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Foreword

The United States is a world leader in aviation and space technology. The role of the National
Aeronautics and Space Administration is to provide leadership through advances in science and
technology for both aeronautics and space.

The NASA Lewis Research Center has maintained a strong research program in aeronautics,
beginning in 1942. During the period from the late 1940’s to the late 1960’s, the helicopter came
into wide use in the military and civil arenas. In 1970, the United States Army and NASA began
a joint effort at Lewis which focused on helicopter propulsion technology. A significant portion of
that program is devoted to advanced transmission technology. The advanced transmission technology
program at the Lewis Research Center is augmented through the use of contracts and grants with
U.S. industry and universities. Working at the University of Illinois at Chicago, under NASA/Army
sponsorship, Dr. Faydor L. Litvin has developed many new and important ideas for the mathematical
formulation and theoretical understanding of spur, helical, and spiral bevel gears—gears that are of
very great importance to the transfer of power from engine to rotor blades in modern helicopters.

Dr. Faydor L. Litvin has significantly contributed to the goals of the NASA/Army transmission
program by his accomplishments in the science of gearing and his authorship of this book. His work
has provided a mathematical basis which improves our understanding of bevel gear geometry and
the manufacturing procedure. His work has provided solutions to reduce gear noise and to enable
a smoother transfer of power in helicopters. In summary, he has directly contributed to advance the
state of the art in helicopter power transmission technology, and has made a significant contribution
to NASA’s research projects and to the public good.

This book explains the most general problems of the theory of gearing, but it represents only a
part of Dr. Litvin's accomplishments. His research contributions have improved (1) almost all types
of gearing including spur, helical, hypoid, bevel, worm, and noncircular gears; (2) tools for gear
manufacture; and (3) computer programs for simulation of meshing and contact. His theorems, methods
for gear synthesis, and methods for gear generation represent a very significant contribution to the
science of gearing. His influence has spread throughout the world via his many lectures, publications,
and approximately 60 doctoral students who have settled in Europe, Asia, and North America. Because
of his career achievements, I believe Dr. Litvin is a true leader in the development of the theory of
gearing.

It is my pleasure to recommend this book to all who desire a deeper knowledge of the theory of
gearing.

John J. Coy
NASA Lewis Research Center






Preface

This edition is the first English version of the author’s monograph on the theory of gearing. The
first and second editions of this work were published in Russian in 1962 and 1968. Both of those
editions were translated into Chinese by Dr. Go-Kai, one of the author’s former doctoral students,
to whom he is very thankful for his devoted work. The second edition was translated also into Hungarian
by Dr. Zeno Therplan and Dr. Jozsef Drobni, who accomplished an excellent work.

This English version is substantially different from the previous editions. The author has paid
particular attention to the basic mathematical problems of the theory of gearing, such as the necessary
and sufficient conditions of envelope existence, relations between principal curvatures and directions
for surfaces of mating gears, singularities of surfaces accompanied by undercutting in the process
of generation, the phenomena of envelope of lines of contact, the principles for generation of conjugate
surfaces, and others. Special attention has been paid to the algorithms for computer aided simulation
of meshing and tooth contact. H

This edition has been complemented with the results of research recently performed by the author
and his doctoral students. The book is supplied with sample problems and problems proposed for
the reader to solve that the author believes will be helpful for the study of the book.

The manuscript of this book has been used as a textbook for two courses (Theory of Gearing and
Advanced Theory of Gearing) that have been taught by the author for graduate and undergraduate
mechanical engineering students at The University of Illinois at Chicago.

The author would like to express his deep gratitude to the National Aeronautics and Space Admin-
istration and to the United States Army who have, by numerous grants, sponsored the work that went
into the preparation and publication of this book and a significant portion of his research efforts since
coming to the United States of America. In particular, the author is grateful to Mr. Erwin V. Zaretsky,
Mr. Gilbert J. Weden, and Mr. Dennis P. Townsend for their encouragement and support of the
publication of this work. The progress of the work was continuously overseen by Dr. John J. Coy,
who also provided sound advice and counsel throughout the project. A thorough technical review
was conducted by Mr. Robert F. Handschuh, which resulted in helpful corrections and a fine index.
The author also thanks Mr. Steven B. Brunn for his editorial suggestions and help in the preparation
of the manuscript for publication.

Faydor L. Litvin
The University of lllinois
at Chicago
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Chapter 1

Coordinate Transformation

1.1 Introduction to Coordinate Transformation

Consider a set of Cartesian systems S, (x,¥1,21), $2 (62.¥2,22)s + - -+ Sy (Xp,Yns2n). Point M
is specified in these systems by coordinates M (x;,y1,21), M (X2,¥2,22)s « « - » M (X, %0:2,).

Coordinate transformation is a set of relations which associate point coordinates of one system
with the point coordinates of other systems. For instance, through coordinate transformation we
may relate the given set (x},y;,2;) with (x, .20, k=23, ..., n). It will be shown below that
the relations between sets of coordinates depend on the location of the origins of the considered
systems and on the orientation of their respective axes.

Coordinate transformation is a powerful technique of engineering mechanics. It may be used
to study the motion of rigid bodies and their kinematical and dynamic characteristics, which are
associated with different coordinate systems. In the theory of gearing, coordinate transformation
will be applied in the following ways:

(1) For determining the equations of (a) the path traced out by a point of a moving body, (b)
the surface traced out by a line rigidly connected to a moving body, and (c) the locus of surfaces
generated by a surface rigidly connected to the moving body.

(2) For expressing equations of a given surface (line) in several different coordinate systems
which belong to the same rigid body.

Coordinate transformation will be considered for systems with (1) common origin and
noncoincident coordinate axes and (2) noncoincident origins and noncollinear coordinate axes.
Coordinate transformation is studied in matrix presentation. Properties of matrices and matrix
operations are summarized in appendix A.

1.2 Systems of Coordinates With a Common Origin

Consider a rigid body which is free to rotate about a fixed axis. We set up two coordinate systems
as follows: Sy (x;,y5,27), which is rigidly connected to the frame—the fixed coordinate system, and
S, (xg.¥g.2,), Which is rigidly connected to the body—the moving coordinate system (fig. 1.2.1).
Systems Syand S, are located such that they share a common origin and their axes x;and x, coincide



9
(@ (b
Figure 1.2.1.

with the axis of rotation. To identify a point M in the rigid body, we use the position vector'
(fig. 1.2.1(a)) r, = OM, which may be expressed as a 3 X1 matrix

[red=| % (1.2.1)
Zg
Assume that the body is rotated by an angle ¢, (fig. 1.2.1(b)). Point M is still specified by its

original coordinates in system S,, but must now be identified by new coordinates in system S.
The new coordinates are given by the matrix

xf(¢g)
(@] = | (o) (1.2.2)
where ¢, is the angle formed by axes z; and z, (or by axes yrand y,).
To express coordinates (x5y527) in terms of (x,,,,2,) and the angular parameter ¢, let us

represent the two position vectors r, and ryin terms of the unit vectors and Cartesian components
of their respective coordinate systems

r, = X, + Yo i, + 2K, (1.2.3)
rf=xfif+yfjf+ kaf (1.2.4)

Since r, and rylocate the same point, they are equal (i.e., r, = rp, and by using equations (1.2.3)
and (1.2.4), we obtain

Xpip+ yelp + e Ke = X+ y0, + 2K, (1.2.5)

'Henceforth, a quantity denoted in the form AB has the meaning of a vector which spans the line segment AB and points
from A to B. Further, AB denotes the magnitude of vector AB.



We now multiply each side of equation (1.2.5) successively by unit vectors iy, j, and k;and obtain
the following three expressions:

xf(if. if) + yf(if.jf) + Zf(if. kf) = xg(ifo ig) + yg(iijg) + Zg(if' kg) (126)
xp(reip) + yplpod) + ZGro k) = xgUpe i) + yp(ireJg) + 25 Ug o k) (1.2.7
Zf(kf' if) + yf(kf-jf) + Zf(kf'kf) = Xg(kf' ig) + yg(kf.jg) + Zg(kf' kg) (128)

Since unit vectors iy, j; and k; are mutually perpendicular, we may write
ieif=1 ifeJe=0 irek; =0 etc. (1.2.9)

Equations (1.2.6) to (1.2.9) now yield three linear equations

%= xg (o i) + Yelipe o) + zg(ipe Ky) (1.2.10)
Yr = X Upoig) + Veliredg) + 25 (i k) (1.2.11)
2= xg(Kpoig) + ye(krodg) + 2, (Kpo Ky) (1.2.12)

which may be represented in matrix form as

Xf ipei, dpedy ik Xg
| = | Jrelg el drc kg Yo 1.2.13)
i keeip, Kpoj, Kok, Zg

It may be verified from figure 1.2.1(b) that the 3X3 matrix in equation (1.2.13) is given by

1 0 0
0 cos ¢, sing, (1.2.14)

0 —sin ¢, CO8 o

and thus matrix equation (1.2.13) becomes

Xy 1 0 0 Xg
y|=| 0 cosd, sin ¢, Ve (1.2.15)
z 0 —sin ¢, cos [ %
or in a shortened form
[rf] = [Lfg][rg] (1216)
Matrix
ay ap ap
[Lel = | a2 a2 ax (1.2.17)

az; aiz ds;



uniquely describes the transformation of coordinates to the new coordinate system Sy from the old
coordinate system S,. The subscripts fg in Lg, indicate the order of such a transformation (i.e.,
to f from g, the new coordinate system being denoted by the left-hand subscript).

It is noted that each element of matrix [Lg] is the scalar product of two unit vectors which belong
to systems Sy and S,. For instance, element a;; may be represented as

ay = jf-ig = jfl, cOS (jf,ig) = cos (jpip)

where cos (jf,ig) is the cosine of the angle formed by new axis number 2 (axis ¥y) and old axis
number 1 (axis x,). This quantity is known as the direction cosine of unit vectors Jrand i,. To
generalize this, we say that the elements of [Lfg] are of the form a;, (k = 1,2,3; £=1,2,3), where
ay is the direction cosine of the new unit vector k and old unit vector ¢ unit vectors i, j, and k
correspond to the numbers 1, 2, and 3, respectively. Consequently,

azy = jye Kk, = cos (jf,kg) and a3z = Kksei, = cos (kpip)

With all of the results derived above, matrix equation (1.2.13) may now be expressed in the general
form

.rf ay Ay dan Xg
Y| = ax apn ap Yg (1.2.18)
I az 4z axn Zg

This matrix equation represents a system of three linear equations which relates the set of new
coordinates (xpypzp) with the set of old coordinates (xg, Yg:Z,) and direction cosines ay (k = 1,2,3;
{=1,2,3) of the transformation matrix [Lgl.

The matrix method of coordinate transformation works equally well between rigidly connected
systems and between systems which move relative to one another. If we deal with two rigidly
connected systems, all elements of [Ly,] are constant and point M in one system is seen as the same
point in the other system, although point M is specified with different sets of coordinates in each
system. If, however, one coordinate system moves relative to the other, some elements of (L)
vary in the process of motion, and point M of the moving system traces out a path in the fixed
system. Referring to figure 1.2.1(b), the angle ¢, changes in the process of motion and thus
elements of matrix equation (1.2.2) will vary with @, Accordingly, point M of system S, traces
out a curve in system 8 whose coordinates are a function of ¢, and are, in fact, coordinates of
a circle. It will be shown in section 1.4 that the matrix method of coordinate transformation is
a valuable tool for deriving the equations of curves and surfaces.

Once it is known how to transform coordinates from system §, to system Sy, it is useful to
develop the reverse operation, coordinate transformation from Sy to g, which may be represented
as follows:

[rg] = [Lgrllry] (1.2.19)

Matrix [Lc], the operator of the reverse transformation, is, in fact, the inverse of matrix [Lg).
It may be proven that the determinant of a general transformation matrix [Lg] is equal to unity
and therefore its inverse will always exist. It may also be shown that transformation matrix [Le]
is an orthogonal matrix; that is, its transpose and inverse are identical



(L) = (Ll "= [Lg] ™! (1.2.20)

For instance, referring to figure 1.2.1(b), matrix {L,] may be obtained as the transpose of
matrix (1.2.14); thus

1 0 0
[Lyl =[Lel™= | O cos ¢, —sing, (1.2.21)

0 sin¢, cos ¢,

Since [Ly] is the inverse of matrix [Lg], we may write that
(Ler MLgl = [Lg]ILyr] =[] (1.2.22)
where [/] is the 3 X3 unit (identity) matrix. Similarly, by equations (1.2.20) and (1.2.22) we get
(Ll L] = [LgllLg] " = (1] (1.2.23)

Still further, it must be pointed out that while a general transformation matrix

an 4z an ipedg  droJy iro kg
(L) = ay an an |=| Jroig Jgede Jrokg (1.2.24)
ay dy dizz kf'ig kf.jg kf.kg

consists of nine elements, only three of them are independent. This results from the fact that the
nine elements of [Lg] are related by six orthogonality conditions, which are as follows:

azu + (l%z + 0%3 =1 a%, + G%Z + 053 =1 a%l + a§2 + a§3 =1 (1225)
anay + aparn + apan =0 apay +apay +aan =0 ayas + anayn + apdy; =0
(1.2.26)

Equations (1.2.25) demonstrate that each unit vector of the new system has unit length, while
equations (1.2.26) ensure that the three new axes are mutually perpendicular.

To perform successive coordinate transformations, we need only follow the product rule of matrix
algebra. For instance, the following matrix equation

[rad = Wagn-0y)MLn=1yn=2y] « + - [LaallLn]lr] (1.2.27)

represents the successive transformation of point coordinates, specified in system §j, to $,, to
S3, . .., 08,

Example problem 1.2.1 By using the method of successive coordinate transformation described
above, derive the transformation matrix [L,,] for systems Si, Sy, Sp and S, shown in figure 1.2.2.
Write the three equations which relate (x,,y,,z,) With (x;,y1,21). Find the inverse matrix [L,].



(a) (b}
Figure 1.2.2.

Solution. Transformation matrices are as follows:

1 0 0 cosy 0 siny
[Lel =1 0 cos ¢, sin ¢, (L = 0 1 0
0 —sin $p COS ¢, —siny 0 cosy
cos ¢; sing; 0 X, Xy
[Lip)=| —sin¢; cos¢, 0 [red =1 ¥ r'e=1 Y
0 0 1 2, Z

Matrix multiplication yields

bll bl2 b]3

(Liplllpgllly) = [Li] = | by by by

b3y by bi
CO$ vy €OS ¢ —sin ¥ cos ¢, sin ¢, siny cos ¢, cos P
+sin ¢, cos ¢, +sin ¢, sin &,
=| ~—cosysin¢, sinysin¢,sin$, —siny sin ¢, cos o
+cos ¢, cos ¢, +cos ¢, sin b,
—sin y —cos v sin ¢, COS 7y COS ¢,

Coordinates (x),y;,z/) and (x,,¥,,z,) are related by equations

X = b”xg + blzyg + b]3Zg Y = bllxg + b22yg + bzgzg ) = b3,xg + b32)’g + b33zg



The inverse matrix [L,;] may be determined as the transpose of the matrix [L;,]

by by by
L) =Ll =| ba bn by
bz by by

1.3 Coordinate Systems With Noncoincident Origins
and Noncollinear Axes

Consider a rigid body which moves in space. System S,,, is rigidly connected to the moving body
and S, is a fixed coordinate system (fig. 1.3.1). Point M of the body is specified by the position
vector O, M = I'(X,m Ym:Zn) and its instantaneous position in space ,, is determined by the position
vector I,(X,,Ymz,). Position vector r{? indicates the initial position of point M. M (O when
systems S, and S, coincide.

Point M of the moving body traces out a path in space S,, whose instantaneous point is
represented by the position vector r;. Components of r, are given by the following functions:

Xy (s Yot Zr D) I Yo 2o D) 20X Vs Zms @) (1.3.1)

where ¢ is the variable parameter of motion. These functions (1.3.1) may be derived through the
technique of coordinate transformation.
The position vector r, may be represented as

r,= 0,0,+ O,M= 0,0, +r, (1.3.2)
Equation (1.3.2) yields
Xin + Yubn + 2kn = x40, + ¥ 0, + 280Ky + X + Y + 2K (1.3.3)

Here x(9), y{0) 7%= determine the position of origin O, in system S, in, ju Kp. and iy,
jm K are the unit vectors of systems S, and S, respectively.

Figure 1.3.1.



We now multiply each side of equation (1.3.3) successively by unit vectors i,, j,, and k,. Taking
into account that

oty =jucn =Kok, =1 and iyej, =i, 0k, =j,*k, =0
we obtain three linear equations
Xn = X (y * i) + Y () + 2 (i 0 k) + 200
In = X (in® V) + Y G dm) + 2 (G ® k) + 90 (1.3.4)

2 = X Ky ¢ i) + YKy o) + 2, (K, o k,y) + 207

which may be represented in matrix form as follows:

Xy ap a4 ag X an
Yo [ =| a1 Gy ap Ym |+ | axn (1.3.5)
Zn aszy az days Zm dyy

As noted in section 1.2, a general element a;, (k=1,2,3; ¢ = 1,2,3) is the direction cosine of
new unit vector k and old unit vector £ unit vectors i, j, k correspond to the numbers 1, 2, and 3,
respectively. Elements a4, ay. and aj, represent the new coordinates x%), y(9n) and (%"
of the old origin O,,; that is, the location of the old origin in the new coordinate system.

Coordinate transformation (eq. (1.3.5)) requires mixed matrix operations where both multiplication
and addition of matrices must be used. Matrix representation of coordinate transformation will
need only multiplication of matrices if position vectors are determined by homogeneous coordinates.
These coordinate transformations were applied to spatial linkages by Denavit and Hartenberg (1955)
and to spatial gears by Litvin (1955). Homogeneous coordinates of a point in three-dimensional
space are determined by four numbers (x”,y’,z’,¢') which are not equal to zero simultaneously
and of which only three are independent. Assuming 1’ =0, regular coordinates and homogeneous
coordinates are related as follows:

x== =X -z (1.3.6)

With ¢” = 1, a point may be specified by homogeneous coordinates such as (x,y,z, = 1), and thus
linear equations (1.3.4) may be represented as
n = QX + Q1Y + Q1325 + Ayl
Yn = QX + A0y, + a3, + agaty, (1.3.7)
2, = ayxy, + ayym + a3z, + (Y1

t,=t,=1

3



The matrix representation of equation system (1.3.7) is

Xn ap dp a3 4apg Xm
Yn ay ap a3y a4y Ym
= (1.3.8)
Zn ayy ax a3 a4y im
t, =1 0O 0 O 1 t, =1
or in shortened form
[ra] = Mynllrnl (1.3.9

Unlike transformation (1.3.5), coordinate transformation (1.3.8) needs only one type of operation—
multiplication of matrices.

Let us now develop the inverse coordinate transformation, from system S, to system S,,, which
may be expressed by the following linear equations:

Xm = bllxn + bllyn + blBZn + b]dtn

Ym = baxy + by, + bz, + bty

(1.3.10)
Im = b31xn + b}z)',, + b332n + b34tn
L, =1, = 1
The matrix representation of equation (1.3.10) is
Xm by, by by by Xn
Ym by by by by Yn
— (1.3.11)
im by by by by Zn
t, =1 0o 0 O 1 t, =1
or
[ra] = Mppllrn) (1.3.12)

The inverse coordinate transformation exists indeed, if the system of linear equations (1.3.7)
has a unique solution for unknOWnS X, Yom»Zmtm (in terms of x,,¥n,Zn.tn and elements ay;
(k =1,2,3; £=1,2,3,4)). For this the determinant of the coefficient matrix must differ from zero;
that is,

ayy Q) 4apy apy
ap ap a4
az) dxy a3 4y
det M, = = | ay ap axn #0 (1.3.13)
azy az dazy a4y

0 0 0 1

az; 4z dsz
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If inequality (1.3.13) is observed, new coordinates (x,,, ¥, Zm./,) may be expressed in terms of
Xp>¥nZnst, and elements by, of the matrix [M,,,] (eq. (1.3.11)). Therefore, inequality (1.3.13) is
the requirement for existence of an inverse matrix.

Let us now express elements by, of matrix [M,,,] in terms of elements a,; of given matrix [M,,,].
The product of the given matrix and its inverse yields

[Mnm][an] = [an][Mnm] = [I] (1314)

where [/] is the 4 X4 unitary matrix. It results from equation (1.3.14) that

ap ay ay by

ap ay axp by
M, = (1.3.15)
ap Ay ay by

0 0 0 1
where
by = —(a11a)5 + ayay + a3,a3,)
by = — (apas + anay,, + anay,) (1.3.16)
by = — (a;3a)4 + apay + anay,)

and ay, are elements of matrix

ay Gy ap dy

ay daxp a3 dy
M.l = (1.3.17)
az) dy Az ay

0 0 0 1

Equations (1.3.15) and (1.3.16) may be derived in a rigorous manner as follows:
Step 1.—Set up the 3 x3 submatrix [L,,] from [M,,,] and determine its transpose [L,,,] 7, which
is equal to the submatrix [L,,,], where

7 -
b by by; ap ap ap dyp dy as

_ _ T _ _
(Lpnd =| b2 by byy | =1L,) =| ay an ap =| ap ay dayp
by by by az; az dxy apy dyy az

(1.3.18)

Matrix equations (1.3.18) determine nine elements by, in terms of elements a,, (k = 1,2,3;
f=1,2,3).

Step 2.—To express elements by, by4, and by, in terms of elements ay,, multiply elements of
corresponding columns of known [M,,,], add the products, and change the sign of the final result
as it is shown in the following expressions:



e o
[Van an ap iay:
Voo P
L]
1ayy dn an 54245
by = — (anpas + anax + aynay) — | E Voo
.
Va3 Gy A3y 1 dg,
[ 1 N H
H L] L]
103 0 0 i1
- [abalintiat i
[ an a4 a3 4w
- N
] 1 1 '
) 1Ay Ay 10y,
by = — (apaiy + anay + apas) — P b
. 1
a3 143z sz 1dg,
] . ' '
. ] ' :
L 0 _:_p__: 0 11 ¢
- Tt et
VR PR U K T
oo
L]
Ay A G230,
— L]
by = — (a;3a14 + anay + apaz) — oot
ay Ay Gy,
oo
L 0 0 0.}

As noted in section 1.2, the matrix method of coordinate transformation works equally well between
rigidly connected coordinate systems and between systems which move relative to one another.
If systems S,, and S, are rigidly connected, all elements of matrices [M,,,] (and thus [M,,,]) are
constant. Consequently, point M in one system is seen as the same point in the other system, although
M is specified with different coordinates in each system. If, however, one coordinate system moves
relative to the other, some elements of {M,,,] vary in the process of motion, and point M of the
moving system traces out a path in the fixed system.

