two phases of message exchange,

whereas CBCAST, FBCAST, and BCAST can be implemented as one-phase protocols.

Furthermore, in an unreliable system in which processors may experience failures

ABCAST can only be implemented if failures are detectable or if an upper bound on

message delays is known. CBCAST, FBCAST, and BCAST, on the other hand, can be

implemented reliably in a completely asynchronous system.

Our results kom Chapter 4 show that this fundamental difference is also reflected

in the classes of problems that can be solved with a particular broadcast protocol.

We showed that the class of all formal specification separates into two distinct

108

109

subclasses sm, and s - S O S ~ C , which correspond to specifications that have

an knplementation based on CBCAST, FBCAST, or BCAST, and specifications that

require the global ordering that ABCAST provides.

For specifications in s-, an implementation can be expressed in a canon-

ical form based on a linearization function for that speafication. Although the

existence of such a function in general is undecidable, it is possible to analyze com-

mutativity and dependencies between events to find linearization functions for a

subclass of s-. The methodology introduced in Chapter 5 allows identification

of conflicting events and establishes conditions that allow the construction of an

asynchronous implementation. Specifications for which this method is successful

could be characterized as "d-epnchronizing", that is the spdca t ion itself pre-

vents certain conflicting events from occurring concurrently. Even if our techniques

fail to yield a completely aspnchronous implementation they are still useful for con-

structing a,mixed implementation, as they identify a subset of events that need to

be propagated by atomic broadcast.

7.2 Future work

It should be possible to extend the results from Chapter 5. Notice that the condi-

tions presented in that chapter are sufficient but not necessary for the existence of

an aspchronous implementation. This naturally raises the question of whether the

methodology can be generalized to cover a larger set of specifications. For example,

there are non-commutative specifications that have asynchronous implementations.

Examples are specifications in which only operations invoked by one particular pro-

cessor are sensitive to the order of the events. For example, one can modify the

token passing specification to require token requests to be serviced in FIFO order.

110

Such a specification is not commutative, because token requests no longer commute.

However, because only the current token holder decides which processor receives thL

token next, it is not necessary that token requests are globally ordered.

Another interesting problem is to generalize our formalism to allow implemen-

tations that exhibit “temporary inconsistencies”. In Chapter 4 we showed ‘that

the problem of implementing a shared counter does not have an asynchronous so-

lution. However, for certain types of implementations it might be acceptable if a

read operations returns the s u m of only a subset of previous increments, as long

every increment is eventudly reflected in all future reads. The formalism presented

in Chapter 3 allows us to relax the shared counter specification to allow reads to

return partial sums. However, because we need specifications to be prefix-closed, we

cannot express the requirement that increments are not ignored forever. One way

of solving this problem might be to define specifications as sets of partially ordered

sets of events (i.e., runs) rather then sets of histories. One could then specify a

shared counter in such a way that a read operation is allowed to ignore an incre-

ment only if it is concurrent to the read. The drawback of this approach is that

specifications no longer have the intuitive meaning of ensuring that the distributed

program behaves behaves like a centralized server.

Appendix A

An Example: Token Passing

A.1 Formal Specification

We want to implement a distributed token passing algorithm. The client interface

consists of the following three operations:

QUERY(): BOOLEAN
- returns TRUE af the caller is the current token holder.

0 PASS(X: CLIENTID): RETURNCODE

- passes the token the curnnt token holder to client z.

This operation returns one of three values: OK, ERRORHOLDER (the caller is

not the current token holder), or ERRORREQUEST (client x did not request

the token).

REQUEST(): RETURNCODE

- request the token.

111

112

This operation returns one of three values: OK, ERRORHOLDER (the caller

is already holding the token), or ERRORREQUEST (the caller has already re-

quested the token).

We use the following abbreviated notation for operations and return values:

Q QUERY

P PASS

R REQUEST

T TRUE

F FALSE

eH ERRORHOLDER

eR ERRORREQUEST

Given a formal history H, we identdy the current token holder, CurHoZd(H), to be

the client that token was last passed to, where client 1 is the initial holder of the

token:

1 if H does not contain any successful PASS operations.

if the last successful PASS event in H has
the form Pj(z):ok, for some i .

We ca,n further d e h e a predicate that tell us whether there is a pending token

request by a particular client:

CurHoZd(H) = 2

TRUE if R,:ok E H and if H does not contain

an event P;(s):ok after this request.

FALSE otherwise.