To perform successive coordinate transformation, we need only follow the product rule of matrix
algebra. For instance, the matrix equation

rpl = My ))IMp—1yp-)], - - -5 [(Ma][My)](n] (1.3.19)

represents successive coordinate transformation from system S, to S, from S, t0 83, . . . , 10 S,
To perform a transformation of vector components, we need only apply 3 X3 submatrices [L],
which may be obtained by eliminating the last row and last column of the corresponding matrix
[M]. This results from the fact that vector components (projections on coordinate axes) do not depend
on the location of origin of the coordinate system.
The transformation of vector components of vector A from system S, to S, is represented by
the matrix equation

[4.] = [Lunl[An] (1.3.20)
where
A ay ap ap Aon
(4] = | Ay (L] = | an an an [An] = | A (1.3.21)

A"n az; az 4 A:m



Example problem 1.3.1 Gears 1 and 2 rotate about axes z; and z, (fig. 1.3.2), which form a
crossing angle y and shortest axes distance C. Consider coordinate systems S, S,, and §;, which
are rigidly connected to gear |, gear 2, and the frame, respectively. The auxiliary system S, is
also rigidly connected to the frame.

By using the method of successive coordinate transformations described above, determine the
transformation matrix [M,,] for systems S, S5, S,, and S,, which are shown in figures 1.3.2 and
1.3.3. Obtain the three equations which relate (x,,v,,z;) with (x;,y;,z,). Find the inverse matrix
M,2].

X1

0',01 Zf-zl

Y¢ /
Y1

Figure 1.3.2.

I Projection of z¢

/

Y

g ’

L

-

I"~~Projection of y;

Figure 1.3.3.



Solution. The transformation matrices are as follows:

cos¢p, —sing, 0O O
sing, cos¢, O O
[M_ﬂ] =
0 0 1 0
0 0 0 1
1 0 0 C
0 cosy —siny O
(M f] =
» 0 siny cosy O
0 O 0 1
cos ¢, sing, 0 O
—-sing, cosg, O O
[MZp] =
0 1 0
0 0 0 1

The matrix product is thus

(M) = [MZp][Mpf][Mfl]

cos ¢, cos ¢,
+ cos v sin ¢, sin ¢,

— Cos ¢, sin ¢,
=| + cos vy sin ¢, cos ¢,

sin + sin @,

0

— sin ¢, cos ¢,
+ cos vy cos ¢, sin ¢;

sin d’l sin d)z
+cos ¥y cos ¢, COS P,

sin 7y cos ¢,

0

— sin « sin ¢,

— sin vy cos ¢,

cos 7y

0

Coordinates (xy,¥,,23) and (x|,y,z;) are related by the equations

X, = x1(cos @, cos ¢, + cos vy sin ¢, sin ¢;)

+ y( — sin ¢, cos ¢, + cos y cos ¢, sin ;)
— z; sin vy sin ¢; + C cos ¢,

y; = x;( — cos ¢, sin ¢, + cos y sin ¢, cos ¢;)
+ y,(sin ¢, sin ¢, + cos y cOs ¢ oS $3)
— z; sin y cos ¢, — C sin ¢,

2p = X sin 7y sin @, + y| sin y cos ¢ + g, €Os 7y

t2211=1

C cos ¢ 1

— Csin ¢,

(1.3.22)

(1.3.23)

(1.3.24)

(1.3.25)

(1.3.26)
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The inverse matrix [M,,] is given by

[ COS ¢ COS ¢hr ~ cos ¢, sin ¢, sin vy sin ¢; — C cos ¢,
+ cos v sin ¢ sin ¢,  + cos v sin ¢, cos ¢,
— sin ¢,cos ¢, sin ¢, sin ¢, siny cos ¢; C sin ¢,
[M;;] =| +cosycos ¢ sin ¢, + cosvycos ¢ cos ¢, (1.3.27)
— sin ¥y sin ¢, — sin 7y cos ¢, cos ¥ 0
L 0 0 0 | |
Coordinates (x,y,,z)) are expressed in terms of (x3,y,22) by the following equations:
X = Xp(C08 @) cOS ¢y + cos v sin ¢, sin ¢,)
+ ¥,( — cos @; sin ¢, + cos y sin ¢, cos ¢,)
+ 22 sin 7y sin ¢, — C cos ¢,
Y1 = x2( = sin ¢ cos ¢, + cos y cos ¢, sin b,)
+ ¥:(sin ¢, sin ¢, + cos vy cos ¢ cos ¢-) (1.3.28)

+ 2> sin y cos ¢y + C sin ¢,
| = — Xz Siny sin ¢; — y; sin y cos ¢, + 75 COS

fl=t2=l

1.4 Generation of Curves and Surfaces in Matrix Representation

In some cases, curves (surfaces) applied in engineering mechanics may be determined as a locus
of points (lines) generated by a point (line) of a moving body. Equations of such curves or surfaces
may be derived by following the rules of coordinate transformation.

Figure 1.4.1(a) shows an extended epicycloid. This curve is generated by point M, which is
connected to the plane of circle A (of radius p) as it rolls over circle 1 (of radius r). Points M,
and M represent two positions of the generating point; A and 1 are the movable and fixed centrodes.

~A /‘A
4 r Extended % y
/ epicycloid ~ a
/
Y1 M/
~L t /I‘Il 03
~o / J 7 0
1 7
\‘/ 0 ¥
/AN M
/ p X
! U’ yl a Xl
// Oa &
Mo" 0 N —
r
Xl X
r
\¥l \
~1
0,M-a
(a) (b)
Figure 1.4.1.



The same extended epicycloid may be generated in coordinate system S, if both centrodes move
(fig. 1.4.1(b)) and their angles of rotation ¢ and 8 are related; thus

We set up coordinate systems Sy(x,,¥s,2,) and Si(x1.y1,21) rigidly connected to the rolling circles
A and 1 and the fixed coordinate system S;(x; Y25
Equations of the generated curve may be derived with the matrix equation

1] = IM\ullra] = My ]IMgllral (1.4.1)

where column matrices [r,] and [r,] represent the coordinates of the generating point and the
generated curve, respectively; matrices [Mp,] and [M,] describe coordinate transformation from
S, to Sy and from S to S;. Here

0 Xy cos¢ sing O
[rdd=| —a =] »n [My]=| —sing cos¢ O
1 1 0 0 1
cosy siny O cos (¢ +y) sin(@+¢) (r+ p)sing
M,]=| —siny cos v r+op M= | —sin(d+y) cos (¢ +¢) (r+p)coso
0 0 1 0 0 1

(1.4.2)

where a = O,M (fig. 1.4.1 (b)). Matrix equation (1.4.1) and expressions (1.4.2) yield
x; = (r + p)sin ¢ —asin (¢ + ) y, = (r+p)cos ¢ —acos(d+y) (1.4.3)
Because of rolling we have that
oy =ro (1.4.4)

and
r
v=-0¢ (1.4.5)

Equations (1.4.3) and (1.4.5) represent the extended epicycloid with functions
x(9) y1(¢) D1 <dp<P, (1.4.6)
The alternative way of determining these functions is based on the vector equation (fig. 1.4.1(a))
oM =00, + OM (1.4.7)

Multiplying both sides of this vector equation successively by unit vectors i, and j, of coordinate
axes x; and y;, we get



Xy = OlM ‘i|= Oloa .i|+ OaM °i1=(r+p)sin¢—asin(¢+¢)

OM +ji= 0,0, *ji+ OM +j,=(r+p)cos ¢ —acos (¢ +y)

Y

These equations concur with equations (1.4.3).

Generally, we are able to use two alternative methods to generate plane curves. However, the
great advantage of the matrix method of curve and surface generation becomes more obvious for
the case of surface generation. In the following example, a plane curve L generates, in screw motion,
a surface called a helicoid (fig. 1.4.2(a)), which may be represented as a locus of lines L. The
angle of rotation ¥ and the axial displacement s are related by the equation

s = py (1.4.8)

Here p is the parameter of screw motion—the pitch of the screw—and is given by

—h 1.4.9
p=3 (1.4.9)

where A is the axial displacement corresponding to one complete revolution.
Assume that the plane curve L is given in coordinate system S,(x,,y,) (fig. 1.4.2(b)) by equations
X, = x,(8) Ya = Ya(0) =0 8, <0<6, (1.4.10)

where parameter 6 is the independent variable. The generated surface is determined in the coordinate
system S, with the matrix equation

[r] = [Mlir.] (1.4.11)
where
X cosy —siny 0 0 x(0)
¥ siny cosy O O v.(6)
[r]= M, ] = [r. = (1.4.12)
2 0 0 1 py 0
1 0 0 0 1 1
Zl' Za

r Helicoid
/

N . .
— Axis of screw motion

(a) b
Figure 1.4.2.



Matrix equations (1.4.11) and (1.4.12) yield

x; = x,(60) cos ¥ — y,(0) sin ¥ ¥i = X,(6) sin § + y,(8) cos ¢ 7 =py (1.4.13)
where 6, <8=<6, and ¥, <y <y,. Equations (1.4. 13) represent the generated helicoid with surface
coordinates 8 and ¢. By surface coordinates it is meant that a point on the surface is uniquely specified
by the given values of 6 and V.
Problem 1.4.1 A surface of revolution is generated by rotation of a plane curve about the fixed
axis z,. Figure 1.4.3 shows the axial section of the surface. The generating curve (fig. 1.4.4(a))
is represented in coordinate system S4(x2¥a:24) by equations

Xg = xa(o) Yo & 0 g = Za(e) (1414)

The angle of rotation y (fig. 1.4.4(b)) lies within the interval 0 <y <27. Using the matrix method
of surface generation, determine the equations of the generated surface.

Answer.

X; = x4(6) cos ¥ ¥y = x,(0) sin ¥ Z) = 2,(0) (1.4.15)

\

where 6, <0<8, and 0=y <27.

7

Figure 1.4.3.
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Problem 1.4.2 With the conditions of problem 1.4.1, determine the equations of the surface
generated by a segment of a circle with center C (fig. 1.4.5).

Answer.

x;p = (acos @+ C,) cos ¥ Yi=(acos b+ C)siny z=asinf+C, (1.4.16)

where

0, <6<0, O<y=<27 C.<0 C.<0
Problem 1.4.3 With the conditions of problem 1.4.2, determine the equations for the conical surface
generated by a segment of a straight line which forms an angle 180°-« with axis x, (fig. 1.4.6).
Coordinates x,, z, of a point M of the straight line are represented as functions of parameter 9.

Answer.
x; = {(d — 8 cos ) cos ¥ Yy =(d—#0cos a)sin y 71 =0sina (1.4.17)

Problem 1.4.4 A spherical surface may be represented as a particular case of the surface represented
by equations (1.4.16). Determine equations of a spherical surface which is centered at O, (fig.
1.4.5).

Answer.
x; =a cos § cos Y ¥ = a cos @ sin y I =asinf (1.4.18)
where 0<60<2rm and O0<y <27.

Problem 1.4.5 A screw surface is generated by a straight-lined edge A0, of a blade (fig. 1.4.7(a)).
While the blank of the screw rotates with angular velocity w, the blade translates with velocity
v in the direction of axis z;. The velocities v and w are related with the equation

h
VEpw = —w (1.4.19)
27

where p is the pitch of the screw and 4 is the lead of the thread {h is the axial displacement of
the blade corresponding to one complete revolution of the thread).

The straight line 0,4 forms an angle « with axis X, and coordinates x,, y, are represented by
functions x, (u), z,(u). Determine the equations of the generated screw by using the matrix method
of surface generation. The coordinate systems used are shown in figure 1.4.7(b).

*a

Figure 1.4.5. Figure 1.4.6.
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Figure 1.4.7.

Answer.
X, = u cos « cos f ¥y, = u cos « sin 8 z; = —usina+ pl (1.4.20)

where u;<u<u, and 0<0=<2r.

Problem 1.4.6 With the main conditions of problem 1.4.5, assume that a left-handed screw surface
is generated instead of a right-handed screw surface. Derive new equations from equation (1.4.20)
for this surface.

Answer. Only the coordinate z; is changed; thus z; = — u sin o — pé.
Problem 1.4.7 With the main conditions of problem 1.4.5, assume that edge CD (fig. 1.4.7(a))
of the blade generates the screw surface belonging to the other side of the thread space. Derive

equations of this surface from equation (1.4.20).

Answer. Change the sign before sin «, which yields the change of z; only; thus z; = u sin « + p#f.

1. 25
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Chapter 2

Transformation of Motion

2.1 Parallel Axes of Rotation

Consider that two planar links 1 and 2 rotate in opposite directions about their respective centers
0, and O, with angular velocities " and w® (fig. 2.1.1). In the most general case, the ratio
of angular velocities changes in the process of motion and may be represented by the function

()]

ma =S5 =f6)  f@pEeC'  a<o<h Q.11

where ¢, is the angle of rotation of link 1.

The instantaneous center of rotation, denoted /, is the point in the plane of motion at which the
relative linear velocity of the links vy, (or v,2) is equal to zero. The relative velocity may be
represented as

Vi =V¥n —V¥n2 (2.1.2)

or as
Yioin = V2 — Vi (2.1.3)

Here
vi=w"x 0 and v,;=w?x 0.1 (2.1.4)

are the linear velocities of links 1 and 2, respectively, at their common point /, and O] and O,]
are position vectors drawn from points O, and O, to point /, respectively.
Equations (2.1.2) and (2.1.3) show that the relative velocity v;,;» (or v5,p) is zero if

Yn=Vvn (2.1.5)



@12 ) @

Figure 2.1.1.

Consequently, the instantaneous center of rotation is the point at which linear velocities v, and
v;» have the same direction and magnitude. For velocities v, and v, to have the same direction,
the instantancous center of rotation / must be located on the straight line drawn through centers
O, and O,. For the magnitudes of v;, and v;; to be equal (i.e., [v;| = [v;2]), point I must be
located such that

0] o® 2.1.6)
0,1 w® U

The location of the instantaneous center of rotation on line O,0, is determined by the following
equations:

0,1
0—1:F=m12(¢|) 021+ O]Iz C (217)
i

where C is the distance between centers O, and O,, henceforth known as the center distance
(fig. 2.1.1). It may be easily verified that if the ratio 1, is not constant the instantaneous center
of rotation / moves along line 0,0, as the links rotate. It follows that point / is fixed in space
if m |, is constant.

Figure 2.1.1 shows links 1 and 2 being rotated in opposite directions, whereby the instantaneous
center of rotation / lies between centers O, and O,. If links 1 and 2 rotate in the same direction,
point 7 is located outside line segment 0,0, (fig. 2.1.2). For this case, assuming that wV>e?,
we get

0,0 -0,1=C (2.1.8)

Considering the motion of links in a three-dimensional space, we may say that the relative motion
of links 1 and 2 is rotation about the instantaneous axis of rotation /-/ (figs. 2.1.1 and 2.1.2). Axis I/
passes through point / and is parallel to the link axes of rotation. The relative angular velocity
of link 1 with respect to link 2 is given by

21



22

02"‘—72&7 =0y
LWt

Ol'_'_—-»— O1

C ol
1 [ o= — 1
L2 ol (2
— VilT vV
2
Figure 2.1.2.
w12 = g — 4@ 2.1.9)

A particular case of motion transformation is shown in figure 2.1.3. Here link 2 translates with
linear velocity v®', while link 1 rotates about point O, with angular velocity w". Vector equation
v, = v;; yields that (1) the instantaneous center of rotation / is located on a straight line On, which
is drawn through point O, perpendicular to vector v©® and (2) the distance O,/ is determined by
the equation

(2)
011‘V—U=f(¢1) fe)eC! as¢ =b (2.1.10)

U)‘

In this case, the motion of link 1 relative to link 2 is rotation about axis I-I with angular velocity
w12 = o

In the process of link motions, the instantaneous center of rotation (which is a point in the plane
of motion) traces out a path on each link. The locus of instantaneous centers of rotation in a coordinate
system rigidly connected to a movable link is known as the link centrode. Link centrodes roll over
each other without sliding because the relative velocity v, at their point of contact (point /)
is equal to zero by definition.

w21 .

[— ]

0 =0
s th

Figure 2.1.3.
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Figure 2.1.4 shows three coordinate systems, S,(x;,y1), $2(x2,)2), and S;(x;yp), which are rigidly
connected to links 1 and 2 and the frame, respectively. Links 1 and 2 rotate in opposite directions.
Let us denote the lengths 0,7 and O,1 by ry(¢,) and ry(¢,). The centrode of link 1 (i.e., the locus of
points 7 in coordinate system $;(x;,y,)) is determined by the following matrix equation (fig. 2.1.4):

[nl= [le]["f]

or by
x| cos ¢, sin¢; 0 0
Vi = — sin ¢1 Ccos d)l 0 rl(¢]) (2111)
1 0 0 1 1
This yields
xy = ri (@) sin ¢, yi = ri{¢y) cos ¢, 2.1.12)

Equations (2.1.12) represent the centrode of link 1 as a polar vector function r(¢;) with a
variable magnitude. Here ¢, is the angle formed by vector ri(¢,) and axis y;.

On the basis of equations (2.1.7), the magnitude |r;| = O, may be determined with the
following equation:

021 C—rl
rn=——=—"
my; m;

This yields
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mp, + I
where

oD 1
my{¢)) = e my(¢)) €C as¢=b

Equations of gear centrodes may also be represented in polar form. Choosing axis y, as the polar
axis (fig. 2.1.5(a)), we get

C

Tmaen 1 ec’ <¢=<b 2.1.13
mp{(¢)) + 1 1= mp (@) a<é, < ( )

r

The polar angle 6, formed by vector r; and the polar axis, is equal to the angle of rotation of
gear 1 but is measured in the direction opposite that of gear 1 rotation.

The centrode of gear 2 is the locus of instantaneous centers of rotation / in the coordinate system
Sy(x2,y7) (fig. 2.1.4). Equations of this centrode are given by the matrix equation

[ra)=[My]lrs]

or by
X; cos ¢, —sing, Csing, | 0
Y2 |=| sing; cos¢, — C cos o, ri(ép) (2.1.14)
1 0 0 1 1
This yields
x; = [C = ri(¢))] sin ¢, y2 = = [C = ri(¢,)] cos ¢, (2.1.15)
Y1

/
Polar axis -~

Polar axis ”¢
¥y

(a) (b

Figure 2.1.5.



Vector O, and the negative y, axis form the angle ¢, (fig. 2.1.4).
Angles of gear rotation ¢, and ¢, are related by the following equation

U dg,
¢y = 2.1.16)
? SO ml2(¢l)

which results from the expression of the ratio function

de,
W dt dg,
mp(d) =—5 =" 7" (2.1.17)
A NG ds, dé,
dr
Equation (2.1.17) yields
dg, = 491 7 = S¢l 491
my(ey) o Mi2(@y)

Centrode 2 may also be represented in polar form. Choosing the negative y, axis as the polar
axis, we get

m ()

ry=0,0=C~r¢)=C~— =
e e M) + 1 mp(éy) + 1

The polar angle 8, (fig. 2.1.5(b)) is equal to the angle ¢, but is measured in the direction opposite
that of gear 2 rotation. Thus, the polar representation of the gear 2 centrode in terms of ¢, is

miy(9)) . ® de,
r,=C——F——— my,(p,) € C as¢, <b 6, = ¢, =
P mp@) + 1 S ' ? SO ()

(2.1.18)

Centrodes 1 and 2, which are in rolling contact, are shown in figure 2.1.6. Here it is assumed
that the maximum angle of gear rotation is less than 360° and the centrodes are open curves. If
my, is not equal to a constant, the link centrodes correspond to those of noncircular gears. If m,
is equal to a constant, the centrodes correspond to those of circular gears and are known as pitch
circles. Since centrodes roll over each other without sliding, the centrode arcs W, and Wz,
corresponding to the related angles 8, and ,, have equal lengths. Also, the sum of centrode radii
is constant, that is,

r@y) + ) =C (2.1.19)

If we assume that links 1 and 2 rotate in the same direction (fig. 2.1.2) and that 0V > w?,
we get

w(')_Ozl_C+r,
w® 0 r

M) = (2.1.20)
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Figure 2.1.6.

Centrodes 1 and 2 are represented by the following equations:

C

= 8,=¢ my(¢,) € C! a<¢ <b (2.1.21)
m|2(¢])"1 ] | 12 1 1

r

3!
m($)) S d¢, m(p,) € C! a<¢, <b (2.1.22)

=C——— 0 =9, =
k myy(ey) — 1 o Mia(@1)

Let us now determine the link centrodes which correspond to the transformation of motion shown
in figure 2.1.3. Coordinate systems S, §,, and §; (fig. 2.1.7) are rigidly connected to links 1 and
2 and the frame, respectively. Let us denote the distance O,/ as follows:

s{®)

i TR
0.0

Figure 2.1.7.



el
O\ = = Y(¢) (2.1.23)

oD

(See eq. (2.1.10).)
The location of the instantaneous center of rotation [ is represented in coordinate system S¢by
the matrix

0

[rrl=1 ¥(@) (2.1.24)
1

Link centrodes may be determined with the following matrix equations:

[ri] = My )lrs] (2.1.25)
[r2] = [My]lrs] (2.1.26)
These yield
x; = Y(¢) sin ¢ y1 = Y(¢) cos ¢ 2.1.27
and
x; = 5(¢) ¥ = ¥(9) (2.1.28)

where Y(¢) € C' and a < ¢ < b.

Here s(¢) represents the displacement of the translating link (link 2) relative to the frame. This
displacement function may be expressed as follows:

)
s(¢) = g V(o) do (2.1.29)
0
which results from the relation
‘E
v(2) dt ds
=—=—=— 2.1.30
V(o) o0 2o de ( )
dt

The centrode of link 1 may be represented in polar form with axis y; as its polar axis. The
equation of this centrode is

r(8) = Y(¢) 6=¢ (2.1.31)

where 8 is the polar angle measured from axis y, in the direction opposite that of gear 1 rotation.
Figure 2.1.8 shows the centrodes of a noncircular gear (1) and its corresponding rack (2). These
centrodes are known, respectively, as the pitch curve and the pitch line. If function y(¢) has a
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[ 59955 ] V(z’ 7 [ 995
-
. | t6ae]

Figure 2.1.8.

constant value for all ¢ (as with a spur gear and its rack), centrode 1 is a circle (called the pitch
circle), and centrode 2 is a straight line (called the pitch line).

Problem 2.1.1 Given the following:
(1) The relationship of the gear rotation angles

¢ = d

= 0=¢,<¢
as +a3¢, max

(2) ¢2,max = d’l.max

(3) The magnitudes of the ratio function m,(¢,) at ¢ =0 and ¢, = ¢ .

(4) The center distance C

(5) The gears rotate in opposite directions.
Derive gear centrode equations (2.1.12) and (2.1.15), and calculate them by assuming
d’l,max = ¢2,max = 5%/3, ml?_(o) = 1/25, and m12(¢1,max) =2.5.

Hint: The key to this solution is the ratio function

(a; + a3¢))*
a

my(d)) =

Coefficients a, and a; are related as follows:

]_az

mIZ(O) =a ¢l,max =
ay

Problem 2.1.2 Given the function
s(¢) = a¢ + b sin ¢ 0=<¢ <2xr

which relates the rack translation s and the gear angle of rotation ¢; (1) derive equations for the
rack and gear centrodes, and compute them by assuming ¢=2 in. and b=0.2 in. and (2) find the
coefficient & for which the centrodes are a straight line and a circle.



Hint: The key for solution is the function

V(p) =a + bcos ¢

When b = 0, the gear centrode is a circle of radius a, and the rack centrode is a straight line tangent
to this circle.

2.2 Intersected Axes of Rotation

Consider two rigid bodies 1 and 2 which rotate about axes Oa and Ob with angular velocities
w@'" and @, respectively. Axes Oa and Ob are intersected and form the angle v (fig. 2.2.1).

To determine the relative motion of the bodies at one instant, let us fix one of them, for instance
body 1, and consider the motion of body 2. In order to fix body 1 and not change the relative
motion of the two bodies, we rotate each body about axis Oa with the angular velocity ( — w™.
Body 2 takes part in the following two rotations: (1) about axis Oa with angular velocity ( — w'™h
and (2) about axis Ob with angular velocity w®@, The resultant angular velocity represents the
relative angular velocity of body 2 with respect to body 1. Thus,

w0 =w? 4+ (- ") =w? - w? (2.2.1)

It is easily verified that this instantaneous relative motion is simply the rotation of body 2 about
axis Of with angular velocity w@" (fig. 2.2.1). Similarly, we may consider the instantaneous
relative motion of body 1 with respect to body 2. In this case, body 2 is fixed while body 1 rotates
about the same axis Of with angular velocity

w12 = ) — @ = — @

o1  Pitch cone
i/

/

o %

2 -Pitch cone

b

Figure 2.2.1.
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Axis OI is known as the instantaneous axis of relative rotation. This axis forms angles v, and
v, with axes of rotation Oa and Ob, respectively. These angles may be expressed in terms of the
angular velocity ratio m, and the angle v (fig. 2.2.1) as follows:

siny, w®
N

: =my, Tity:=y (2.2.2)
siny, @

Expanding equations (2.2.2) yields

sin (y—y,) _ sin y cos y, — cos 7 sin v,

=mp

sin 7y, sin 7,

and

my> + cos th
cot y, = TuT %Y (m,z =2 ) (2.2.3)
w

. 2
sin 2

Similarly, we may derive expressions for v,

m2l+cosy=l+m,2cosy

cot y; = 2.2.4)

sin 7y my, sin y
where

w@ |

my=-—5=
D

mp2
The location of the instantaneous axis of rotation may also be determined as the locus of points

M at which the linear velocity vectors of both bodies, v!" and v'?, are equal. Thus,

W x D = @ x ¢@ (2.2.5)

Here r* (i = 1,2) is the position vector drawn to point M from an arbitrary point on the axis of
rotation of body i (i = 1,2). Since the point from which vector r* is drawn may be chosen
arbitrarily, so long as it lies on the axis of rotation i, let us choose (fig. 2.2.1)

r =,
Here p'” is the position vector drawn perpendicular to the axis of rotation of body i.
It results from equation (2.2.5) that vectors v¢! and v'? are perpendicular to the plane IT drawn

through axes Oa and Ob. Consequently, the instantaneous axis of relative rotation Of belongs to
plane II. Due to the equation

,
w® x p(”| = |w<2> X p'?

we get wPpM = 0 @p@,

This yields the relation



w p® OMsiny, siny

mp= - :
»?® oM OMsiny, sinvy

which coincides with equation (2.2.2).

The location of the instantaneous axis of rotation Of does not change in the process of body
motion if rotation axes Oa and Ob form a constant angle and the angular velocity ratio is constant.
As bodies 1 and 2 rotate about their respective axes, they roll (without sliding) over each other
about an imaginary line of tangency, axis OI. Thus we may determine certain surfaces in bodies
1 and 2 which roll over each other. Extending the concept of centrodes to three-dimensional space,
the locus of instantaneous axes of rotation in a coordinate system rigidly connected to a movable
body is known as the body axode. The rolling surfaces described previously are, in fact, the axodes
of links 1 and 2. For instance, if links 1 and 2 rotate with a constant angular velocity ratio m,
and if y=constant, then the corresponding body axodes are cones with vertex angles of 2v, and
27,, respectively. Here v, and v, are related by equation (2.2.2).

The equations for body axodes may be determined using the matrix representation of coordinate
transformation. Figure 2.2.2 shows fixed coordinate systems Sy (X7 V525) and S,(x, Y4 2,), Which
are rigidly connected to the frame, and coordinate system S)(x;,y,,2;), which is rigidly connected
to rotating body 1. Axis zsis the instantaneous axis of rotation, which is expressed by the matrix

0
(1= 0 (2.2.6)

u

where u=|OM)|; parameter u specifies the location of a point M on axis zy.
The locus of instantaneous axes of rotation in coordinate system S, is represented by the matrix
equation

(rid = [Lifllry] = (L1l Ly lry]

cos ¢, —sin¢g; O cos y; 0 —siny, 0
=| singp, cos¢, O 0 1 0 0 2.2.7
0 0 1 siny; 0 cos vy u

1.2

L4

Figure 2.2.2.
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This yields

X| = — u cos ¢; sin vy, YI = — u sin ¢, sin vy, Z) = U COS v, 2.2.8)
Equations (2.2.8) represent a cone with axis of symmetry z; and vertex angle 2v, (fig. 2.2.3);
u = OM and ¢, are surface coordinates which determine the location of a point M on the cone
surface. Similar coordinate transformations yield that the locus of the instantaneous axes of rotation
Z;in coordinate system Sy(x;,y,,2;) represents a cone with apex angle 2v,. (System S,(x,,¥,,2,) is

rigidly connected to moving body 2.) The cones with apex angles 2y, and 2y, are known as the
pitch cones of links 1 and 2, respectively.

Problem 2.2.1 Consider the transformation of motion between intersected axes by which the surface
of pitch cone 2 becomes a plane. Determine y and m,,.

Hint: Apply equations (2.2.4) and (2.2.2).
Answer.

¥y =90° + 17, My = sin 7y,

Figure 2.2.3.

2.3 Crossed Axes of Rotation: Relative Velocity

Consider two bodies 1 and 2 which rotate about crossed axes with angular velocities w” and
w?, respectively (fig. 2.3.1). The axes form an angle v, and the shortest distance between them
is 0,0, = C. Suppose M is a point which is common to both rotating bodies. The velocity v'"
of point M of body 1 is

vl = @M x p® (2.3.1)



Figure 2.3.1.

where rV is a position vector drawn to point M from an arbitrary point on the line of action of
wV (e.g., point O)) (fig. 2.3.1). Similarly, we have

v = @ x p@ 2.3.2)

where p'' is a position vector drawn to point M from an arbitrary point on the line of action of
w? (e.g., point 0y) (fig. 2.3.1). The relative velocity v\'? is

V2 =y @ = (w(” x r(n) _ (w(z) v p(Z)) (2.3.3)
Accordingly,
v = y@ ) = (wm x pa)) _ (w(” % r"’) — (2

Relative velocity v\!? is defined in physical terms as the velocity of point M of body 1 as seen
by an observer at point M of body 2. Similarly, v©21 is the velocity of a point on body 2 as seen
by an observer on body 1.

We may develop useful expressions for relative velocities v!? and v©*" by replacing the sliding
vector @™ to point O,. It is known from theoretical mechanics that the sliding vector w® may
be replaced by an equal vector @ which passes through point O, and a moment

m=Rx w? (2.3.4)

where R is a position vector drawn from point O, to any point on the line of action of w?®. For
instance, we may choose R=0,03. Note that the moment m has the units and physical meaning
of linear velocity. By replacing w® which passes through point O, with an equal vector passing
through point O, and moment m, we may represent the velocity v as
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v = (w(z’ x r(”) + (R x w(z)) (2.3.5)

It is easy to see (fig. 2.3.1) that equation (2.3.5) may be transformed into equation (2.3.2) as
follows:

v = 0@ x (r"-R) =0 x (" - 0,0;) + w? x (- 0;03) = w® x p@ (2.3.6)
Note that 0,0, + p® = r'V, and that the cross product W@ x ( — 0,03) = 0. (Here vectors 0,05

and w are collinear.) With expressions (2.3.1) and (2.3.5), the relative velocity v{'> may be
represented as

V2 = (wuz) % r(lJ) _ (R % w<2>) (2.3.7)
where w12 = 0 — W@ Also
van = (w(zn % ,.m) + (R x w‘z’) (2.3.8)

where WY = w?@ — @D,

Let us represent the relative velocity vector (1) in coordinate system S;, which is rigidly
connected to the frame and (2) in coordinate system S, which is rigidly connected to body 1 (fig.
2.3.1). Taking into account that

@17 = 6k~ (@@ sin vj + o® cos 1k,) 2.3.9)
r® = i + yeip + zky (2.3.10)
R=-Ci @.3.11)

(i js» and K are unit vectors of coordinate axes of system 8y, we get

i I Kk, i Ir Ky
viP=1 0 —w@siny w"-w@cosy | —| -C 0 0 (2.3.12)
xs ¥y 2z 0 wPsiny @ cos vy

— (@ =w? cos y)~z;w® sin y
=1 xfw"—w? cos y)—Cw? cos vy

(xp+ C)w'? sin

The relative velocity may be expressed in terms of components of coordinate system S, with the

matrix equation
[v2] =[] [?] 2.3.13)

From figure 1.3.2, we have



cos ¢; sing¢; O
[Lif]=| —sin¢, cos¢; O (2.3.14)
0 0 1

Expressions (2.3.12) to (2.3.14) yield

[V}m] =

(—y cos ¢, + x; sin ¢ ) (') — @ cos y) — zyw® sin y cos ¢ — Cw? cos v sin ¢,

2)

(s sin ¢, + x; cos ¢)(w'V — 0 cos y)+ zw® sin y sin ¢; — Cw'® cos v cos ¢,
(x + O)w® sin y
(2.3.15)
The coordinate transformation from §; to § is
Xy cos ¢; —sing; 0 x|
ye| = sing; cos¢, O ¥ (2.3.16)
2z 0 0 1 2
and thus
Xp= x| COS ¢ — y; sin ¢, Yp=x sin ¢; + y; Cos ¢, =7 2.3.17)

Equations (2.3.15) and (2.3.17) yield

—y1 (0™ = w? cos v) —z,0? sin y cos ¢;—Cw® cos v sin ¢,
[vf'z’] =1 x(0M—w?® cos y)+70? sin vy sin ¢, —Cw? cos y cos ¢,

(x, cos ¢, — y, sin ¢; + C)w™® sin v

(2.3.18)

Although equations (2.3.17) and (2.3.18) were derived for gearings with crossed axes, they may
be applied for gear mechanisms with parallel and intersecting axes also. In the case of parallel
axes of rotation with opposite directions of rotation, we set y = 7. In the case of intersecting axes
of rotation with opposite directions of rotation, we set C = 0 and change the sign of w®. We
emphasize that both axes of rotation are now located in the plane x,= 0 (fig. 2.3.2).

Problem 2.3.1 Consider rotation transformed between gears which rotate in the same direction
on parallel axes. (1) Change equations (2.3.12) for relative velocity v}”' to make them applicable
to this case. (2) Prove that the relative velocity is zero for points which belong to the instantaneous
axis of rotation.
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4
i \/
Figure 2.3.2.

Answer. Sct y=180" and change the sign of w®, or set y=0. The relative velocity vf'? is zero
for points where

W@

Xxx=C——= and 1y =0
U N RN T Y

These points belong to the instantaneous axis of rotation.

Problem 2.3.2 Consider the rotation between intersecting axes (fig. 2.3.2). (1) Change equations
(2.3.12) to make them applicable to this case. (2) Prove that the relative velocity v§'? is zero for
points on the instantaneous axis of rotation.

Answer. Set C =0, and change the sign for w®. Vector v'¥ is zero for points

x=0 and )—)f=tan ¥

zf

which belong to the instantaneous axis of rotation.

2.4 Crossed Axes of Rotation: Screw Axis of
Relative Motion

Consider again the rotation of two bodies about their crossed axes with angular velocities «w"
and w? (fig. 2.4.1). The relative motion of body 1 with respect to body 2 may be represented
as a motion with two components, (1) rotation about axis z, with angular velocity (—w?) and
(2) rotation about axis z; with angular velocity w‘”. The resultant motion may be represented as
a screw motion about some axis s-s (fig. 2.4.1). The screw motion of a body is a general case
of spatial motion which is represented as a rotation about and a translation along a single axis called
the screw axis.

Let us replace vectors w'" and (—w®) to a point B which is located on the shortest distance
between the axes of w'!’ and ™ (line segment 0,0,). Vector w', which passes through point
O,, is substituted by an equal vector w‘", which passes through point B, and the moment

m, = BO, x 0" = -0,B x @ (2.4.1)



Figure 2.4.1.

Similarly, vector —w™?, which passes through point 0,, is substituted by an equal vector -w®?,
which passes through point B, and the moment

m, = BO, x (—w‘”) = (O@ - Dﬁ) X (—w‘”) (2.4.2)

Consequently, vectors " and —w®, which pass through points O, and O, respectively, are
substituted by the vector

wP=e®+ (—w‘z’) =w® — @? (2.4.3)
and the moment
m=m; +m,= (—O_lﬁxw“’) + (5@—0_13) X (—w‘”) (2.4.4)

Notice that both the magnitude and direction of moment m depend on the location of point B, whereas
the vector w''? does not depend on this location.

Summarizing, we may say that the resultant motion of body 1 with respect to body 2 is the rotation
with angular velocity w'? about an axis which passes through point B and a translation with the
linear velocity represented by equation (2.4.4).

Choosing a certain location of point B, we may represent the resultant relative motion as a screw
motion; that is, rotation with angular velocity @12 about axis s—s and sliding along this axis with
velocity m. This occurs if, by a certain location of point B, vector m is collinear to vector w2,
The location of point B may be determined from the equation

0@ xm=0 (2.4.5)

We set up the coordinate system Sq(x;,y5.zy) rigidly connected to the frame and represent vector
an
w' as
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w(lZ) = w(Z) sin ,ij+ (w”) — w(;’) cos "/)kj (246)

The moment m is represented as follows:

i Jr K i it K,
m=; —x, 0 0 +| —-(C+ Xy 0 0
0 0 P 0 ~ ¥ siny —w? cosy

=| - Cw®cosy+ x,(w(” — w? cos 'y>:| 3+ (C+ xpw® sin y ky (2.4.7)

where x; determines the location of point B on axis x;. Due to the collinearity of @? and m, we get

(2) o oy (2) o
' sin y _w w mc .s v 2.4.8)
Cw® cos y — xf<w“) — w™ cos ’y) (C + xpw™ sin y
Equation (2.4.8) yields
my; — Cos
x= — ¢l v (2.4.9)

1 —2my, cos vy + mj3,

where

my

The line of action of the instantaneous axis of screw motion coincides with the line of action
of w'?. Consequently. the axis of screw motion s-s is located in a plane which is perpendicular
to axis xyand determined by coordinate x;. The direction of the axis of screw motion in this plane
is determined by the ratio

(12) o
Yy, W, ms; sin <y
2 = ~;f12) = (2.4.10)
Iy wy I —m,y, cos v

The collinear vectors of rotation about and translation along the screw axis, w'?’ and m, may
be related as follows:

m = pw? (2.4.11)

Here p is the so-called screw parameter. If the screw parameter is positive (negative), vectors m
and w'? point in the same (opposite) direction and the screw is said to be right- (left-) handed.

Equation (2.4.11) yields

My omy my) sin y
an - an -
w}f w,f

5 (2.4.12)
I - 2m2’ cos ¥ + "’121

Equations (2.4.9), (2.4.10), and (2.4.12) determine the location and direction of the screw axis
of relative motion and the screw parameter of motion. If body 2 rotates in a direction opposite
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Figure 2.4.2.

the one shown in figure 2.4.1, the sign of my, must be changed in equations (2.4.9), (2.4.10),
and (2.4.12).

It must be emphasized that the screw axis of relative motion is fixed in space only if the ratio
m,, is constant. Knowing that the relative motion between two gears may be represented as a screw
motion, we can develop a corresponding vector field for the vectors of relative linear velocity v 1)
This vector field may be represented as a locus of an infinitely large number of coaxial cylinders
whose axes coincide with the axis of screw motion (fig. 2.4.2). At any point of a cylinder a helix
is traced out by the screw motion. The vector of relative velocity v}m is always tangent to this
helix. We recall that vector v}m may also be determined analytically by equation (2.3.12).

Problem 2.4.1 Considering equations (2.4.9), (2.4.10), and (2.4.12) (1) prove that the instantaneous
axis of screw motion becomes an instantaneous axis of rotation for parallel axes of rotation and
(2) find the location of this axis.

Answer. For the case when the direction of @@ is opposite to the direction of w'", take y=180°.
Then

my

=0  x=-C—2
P / 1+m2|

wy =0

The instantaneous axis of rotation is parallel to axis zp
If the directions of w® and w'" coincide, take y = 0. Then

_ my(my — 1) _
e v
21 T M3

The instantancous axis of rotation is parallel to axis zy.

Problem 2.4.2 Using the conditions of problem 2.4.1, consider the case of intersecting axes of
rotation.
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Answer. By using equations (2.4.9), (2.4.10), (2.4.12), and (2.2.3) and by setting C = 0 and
changing the sign of m,, we get

) my; sin
p=0 x=0 }—f=—2l—'y—=lan'yl
zr 1+ my cosy

2.5 Crossed Axes of Rotation: Hyperboloid Surfaces of Revolution

Consider again the case of motion transformation between two crossed axes of rotation (sections
(2.3) and (2.4)). As bodies 1 and 2 rotate, the instantaneous axis of screw motion generates in
each body a hyperboloid surface of revolution (fig. 2.5.1). The two hyperboloids are in tangency
along a straight line, the screw axis of motion. Considering that the equations of the instantaneous
screw axis are known, let us develop the equations of these two hyperboloids.

According to equations (2.4.9) and (2.4.10), the axis of screw motion may be represented by
the following equations:

my (Myy — €OS ) .
xi=—-C = —usinf Zr=u cos 3 2.5.1
/ I — 2m,, cos v + m3, Y /

Here 3 is the angle made by the instantaneous axis of rotaton and axis 7y (fig. 2.4.2), which is
determined by

in
ang=—2Y  G<g<q 2.5.2)
I —my; cos vy

The matrix representation of the hyperboloids generated in bodies 1 and 2 is
[r] = IMJIR] 2.5.3)
[r2} = [Myd(R] (2.5.4)

Elements x, y;, and z; of column matrix [Rj are represented by equations (2.5.1). From figure
1.3.2 and expressions (1.3.22) to (1.3.24), matrices M, and [M,] are represented as follows:

[ cos¢, sing, 00
—~sin¢, cos¢;, 0 0
M\ 4= (2.5.5)
0 0 10

0 0 01

[ cos ¢, cosysing, —sinysing, Ccos o,

— sin ¢, €OS y cos ¢, — sin vy cos ¢, — C sin ¢,
M= ) (2.5.6)
0 sin ¥y cos 7y 0

0 0 0 1




,~Throat of
hyperboloid

Figure 2.5.1. Figure 2.5.2.

Expressions (2.5.1) and (2.5.3) to (2.5.6) yield the following equations for the hyperboloid surfaces
of revolution:

x,=—rgcos ¢, —usinBsing, y =rysin¢, —usinfcos¢p, z=ucosf 2.5.7)

xy = (C — rg) cos ¢, — u sin (B + 7) sin ¢,
(2.5.8)
y,=—(C—rg)sing, —usin(8+y)cosed, z=ucos(B+ry)

Here ry = — xp, and u and ¢;(i = 1,2) are surface coordinates.
The axial section of a hyperboloid cut by a plane drawn through axis z; (for instance, a plane

determined by y; =0 (i =1,2)) represents a hyperbola. The equations of the hyperbola
corresponding to hyperboloid 1 are thus

et 2.5.9)

where z,=0. We find that x,= % rg and r is the radius at the throat of the hyperboloid. Similarly,
we find that an axial section of hyperboloid 2 is also a hyperbola, and the radius of the throat is
equal to C—ry.

Figure 2.5.2 shows two contacting hyperboloids of revolution. The line of tangency of the two
hyperboloids is the instantaneous axis of screw motion. The relative motion of the two hyperboloids
is rolling with sliding about and along the instantaneous axis of screw motion.

_— Axis of

screw
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Chapter 3

Planar Curves

3.1 Planar Curves: Definitions and Representations

The concept of a plane curve is usually based on intuition, but it must be based on strict definitions
proposed in the field of differential geometry. (See the books by Zalgaller, 1975 and Goetz, 1970.)
We begin with the mapping (transformation) of a set X of elements x(x € X) into a set Y of elements
y(y € Y). The symbol € denotes that the element belongs to the set. Mapping may be illustrated
schematically, as shown in figure 3.1.1. Choosing an element x,, we determine the unique element
¥; which corresponds to x;. The mathematical essence of mapping set X into set Y is a set of rules
which associate an element y € Y with an element x € X.

A curve may be represented in parametric form or by an explicit or implicit function which
associates the coordinates of curve points. A plane curve in parametric representation is defined
as the continuous transformation of an open interval a<@<b (here 6 is the parameter) into two-
dimensional space. This transformation may be represented as follows:

r) € C° beG (3.1.1
Here
r(0) = x(0)i + y(0)j (3.1.2)

where i and j are unit vectors of given coordinate axes. The symbol C? denotes that x(6) and y(6)
are continuous functions and G denotes the open interval (a,b). The mapping (3.1.1) may be
illustrated schematically as shown in figure 3.1.2. A unique point M; of the curve corresponds
to a given value of the parameter 6;.

The concept of a simple curve is based on mapping with a one-to-one correspondence between
parameter 0; and point M; of the curve. A unique point M; of the curve corresponds to the given
parameter 6;, and a unique parameter 6; corresponds to the given curve point M;. The mapping
illustrated in figure 3.1.3 does not represent a simple curve because two different parameters §,
and 6, correspond to the same point M of the curve.

Consider the curve shown in figure 3.1.4, which is generated by point C of figure ABCD as



Plane curve =

_ g/ 58 %%

/
£ Parameters area A

Figure 3.1.1. Figure 3.1.2.

its segment DB rolls without sliding over the circle of radius r,. This curve, known as an extended
involute, is an example of a nonsimple curve because its point M corresponds to two different
parameters 6, and 6,; that is, OM = r(6,) = r(6,).

Sometimes transformation (3.1.1) may determine a simple curve if the interval (a,b) is sufficiently
limited. In the above case, the extended involute curve becomes a simple curve if, by limiting
8, only one branch of the curve, for instance CMN, is generated.

A parametric curve is said to be a regular curve if

r() € C' rp #0 0eG (3.1.3)

where

“+— Plane curve

/
L Parameters area G

Figure 3.1.3.
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~— Extended involute curve
I’ \\
‘ AY

Figure 3.1.4.

By ry # 0, we have

dx dy
Xl + el 0 xp=— Yo =— (3.1.4)
do de
Consequently, both derivatives are not equal to zero simultaneously. The symbol C! in (3.1.3)
denotes that functions x(#) and y(6) have continuous derivatives to the first order, at least.
Sometimes it is desirable to change a given curve parameter for another one. Two parametric
representations

r@ e C° beG
(3.1.5)
Ru) e C° uekE

determine the same curve and are said to be equivalent if there exists a continuous, strongly monotonic
function 6(u) in the interval E such as

R(u) = r(8(u)) (3.1.6)
The definition of 6(x) as a strongly monotonic function in the interval E means that 8(x) increases
(or decreases) as u increases in E.
Two parametric representations of the same regular curve are equivalent if (1) both parametric
representations are regular, which may be represented as
rd) e C! rp#0 0eG (3.1.7)
R(u) € C! R, %0 uekE (3.1.8)

dR
where R, = d_ and (2) there exists a function such that
7



\—\Involute curve involute curve
.