PcndRcq(H, 2) =

A formal specification S for our token passing example is given by the following

recursive definition:

113

1. 0 € S

2. V H E S: let z = CurHold(H):

(i) V y # z:

and

(ii) V j :

(iii) V y # z :

(iv) V y f z :

H + Q v : F E S.

H + Q , : T E S.
if PendReq(H, j) then H + Pz(j):ok E S.

if -PendReq(H, j) then H + Pr(j) :eR E S.

V j : H + Pv(j):eH E S.

if -PendReq(H, y) then H + h : o k E S.

if PendReq(H, y) then H + 4 : e R E S.

(v) H + & : e H E S.

3. S is the smdest set satisfymg the above.

The specification S says that the QUERY should always return TRUE to the current

token holder, and that only the current holder is allowed to pass the token to any

other client. This spdca t ion describes an idealized token passing system, in the

sense that passing a token is supposed to be an instantaneous event: A PASS oper-

ation takes &mt immediately, because any operation following a PASS is required

to reflect the new token holder. Fortunately our definition of implementation cor-

rectness only requires that the behavior of the system is indistinguishable from this

idealized behavior. To illuatrate this point, consider a system with only two pro-

cessors. A PASS operation may be! implemented by simply sending a message from

the previoua to the new token holder. An external observer may see the following

history:

114

Obviously the pass message was delayed a little so that only the second QUERY

operation returned client 2 as the current token holder. Although H Q S we still

consider the implementation correct, because, to the clients, H is indistinguishable

kom the legal history

H = (Q2:F7 P1(2), Q2:T).

A.2 Commutativity and Ordering Constraints

Next we apply our theory from Chapter 5 to show that the token passing example

indeed has a CBCAST implementation. We start by computing a table of dependen-

cies (Table A.l) between events. There are two pairs of events which are completely

interchangeable and need not be considered separately:

Ri:eH Qi:T, and

P;(z):eH Qi:F.

For this reason these events share the same row and column in Table A.l.

The table allows us to venfy that the token passing specification is commutative.

There are two types of update events:

According to Definition 5.3 we have to show that

V H : V a, b update events at different processors:

H U E S A H b E S =+ H a b E S A H ~ u E S A H a b n H b a .

Table A.l shows that for any two such update events a and b, either the two events

commute (o entry in the table), or there is no H such that Ha and Hb are both

legal (x i n the table).

Qi : T
&:eH

X

Qj : F

Pj(2): e H

0

Pi(.) : eR x

& : ok 0

115

Table A.l: Dependencies between events in the token passing specification

Pj(3) : eR Rj : ok Qj : T

Rj:eH

Qj F

Pj(Y):eH

0

Rj : eR

0 X 0 X

0 0 0 H y = 2

O Y f i

w y = ;

0 Y f i
I o R, : eR 0 0

~

0 0

0 X X x x = j

0 = # j

0 0 0 x y = i

0 Y f i

0

0 X x z = j

0 = # I

X 0

0 The events commute, i.e., Ha I Hb, for all H.

X The events are incompatible, i.e., there does not exist any history
H such that Ho and Hb would both be legal.

H There is an ordering constraint between the two events (Defini-
tion 5.4).

116

A.3 Mutually Exclusive Events

Next, we need to show that every plausible run has an acyclic closure. We exploit

the fact that certain types of events are mutually exclusive. These are all events

that indicate that its caller is currently holding the token.

Definition A . l

Bi = {Qi : T,&:eH} U {P,(i):ok I for all X } u {Pi (z) :eR I for all z}

Lemma A . l

The set Bi contains all events that -2dicate that processor i is holding the token

when the event occurs, Le.,

U E Bi A H U E S =+ CurHold(H)=i.

Proot: Follows immediately from the token passing specification and the definition

of Bi. 0

Lemma A.2

Let B = U Bi.
i=l ... n

All events in B are mutually exclusive.

The proof of a restricted form of this lemma was already presented in Section 5.2.3.

Proof: Consider a run plausible run R with two events a E Bi and b E Bj. We

have to show that u and b cannot be concurrent. We do this by induction on the

number of events in R.

Base case: R contains no events other than u and b. Because R is plausible R[u] = u
-

117

and RIbJ = b have legal hearkations Ha = (u) and Ht, = (b) respectively. By

Lemma A.l, Ha = (a) E S and u E Bi imply that i = CurHold(0) = 1. For the

same reason j = CurHold(0) = 1. Therefore u, b E B1. Hence u and b cannot be

concurrent, because all events in B1 correspond to operations invoked by the same

processor (processor 1).