— X

_— Base circle o~ Base circle

-

(@) b}

(a) Representation 1.
(b) Representation 2.

Figure 3.1.5.

f(u) € C' 6, #0 r(6(u)) = R(u) (3.1.9)
Example 3.1.1 Consider the following two parametric representations of an involute curve:

Representation 1.—In figure 3.1.5(a)

Ty

r(f) =
@ cos 0

[sin (inv §i + cos (inv 8)j] inv # =tan 0—60 —§<0<§ (3.1.10)

Equation (3.1.10) may be derived as follows:

oMm=-"" x=OMsiny  y=OM cos ¥
cos 8

M;B=rh(¢+0) MB =r, tan 6 @=MB Y =tan §—6 = inv 0

Representation 2.—In figure 3.1.5(b)
R(u) = ry[sin u—u cos w)i + (cos u + u sin w)j) —oo << oo 3.1.11)
To develop this equation, we use the following relations:
OM=0B+BM  x=(0B+i)+ (BM-i)
y= (O—B-j) + (W-j) MB = MyB = ryu

Parametric representation (3.1.11) may be derived from equation (3.1.10) by changing the
parameter 6 for parameter u by using a continuous, strongly monotonic function

0(1) = arctan u —o << oo (3.1.12)
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Substituting § by arctan u in equation (3.1.10), we get that equation (3.1.6) is indeed observed.
Relation (3.1.12) may be verified by the drawings of figure 3.1.5, which yield

MB =r; tan 6 (fig. 3.1.5(a))

MB = M,B = ru (fig. 3.1.5(b))
Another representation of a curve is based on application of the implicit function. An equation
¢(x,y) =0 x.y»ea 3.1.13)

does not necessarily represent a plane curve. Rather, it merely represents a set of points in the
(x,y) plane. Some of these points may be isolated, and some may form a curve. Equation (3.1.13)
can represent a curve if, in addition to equation (3.1.13), the following requirements are observed:

é(x,y) €C' @]+ o= 0 (3.1.14)
Here
d¢ da¢
x T d y — T
¢ dax an ¢ ay
The requirement
. + 1oy # 0 (3.1.15)

means that at least one partial derivative differs from zero at every point on the curve (x0.Y0).

Requirements (3.1.14) result from the Theorem of Implicit Function System Existence. (See
appendix B.) Regarding equation (3.1.13), this theorem states the following: If equation (3.1.13)
is satisfied at the point

P = (x0,y) (3.1.16)
and at least one partial derivative, for instance ¢,, differs from zero at this point, then equation
(3.1.13) may be solved in the neighborhood of P by a function

y(x) € C! Xo—8<x<uxy+6 Yo—h<y<y,+h (3.1.17)
which represents a simple and regular curve in the neighborhood of P. Here & and % are small
positive numbers which limit the neighborhood of point P.

Remark: If the other partial derivative ¢, differs from zero at point P, the set of points (3.1.13)
represents a simple and regular curve in the neighborhood of P as follows:



x(y) € C! Xg—8<x<xg+d yo—h<h<y<y +h (3.1.18)

Example problem 3.1.2 A set of points which belong to the circle of radius r is represented by
the equation

d)(x,y)=x2+y2—r2=0 —r<x=<r —r<sy=sr (3.1.19)

Determine (1) whether mapping (3.1.19) is a simple curve and if it is not, (2) the additional
requirements necessary for equation (3.1.19) to represent a simple curve.

Solution. Mapping (3.1.19) is not a simple curve because elements x and y are not in one-to-one
correspondence. By a given element x we get

y= Vi -y (3.1.20)

that is, two elements of ¥

Y = Vil - x>  and Y, = - V= i (3.1.21)
correspond to one element of X. Similarly, by a given element y we get
x= 2Vt y? (3.1.22)

that is, two elements of X correspond to one given element of Y. The set of points (3.1.19) may
be represented by four simple, regular curves on the basis of the inequality
o] + 18y # 0 (3.1.23)
where ¢, = 2x and ¢, = 2y.
Version 1.—In figure 3.1.6(a), the four curves are as follows:
Y Curve 3

/_Curvel

‘
’
’

g Curve 2 ™~
~~Curve 1

Curve 4~ /rCurv‘e 3 P

\\ //

) 4

1 F—x U

- Curve 2
-
S Curve 4

1a) b

(a) Version [.
(b) Version 2.

Figure 3.1.6.
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Curve 1 (¢, # 0)

RV e
Curve 2 (¢, # 0)
y=— NN
Curve 3 (¢, # 0)
x= ‘/rz —7)715
Curve 4 (¢, # 0)
o= Vo

where & is a small positive number.

Version 2.—In figure 3.1.6(b), the four curves are as follows:

Curve 1 (¢, # 0)

PEINE S
Curve 2 (¢, # 0)
x=-v2- yf
Curve 3 (¢, # 0)
NEA g
Curve 4 (¢, # 0)
y= -2y

—r<x<r

—r<x<r

-d<y<$é

—-d<y<é

—r<y<r

—r<y<r

—-d<x<é

—d<x<é

Figure 3.1.7.

(3.1.24)

(3.1.25)

(3.1.26)

(3.1.27)

(3.1.28)

(3.1.29)

(3.1.30)

(3.1.31)



Problem 3.1.1 Suppose that circle 2 of radius p rolls without slipping inside circle 1 of radius
r (fig. 3.1.7). In the process of motion, point M of circle 2 traces out a hypocycloid. By p = r/2,
the hypocycloid becomes a straight line which coincides with the y-axis and may be represented as

y=rcosf 0<0<27 (3.1.32)

Equation (3.1.32) may be derived from the following relations (fig. 3.1.7):
(1) Due to pure rolling,

0 =py NoN = NM (3.1.33)
Equation (3.1.33) yields that
y="16=20 (3.1.34)
p
(2) Considering triangle O,MN, we get
AN 180 - Y S S
0,MN=—2—=90 -6 MOO,=6 OMN=90 OM = rcos 0 (3.1.35)
Determine if mapping (3.1.32) represents a simple curve.

Answer. Mapping (3.1.32) does not represent a simple curve because y and 8 are not in one-to-one
correspondence.

Problem 3.1.2 With the conditions of problem (3.1.1), limit the interval for 6 in mapping (3.1.32)
so that it represents a simple curve.

Answer. Mapping (3.1.32) represents a simple curve if 8 is limited to the range 0 < § < 7.

Problem 3.1.3 The path traced out by point M (fig. 3.1.7) may be represented as
y=u —r<u<r (3.1.36)

where u = r cos 8 and 0 < 6 < 2. Are parametric representations (3.1 .32) and (3.1.36) equivalent?

Answer. The parametric representations above are not equivalent because the function u(6) is not
strongly monotonic on the interval 0 < 8 < 2.

Problem 3.1.4 Using the conditions of problem (3.1.3), limit the interval for f to make the parametric
representations equivalent.

Answer. The interval for 0 is 0 < 6 < 7.
Problem 3.1.5 The equation

x2

2
wy =+l -1=0 —a<x<a -b<y<b (3.1.37)
bZ

s

represents a set of points which form an ellipse. Does mapping (3.1.37) represent a simple curve
or several simple curves?
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Answer. Considering x as a regular parameter, we get
y==+b 1 —— —a<x<a (3.1.38)

Considering y as a regular parameter, we get

2
v=xa/ 1—}% b<y<b (3.1.39)

Mappings (3.1.38) and (3.1.39) represent a two-to-one correspondence. Therefore, the set of points
(3.1.37) does not form a simple curve.
The set of points (3.1.37) represents four simple and regular curves of two versions if

of
ox

o
dy

+ =0 5,<x<62 VI <y<wy;

(See example problem (3.1.2).)
Problem 3.1.6 The parametric representation of an ellipse is

x=acosf y=>bsiné O0<0<22n (3.1.40)
Does mapping (3.1.40) represent a simple curve?

Answer. Mapping (3.1.40) represents a simple curve because point (x,y) and parameter # are in
one-to-one correspondence.

3.2 Tangent and Normal to a Plane Curve

The concept of a tangent line to a plane curve is based on the so-called limiting positions of
rays (Zalgaller, 1975).

Consider a set of rays which are drawn through a curve point M and its neighboring curve points
M; (i=1,2,. . .,n). As points M, approach point M, all rays come to some limiting position. In
the case shown in figure 3.2.1(a), there are two limiting rays with coinciding lines of action. These
two rays form the tangent to the curve at point M.

Point M is known as a regular point of the curve. Only one limiting ray exists at the curve point
M shown in figures 3.2.1(b) and (c); only a half tangent exists at these points. Point M, shown
in figures 3.2.1(b) and (c), is known as a point of regression—a so-called singular point of the
curve. The definition of regular and singular points of a curve are as follows:

Parametric Representation

A point of a curve
rf) e C! 0eG (3.2.1)

at which ry # 0 is called a regular point. Points such that the derivative ry does not exist or ry = 0
are called singular points.
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Figure 3.2.1.
Implicit Function Representation
Considering a set of points represented by the equation
o(x,y) =0 peC (x.y)€G (3.2.2)

we say that regular points are points where the partial derivatives of function ¢(x,y) satisfy the
following inequality:

] + o] # 0 (3.2.3)
Singular points of the set (3.2.2) are such that ¢, = 0 and ¢, = 0 simultaneously. A curve has
a unique tangent at a regular point.
The tangent to the parametric curve at a point M is represented by vector

T =ry = x5i + ygj 3.2.4)

drawn through point M. The positive direction of the tangent corresponds to the direction of increasing 6.
Suppose that a curve is given in implicit form as

px,y)=0 ¢eC' (xNEG b+ |8,/ =0 (3.2.5)
The tangent vector
T=T7Ti+T1,j 3.2.6)
is determined with the equation

T¢.+T,6,=0 (3.2.7)
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Equation (3.2.7) may be derived as follows:
(1) Due to the tangency of vector T and the plane curve

dx T,
— = (3.2.8)
dy T,
(2) Differentiation of equation (3.2.5) gives
¢ dx + ¢,dy =0 (3.2.9)

Equations (3.2.8) and (3.2.9) yield equation (3.2.7).
Figure 3.2.2(a) shows the tangent of a plane curve at its point M; D is a point of the tangent.
The position vector

OD = Xi+7Yj (3.2.10)
may be determined as follows:
OD = D‘M+W=xi+yj+)\r(Txi+Tyj) (3.2.11)
where
MD = \T

Here Ay # 0 is a scalar factor to equate vector T with MD. Equations (3.2.10) and (3.2.11) yield
X=x+NT, Y=y+NT, (3.2.12)

or
X-x Y-y
X yzo

T, T,

(3.2.13)

where (x,y) are the coordinates of point M. For a curve represented in parametric form, we get

X~ Y-y d
WO _Y=y®_, -0 W (3.2.14)
X Vo dx db

For a curve represented by an implicit function (eq. (3.2.5)), we get
X—-x¢,+ (Y~ e, =0 (3.2.15)

The unit tangent vector 7 may be represented as

LT T
T JT+7 T+ T

(Ti + T,j) (3.2.16)

At the point of regression a curve has a half tangent (one limiting ray only, figures 3.2.1(b) and
(c)). Limiting our discussion to parametric curves, we say (Rashevsky,1956) (1) a point of regression
exists if rp = 0 and rg; # 0 and (2) the direction of the tangent is determined by vector rg.



Tangent T -,

(@) b}

Figure 3.2.2.

Example 3.2.1 An involute curve R(u), represented by equations (3.1.11), is considered. These
equations yield

R, = ryu sin ui + u cos uj) Ry, = rpf(sin u + u cos w)i + (cos u —u sin w)j] 3.2.17)

Atu # 0, R, # 0, and such points are regular. At the point corresponding to u = 0, we have
R,(O)=0 R,(O) = 1 (3.2.18)

This point (point My, fig. (3.1.5)) is singular (R, = 0) and is a point of regression (R, # 0). The

half tangent determined by R,, is directed along the positive y-axis.

The normal to a plane curve is perpendicular to its tangent and may be represented by

N=Txk or N=KkXT

Here k is the unit vector of the z-axis.

The direction of the normal depends on the order of factors in the cross product. Henceforth,
we will use the equation

i jk T,
N=Txk=|T7,7,0|=| —-T (3.2.19)
0 01 0
The unit normal is determined by
n—N— 1 (T,i —T.)) (3.2.20)
N Ve b -

Now consider a point E of the normal (fig. 3.2.2(b)). The position vector OE is represented by
Here Ay is a scalar factor to equate vector T with MD.

OF = Xi + ¥j OM = xi + yj ME = MNJ + MN,j (3.2.22)
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Equations (3.2.21) and (3.2.22) yield X = x + AN, Y=yv+ AwN,, and

1Yy (3.2.23)

For a curve represented in parametric form by equation (3.2.1) and in implicit form by equation
(3.2.2) we get, respectively,

X~)c(0)+ Y—y(@):O
Yo Xy

(3.2.24)

I Y (3.2.25)

Some curves which are applied as gear tooth shapes are generated by the rolling of circle 2 of
radius p over circle 1 of radius r. These circles can be in internal or cxternal tangency. In particular,
a straight line may be applied instead of circle 2. The curve is generated by a point which is rigidly
connected to circle (straight line) 2, which rolls over circle 1.

Figure 3.2.3 shows a plane curve (an extended epicycloid) which is traced out by point M; M
is rigidly connected to circle 2. At every instant the relative motion of circle 2 with respect to
circle 1 may be represented as rotation about the instantaneous center / with the angular velocity

,
W@ = @ 4
where

@@ =d¢ oV =ﬁ
dt dr

Extended epicycloid

—
3

{a) (b)

Figure 3.2.3.



We may easily determine the tangent T and the normal N to the curve at point M by using the
following considerations:

(1) While circle 2 rotates about / through an angle d¢, point M moves along the tangent T to
the curve. Thus T is perpendicular to M.

(2) The direction of the normal N at point M coincides with MI and is directed from M to f according
to the cross product

N=Txk

Problem 3.2.1 Derive the equations, tangent, normal, and unit normal of the extended epicycloid
(fig. 3.2.3(a)). Investigate the existence of singular points.

Answer. Equations of the extended epicycloid are
x=(r+p)sinf —asin @ +4y) y=(r+p)cosf —acos (@ +y) (3.2.26)

where
r
a = OzM \b =—¢

The tangent is represented as
T, = x5 = (r + p)lcos § —m cos (6 + ¥)] Y=Y = —(r+ p)[sin 8 — m sin (6 + ¥)]

(3.2.27)

where

An extended epicycloid has no singular points. If, however, m = 1, whereby the generated curve
is an ordinary epicycloid, singular points occur at positions where 8 = 27n(p/r) (n = 0,1.2,...).
The normal is

N, =ys= — (r + p)lsin 6 — m sin (§ + )] N, = —x3= — (r + p)lcos 6 — m cos (8 + )]
(3.2.28)

The unit normal is
"= sin 6 — m sin (6 + ¥) n, = — 6 —mecos @ +¥) (3.2.29)

Vi V1 = 2m cos ¢ + m?

Simple equations for the unit normal vector n may be derived considering that n is directed along
vector M1 (fig. 3.2.3(b)). Thus,

n,=sin (@ +y¢ +XN) n, = cos @+y+N (3.2.30)
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Here

anh=—3"Y g cy<an (3.2.31)
m — cos
where
a
nm = -
p

To get equation (3.2.31), consider the triangle IMO, (fig. 3.2.3(b)).

3.3 Curvature of Plane Curves

A parametric curve is represented by
r(6) € C* beG (3.3.1)

Consider two neighboring points M and N of the curve which correspond to § and 6 + A,
respectively (fig. 3.3.1(a)). The length of the arc between points M and N is As, and A« is the
angle between the tangent vectors at M and N.

The limit of the ratio Aa/As as point N approaches point M is known as the curvature (denoted
as «) of the curve at point M. We may also consider the limit of the inverse ratio As/Aa, which
is known as the radius of curvature (denoted as p_) of the curve at point M. Here p, is the radius
of the limiting circle which is drawn through point M and two neighboring points N| and N, as
they approach point M (fig. 3.3.1(b)). The center of this circle is called the center of curvature.

The so-called Frenet’s trihedron is formed by three unit vectors—the unit tangent vector 7, the
principal normal vector n, and the binormal vector b (fig. 3.3.2). The principal normal vector
n lies in plane IT in which the plane curve is located. The binormal vector b lies in plane H, which
is perpendicular to plane II. These three unit vectors form a right-handed trihedron.

Consider two trihedrons, (7. n, b) and (77, n’, b), which are located at neighboring points M
and N of the curve. The motion of trihedron (7. n. b) which is to be coincided with trihedron

(a) (bl

Figure 3.3.1.



Figure 3.3.2.

(77, n’, b) may be represented as a motion of two components. These components are (1) translation
along the curve from M to N (unit vectors 7, n, b of the trihedron keep their original directions)
and (2) rotation about b (trihedron 7, n, b coincides with trihedron 7°, n’, b).

The velocity in translational motion is

do

V=r;— 332

" ( )

v =% (3.3.3)

v =— 3.
dt

Here 7 is time and 6(7) is a strongly monotonic function (a linear function in the simplest case).
The angular velocity is

w=uwub 3.3.4)
and
do
w|l =— (3.3.5
|| ” )

where do is the angle between the tangents at points M and N.
The directions of vectors 7 and n do not change by translation, but they do change by rotation.
The linear velocity of the tip of the unit vector n is

7Tnb
n=wxn=|00w|=—0wT (3.3.6)
010
Considering the function n(§), we get
do
n=ng— (3.3.7)
" dr
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where ny = dn/db.
Equations (3.3.6) and (3.3.7) yield

nod—= —wT=—-—T7T (3.3.8)

v de
v edf
T=-—= 3.3.9)
[v] ds
dt
It results from equations (3.3.8) and (3.3.9) that
da .
dt ?
ng= — (3.3.10)
ds
dr
According to the definition of curvature, we have
do
di dt
K== (3.3.11)
S ds
dr
Equations (3.3.10) and (3.3.11) yield
My = — KIy (3312)

If we consider equation (3.3.12) and the projections of ny and ry on two orthogonal axes (x,y),
we get

_ e _ gy (3.3.13)
Xg Yo

where ng = ny,i + fg, j and ry = xgi + y,j. The sense of the curvature depends on the location of
the center of curvature C on the normal. The center C is located on the positive normal if x > 0.

Another equation for curvature may be derived by considering the linear velocity 7 of the tip
of unit vector 7.

T=wX7=|00w]| =wn (3.3.14)
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Considering function 7(f), we get that

dp
T=Tg—
dr
where 7, = dt/db.
Equations (3.3.14) and (3.3.15) yield
de do
79_ =wn=—1n
dt dt
It results from the equation
ds ds
[rgl —=—
dr dt
that
ds
do dt
dt g

Substituting df/dt in equation (3.3.16) and considering equation (3.3.17), we get

d_a
Ts dr
—— =—n=«n
[rg] ds

dt

which yields

(o T _ T
|l'a|",x |ro|”y

(3.3.15)

(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

where 7y = 75, + 75, j. Equations (3.3.13) and (3.3.19) may be applied to determine the curvature

of a curve given in parametric representation,

A kinematic representation of curvature equations may be developed as follows. Instead of equation

(3.3.12), we may apply

nd@ rdé)
& =
6dt odr
or

n, = — kv,

(3.3.20)
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The subscript r denotes that the velocity in relative motion with respect to the curve is considered
(the velocity of a point which moves along the curve). Equation (3.3.20) yields

n,ev,
K= ———— (3.3.21)
VeV,
A second kinematic representation of curvature is based on the equation
nev,=0 (3.3.22)

which results from the collinearity of vectors v, and 7. Differentiation of equation (3.3.22) gives
(M,ev,) + (nea,) =0
or
N,*V,= —nea, (3.3.23)

where a, = v, is the acceleration of the point which moves along the curve. Equations (3.3.21)
and (3.3.23) yield

(3.3.24)

To simplify the expression for the acceleration a,, we may assume that 6(s) is a linear function
and df/dt is constant. By dfl/dt not being constant, a tangential component a,'" of the acceleration
occurs but it does not change the result of the scalar product in equation (3.3.24) because

aen=0

The acceleration a,, where d6/dr is constant, may be derived as follows:

v.=r do
r odf
and
. do\’ _ _[d9\?
a =V, =Tgl|— | = (xgi + y )| — (3.3.25)
dr dt

Let us now derive the equations of curvature for a curve given by a function in explicit form

y(x) € C? X < x <X (3.3.26)



or in implicit form
F(x,y) =0 FeC? |F |+ |F,| #0 (3.3.27)

The curvature is represented by

da
= 3.3.28
‘ ds ( )
For the curve given by equation (3.3.26), we have
tan & (3.3.29)
a = — = r“ . .
dx Y
ds = Nax® + dy? = Vi + yldx (3.3.30)
Differentiating equation (3.3.29) we get
1 d%y
do = —Sdx =y, dx
cos’ dx? ’
and
1 -
do = cos’ ayudr=———7—y“dx=—’\i—dx (3.3.31)
1 +tan” « (l + y%)
Equations (3.3.28), (3.3.30), and (3.3.31) yield
u (3.3.32)

K= —35
(l +y3>3/2

For the curve represented by equation (3.3.27), we get F.dx + Fydy = 0. Assuming that F, # O,
we get

dy F,
@& _ _ K (3.3.33)
< F,
@ - 2FrFyF.xy B F,\ZF\\ - FuF\z (3 3 34)
d_xz F: 3.
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and
2F F,F — FF,, — F_F?
k= S ly L'y Ty (3.3.35)

2, 3/2

(F: + F})

Differentiating equation (3.3.33), we consider that

Fr = F,\‘(X’.\') F," = F\,(.l',_\‘)

and

a dy Fx ad dy Fx
_(Ft) =F\;\+Fl\'; :F.\;x‘—Fn'_ —(F\) :F\‘\+F\’\'_=F\'X_FVV_
ox ¥ dx *Fy ax TN T g T e T ey

Problem 3.3.1 Given an involute curve represented by equation (3.1.11). Develop the equation
of curvature by using equations (3.3.13) and (3.3.19). Be sure that the results match.

Answer.

Problem 3.3.2 With the conditions of problem (3.2.1), find the curvature of an extended epicycloid
and ordinary epicycloid using the unit normal equations (3.2.30), and curvature equations (3.3.13).