For the induction step consider R with more than two events. Because R is plausible

have legal linearizations Ha and Hb respectively. Let R' = R[u] n R[b].

By induction hypothesis R[a],R[b], as well as R do not contain any concurrent

events from the set B. Therefore we can define the following events:

and

c = q (t) : o k

a' = Pi(s):ok

b' = Pj(y):ok

The last event in IT n B.

The first event after c in R[a] n B.

The first event after c in R[b] n B.

(where possibly, but not necessarily, a' = a or W = b). Note that a'//b' because

otherwise either a' or b' would be in R'. Then the histories Ha and Ht, have the

form

with no PaSS events between c and a' in Ha and between c and b' in Hb. Then Ha

can only be legal if i = t, otherwise the operation Pi(z) should return an error code

eH. For the same reamn Hb is only legal if j = z . Hence i = i, Le., a' and b' axe

events at the same processor. But that contradicts a'//b'. 0

118

A.4 Ac yclicit y

We already proved the token passing specification to be acyclic in Section 5.2.3 of

Chapter 5. For the sake of completeness we repeat this proof here.

Theorem A. l

The token passing specification is acyclic.

Proot: Assume not. Let R be a plausible run that contains a cycle. By Lemma 5.6

we may assume that the cycle only has concurrent segments. Consider the ordering

constraint edges (“w”) in such a cycle. The cycle cannot contain more than one

edge of type (III), otherwise there would be two pass events in different segments

of the cycle, which is not possible since segments are concurrent and pass events

are mutually exclusive. For the same reason there cannot be more than one edge of

type (I) or (11) in the cycle. By Lemma 5.5 the cycle has at least two “H’’ edges;

hence it must have exactly one edge of type (In) and one of type (I) or (11). Hence

the cycle is of the following form:

C = Pj(i):ok --+ Pk(2):eR

H RI:ok --.) e

H Pj(i):ok

where either e = Qi:F or e = R,:eR.

The first segment of the cycle consists of the two pass events a = Pj(i):ok and

b = Pk(2):eR. If R is plausible than R[b] has legal linearization Hb. Because u -+ b,

u is in R[b] and therefore also in Hb. Hence Hb has the form

-

119

Notice that the return value eR of the last event (the pass operation failed because

processor I did not request the token) indicates that processor k is holding the token

at that time. Therefore Hb must contain a pass event c = Pj(z):ok between the two

events a and b in Hb; otherwise processor i would still be holding the token at the

end of Hb. From Theorem 5.3 we know that c cannot be concurrent with u or b;

hence

a - + c + b .

Now consider the event e in the second segment of the cycle. Events c and e cannot

be concurrent, because the operations were both invoked at processor i. If c 4 e

we have u 4 c b; hence e -+ b. In

both cases the two segments of the cycle would not be concurrent, contradicting

Lemma 5.6. 0

e; hence u -+ e. If e -+ c we have e + c

.

Appendix B

Invocation-Completion Model

In our formal specifications we consider the execution of an operation to be one

single event. This does not allow us to model operations that explicitly wait for

another client to take some action (;.e., invoke another operation). Such wait-

semantics operations can be modeled if we treat the invocation and the completion

of an operation as two separate events.

We mgue that it is not necessary to do this: A specification with separate invo-

cation and completion events can be transformed into an equivalent one-operation-

one-event specification in which wait-semantics operations are implemented by a

busy wait. This works as follows:

Say spedcation S has an operation A with separate events for the invocation

and completion of A (INVOKEA(. . .) and COMPLETEA:~). We transform S into S'

by splitting A into two parts:

STARTA() and QUERYAO.

We then make the following two modifications to S:

120

121

1. Replace all invocation events INVOKEA(. . .) by an event STARTA(. . .) :IYIL.

Replace all completion events COMPLETEA:~ by an event QuERYA():u.

2. Add additional histories to S that are obtained by inserting extra QUERYA

events to existing histories: Insert an event QUERYA():PENDING anywhere be-

tween STARTA(. . .):NIL and QuERYA():v; insert an event QUERYA():DONE

anywhere after QUERYA():U but before the next STARTA(. . .):NIL.

Then the dec t of a dent invoking A in S is the same as the client invoking STARTA

in S' and then doing a busy wait

while QUERYA() = PENDING do nothing.

With this transformation, an implementation that satisfies the modified specifica-

tion S' will be equivalent to one that satisfies the original specification S.