Answer.
cos (0 + ¢ + N 1 +£ rmcos y - l)C(:S‘)\
p P (m — cos y)*
K= —
(r + p)lcos 8 — m cos (6 + )]
where
m=- tan A = —0 4
p m — cos y

For an ordinary epicycloid, m =1, A =90° — /2, and

20+ r

|

>
|
0o €

4p(r + p) sin
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Chapter 4

Conjugate Shapes

4.1 Generation of a Locus of Planar Curves

Consider a gear train of gears 1 and 2 which transforms rotational motion between parallel axes
with the given function

é5(¢) € C! a< ¢, <b (4.1.1)

Here ¢, and ¢, are the angles of gear rotation. We set up the following coordinate systems:
S, (xy,y,) and Sy(xp,y;), rigidly connected to gears 1 and 2, respectively, and Sp(x5yy), rigidly
connected to the frame (fig. 4.1.1(a)). We assume here that the shape of gear tooth 1 is a simple
regular curve £, which is given in parametric representation in coordinate system S; as follows
(fig. 4.1.1(b)):

d
ry () € C! -d%‘;so 6¢G @.1.2)

The problem to be solved is to determine the shape of the tooth of gear 2 (L;) which will provide
conjugate action when in mesh with gear tooth 1. Gears are said to have conjugate tooth shapes
if they transform motion by a prescribed function (eq. (4.1.1)). To solve this problem we must
find (1) the locus of planar curves Iy generated by the given curve I, in coordinate system S,
and (2) the envelope L, of the locus of planar curves L, (the shape of gear tooth 2). The
determination of the envelope L, is considered in section 4.2.

Although we shall limit our discussion to the case with ¢,(¢() as a linear function, the following
results may be extended to the case where $,(¢,) is a nonlinear function and the angular velocity
ratio 1§

my, = i(fbo(d)l)) # constant
do, N~
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Figure 4.1.1.

The matrix representation of the locus of planar curves £, may be represented by the equations

ri(6) = x, (O, + y, (0)j, recC'
4.1.3)
alll I ) O Y.
df dé
[r2) = (M, )] 4.1.49)
Here
xi(8)

(&= »0)
1

is the matrix of coordinates of the given shape £, and [M,] is the matrix which represents the
coordinate transformation from system S, to S;. Elements of this matrix depend on angles of
rotation ¢, and ¢,. Taking into account that ¢, and ¢, are related by the function (4.1. 1), we can
say that elements of matrix [M,;] may be expressed solely in terms of ¢,. The locus of planar
curves L, may be represented as follows:

3
r:(6,6,) € C' 33;‘0 866G  a<¢ <b 4.1.5)

For the case shown in figure 4.1.1(a), we have



w3 ﬂ

¢y = my 9, m,, = — = — = constant
w; "
where r; and r, are centrode radii and the matrix [M>,] is
cos ¢, —sinp, Csin @, cos ¢, —sing; O
[M;)] = [MoJIMp] = sin ¢, cos ¢, — Ccos fo3s sing, cos¢; O
0 0 1 0 0 1

cos (¢ + @) —sin (¢ +¢y) Csinéy
= | sin (¢, + @) cos (¢ +¢) — Ccos oy (4.1.6)
0 0 |

Expressions (4.1.4), (4.1.6), and (4.1.2) yield

2xB.6) = x,(6) cos (1 + B2) — 31(0) sin (&) + &) + Csin &2

y2(0,9) = x1(0) sin (¢, + &) + y4(8) cos (¢, + ¢;) — C cos ¢,

4.1.7)
%
a0

Al

#0 6eG a<op<b
a6

Here ¢ = ¢, and ¢, is determined by the given function ¢,(¢,). Equations (4.1.7) represent the
locus of regular curves (gear 1 shapes) which is generated in coordinate system Ss.

By a fixed value of ¢,, equations (4.1.7) represent a single curve of the locus whose location
in coordinate system S, depends on the value of ¢,. The partial derivative

ar, 0x, ay,
o _%h, ¥ (4.1.8)
20 a0 2" 2"

1
r
|~ ¥l6,00 + 40

Y2

— X

Figure 4.1.2.

65



66

is the tangent vector at any point of this curve (fig. 4.1.2). Here i and j, are unit vectors of the
coordinate axes of system S,. By a fixed value of 6, equations (4.1.7) represent the path which
is traced out in coordinate system S, by a single point of curve L, (fig. 4.1.2). Here ¢ is the
parameter of motion of the generated path. Different paths are traced out by different points on
curve I;. The location of these points on curve I, depends on the chosen parameter . The partial
derivative

a d b dy,
T _ oy P2 4.1.9)
6 a6 3

represents the tangent to the path which is gencrated by a point on curve I, as it moves relative
to system S, (fig. 4.1.2). Considering the time derivative equivalent of equation (4.1.9), we get that

ar, d a—»d ay, dg¢
V)(IZ):L—(b_ x_ ¢. + ,\‘, (P.

=200y ey 4.1.10
S dedi dedt’ ap ai ) ( )

where v§'? is the velocity of a point of curve I, in its motion relative to coordinate system S,

(represented in system S,).
Consider a case where the given shape is represented in coordinate system §;(x;,y,;) by an
implicit function as follows:

F(x;,y) =0 (x1.y;) €4 Fe(' |Fo |+ |F, | =0 4.1.11)
We may derive the locus of planar curves generated in coordinate system S, through the equations

X = g1 (x2,52,¢) n = g(x.v2.9) 4.1.12)

which expresses the coordinate transformation from coordinate system $, to S,. The matrix
representation of equations (4.1.12) is

(] = [M,]lr] “4.1.13)
Here [M,,] is the inverse of matrix [M,,]. Equations (4.1.11) and (4.1.12) yield
H(xyv2.0) = F(x| (x2.32,9), ¥, (-"‘:v)'z-d))) =0 4.1.14)

(.\’2,_\'}_) cF He C‘1 'H‘:

+ 'H\‘ZI #0
Equations (4.1.14) represent the locus of plane curves generated in coordinate system S,.

Problem 4.1.1 Consider the coordinate systems shown in figure 4.1.3(a). The shape of the rack
tooth is represented in coordinate system S, (fig. 4.1.3(b)) by the equations

Xy = u sin V2 = u cos ¥, —uy < u <y O.M=u (4.1.15)

The displacement s of the rack and the angle of gear rotation ¢ are related by

=r (r is constant)

s
¢



Y2 M

y2

0 e Xp
] 02M =u

(a) (b}
Figure 4.1.3.

Find equations of the locus of shapes which is generated in coordinate system S;. The shape is
represented by equation (4.1.15).

Answer.
x, = u sin (Y. + ¢) +r(sin ¢ — ¢ cos ¢)
4.1.16)
y; = ucos (Y, + @) + r (cos ¢ + ¢ sin ¢)

where —u < u < u, and a < ¢ < b.

Problem 4.1.2 Consider the locus of curves represented by equations (4.1.7). Assume that ¢,(¢))
is a linear function given as

_ _w_Nn
by = M9y my =—=—
wy N

Determine a general expression for the relative velocity v§12. Prove that v§'? is equal to zero at
the pitch point /—the point of tangency of centrodes (fig. 4.1.1(a)).

Vi = [‘Xl sin (@) + $2)(w; + wy) — ¥ €os (¢ + d)(w + w) + Cuy cOs ¢>2] iz
+ [Xl cos (¢ + ¢2)(w; + wy) — ¥ sin (@) + D)(w; + wp) + Cw; sin ¢z] B 4.1.17)
To prove that v§'¥ = 0 at the pitch point /, substitute x; and y, by (fig. 4.1.1(a))
Xy = ry sin ¢, Y| = I CO$ ¢,

and take into account that C = r| + r; and wry = wyr;.
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4.2 Envelope of a Locus of Planar Curves:
Parametric Representation

Equations (4.1.5) and (4.1.7) represent a locus of regular planar curves. Simplifying our notation,
we may represent the locus of curves in a coordinate system S(x,y) as follows:

r.¢)e C' rg #0 0eG a<¢<bh 4.2.1)
Here

r(0.0) = x(6,0)i + y(0.4)j 4.2.2)

where i and j denote the unit vectors of coordinate axes x and y.

With the fixed parameter of motion ¢, the function r(d,¢,) represents the position vector of
a curve point which corresponds to the parameter . Parameter of motion ¢o determines the
location of the curve in the coordinate system S(x,y). Henceforth, we assume that the curve locus
(eq. (4.2.1)) is generated by the motion of a nonchanging curve. However, in the most general
case, vector function (4.2.1) may represent a locus of planar curves which changes in the process
of motion. Vector functions r(0,¢3”) and r(0,¢62)) represent two such curves which differ not only
by their locations but also by their shapes. All the results found in this chapter hold true for both
cases above.

Figure 4.2.1 shows a locus of planar curves 1, 2, 3, 4, etc. The envelope of a locus of planar
curves is the simple, regular planar curve which is in tangency with every curve of the locus. This
geometric concept of an envelope must be based on strict definitions proposed in the field of
differential geometry by Zalgaller (1975), Favard (1957), and other authors. These definitions state
the necessary and sufficient conditions for the existence of a piece of the envelope in the neighborhood
of a point (§y,¢¢).

The necessary conditions of envelope existence determine points on the locus of curves in the
neighborhood of point (6;,#) at which the curves can be in tangency with the piece of the envelope
if the envelope exists. The sufficient conditions of envelope existence determine the requirements
by which, if observed, the piece of the envelope really exists as a simple, regular curve. Although
in most applications in the Theory of Gearing we may limit our investigation to necessary conditions
only, cases do arise where both the necessary and sufficient conditions must be used to guarantee
the existence of a piece of an envelope at point (8, ¢y).

A picce of the envelope of a locus of planar curves (4.2.1) is a regular curve

R(¢) € C! R, #0 ¢ € (a.b) (4.2.3)

such that it is in tangency with at least one of the curves of the locus at any value of ¢. The
correspondence between parameters 6 and ¢ is set up by the equation

2 3 Two curve positions ~e
~
1

1I

——Envelope

~Envetope
e

Figure 4.2.1. Figure 4.2.2.




f(6,0)=0 f, #0 4.2.4)

The whole complex of envelope pieces which are determined separately in the neighborhood of
individual points (8§",¢¢"). (0§2,6§2), . . . represents the envelope in totality.

Theorem The necessary condition of envelope existence is established by the following theorem.
Assume that the locus of curves (eq. (4.2.1)) has an envelope (eq. (4.2.3)) in the neighborhood
of point (8;.¢¢). This point corresponds to the point of tangency between curve r(0,¢,) of the locus
and the envelope R(¢). Then the point (8;,¢) (parameters of value 6, ¢,) must satisfy the equation

flo,0) =lkryry] =0 4.2.5)

Here K is the unit vector of the z-axis which is perpendicular to the planar curves (eq. (4.2.1)).

The aim of this theorem is to develop a relation between parameters (8,4) in equations (4.2.1)
by which a curve of the locus may be in tangency with the envelope. By choosing a point on the
planar curve (choosing the parameter 6,), we can find the corresponding parameter ¢¢ by using
equation (4.2.5). The position vector r(8y,$¢) determines the point of tangency of the curve r(6,9q)
with the envelope R(¢). (Here, ¢ is fixed.)

Proof: Suppose that I and II are two infinitesimally close positions of the same curve, and M and
N are their points of tangency with the envelope (fig. 4.2.2). By taking into account that function
(4.2.3) represents the envelope, the displacement of the point of tangency MN along the envelope
may be determined as

dR = Rd¢ 4.2.6)
where

R, = %(R(@)

As the planar curve comes to position II, a different point (point N) comes into tangencym
the envelope. The old point of tangency on the curve (point M) moves to point M". The arc MM’
is the displacement of the curve point M with the curve (the parameter of motion ¢ changes while
the parameter 6 is fixed). The arc M’ Nis the displacement of the point of tangency along thg curve
(the parameter § changes while the parameter ¢ is fixed). The resulting displacement MN may
be represented as

TN S
MN=MM" +M'N @.2.7)
By using the function r(6,¢), we represent the resulting displacement by
dr = ryde + rydf (4.2.8)
P N
where rydp = MM’ and rydf = M’N.

Due to the continuity of tangency of the locus curves with the envelope, we have

Vector R, represents the tangent vector to the envelope and vector r, represents the tangent vector
to the curve of the locus. By definition of an envelope, vectors R, and ry must be collinear at
the point of tangency. Since we consider a locus of regular curves only, we have ry # 0. Thus,
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equation (4.2.9) may be observed if and only if r, is collinear to ry and R,. The collinearity of

these three vectors yields that

ry X ry = 0
which may be also represented as
D(x, Xg Yo
) _ = f(8.4) = 0
D(6,¢) Xg Yo

4.2.10)

(4.2.11)

On the basis of equation (4.2.10), another form of the relation between 6 and ¢ may be developed.

The normal N to a planar curve may be represented as

N=r9Xk

where k is the unit vector of the axis which is perpendicular to the plane of the planar curve. Since
N is perpendicular to the tangent vector ry, and because ry and ry are collinear, we get

Nerg=Ner,=0
This yields
[rpkry] =0
or (since the scalar triple product is equal to zero)

[k ryry] =f(6,¢) =0

The sufficient conditions of envelope existence is given by the following theorem.

Theorem Consider a locus of planar curves given as

r(8,¢) € C? ry #0 beG a<¢p<b

If at a point (6g,¢) the following requirements are observed
f6.9) =[kryry] =0
fo#0

T=r¢ﬁ;—l‘9f¢¢0

then the envelope exists in the neighborhood of that point and is a regular curve.

4.2.12)

(4.2.13)

(4.2.14)
4.2.15)

(4.2.16)

Proof: Due to the requirement (4.2.15), the equation (4.2.12) possesses a unique solution as

b¢)eC'

4.2.17)

(See app. B.) With function (4.2.17), the vector function r(8,¢) may be represented as

r(6(s).6) = R(@)

(4.2.18)



The tangent vector to the curve (eq. (4.2.18)) is

R, =r4f, + 1y 4.2.19)
Differentiation of the identity
r(6@).4) =0
yields
fobs +fo =0
and thus
B, = —J% (fo # 0) (4.2.20)
9

Substituting 8, into equation (4.2.19) and considering expression (4.2.20), we get

R, = —r9&+r¢,=T 4.2.21)
Jo

Due to equation (4.2.14), vectors ry and r,, are collinear. Vectors Ry and ry are collinear due to
equation (4.2.19). Thus, the curve R(¢) is in tangency with the curve r(f,¢,). Due to inequality
(4.2.16), R(¢) represents a regular curve. This curve is the envelope and may be represented by

r(0,9) f(8,¢) = [k rgrg] =0 (4.2.22)

Example problem 4.2.1 Consider the locus of straight lines represented by the equations shown
in (4.1.16), which are repeated here for convenience (the subscript 1 has temporarily been dropped)

x(u,@) = u sin (Y, + ¢) + r(sin ¢ — ¢ cos @)
(4.2.23)
y(u,¢) = u cos (Y. + ¢) + r(cos ¢ + ¢ sin @)

where —u, < u <u, and a < ¢ < b. Determine the necessary and sufficient conditions of
envelope existence.

Solution. The necessary condition of envelope existence (eq. (4.2.12)) is

flu,d) =[kr,ry] =0

which yields

sin (Y, + @) cos (Y. + ¢)

ucos (Y, + @)+ rosing —usin W, + ¢) +récos o

flu,¢) =

xl( .vl( 1

X Yo

=—u+r¢siny,=0 (4.2.24)
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The first of the sufficient conditions of envelope existence, inequality (4.2.15), is observed because
Su=—1%0
The tangent T to the envelope is (use equations (4.2.16) and (4.2.24))
T =rofy = tufy = (afy — xS + Ouf — ¥
= — r{d)[sin V. cos (Y. + &) + sin ¢] + sin ¢, sin (Y, + ¢>)}i
+ r{qs[sm Y sin (Y + @) — cos ] — sin ¥, cos (Y, + ¢)}j (4.2.25)
Equations (4.2.25) yield that 7, =0 and T, = 0 by
¢ = —tan y, (4.2.26)
The value of u, which corresponds to the value of ¢, is (sce equation (4.2.24))
U= —rtan y,.sin ¢, 4.2.27)
Consequently, a piece of the envelope does not exist in the neighborhood of the point with the

values of u and ¢ above. At all other points the envelope exists and may be represented by equations
(4.2.23) and (4.2.24). These equations, after eliminating parameter u, yield

x =rsin¢ — r¢ cos . cos (¢ + )
(4.2.28)
Y =rcos ¢+ re cos . sin (6 + )

To prove that the envelope is an involute curve, let us apply a new coordinate system S, (x,,y,)
whose axis x, forms a constant angle ¢ = inv () = tan ¥, — . with the x, axis of coordinate
system S, (x,,y;) (fig. 4.2.3).

The matrix representation of coordinate transformation is

[red = M\ 1[r] (4.2.29)
Yo Y1
0
N
Mg
M
-8
. -
X1
rb 0

Figure 4.2.3.



Here

x cosg sing O
[rid= 1|y |and {M,]= | —sing cosgqg O (4.2.30)
I 0 0 1

where x and y are represented by equations (4.2.28). Equations (4.2.28) to (4.2.30) yield

x, = rsin (¢ +q) — r¢ cos Y, cos (¢ + ¥+ q)
(4.2.31(a))
y, = rcos (¢ +q) + ré cos y.sin (¢ + .+ q)
Using substitutions
p+y.+g=0¢+y. +inv(y)=¢ +tany, =6
and ¢ =8 — tan . and ¢ + g =8 — ., we get
x, =rysin @ — b cos @
(4.2.31(b))

y, = rp cos § + rpf sin 8

where r, = r cos .. Equations (4.2.31(b)) represent an involute curve which corresponds to the
base circle of radius ry, (fig. 4.2.3).

Problem 4.2.1 Consider a gear mechanism formed by gear 1 and rack 2 (fig. 4.1.3(a)). Coordinate
systems S, S, and Sy are rigidly connected with gear 1, rack 2, and the frame, respectively. The
shape of the gear tooth is an involute curve represented by the equations

x; = r,sin @ — r,f cos 8 y, = rp, cos 8 + r,f sin 8 (4.2.32)

where 0 < 8 < 8.
The translation of rack 2 and the rotation of gear 1 are related by the equation

s=ro=—" ¢ (4.2.33)
cos Y,

Derive equations of the locus of involute curves generated in coordinate system S, and find
necessary and sufficient conditions for the existence of the envelope. Develop equations of the
envelope.

Answer. The locus of involute curves generated in coordinate system S, (x,y,) is represented by
the following equations (the subscript 2 in x; and y, is omitted for simplification)

X =X, cos ¢ — ¥ sin ¢, +rd =rp,sin (6 — ¢) — rpf cos (6 — ) +ro
(4.2.34)
y =x; sin ¢ +y cos ¢ —r=r,cos (§ —@) +rdsin(@—¢)—r

where 0 < 8 < 8, and a < ¢, < b. The necessary condition of envelope existence, equation
(4.2.14), is as follows:
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f0,¢) =cos Y, —cos (f# —¢) =0 6 #0) (4.2.35)
Thus, 6 — ¢ = ... Inequality (4.2.15)
Jo=sin(@ -¢)#0 (4.2.36)

is observed, if . # 0. (See eq. (4.2.35).)
The tangent vector T (see expression (4.2.16) is given by

T, =xofy — Xpfo = rp sin  tan ¢ # 0
4.2.37)
Ty =Yafs — Yofs = rp sin” ¢, # 0

Since inequality (4.2.16) is observed, the envelope exists and may be represented by equations
(4.2.34) and (4.2.35), which yield

X =r,inv . cos Y. + ryd sin y tan ),
(4.2.38)
Y= —r,inv . sin Y.+ r,¢ sin ¢,

where ¢ is the shape parameter and inv ¥, = tan ), — V.. Equations (4.2.38) represent a straight
line which forms an angle of ¥, with the y,-axis. This straight line is the shape of the rack tooth
which is conjugate to the involute curve (the shape of the gear tooth).

Problem 4.2.2 Given the conditions of problem 4.2.1, consider the case when r — rpand . = 0.
Prove that the envelope does not exist as a regular curve. What kind of rack tooth shape do equations
(4.2.38) now represent?

Answer. The envelope does not exist as a regular curve because none of the inequalities (eq. (4.2.37))
are observed. Equations (4.2.38) represent the rack tooth “‘shape’” which is, in fact, a single point
(x =0, y =0). This point generates an involute curve if the rack is the tool and the gear is to
be cut (fig. 4.2.4).

4.3 Envelope of a Locus of Planar Curves: Representation
in Implicit Form

Consider the equation
Flx.y.)=0 (x,v)€G a<¢<h 4.3.1)
The equation
F(x,y,¢9) =0 4.3.2)

(¢o is fixed) represents a simple regular curve in the neighborhood of the point (x,,y,) if at this
point the following requirements are observed:

F(x,y,¢) € C* |F.| + |F,| =0 4.3.3)

If the requirements of equation (4.3.3) are observed for different values of ¢, then equation
(4.3.1) represents a locus of locally simple regular curves (in the neighborhood of the point
(x0,Y0,$0)). The envelope of this locus is defined as follows: A piece of the envelope of a locus
of curves is such a regular curve represented by



~Rack with be = 0
7/

Figure 4.2.4.
RO =x(@i+y0)  R®EC  Ry=—(R®) %0
d¢
(x,v)eG a<o¢p<b (4.3.4)

which is in tangency with curves F(x,y,¢o) for every value of ¢.

Theorem The necessary condition for existence of the envelope is given by the following theorem.
Assume that at the point (xo,Yo,%o) equation (4.3.1) and requirements (4.3.3) are observed. If the
envelope indeed exists in the neighborhood of the point (x0,Y0, Do), this point belongs to the set

Fy(x,y,9) =0 (4.3.5)

where
&=%@mm0

Proof: Assume that just the partial derivative F, differs from zero at the point (x0,Y0,90)- Then,
as is stated by the Theorem of Implicit Function Existence (app. B), equation (4.3.1) (by observing
requirements (4.3.3)) may be solved as a function

y(x,0) € C' (4.3.6)

in the neighborhood of the point (xo,Yo,%¢). With function (4.3.6), equation (4.3.1) becomes an
identity

F(x,y(x,¢),¢) =0 (4.3.7)
and its differentiation yields

Fo+Fy, =0 4.3.8)

75



76

Fy+ Fy,=0 4.3.9)

Consequently,

F
Vo= — F (F, #0) (4.3.10)

Fy

Yo = (F, # 0) 4.3.11)

y

Function y(x,dy) (¢, is the fixed value of ¢) represents a single curve of the locus in the
coordinate system S(x,y). Here x and y are coordinates of the curve point whose position vector
may be represented as

r(x,)'(,r,qso)) = [Xi + y(x,d)o)j} eC! (x,y) €G (4.3.12)

If we allow the value of ¢ to vary from ¢ = ¢, we get the following vector equation:
r(x,y(.r,qs)) = {x. + y(x,dJ)jI €C! (xy)€G a<eé<b  (43.13)

Let us now differentiate equations (4.3.12) and (4.3.13) and get

or =8x(i + v.j) 4.3.14)
dr = dxi + (v, dx + ysdo)j (4.3.15)
Since ¢y is fixed in equation (4.3.12), vector dr represents the infinitesimal displacement of a point
along the curve. Further, since ¢ is a variable parameter in equation (4.3.13), vector dr represents
the infinitesimal displacement of a point both along and with the curve. (See fig. 4.2.2.) For a
piece of the envelope of locus (4.3.13) to exist in the neighborhood of the point (xg,y,) and for

the envelope to be in continuous tangency with the locus, vectors 8r and dr must be collinear.
Due to this collinearity we may write

é _ ydx + yudo

A (4.3.16)
ox y,0x
where A # 0. It is easily seen from this equation that
Vedod =0 4.3.17)
Equations (4.3.17) and (4.3.11) yield
Fy
- Fd¢ =0 (F, #0) (4.3.18)
¥

Itis clear that d¢ # O because the changing values of ¢ correspond to different points on the envelope.
Consequently, equation (4.3.18) may be observed if and only if the partial derivative F,=0.

Sufficient Conditions of Envelope Existence

Theorem Consider a locus of curves



F(x,y,)=0 FeC? (x.y) €G a<¢<b 4.3.19)

Assume that at the point (xg,yo.$y) the following requirements are observed:

F(xq,y0.%0) =0 |F.r|+|Fy|¢0 Fy=0 Fys %0
D(F.F, Fo Fy
_DFE) _ "o (4.3.20)
D(x.y) Fy Fyy

where
Fu= 2 [Fns)]  Fo=s[Rere)] R [Fle]

x = XY, ;= X, ¥, = Xy,

ox = o LTe @y 3y ¢ *” 3
A piece of the envelope indeed exists in the neighborhood of the point (xo, Yo%), and it is a simple,
regular curve which may be represented by the following equations:

F(x:)’yqf’) = 0 F¢(Xy)’,¢) = O (4321)
Proof: Assume that at the point (xg,)o.@¢), the equations
F(x,y,¢)=0 Fy(x,y,0) =0 FeC? FyeC'

are observed, and the inequality

_DEE)
D(x,y)

is also observed. Due to this inequality, equations F = 0 and F, = 0 may be solved as functions

[x(q&), y(¢)} €C' (4.3.22)
in the neighborhood of the point (xo,yo,®0). These functions represent a curve
RO =x(@i+y(@)  [x(o), y(@]eC 4323
which exists in the neighborhood of point (xg,Yo,®o)-

Let us now prove that the envelope is in tangency with single curves of the locus in the
neighborhood of the point (xo,yg,¢) and that it is a regular curve. Considering functions (4.3.22)
and equation (4.3.1) we get the following two identities:

Fx(e)3(9).6) =0 FeC (4.3.24)
Fo(x(#)3(9)8) =0 FoeC' (4.3.25)

Differentiation of identity (4.3.24) with respect to ¢ yields

d
3_¢ [F(x(qﬁ),)'((b),qﬁ)] =Fuxs+ Fy, +F,=0
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where

Taking into account that F, = 0 (eq. (4.3.20)), we get
Fox, +Fy, =0 (4.3.26)
Similarly, differentiation of identity (4.3.25) yields
Fouxg + Fypyg + Fpp =0 (4.3.27)

Equations (4.3.26) and (4.3.27) represent a system of two linear equations in unknowns x, and
Yo The solution of these two equations for x, and Ve is as follows:

0 F
_ —Fys Fd>y _ @
Xy = =P (4.3.28)
o F a
Fox Fqb\
F, 0
= For =Foo - —@F
Yo = = x (4.3.29)
Fo F, A
F¢,x Fd)\

It results from equations (4.3.28) and (4.3.29) that
[xo| + |vs] 20 (4.3.30)
because Fy, # 0, A # 0, and |F,| + ]F‘| # 0. (See eq. (4.3.20).) Consequently, the curve
(eq. (4.3.23)) is a regular curve.
It is easy to prove that equation (4.3.26) represents the tangency of the envelope with the curves
of the locus in the neighborhood of the point (x0,Y0,$0). These curves are indeed in tangency if

their tangent vectors are collinear.
The tangent vector to the envelope given by

R(¢) = x(¢)i + y(9)j
is represented by
t= x40+ y,j (4.3.31)
A curve of the locus is represented by the equation

F(x,y,60) =0 |Fl + |F| =0 (4.3.32)



Recalling equation (3.2.9), we may express projections of the tangent 7 to this curve as follows:

L (4.3.33)
TX

=D (4.3.34)

Equations (4.3.34), (4.3.31), and (4.3.33) yield

Yo o _E (4.3.35)
X F,

Relation (4.3.35) results directly from equation (4.3.26), and the envelope is indeed in tangency
with the locus curves. Since the curve represented by equation (4.3.23) is a regular curve and since
it is in tangency with the curves of the locus in the neighborhood of the point (xo,yo,¢), it is indeed
a piece of the envelope.

4.4 Envelope of Planar Curve Locus: Kinematic
Method of Determination

The necessary conditions of envelope existence may be interpreted kinematically. This
interpretation simplifies the synthesis of planar gearings. The necessary condition for envelope
existence is given by equation (4.2.12) which is

f(6,0) =Ner,=[rskry] =0 4.4.1)

This equation expresses the requirement that at points of tangency of the curves of the locus (1)
with their envelope (2), the normal N to the curve of the locus is perpendicular to vector ry. As
noted in section 4.2, vector r,, represents the linear velocity of a point M of curve (1) with respect
to point M of the envelope (2); here M is the point of tangency of curves 1 and 2. Taking this
into account, we may represent equation (4.4.1) as follows:

N.vi2 = £(8,¢) = 0 4.4.2)
or as

Nev@® =f(8,¢)=0 (4.4.3)
where v@D = — v12,

The scalar product (4.4.2) or (4.4.3) is an invariant property—it does not depend on the coordinate
system in which it is applied. Usually we apply three coordinate systems; S, and §,, rigidly
connected to gears 1 and 2, respectively, and S;, rigidly connected to the frame. Vectors of the
scalar product (4.4.2) or (4.4.3) may be represented in any of these three systems.

Equations (4.4.2) and (4.4.3) are known in the Theory of Gearing as equations of meshing. The
most simple method for determination of this equation is based on the kinematic properties of planar
motion.
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We begin with determination of the relative velocity v'® for the situation shown in figure 4.1.1.

Gears 1 and 2 rotate about axes z;, and z, (they are not shown in figure 4.1.1) with angular
velocities

W =wMk, 4.4.4)
w?=—w?k, (4.4.5)

where k; and k, are unit vectors of axes z, and z,.

Suppose that vector v!'? is to be expressed in terms of components of coordinate system S, (fig.
4.1.1). The sliding vector w'® does not pass through the origin O, of coordinate system S|;
therefore we replace it with an equal vector which passes through point O, and a moment

m = 0]02 X w(z) (446)
Then the linear velocity of a point of gear 2 may be represented as follows:
VO = (0 xr) + (0,0, x w®) 4.4.7)

Here r| is a position vector drawn from the origin O, to a point on gear 2.
The velocity of a point on gear 1 may be determined as

vl =M xr, (4.4.8)

The relative velocity v!'¥ may be represented by the following equation:

(a2 () ) (o5

= (@1 x 1)) = (007 x wf?)

iy b k, i Ji k,
= 0 0wP+w®| -~ | Csing, Ccosp, 0
vy 0 0 0 —w?

- [ (w“' + wm) v — »{PC cos qb,} i
+ [ (w'” + w“‘) ¥ — w{®C sin d:,]j, (4.4.9)

The subscript 1 in equation (4.4.9) denotes that vectors are expressed in terms of components of
coordinate system S, (x;,y,).

Assuming that the shape of the gear 1 tooth is represented in parametric form by equation (4.1.3),
we express the normal vector N as

dy, dxy
N, =—i;, —— 4.4.10
1=t ao.ll ( )

Now, the equation of meshing may be represented as



dy a
I a2y _ ﬂv;;ﬂ = f0,6) =0 (4.4.11)

Vi

a0 a6

Here v, and v, are components of the vector v{!2 represented by equation (4.4.9).
Similar results may be obtained if the scalar product is expressed in terms of components of
coordinate system Sy Hence, the matrix of the normal N, is (fig. 4.1.1)

cos ¢; — sin @, ‘&1

[N = [LalIN|] = %
. ) ax,
sin ¢y cos ¢ - 5{3

% cos ¢, + ai’ sin ¢
a8 'Ta
ay] . axl
—— sin ¢y — — cos 4.4.12
Y o, % ¢ ( )

The relative velocity vf“;” is represented by

v = (wf“z’ X rf) - (U@X w}”)

iy Jr Ky T
00w +w®| -|0C 0
X; ¥y z 00 —w?

- - { (e + o)y, - wf“c] i+ (of + o) xs (4.4.13)

Coordinates x; and y, may be expressed in terms of x; and y; with the matrix equation

[rd = [Mpllr]

or
Xy cos ¢; —sing; 0 X
L= sing, cos¢, O i
1 0 0 1 1
This yields
Xp = X| €05 ¢ — y; sin ¢, yr = X; sin ¢, + y| cos @, 4.4.14)

Using the results from equations (4.4.12) to (4.4.14), we may determine the equation of meshing by

f(8,6) = Npe v =0 (4.4.15)
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Another kinematic represcatation of the equation of meshing is based on the following General
Theorem of Plane Gearings.

General Theorem of Plane Gearing Conjugate tooth shapes must be such that their common normal
at point of tangency intersects the line of rotation centers 0,0, (fig. 4.4.1) and divides it into two
segments, O,/ and 0./, which are related as follows:

0,1
=2, (O + O] = () (4.4.16)
0[1 w3

Here m;; may be a prescribed function such as m,5(¢,) or a constant.

Proof: Consider that gears | and 2 rotate about centers O, and O, (fig. 4.4.1), respectively, and
that the given instantancous angular velocity ratio is m,,. Thus, the location of the instantaneous
center of rotation is determined by equation (4.4.16), and the relative motion of gear | with respect
to gear 2 is rotation about point / (with angular velocity »''? = " + @ if the gears rotate in
opposite directions).

Suppose that the shape L, of gear tooth 1 is given and it is necessary to determine the shape
L, of gear 2. We know that at the point of tangency of shapes L, and E,, point M, equation (4.4.2)

N-VHZ)—:()

must be observed.

The relative velocity v!'?

1s given by

v = U 5 TAT (4.4.17)

E

w12

wil)

T L

01

Figure 4.4 1. Figure 4.4.2.



and is directed along T, the common tangent vector of the shapes. The normal N is perpendicular
to the tangent T. Consequently, the normal drawn at the point of the shape tangency M must pass
through the instantaneous center of rotation /.

If shapes L, and L, are chosen arbitrarily, they cannot transform rotational motion with the
prescribed angular velocity ratio m ;. Suppose that m;, must be a constant but the shapes of the
gear teeth are not conjugate. Figure 4.4.2 shows such shapes in two positions. The normals N
and N at points of tangency M, and M, intersect the center distance at two different points
(I;, I,). This is the sign that the motion is transformed with a nonconstant angular velocity ratio.

4.5 Conjugate Shapes: Working Equations for Their Determination

The key to the problem of conjugated shapes lies in determining the equation of meshing
f6,9)=0 “45.1)

As stated earlier, this equation relates the parameter 6 of the given shape E, with the parameter
¢ of the locus generation (curve L, motion).

To find a conjugate shape with the classical methods of differential geometry, the following
procedure must be applied:

(1) The locus of shapes I, represented by the vector function

r,(0,¢) € C' 4.5.2)

must be determined. This locus is generated in coordinate system S,, which is rigidly connected
to gear 2.
(2) The equation of meshing (4.5.1) given by

ﬁz><f.’—r3=0

4.5.3
a0 do ( )

must be determined.

Although the above method is, of course, workable, the following procedure substantially simplifies
the determination of conjugate shapes. To determine the equation of meshing (eq. (4.5.1)), it is
not necessary to develop vector function (4.5.2), determine its partial derivatives, and then derive
equation (4.5.3). Representing the given shape L, by

d
r, @) € C' E’(;‘ %0  0¢G 4.5.4)

we just require that the normal N,(6) passes through the instantaneous center of rotation /. The
shape L;, represented by equation (4.5.4), is a simple, regular curve.

To find the conjugate shape L, it is necessary to determine the following: (1) the relation
between the location of contact points on shape I, and the angle of gear 1 rotation ¢, and (2) the
shape of gear 2 tooth L, as the locus of contact points in coordinate system S, (rigidly connected
to gear 2). In addition, we may determine the line of action as the locus of contact points in the
fixed coordinate system S;.

We shall limit our discussion to the case of a constant angular velocity ratio m,. However, the
equations given below may be easily applied to the case of my(¢;) # constant.

Location of Pitch Point

Coordinates of the pitch point I (the instantaneous center of rotation and the point of tangency
of gear centrodes) are represented in coordinate systems Sy and ) as follows:
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C

X,=0 Yy=0I = " =r (4.5.5)
+ mi,
X| = r, sin ¢, Y, = r| cos ¢, (4.5.6)
The normal to shape L, is
ar| a\’] . axl .
N, =—xk =i — — 457
1= 1 Pyl ( )
where i, j;, and k; are unit vectors of the axes of coordinate system S, (x,¥,.2;).
Equation of Meshing
The normal N; to shape £, must pass through the pitch point /. Thus,
Xi(o) —x,(0) Y (é) — ¥ (0
(¢ 1(0) Yi(é) -y ):f(9,¢1)=0 @.5.8)
N(l(e) N\I(B)
Equations (4.5.6), (4.5.7), and (4.5.8) yield
rysin ¢ —x;(8) rycos o — v ()
+ =f(8.6,) =0 4.5.9)
ay, 6_x1
a6 a0

This equation relates the location of the contact point on | (parameter 6) with the angle of gear
rotation ¢.

The equation of meshing may also be derived by using the equation of the normal represented
in coordinate system Sy

Xr—x Y, —
YoYU 50,6,y =0 (4.5.10)
Ny Ny

Here X; =0, ¥, = r, and (x..yy), and (N, N,y are represented by the following matrix equations:

{rd = Mallr] (NA = [LalIN|) (4.5.11)
where (fig. 4.5.1)
cos ¢, —sin¢, 0 cos ¢, — sin ¢,
[Mal= | sin¢, cos¢, O [Ln] =
0 0 1 sin ¢| COSs ¢|

Line of Action

The line of action is determined by the following cquations:

[rd = [Mp]ir] f8.¢)) =0 (4.5.13)
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Shape L, is determined as follows:

(ral = My ][r1] = [MydIMp)lr] f(8.6))=0 (4.5.13)
Problem 4.5.1 Consider the Root’s blower which consists of two, two-lobed gears (fig. 4.5.2(a)).
The shape L, is a circular arc of radius p centered at point C. The angle AO,B, corresponding

to the tooth addendum, is equal to 90°, and parameters a = O,C. p, and r are related through
the following equation:

rt + a® — 2ar cos 45° = 0’
The shape L, is represented by the equations

X, =psin @ yy=pcosb+a —45° < # < 45° (4.5.14)

Determine (1) the equation of meshing, (2) the line of action, and (3) equations of the shape
L,, which is conjugate to L,. Apply coordinate systems shown in figure 4.5.2(b).

Answer. The equation of meshing is
fBd)=rsin(®—¢)—asinh® =0 4.5.15)
The line of action is represented by

xp=psin (@ — ¢) - a sin ¢ Yr=pcos (0 —¢) +acos ¢ rsin(@—¢)—asinf@=0

(4.5.16)
The equations of shape L, are
X; = psin (0 —2¢) —asin 2¢ + 2r sin ¢
Y2 =pcos (0 —2¢) +a cos 2¢ — 2r cos ¢ 4.5.17)

rsin(@ —¢)—asinf=0

Here ¢, = ¢, = ¢ is the angle of rotation of gear 1 and r, = r, = r is the centrode radius.



Chapter 5

Plane Gearing Analysis

The essence of the problem of plane gearing analysis may be stated as follows: The tooth shapes
of the meshing gears are defined, and the distance between centers of gear rotation is given. We
wish to determine (1) the law of motion— the relation between angles of gear rotation and (2) the
line of action of the gear teeth.

There are two typical cases when gearing analysis is applied: (1) to determine the kinematical
errors in a gear mechanism which are induced by errors of manufacturing and assembly and (2)
for the optimal synthesis of gears (especially for synthesis of spatial gearings). The optimal synthesis
of gearings is usually an iterative computational procedure which requires intermediate analysis
between iterations. Such analysis provides information on the achieved results and is the basis for
the next iteration.

The method of analysis discussed in this chapter was first proposed by F.L. Litvin (1968). This
method may be applied not only for gears but for most direct-contact mechanisms (such as cam
mechanisms).

5.1 Equations of Tooth Shape Tangency

Consider again coordinate systems S, S,, and Sy rigidly connected to gears 1 and 2, and the
frame, respectively. Tooth shapes I, and I, (of gears 1 and 2) and their respective unit normals
are represented by the following equations:

r, =r6)) r,(6,) € C? ‘;—;—i#o 8, € G, (5.1.1
n, = n(0)) (5.1.2)
r, = ry(6,) ry(8,) € C? Z_Z #0 6, €G, (5.1.3)
n, = ny(6,) (5.1.4)

(See ch. 3, secs. 1 and 2.) The transformation of the point coordinates and unit normal projections
from moving systems S; and S, to fixed system S¢ is given by

[,}U] = [Mf‘] [’l] (5.1.5)
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"] = [£n][=] (5.1.6)
7]l
7] = [La][r] (5.1.8)

Henceforth, superscripts (1) and (2) will refer to tooth shapes L, and L,, whereas subscripts will
denote the coordinate system in which the shapes are represented. Equations (5.1.1) to (5.1.8)
represent the locus of shapes L, and L), and their corresponding unit normals in coordinate
system S;. From these equations we get

r = rf"6,,6) ¢, € E, (5.1.9)
n/ =n/"0,6,) (5.1.10)
i = 120080 $r€E (5.1.11)
n” = n{(6,,6,) (5.1.12)

In order to be in tangency, shapes I, and L, must coincide at some point where their unit normals
are collinear. Hence,

r(0,,61) = r;°(02,6,) (5.1.13)
00,0, = 0" (6,.6,) (5.1.14)

Notice that equation (5.1.13) expresses only that shapes £, and £, share a common point in space.
However, this point can be either a point of tangency or a point of intersection of the two curves.
Only when both equations (5.1.13) and (5.1.14) are satisfied a point common to curves , and
8, is indeed a point of tangency.

In place of equation (5.1.14), the equation

N/(8,.6)) = AN2(6,.6,) (5.1.15)

may be used to express the collinearity of normal vectors. It will be seen, however, that equation
(5.1.14) is the basis for important kinematic relations in plane gearings (see ch. 6) and, thus, is
preferred. It is important to note that the directions of unit normals n; "and nfm may either coincide
or be opposite each other and still insure the tangency of shapes L, and L,. If the latter case is
considered, equation (5.1.14) may still be observed by changing the order of the factors in one
of the cross products which define the normal vectors. For example
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5.2 Analysis of Meshing

Equations (5.1.13) and (5.1.14) may be rewritten as
rf@1.6) — 1026 =0

/(8,0 — 0/ (02,67 =0

(5.1.16)

5.2.1

(5.2.2)

By projecting the above position vectors and unit normal vectors on a set of coordmdtc axes wc

obtain a system of four scalar equations, only three of which are independent. Since nf
are unit vectors, we have one ‘“‘built-in’" relation

i = ] =

Consequently, if one component of the unit normal vectors is equal, for instance, if

h _ ()
Ny = Ngx

is observed., then the other projections are also equal

y _ ()
n,‘ = nf\‘

Equations (5.2.1) to (5.2.3) yield the following three equations in four unknowns:
f1(6,,9,,02,¢2) =0 f2(61.61.62,02) =0 £(81,91.6:.62) =0

where

{fi.hh] eC!

) and nf

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

The analysis of plane gearing may be completed if equations (5.2.6) can provide three functions

of one variable parameter, such as

(0,600, 62(00)] € C!

(5.2.7

According to the Theorem of Implicit Function System Existence (see app. B), functions (5.2.7)

exist (at least) in the neighborhood of a point
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P° = (8],07.05.05) (5.2.8)

if

M [ ec!
(2) Equations (5.2.6) are satisfied at point P°
(3) The following Jacobian differs from zero

o o ¥,

36, 36, 3¢,
D fo. % o o
_PAALS | % % (5.2.9)
D(9|.02-¢2) 301 302 a¢2

o o 9

a6, 96, 3¢,

Functions (5.2.7) provide complete information about the meshing of gears with profiles L, and
Ly: (1) function ¢,(¢,) represents the relation between angles of gear rotation —the law of motion
and (2) functions 6,(¢,) and 6,(¢,) define the points on shapes L, and E,, which are in tangency
for a given value of gear 1 rotation.

The line of action of contacting profiles L, and L, is given by the functions

r/0,.¢,) 8,(6,) (5.2.10)

or by

r705,67) 0x(¢,) b1(b)) (5.2.11)

In some cases a variable parameter other than ¢, for instance 6,, may be chosen when solving
equations (5.2.6). In this case, the solution of these equations is given by the functions

[6160.0:60.6,0)] € ' (5.2.12)
and the following Jacobian must differ from zero:

Dififo.f3)

#=0 (5.2.13)
D(¢lv02w¢2)

As mentioned earlier, the method of analysis proposed here may be applied not only for gear
drives but, in fact, for most types of direct-contact mechanisms. For instance, application to a cam
mechanism with a flat-faced follower is considered in problem 5.3.1.

5.3 Computation Process
In general, the determination of functions (5.2.7) or (5.2.12) requires an iterative numerical
procedure and the aid of a computer. To start iterations, one point (eq. (5.2.8)), a set of parameters

(67,07 ,85 ,¢3) with which the system of equations (5.2.6) is satisfied. must be known. The aim
of the next step is to determine a new point which satisfies equations (5.2.6)

P = (0}”,¢{”,0§“,¢5") (5.3.1)



The iterative process of computation may be based on the following procedure:
(1) Pick a subsystem of two equations from the system of three equations(5.2.6).
(2) Assume that this subsystem is

£(01,¢1.0,,0,) =0 f,61.61.0,,02) =0 (5.3.2)

Consider ¢, = ¢{" as given, and choose 8, = 8{". Thus, the system of equations (5.3.2) may be
solved for 6, and ¢,. Let the solution be 65", ¢3".
(3) The new set of parameters (point (5.3.1)) is determined indeed if the remaining equation

ﬁ(01~¢1’02s¢2) =0 (533)

is satisfied by the set (8{",¢{",65",¢4"). If equation (5.3.3) is not satisfied, then a new value for
8{" must be chosen, and equation (5.3.2) must be solved and checked with equation (5.3.3), etc.
The above iterative process is based on dividing the system of three equations (5.2.6) into two
subsystems, two equations (egs. (5.3.2)) and one equation (eq. (5.3.3)), and their separate solutions.
Equations (5.3.2) and (5.3.3) are nonlinear algebraic equations, and we must apply a standard
computer program for their solution, for instance, a program which is based on the Newton algorithm
(Korn, 1968).

Problem 5.3.1 Consider a cam mechanism with a flat-faced follower. The cam profile is a circle
of radius p centered at point C (fig. 5.3.1) whose center of rotation is Oy. The follower contacts
the cam at points on its straight line, which coincides with axis x;.