Bibliography

[BD87] 0. Babaogu and R. Drummond. (Almost) no cost clock synchroniza-
tion. In Proceedings of the Seventeenth International Symposium on Fault-
Tolerant Computing, pages 42-47, Pittsburgh, Pennsylvania, July 1987.

[BG81] P. Bernstein and N. Goodman. Concurrency control in distributed
database systems. Computing Sumeys, 13(2):18$221, June 1981.

[BJ87a] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed
systems. In Eleventh Symposium on Operating System Principles, pages
123-138. ACM SIGOPS, November 1987.

[BJ87b] K. Birman and T. Joseph. Reliable communication in the presence of
failures. ACM Ibansactions on Computer Systems, 5(1):47-76, February
1987.

[BJS88] K. Birman, T. Joseph, and F. Schmuck. ISIS - A Distributed Pro-
gramming Environment, User’s Guide and Reference Manual. The ISIS
Project, Dept. of Computer Science, Cornell University, Ithaca, NY
14853, March 1988.

K. Birman, T. Joseph, F. Schmuck, and P. Stephenson. Programming
with shared bulletin boards in asynchronous distributed systems. Tech-
nical Report TR 86-772, Cornell University, Dept. of Computer Science,
Upson Hall, Ithaca, NY 14853, August 1986. Revised December 1986.

[BJSS86]

[CASD84] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From
simple message di&sion to Byzantine agreement. Technical Report RJ
4540 (48668), IBM, October 1984.

a

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Trans-
actions on Computer Systems, 2(3):251-273, August 1984.

122

.

123

[FLPSS]

[Had841

[JB86]

[Lam781

[LLS6]

(LMSSS]

[LSPSZ]

[SA851

[Sch85)

[Sch86]

M. Fisher, N. Lynch, and M. Paterson. hposibility of distributed con-
sensus with one faulty process. Journd of the ACM, 32(2):371382, April
1985.

V. Hsdzilacos. Issues of fault tolerance in concurrent computatzons.
Ph.D. dissertation, Harvard University, June 1984. Available as Techni-
cal Report 11-84.

T. Joseph and K. Birman. LOW coat management of replicated data
in fault-tolerant distributed systems. ACM Tmwactions on Computet
System, 4(1):!%70, February 1986.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. CACM, 21(7):558-565, July 1978.

B. Liskov and R. Ladin. Highly-available distributed services and fault-
tolerant distributed garbage collection. In Proceedings ofthe Fifth Annual
ACM Symposium on Principles of Distributed Computing, volume ACM
0-89791-198-9/86/0800-0029, pages 29-39. ACM SIGACT-SIGOPS, Au-
gust 1986.

L. Lamport and P. Melliar-Smith. Synchronizing clocks in the presence
of faults. Journd of the ACM, 32(1):52-78, January 1985.

L. Lamport, R Shoetak, and M. P a w . The Byzantine Generals
problem. ACM lhnmdioru on Progmmming Languages and Systems,
4(3):38241, July 1982.

C. Papadimitriou. Serializability of concurrent database updates. Jour-
d of the ACM, 26(4):631453, October 1979.

L. Pekrson. Presuving context information in an IPC abstraction. In
Procccdingr of the Sizth Symposium on Reliability in Distributed Software
and Databw Sydtms, pages 22-31, March 1987.

F. B. Schneider and B. Alpern. Defining liveaess. Infonnosion Processing
Learn, 21(4):181-185, October 1985.

F. Schmuck. Software clocks and the order of events in a distributed
system. Unpublished manuscript, November 1985.

F. B. Schneider. The state machine approach: A tutorial. Technical Re-
port TR 86-600, Cornd University, Dept. of Computer Science, Upson
Hall, Ithaca, NY 14853, December 1986.

124

[SD83] R. Strong and D. Dolev. Byzantine agreement. In Proceedings of cOM-
PCON Spring 8s. 1983. San Francisco 1983.

[SSSS] R. D. Schlichting and F. B. Schneider. Fail-stop piocessors: An approach
to designing fault-tolerant computing systems. ACM Transactions on
Computing System, l(3):222-238, 1983.

T. K. Srikanth and Sam Toueg. Optimal clock synchronization. Journal
of the ACM, 34(3):626-645, July 1987.

[ST871

[Tan811 A. Tanenbaum. Computer Networks. Prentice-Hall Software Serires.
Prentice-Hall, Inc., Englewood C W , N.J. 07632, 1981.