Set up coordinate systems S;(x;,y;) and Sy(x2.y2), rigidly connected to links 1 and 2, and the
fixed coordinate system Sg(x;,y). Represent conjugate shapes of the cam and the follower as
follows:

(1) The shape of the cam

x, =p cos 8 yy=a-+psinf (5.3.4)

where a = O;C and
(2) The shape of the follower is given by

X2 ——‘62 )’—':0 (535)

The parameter 6, is negative for points which belong to the negative x, axis.
Apply the method presented in this chapter and determine the following functions:

Figure 5.3.1.
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(1) s(¢), where 0 < ¢ < 27, which represents the relation between parameters of motion s and ¢
(2) 8,(¢) and 8,(¢), which represent the relations between shape parameters and the parameter
of motion ¢

(3) x;(¢) and vy(®). which represent the line of action
Directions for the solution are as follows:

Step 1.—Determine unit normals for the conjugate shapes in coordinate systems S, and S, so
they have coinciding directions.

Step 2.—Represent conjugate shapes and their unit normals in the coordinate system S.

Step 3.—Develop the equations of tangency of the two conjugate shapes which are analogous
to equations (5.1.13) and (5.1.14), and obtain the desired functions.

Answer.

s=acoso+p (The cam mechanism performs harmonic motion.)

0|:§—d) 6, = —asin ¢ Xy = —a sin ¢ Yr=p+acos



Chapter 6

Basic Kinematic Relations of Plane Gearings
and Their Application

6.1 Basic Kinematic Relations

Consider two gears which are in mesh. As explained in chapter 5.1, for shapes X, and L, (of
gears | and 2, respectively) to be in continuous tangency, the position vectors and unit normals
of each gear must be equal at the instantaneous point of contact of gear shapes at every moment.
These requircments are represented by equations (5.1.13) and (5.1. 14). Since these equations are
to be observed continuously at any instantaneous point of contact, we may differentiate them. This
yields

0,6 = F7(0,.02) (6.1.1)
and

nV0,,61) = n'(8,.6) (6.1.2)
Here ¢ (i = 1, 2) is the velocity of the contact point in absolute motion (motion relative to the

frame): n (") is the lincar velocity of the tip of the unit normal vector in absolute motion. Equations
(6.1.1) and (6.1.2) may be expressed as follows:

. ar g ar'" do . ar® d ar@ 4o
Vabs = r(l)(0]a¢l) = L‘ ﬂ + — = = r(Z)(02,¢2) i ﬁ 2
dp, dt a9, dt dp, dt a0, dt

(6.1.3)

oy oV dh Lo o doy  on® doy

N, =nV0.0)=——+ —
ub o= o, @ 3o, dr 39, di

(6.1.4)

Here ¢ represents time. _ _ '
Imagine that trihedrons 79 n® and b (see ch. 3.3) are connected to shape L, at shape
contact point M; (i = 1,2) (fig. 6.1.1). Equation (6.1.1) indicates that the common origin of each
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Figure 6.1.1. Figure 6.1.2.

trihedron moves with the same velocity, while equation (6.1.2) expresses that the tips of unit vectors
n‘" and n® move with the same velocity. Similarly, the tips of unit vectors 7" and 7® move
with equal velocities. Thus

7 =3D (6.1.5)

Since we are dealing with planar curves, the unit vectors b'" and b keep their original directions,
)

b =b? =0 (6.1.6)

Let us derive kinematic relations based on equations (6.1.1), (6.1.2), and (6.1.5). As the contact

point moves through space during tooth meshing, so does each trihedron. The absolute motion

of each trihedron may be represented as a motion of two components: (1) transfer motion—together

with the shape (with coordinate system S;) and (2) relative motion—relative to the shape (to
coordinate system S,). Equations (6.1.3) may be represented as

Vapr = Vi) + v =y 4w (D 6.1.7)
where
. ar') do. . or') ds,
w2t e JHD
a¢, dr a8, dr
Similarly,
g, =0y + 00 = + a0 (6.1.8)
where
. (i) on' do,
n,' =-—-—
ap; dr
and

(i) an‘") 49,
n' =——
a0, dr



The transfer velocity of a contact point may also be represented by the following equations:
vi = w® xr? (6.1.9)
v = (wm x r“)> + 0,0, x &? (6.1.10)

(See ch. 2.3.) Here r'" is the position vector drawn from the origin Oy of coordinate system S¢
to the point of contact. It is assumed that the line of action of w'" passes through origin Oy, and
the line of action of w® (which is parallel to w) does not pass through Oy. The sliding vector
@@, which passes through point O, (fig. 2.1.4), is substituted (1) by an equal vector w®@, whose
line of action passes through the point Oy and (2) by a moment 0,0, x w®, which expresses
a linear velocity.

Let us prove that the transfer velocity of the tip of the unit normal may be represented as follows:

n) = xn® (6.1.11)

Consider a planar curve (fig. 6.1.2) with a unit normal n ‘" at its point M. The curve rotates about
axis Oa with angular velocity w (. Let us substitute the sliding vector ' by an equal vector
w9, whose line of action is Mb, and a moment m = MO X w_ (See ch. 2.3))

Then, point M, with the unit normal n”, takes part in two motions: (1) translation with linear
velocity m (it is perpendicular to plane I in figure 6.1.2) and (2) rotation about axis Mb with angular
velocity w'”. Vector n*” keeps its original direction in translational motion—its direction is
changed only by rotation. Thus, the change of the direction of the unit normal depends on the angle
of rotation only, and the velocity of the tip of the unit vector in rotational motion may be represented
by equation (6.1.11).

Let us now transform equations (6.1.7) and (6.1.8). Equations (6.1.7), (6.1.9), and (6.1.10) yield

VO = v gl @ = D v

- (w0 + (w2 x ) - (270 ) 6.1.12)

Here @2 = w® — @@ and v12 = v{" — v{? is the velocity of point M, of shape L, with
respect to point M, of shape L,, while points M, and M, coincide at a common point M—the point
of tangency of shapes L, and L,. Similarly, equations (6.1.8) and (6.1.11) yield

P =nf"+ (1'1,(,') - ﬁ,(,z)) =n{" + (wuz) X n) (6.1.13)
where @12 = @® — w?. Similarly, we obtain
5 =10 4 (w“z’ x r) (6.1.14)

We call equations (6.1.12), (6.1.13), and (6.1.14) the basic kinematic relations of plane gearing.
These relations were first proposed by F.L. Litvin (1968). On the basis of these equations, important
relations in the theory of gearing may be developed, such as relations between curvatures of
conjugated shapes, conditions of tooth nonundercutting, and kinematic error analysis of gear trains.
(See sec. 6.2 and 6.3.) Analogous relations may be established for spatial gearings too. (See ch. 12.)

Example 6.1.1 Consider the cam mechanism shown in figure 5.3.1. Figure 6.1.3 shows links of
this mechanism in two neighboring positions, denoted by I and II. The fixed coordinate system
is S;. The cam shape is a circle centered at & C® and C™ are two positions of this center
corresponding to the initial position of the cam and its position after it rotates through an angle
. The center of cam rotation is point O. Contact points of the cam and follower at their two positions

are Mf“) and M}“), respectively.
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Figure 6.1.3.

Kinematic relations (6.1.12) and (6.1.13) may be illustrated in the following manner. (In this
example displacements are considered instead of velocities.) The displacement of the contact point
in absolute motion is

N

Asaps = M;'M;"
Denoting the cam as link 1 and the follower as link 2, we may represent As,,, as follows:

73-S\abs = AS,,” +/A?r(l) =2?1(r2) +KA?JZ)
Here the transfer displacement of point M, with the cam is
/—\

asil ="M"Mm,

The relative displacement of point M, along the cam shape is

Z;:(l)zm

The transfer displacement of point M, with the follower is

asi? = MPM,

The relative displacement of point M, along the follower shape is

a5 = MMM

The change of the unit normal in absolute motion may be represented as

— (D) N
Anubs = nf - nf

In this particular case An,,, is equal to zero. The displacement An,,, may also be represented as
follows:



Ang, = An{" + An" = Anf? + An?

Here

An,(,” =n, — nf(”
is the direction change for the unit normal of the cam shape by transfer motion (with the cam).
The direction change

n
an{Y =n/" —n

is for the unit normal of the cam shape in relative motion while the contact point moves along
the cam. and An'® and An?®' are the direction changes for the unit normal of the follower in the
transfer and relative motions, respectively. In the particular case considered, An? and An® are
equal to zero.

6.2 Conjugate Shapes: Relations Between Curvatures

The determination of the curvature of an envelope of planar curves is a difficult problem taking
into account that the envelope is usually represented by complicated equations, even if the equations
of the locus of curves are simple. Thus, it is an attractive prospect to find the curvature of an envelope
without having its equations (i.e., having only the equations of the curve of the locus). Such a
method, based on relations between curvatures of conjugate shapes, was first proposed by F.L.
Litvin (1968, 1969).

Consider the following conditions:

(1) Three coordinate systems Sy, S, and S; are established. Coordinate systems S; and S, are
rigidly connected to the driving and driven gears 1 and 2; coordinate system S is rigidly connected
to the frame.

(2) The shape I, is represented by

d
r0)€CT  0,€G ;;;' %0 6.2.1)
1

(3) The angles of gear rotation ¢, and ¢, are related by the function
¢2(¢)) € C? a<e¢ <b (6.2.2)

(4) The equation of meshing is determined and represented by the equation (ch. 4.5)
(U2 _ () 12y, (1) 00 @y | = -
nj’ 'Vj = n," . [ (wf X r,' ) - Of02 X wf >] —f(0|,¢|) =0 (623)

(5) The curvature of the shape I, is represented by the equation
vV = —nl" (6.2.4)

(See ch. 3.3.) The problem is to determine the curvature of the shape L,.
The solution to this problem is based on the following equations:

=—npW@ (6.2.5)

97



98

v =y 4 ya2) (6.2.6)

A = alh 4 (w(anm> 6.2.7)
g(n,vm,) -0 (6.2.8)
dt

Equation (6.2.8) is simply the equation of meshing differentiated with respect to time. The subscript
[ in equation (6.2.8) is dropped for simplification.
Let us transform equation (6.2.8) as follows:

d , ) d
(;(n-v"") = (n”’-v“z') + (n-(;(v””)) =0 (6.2.9)
Here
" =0l + A = (0 x n") + i (6.2.10)

d
We represent the derivative J(V(L)) by
'

di(v“b) :5 {[ (w‘” - w‘2>) x r“’] —(C x w‘z’)} 6.2.11)
! t

where C = O;0,. Not losing generality in our solution., we assume that gear 1 rotates
counterclockwise with constant angular velocity w". The angular velocity of gear 2 is

)

0= FoP%k = 52k (6.2.12)
m(oy)
where
(6 = 21 1
ms = =
T e (¢2(61))
o, A,
The time derivative cbz is
4 ‘ (D 2
d(:»z;i w )%k:iTMk
doy \mx(¢))/ dt (m;)*
S .
m 1w Vo' )k - _ m,zw'”w(z) (6.2.13)
mp; mp



Here the upper sign of + or F corresponds to gear rotations in opposite directions,

. d
mys = E (my2())), and k is the unit vector of axis 5.
1
Now let us transform equation (6.2.11)

g_r(v(m) - _ (‘;,a) 5 rm) + (w(lz) % i”’) _ (C X o‘,m)

= (—cbm x r”)) + (w“” x (vil) + v5‘>)) - (C x d;m) (6.2.14)

Note that expression F" = vij), = v{!v{". Substituting @@ from (6.2.13), we get
ii_(v<|z>) = @wm((wm x 1) 4 (C x wm))
df n,
+ (w(m % v}”) n (w(lz) % V,(r”)
L i 4 (w2 x v) + (@02 x ) 6215
my
Equations (6.2.9), (6.2.10), and (6.2.15) yield
d .
sl (n(l) .v(IZJ) — n}fl) . V(IZ) + [w(l)n(l)v(u)] + [n(l)w(IZ)v;I)]
t
+ Vw1 + T2 0@V vy = 0 (6.2.16)
my
We may transform equation (6.2.16) further by taking into account the following relations:
] = - [s0hatng] + [t ] 6217
[n”'w“z’v,‘,”] = [n”’w“’v,(,”] - [n”’w‘z’v,‘}’] (6.2.18)
Equations (6.2.17) and (6.2.18) yield
[w“’n“’v‘”’] n [n“’w“z’v,‘,"] - [n“’w‘“v,(})]

] =m0 [ () - (o vi)] 6219

Further transformation of equation (6.2.19) may be done by noting that
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W x vi2) = (wm % (@@ x r“')) + (w“’ X (C x w‘z’))
zw(z}(w(l).r(l)) _ rl])(w(l).w(z)) + C(w(l).w(l)) . w(z)(w(l).C)

=(C - r'"w" e @) (6.2.20)

Here w"er" =0 and w!"+C = 0 because of the perpendicularity of vectors in these scalar
products. Similarly,

0)(2) X V,(,“ — wl?l X ((.0“) X l_(l)) = w(l)(w(2).r(l)) _ r(H(wH).w(Z))

_ _ru,.(w<l>,w12J) (6.2.21)

Equations (6.2.19) to (6.2.21) yield

n. [(w‘“ xvi?) = (w0 x v,‘,”)] =" Oy w®?) (6.2.22)

The final expression of equation (6.2.16) is as follows:

ﬁ(nm.vuzx) =n .y 4 l:nmw(lz;v;n}
dt
M Dy @y o M2 ),y )
+m OV e w) + — 0PV eviy = (6.2.23)
mia

To get the direct relation between curvatures of conjugate shapes «,; and k,, we apply a system
of equations (6.2.23) and (6.2.4) to (6.2.7). We may transform this system of equations and obtain
a system of three equations to two unknowns, v{" and v®. For these transformations we represent
that

p =y v = v@ . VI = v 0 (6.2.24)

Here i, is the unit vector of the common tangent to the conjugate shapes, vectors v and v(?
are collinear at the point of shape tangency, and v{", v, and v!'? must be considered as algebraic
quantities (they may be positive or negative). Next we substitute vector n{" by using equation
(6.2.4). Equations (6.2.23) and (6.2.4) yield

—xlvf')(v“z) i) + v}”[l,n“)w“z)] — (n(l) . C)(w‘” . wlZ)) _ R w(l)(n(lJ . v’(rZ))
M2



We may represent the unit normal vectors as
n' =i xk (6.2.25)
which yields the triple product

[i,n‘”w'm] - . [wuz; x (i, X k)] - . [i,(w”z'- K) — k(w2 i,)]

—w'Pek (6.2.26)
Here k is the unit vector of axis z, and
@i, =0

due to the perpendicularity of these vectors.
Equations (6.2.24) to (6.2.26) give

[K,(v‘”’-i,) + (w“z’-k)]vﬁ” = b, 6.2.27)
where
by =@M C)w" e w?) + T2 L0 .y
— r
Equation (6.2.6) yields
—yD B =y 1D, (6.2.28)
Equations (6.2.7), (6.2.4), (6.2.5), and (6.2.26) yield

kv — k1P = w1 ek (6.2.29)

Equations (6.2.27) to (6.2.29) represent a system of three linear equations in two unknowns as
follows:

azx, + apx; = b; (=123 (6.2.30)

where
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apy =K (v1?ei) + (w1 ek ap =0

by =@V C)w e ) + ”’IBw(n(nm,vm)
tr
m» .

2 .
ay = ~1 ap =1 by = v,
2
a3 = K| a3 = —k» by =w"'? ek
,
xp = v X = v

It is known from linear algebra that the system of equations (6.2.30) possesses a unique solution
if and only if the system matrix

and the augmented matrix

ay a; b
ay ap b

ay ay by

are of the same rank. This results in the requirement that

ay ap by a0 b
dyy axn bz = -1 1 b2 =0 (6231)
ay dy by K| —k2 by

Substituting coefficients of the determinant (6.2.31) with the above expressions, we get

Kby = (v e ip(@™ e k)] — (')
Ky =t e o (6.2.32)
K+ (@Y k) (v ey +

The expression for the coefficient b, was presented above. Equation (6.2.32) is the basic equation
which relates the curvatures of tooth shapes in planar gearings.

Consider a particular case when shapes I, and L, are in contact at the pitch point. At this point
v(?=0, and the curvature of shape L, is

(6.2.33)



Transformation of Translation into Rotation and Rotation into Translation

Consider that a rack cutter 1 generates a gear 2. The shape L, is given, and it is necessary to
determine relations between the curvatures of shapes I, and E,. We set up three coordinate systems
S\, S,, and Sy, as shown in figure 6.2.1(a). Tt is assumed that

v
— = r = constant
w

Here v is the velocity of the rack translation, w is the angular velocity of gear rotation, and r is
the radius of the gear centrode. The relation between curvatures of shapes L, and I, is based on
equations (6.2.4) to (6.2.7) and (6.2.16). But for the considered case, new equations must be
developed instead of equations (6.2.7) and (6.2.16) due to new conditions of motion transformation.
Taking into account that translation is transformed into rotation, we have

wW =0 w? = 0 =M - @w?=—w
The equations which we apply instead of equations (6.2.7) and (6.2.16) are represented by
a® =i — (@ x n) (6.2.34)
e — [n“’wvﬁ”] - [n(”wv,(,”] =0 (6.2.35)

Developing equation (6.2.35), we assume that v{! = constant and w = constant. The triple
product [n‘" wv{"’] may be represented as

Y1 ¥§
vt(rl) s=r@
:1 ‘ 1
X2
Xt
X
“~ Centrode

(@) ®)

Figure 6.2.1.
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[n“’wv,‘,”] =(i, X k) ¢ (@0 X ¥v'V)

(i, e w) (i, * Vi)

= = ~(i;* v,)(w k) (6.2.36)
(kew) (kev)

because i;»w =0, kv’ =0 due to the perpendicularity of vectors. Thus,
p .y [n‘”wv;')] = (i V") o (ko @) (6.2.37)

Equations (6.2.4) to (6.2.6), (6.2.34), and (6.2.37) yicld a system of three linear equations in
two unknowns

a; X, + apx, = by (i=123) (6.2.38)
Here
x; =v¥ x; = v?
an=knPei) — (@) ap=0 b= i)w k)
ay = —1 ay =1 by = (v(1P i)
ay = K a3 = —K by = —(w<k)

Discussions similar to those above regarding the system of linear equations (6.2.30) result in

This yields

1 12)y 2
Kiby —apby k@ oK)V + vy ei] ~ o

= = 6.2.39
"2 a b, + b K (V) 4 (e kv e i) ( )

Consider a case when the contact point coincides with the pitch point [ (fig. 6.2.1(a)). Then
v =0,

(1) _ ()
vlr) - v!(r



and equation (6.2.39) yields

w
o 6.2.40
Ky = K| @ 0D ) ( )

If the rack cutter is applied for cutting involute gears, its shape T, is a straight line (fig. 6.2.1(b))
and its curvature is k, = 0. Equation (6.2.40) yields (fig. 6.2.1(b))

_ w? _ 1
(W K)vPei) rsiny,

‘- (6.2.41)

2

The positive sign of the curvature k; means that the curvature center is located on the positive
unit normal

n'” =i, xk

A more complicated case dealing with the curvature of generated shape L, is discussed in
example problem 6.2.3.

Example problem 6.2.1 Consider that the shape of gear 1 is an involute curve corresponding to
the base circle of radius r,,. The centrode of gear 1 is the circle of radius r;. The ratio of these
radii is

r
b= cos Y.
r
M1
Al
kil
¥2
O
\/ M _ A
n) X2
s(w)
» 1
(O]
Figure 6.2.2. Figure 6.2.3.
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Here we shall consider the case whereby the contact point coincides with the pitch point I (fig.
6.2.2). The angular velocity radio m, is constant and is represented as

=2 - (6.2.42)
r

where r; and r, are gear centrode radii. Determine the curvarire of gear shape L, at the contact
point assuming that the curvature «; of the shape I, is given.

Solution. At the pitch point / the velocity of sliding vector v''*’ = 0 and shape curvatures are
related by equation (6.2.33).
Since the constant angular velocity ratio the derivative m; =0, and

by =m".C) (w"ew?)

Vectors n‘Y and C form the angle 90° + .. Gears rotate in opposite directions, and
g ¢ PP
W e@® = @ @ = ) _ @ |w0(12] = oM 4 @

At point / the curvature radius of shape L, is /K and the curvature is

1

Ky = ——
rysiny,

The curvature «; >0 because the center of curvature k) is located on the positive normal.
The coefficient b, may be expressed as follows:

by=m" e C)w" e 0?) = wMw®(r, + 1)) sin g,

Then, we get
(w122 ~ (0" + w?)? ontn
b, wPwP(r) + ry)sinyg,  rrysin v,
and (see eq. (6.2.23))
1 r + r 1
Ky = ; - ; = - - (6.2.43)
risiny,  rrpsiny, rysiny,

The negative sign for curvature x, means that the curvature center of shape L, is located on the
negative normal.

Equation (6.2.43) may be obtained by using more simple methods; however, the application of
general equations (6.2.32) and (6.2.33) illustrates the power of those equations even for this particular
case.

Example Problem 6.2.2 Consider a cam mechanism with a flat-faced follower (fig. 6.2.3). We
set up coordinate systems S,, §,, and $; rigidly connected to the follower, cam, and frame.
respectively. Given are the displacement function



s@)eC?  0<¢<2w (6.2.44)
and the shape I, represented by the equations
x =0, y=0 (6.2.45)
where a< 9, <b.
Determine (1) the equations of the cam shape L,, (2) the line of action, and (3) the curvature «,(¢)

of the cam.
Equation of Meshing.—We represent shape L; in the coordinate system Sy by

rf = 0,i;+ s(®)is (6.2.46)
The normal to the shape I, is
arf)
N = a—f; x k= —j (6.2.47)

The sliding velocity is represented by

) ] i b K
S s
v(l2)=v;rl)_vl(3):_—wXr}”:——wjf_ 0 0 w
dt d¢
(D ()
X'y 0

d
_y [s(qs)if + (Zii - 0.)4 (6.2.48)

The equation of meshing may be determined by
(), (1) - ds -
Ny evi® =£(0,,0) = —w| ——0, )= 0 (6.2.49)
dé
Equation (6.2.49) yields that

ds
0,0)=06,——=0
f(0,.9) 1 4o (6.2.50)

This equation determines the location of the contact point M (fig. 6.2.3) as a function of the parameter

¢

Equations of shape T,.—Shape L, is determined as follows:
[r,) = Mylin] = IMy)lr"1 f(61.6) =0 6.2.51)

Here
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cos¢o sing s(¢)sin @
(M) = [My][M; ) = | —sing cos¢ s(¢)cos ¢
0 0 1

Equations (6.2.51), (6.2.50), and (6.2.45) yield
d
0, - =0 (6.2.52)

X, =6, cos ¢ + s(¢)sin ¥, = —0,sin¢d + s(¢)cos ¢

d:
Substituting 8, by kil in x, and y,, we get the following equations of shape I,:

ds ds
x, = s(¢) sinp + — cos ), = 5(¢) cos ¢ — — sin 6.2.53
2 o ¢ y2 = 5(9) 2 ¢ ( )
Line of Action.—We represent the line of action by the expressions
r7(01,¢) f0,9)=0 (6.2.54)
which yield
(6.2.55)

=204 s
=— s
e Jr
Cam Curvature.—To determine the cam curvature, we apply equations (6.2.4) to (6.2.7) which

yield

— (v + vy = — vV 4 (@1 x nV
FARE S 1Yr

For the considered case x; = O (shape L, is a straight line), w' = w, and we get

k(v + vy = @ x n'? (6.2.56)
Equation (6.2.46) yields
(D g de
v;n =ar_’_01=__‘if (6.2.57)
39, dr dr
Differentiation of equation (6.2.50) gives
de, d’s
— = Sw (6.2.58)
dt  do

Then



d’s
vib = w;? i (6.2.59)

Equations (6.2.48) and (6.2.50) yield
v = ws(e)is (6.2.60)

Equations (6.2.56) to {(6.2.60) yield that

i b K
s | @li,=10 o0 i
Kyl ——= ) = w|=w
< dd)Z f f
o -1 0
and
1
= ———— (6.2.61)
ds + 5(8)
RY
de?

Cam shape I, must be a convex curve with the curvature center located on the positive unit
normal n}" (fig. 6.2.3). The curvature , is positive if the following inequality is observed:

2

d-s
s(o) + d—¢—2>0 6.2.62)

Example 6.2.3 Figure 6.2.4(a) shows a rack cutter tooth which generates spur involute gears.
The straight-lined edge of the rack cutter generates the involute curve, and the arc of the circle
of radius p, centered at point C, (fig. 6.2.4(a) and (b)), generates the fillet of the gear. The
displacement of the rack cutter s and the angle of gear rotation ¢ are related by

s=re¢ (6.2.63)

where r is the radius of the gear pitch circle.

Develop equations of the gear fillet and its curvature. Apply the coordinate systems shown in
figure 6.2.1(a).

Equations of shape E,.—The position vector of an current point M of shape L, (fig. 6.2.4(a)) is

r1(01) = 0|M——— OlCl + C]M (6264)

Projecting this vector equation on the x;- and y;-axes (fig. 6.2.4(a) and (b)), we get the following
equations for shape L;:
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@) (b)
Figure 6.2.4.

Xy =a+ psinf, Y1 =b—pcost, (6.2.65)
where
{»rl(f)),yl(ﬁ)} ecC' 0<6<90° —y.

Here a = x°" and b = vi" are coordinates of point C;.
Shape L, is a simple and regular curve. The unit normal n, to shape L, is

N, = — = sinfyi, — cos 8, (6.2.66)
ar,

— x k;

36,

Equation of meshing.—We apply the equation of meshing which expresses that the unit normal
at the contact point passes through the instantaneous center of rotation (pitch point) / (see ch. 4.5 )

X\(¢) — x,(0) _ Yi(d) — yi(8))
n,(6,) ny ()

=f0,.6) =0 (6.2.67)

Here (fig. 6.2.1(a)

Xi(¢) = ro Y,=0 (6.2.68)



Equations (6.2.65) to (6.2.68) yield

f@6,,¢)=r¢ —a—btanf, =0 (6.2.69)
Equations of shape E,.—Shape L, is represented by the following equations:

[r2] = Mz]in] f(6,.4) =0 (6.2.70)

Here (fig. 6.2.1(a))

cos¢ sing —r¢ cos ¢+ rsing
M] = [sz][Mﬂ] = —sing cos¢ ré sin ¢ +rcos ¢
0 0 1

Equations (6.2.65), (6.2.29), and 6.2.70) yield

X, =acos¢ + bsing — psin (¢ —8,) —r¢cosd + rsing
y, = —asin¢ + bcos¢d — pcos (¢ — 6,) — r¢sineg + rcos ¢ (6.2.71)

r¢ —a—btanf, =0

Line of Action.—We represent the line of action by the equations
[rel = [Mallr\] f6,,¢)=0
which yield
r;=1(a+ psind — ré)is+ (b — pcost + njs r¢ —a—btan@; =0 (6.2.72)

Curvature of shape L,.—To determine the curvature k; we apply equation (6.2.39).
Here

o
| 2,

K= — - i, = = cos §,i; + sin 6, j;
p arf

36,
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wek =w (assume that the gear rotates counterclockwise)

Vi = —rui
vi2 = viD —v@ = —rwif — (W X 1y
i ik
oY

= w[(b — pcosb))i,+ (btan b, — psin 0)id

(‘,(12))2 =(.l)2 b —p )
cos 8,

Deriving the equation for v!', we eliminated r¢ by using equation of meshing (6.2.69). Thus
we have (see eq. (6.2.39))

rcos*8, — bcos 6,

k() = —
200 b2 + p(rcos30, ~ bcosf))

0<6, <90° -, (b is negative) (6.2.73)

The negative sign of x; indicates that the center of curvature of the generated fillet is located on
the negative direction of the normal (fig. 6.2.4(b)). Consequently, the rack cutter and the gear
fillet are in internal tangency by cutting,

The rack cutter shape L;, shown in figure 6.2.4(b), generates shape £, which contains three
curves. These curves are (1) the involute curve, generated by the straight line 1, (2) the fillet,
generated by the arc of circle 11, and (3) a circle which belongs to the dedendum, generated by
the straight line III. The curvature at the point of tangency of the involute curve and the fillet
corresponds to the parameter 6, = 90° — y,.. The curvature of the fillet at the point of its tangency
with the dedendum circle corresponds to 8, = 0.

6.3. Relations Between Centrode and Shape Curvatures

The well-known Euler-Savary equation relates the curvatures of two centrodes and the conjugate
shapes with which they are provided. The theory presented in this chapter allows us to develop
equations which may be considered as a modified form of the Euler-Savary equation.

Figure 6.3.1 shows two centrodes, 1 and 2, which are in tangency at point /, the instantaneous
center of rotation. In general, the centrodes are noncircular curves. The shapes with which centrodes
1 and 2 are provided are denoted by I, and E,, respectively. Shapes L, and L, are in tangency
at point M. Further, we denote i, as the unit vector of the tangent to the centrodes, n.=i.xKk
as the common unit normal of the centrodes, i, as the unit vector of the tangent to the shapes,
and n, as the common unit normal of the shapes. We developed equation (6.2.33) which relates
the curvatures of two shapes which are in tangency at the instantaneous center of rotation. Considering
the centrodes as conjugated shapes, we may apply this equation to relate centrode curvatures. With
modified notation we get



__Centrodes

RARCEN

Figure 6.3.1.

9@ =

(12182
w ) (6.3.1)

A

Here g, and g, are centrode curvatures, w''? = w® — w® is the relative angular velocity of

centrodes 1 and 2

-
b= (. O+ @®) + 2oV vi?)

(See coefficient b, of equation (6.2.30).)
A similar equation may be developed for shapes L, and £, which are in tangency at point /

instead of point M (fig. 6.3.2). Shapes L; and L, are equidistant curves (i = 1,2). Curvatures of

shapes L, and I, are related by

Ky = K| —

Here

b, = (n,« C)w'"ew?) +

(6.3.2)

m;

(1242
S (6.3.3)

b,

il (2 (6.3.4)

— w“’(ns eV,
mia
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{b)

Figure 6.3.2.

2 |
vl(~) —_ v’( )

because the point of centrode tangency / is the instantaneous center of rotation (fig. 6.3.1). By
knowing the curvature «, of shape L, at point /, it is easy to find the curvature «, of shape L,
at the point M (fig. 6.3.2) by applying the following equation:

1 1 -
—=—=F | IMI (6.3.5)

K> K

where &, and «; are the curvatures of shapes L, and L, respectively. Signs of «, and «; are positive
if the curvature centers are located on the positive direction of unit normal n;. The upper sign
corresponds to the case where the direction of vector M coincides with the direction of the unit
normal n,.

Figures 6.3.2(a) and (b) show two pairs of equidistant shapes L, and £, and L, and I, for cases
of both external and internal tangency. Shapes I, and L, contact cach other at point M. The contact
point of shapes I| and I, is point /. Point C, is the center of curvature of shapes L, and L.

Equation (6.3.5) is derived by using the following suggestions. For the case shown in figure
6.3.2(a) we have

MG =1C,- M

The curvature of shapes L, and I, is negative because center C, is located on the negative direction
of normal n,, and the relation above may be represented by

1 1 N
=~ + I (6.3.6)

K2 K2

Similarly, we may get, for the case shown in figure 6.3.2(b), the equation

MC2= E—m—

which may be represented as

1 1 S
—=—=+1IMI (6.3.7)

Ky K3



Equations (6.3.6) and (6.3.7) may be substituted by one equation (eq. (6.3.5)) with the mentioned
rule of signs for the segment | TM |.

Summarizing the above discussion, we may state the following: Given (1) the curvatures of
one centrode and one shape and (2) the location of the contact point and parameters of motion
of the gears. Then curvatures of the second centrode and the second shape may be determined
separately by using equations (6.3.1), (6.3.3), and (6.3.5).

System of equations (6.3.1) and (6.3.3) may be substituted by one equation which is similar
to the equation of Euler-Savary

(g, — g2)b. — (k) — k)b, =0 (6.3.8)

The system of two equations (6.3.1) and (6.3.3) has a certain advantage over equation (6.3.8) for
the reason that one equation (eq. (6.3.8)) relates four algebraic quantities g, gz, «;, and «s.
Consequently, we may determine only one of these quantities, considering the other three as given.
Having two equations (eqs. (6.3.1) and (6.3.3)), we may determine two of four quantities q,, g2,
Ki, and K;;.

Let us express coefficient b, and b, in terms of and A, shown in figure 6.3.1.

Henceforth, we shall consider both cases of transformation of rotation when the driving and driven
gears rotate in opposite directions and in the same direction. We assume that gear 1 rotates
counterclockwise, and in both cases lw™1 > lw@|. We begin with transformation of some
auxiliary expressions. By taking into account that v = v{?) at point , we have

0O x O = (w? x O) + (0,0, x 0?) = (@? x O) + (C X w?) (6.3.9)
Using the vector products
0P x (0" x O)) = (w(“ X (w® x '07)) + (w“’ X (C x w(z‘))
we get
— 0T (0?2 = - O T (@M« w?) + Cw"+w?) (6.3.10)

Vector w® may be expressed as

w®
mpz (o)

w?P==F

6.3.11)

where my,(¢,) = ©"/w? is the angular velocity ratio. The upper sign in equation (6.3.11) (and
in all succeeding equations in this discussion) corresponds to the case where gears | and 2 rotate
in opposite directions.

Equations (6.3.10) and (6.3.11) yield

C

Of=r=——""-—
1 £ miy(dy)

(6.3.12)

We must recall that the gear which rotates with the higher speed is denoted by 1, and m; > 1.
Consequently, vectors ry = 0T and C = 0,0, are directed in opposite directions if gears 1 and
2 rotate in the same direction.

The absolute magnitude of r| is

C
o=yl — (6.3.13)
mpp(dy) £ 1
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Figure 6.3.3.

The unit tangent vector of centrodes i, and vector 0,7 = r, form the angle y, (fig. 6.3.3). Point
I'is the instantaneous center of rotation for the shown position of the centrode. The neighboring
point I’ becomes the instantaneous center of rotation after gear | rotates through the angle Ag¢,.
It results from the drawings of figure 6.3.3 that

tan g, = lim <’D> - lim (ﬁ%) I (6.3.14)

Ap—0 \I'D A6—0 \ Ar " dr,
do,
The differentiation of equation (6.3.13) gives that
d Cm,
e (6.3.15)

dé,  (my = 1)?

where
, d
mi, =(E(mxz(¢1))

Equations (6.3.13) to (6.3.15) yield

m”:f:l

tan u, = — (6.3.16)

mi
Substituting n, (fig. 6.3.1) by
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n.=i.xk

e =
and vi¥ = v by

v = 00 x BT = @M x rth
we get

noevi) = (i, x K)o (@ x 1) = — (ke @), or) = —wr cos p (6.3.17)

Substituting vector C by vector r; with aid of equation (6.3.12) and by taking into account that
vectors n. and r; make an angle (u; + 90°%) (fig. 6.3.1), we get

(n,+C)=(n 1)} £ myp) = —rysinp(l £ mp) (6.3.18)

The magnitude of w''? may be expressed by

w1 = o 1 @ = G M2 * L (6.3.19)
m2
Equations (6.3.1), (6.3.2), (6.3.11), (6.3.13), and (6.3.16) to (6.3.19) yield
(mp(¢y) =1 2 sin
g — gy = g = IV S i (6.3.20)
Cmyy(¢1)
Similarly, we get for the coefficient b,
(n,«C) = (o1 )(1 £ myp) = rycos N(1 £ my3) 6.3.21)
(12
wVew? = F (@ )" (6.3.22)
mp
n v =n evi) = — 0Pr;sin N (6.3.23)
. + 1
mip = — 2= (6.3.24)
tan I3
Equations (6.3.3), (6.3.4), (6.3.13), (6.3.19), and (6.3.21) to (6.3.24) yield
2 ¢
Ki _ Kz' _ (’nl?.(d)l) + l) S1n py (6325)

T Cmyy (@) sin (N — py)

We consider equations (6.3.20) and (6.3.25) as an equivalent to the Euler-Savary equation.
Considering these equations together, we get one equation

(k;— k) sin\ —p)+g—q, =0 (6.3.26)

Example problem 6.3.1 Rotation is transformed between parallel axes with the same direction
of angular velocities @'" and w® (fig. 6.3.4). Given are (1) the angular velocity ratio my; (mi;
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Figure 6.3 4.

is constant), (2) the center distance C, and (3) the curvature &, of shape L. Shapes L, and £,
contact each other at the instantaneous center of rotation /, and the unit normal to the shape, n,,
and vector r, form the angle A\; = 90° + y.. Determine (1) the centrode curvature, g, and (2) the
curvature &, of shape L;.

Solution. Centrode 1 is represented by equation (6.3.13)

C

m,z—l

r =

The centrode | curvature is

l_mlz—]

ql_r’ C

The curvature g, is positive because the curvature center is located on the positive direction of
normal n. which is directed from 7 to Oy, (fig. 6.3.4). The centrode 2 curvature is represented
by equation (6.3.20) which yields

_ (mg = 1)?sinpgy,  my — 1
9 = q, Cinys = Cmyy

(#1 = 90° when m,; = constant). The curvature of shape L, is determined by equation (6.3.25)
which yields



2
’ . (mlz—l)
Ky=Ky — ———

Cmy, sin
By
, 1 mypy — 1
Ky = : = ;
ry siny, Csiny,
we get
. my; — 1
Ky =—T———
Cm, sin

Results obtained for this example correspond to the case of involute gears which are in internal
tangency (fig. 6.3.4). Centers of curvature of centrodes 1 and 2 are points O; and O,. Centers
of curvatures of shapes L, and I, are points C; and G,.

6.4 Theorem of Direction of Line of Action in the Neighborhood
of the Instantaneous Center of Rotation

Theorem Consider that shapes L; and I,, being in mesh at the instantaneous center of rotation
I, transform rotation and the derivative miy () = d/de, (myz ($,)) = 0 where my, (¢)) is the
function of angular velocity ratio, and ¢, is the angle of gear 1 rotation. Then, in the neighborhood
of point /, the tangent to the line of action coincides with the common normal to shapes E, and I,.

Proof: The equation of meshing is
nMevi? =0 (6.4.1)
where n'! is the unit normal to shapes I, and I,, and v!'? is the sliding velocity represented by
v = ((w“) - w®) x r"’) - (C X w(2)> (6.4.2)
Here r'" is the position vector of the contact point and C = 0,0, is the distance between centers
of rotation.
The differentiation of equation (6.4.1) yields
A0y 4 ple® - 0®) xFV] =0 (6.4.3)
It was assumed by differentiation that (" = constant and @ = constant.
Taking into account that the sliding velocity v(12 = 0 at the instantaneous center of rotation,
we get

(nwFD) =0 (0P = w® — w? (6.4.4)

Vectors n and 1" belong to the plane of motion, and vector w''? is perpendicular to this plane;
thus, it is perpendicular to vectors n and ¢V, Since the triple product (6.4.4) is equal to zero,
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all three vectors, w'?, n and F", must belong to the same plane P. This becomes possible only

if n and ¢V are collinear and plane P is drawn through w2 and n (or through w™? and £V).
Vector r"" may be interpreted kinematically as the velocity of the contact point in absolute motion
(see sec. 6.1) and is directed along the tangent to the line of action. (The line of action is the locus
of contact points in the fixed coordinate system.) Because of the collinearity of vectors n and ¢("
in the neighborhood of the instantaneous center of rotation, we may state as follows: The common
normal to the shapes, which are in mesh at the instantaneous center / of rotation, coincides with
the tangent to the line of action at point /.

It is easy to verify that this theorem may be applied for the widespread planar gearings, whose
shapes are involute curves and cycloidal curves, Regarding involute gears the line of action is at
the same time the common normal to the contacting shapes. Regarding cycloidal gears (gears whose
conjugated pair shapes are an epicycloid and hypocycloid), the tangent to the line of action coincides
with the common normal to the shapes only at the pitch point.

6.5 Conditions of Tooth Nonundercutting

During cutting, gear generation is based on the simulation of the mesh of the gear to be cut with
a tool —a rack cutter, shaper, or hob. (See ch. 7.1.)

Consider that L, is the shape of a tool tooth which must generate the shape of gear tooth E,.
We set up coordinate systems S,, S,, and Sy, rigidly connected to the tool, the generated gear,
and the frame, respectively. Considering the relative motion of I, with respect to coordinate
system S, we may find the locus of shapes I, in coordinate system S, and then determine the
envelope of this locus, the generated shape £,. (See ch. 4.) At certain tool settings gear teeth may
be undercut. Figure 6.5.1 shows teeth of involute gears generated by a rack cutter. In the first
case (fig. 6.5.1(a)) teeth are not undercut, but in the second case (fig. 6.5.1(b)) they are undercut.
Mathematically, the problem of tooth nonundercutting is the problem of how to avoid the appearance
of singular points on the generated shape L,. At such points the tangent vector to LisT=0.

Consider that the locus of tool shape L, is represented in coordinate system S, by the vector
function

r8,0) ¢ C' (6,0)€G 6.5.1)

Here ¢ is the parameter of tool shape L; and ¢ is the parameter of relative motion. By definite
conditions (see ch. 4) there cxists a function

8(¢) € C! (6.5.2)

and

(@)
(b)

Figure 6.5.1.
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r(¢,0(¢)) = R(9) (6.5.3)

represents the generated shape E,, the envelope of locus of tool shapes E,. At a regular point of
£,, shapes L, and I, are in tangency, and the tangent vector to shape L, is T # 0. At such a point
the following vector equation is observed:

do _ b do
® dt f dt ®dr

Vectors of equation (6.5.3) represent the velocities of the contact point in the following displacements:
(1) along the shape I, (R, de¢p/d1), (2) along the shape I, (ry df/dt), and (3) in the relative motion
with respect to L, (r, do/dr). Vector R, do/dr is collinear to the tangent vector T. Vector equation
(6.5.3) may be represented as

v =y 4y (6.5.4)

which was represented earlier by equation (6.1.12). Ata singular point of shape L, its tangent
T does not exist, and the necessary condition of existence of singular points of shape £, may be
represented as

vi) 4 v =0 (6.5.5)

The advantage of equation (6.5.5) is that we may investigate the existence of singular points on
shape L, by using only the equations of shape kK, and its relative motion with respect to shape
T,. It is not necessary to use the more complicated equations of shape E, for this purpose.

To avoid the appearance of singular points on the generated shape L,, it is sufficient to limit
the settings of tool shape I, by cutting. Mathematically, this means that we must limit the area
E of 8,, considering that the shape L, is given by

r6,)¢€C' 8, €E (6.5.6)

Let us explain how this may be done. Vector equation (6.5.5) may be expressed in terms of
components in coordinate systems S, as follows:

dx, db dy, do
Wdh_ o DT (6.5.7)
de, dr d, dt
Differentiation of the equation of meshing
f(6,.61) =0 (6.5.8)
gives
o doy O doy 659

3, dt 3¢, dt

We consider the system of equations (6.5.7) and (6.5.9) as a system of three linear equations in
one unknown.

a{ =b (i=1.2,3) (6.5.10)

Here
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dx, dy, f

ay = — ap = — a3 = —

de, df, ’ a0,
bl:_vilZ) bZ:_VyZ) b3=_ﬂ@ =@
" 7 AP, dt dt

Coefficients a;, and a,, are such that
|a“' + |a,2| #=0
because we assume that shape I, does not have singular points.

It is known from linear algebra that the system of equations (6.5.10) has a unique solution for
¢, if the rank of matrix

ap; b (6.5.11)

is r = 1. This requirement may be observed if all three determinants of the second order which
correspond to matrix (6.5.11) are equal to zero. It is easy to verify that the first determinant of
the above three is equal to zero

a; b d—n —me)
ol | 0 (6.5.12)
a; b dl’ —yp D) o
dg,

To prove this, let us consider the equation of meshing which may be represented by

d
N, ov? = <dT;l><k,>-v”2’=0 (6.5.13)
t

Here N, is the vector of the normal to shape L, and K, is the unit vector of the Z)-axis.
Equation (6.5.13) yields that



1

d
[ﬁklv(lz)]

dx, dy,

= 0
de, db,
0 0 1
vx(llz) v}lm 0
di’ @ 6.5.14)
dé, db,

=0

VX(IIZ) v‘gllz)

This equation coincides with equation (6.5.12). To observe the requirement that the rank r =1,
both remaining determinants of the second order must be equal to zero

an

a3

ap

a3

b,

by

dxy
6,
of
36,

dy,
do,
af
a8,

12
e

_ 9f do (6.5.15)
dp, dt

_y(12)
Yy,

_ 9f d¢, (6.5.16)
I, dt

Taking into account that equation (6.5.5) provides that

dx,
B
dy
do,
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Figure 6.5.2.

it is sufficient to observe only one of two equations, (6.5.16) or (6.5. 15). Each of these equations
yields the relation

F(8,.¢)=0 6.5.17)

Equations (6.5.17) and (6.5.8) determine the limiting value of 6, which corresponds to the singular
point of the generated shape I,. To avoid undercutting of shape L,, it is sufficient to exclude from
meshing the limiting value of 6, of shape L,. This may be done by limiting the setting of tool shape
L.

Example problem 6.5.1 Consider that a rack cutter, whose shape L, is a straight line (fig. 6.5.2),
generates a gear with shape E,. Determine the conditions of tooth nonundercutting.
Equations of shape E,.—Shape I, is represented in coordinate system S, by

r (0]) = 01 sin \b(-il + 0] cos w('j] (65]8)
Its normal is
d
N, = Ef‘ X ky = cos Y i; — sin ¥, j, (6.5.19)
1

Relative velocity v{'¥.—The velocity of the rack cutter is
vi = wri, (6.5.20)

where w is the angular velocity of the gear, and r is the radius of its centrode which coincides
with the pitch circle.
The linear velocity of the gear contact point is

vi? = (wXr)+ R, X w) (6.5.21)
Here r| is the position vector drawn from the origin O, of coordinate system S, to a point of shape

L, and R, is the position vector drawn from point O, to an arbitrary point of the line of action
of vector w, for instance, to point O,. The position vector R, is represented by



Rl = 0]0—) = — I’¢i| - rj|
Equation (6.5.21) yields

ng) = (w X rl) + ( 0102 X w)

iy i K ik
= 0 0 ~w |+ | —r¢ -r 0
g, sin Y. 6, cosy. O 0 0 -w

= w[(8, cos Y + r)i) — (6, sin Y. + rojl

The relative linear velocity is
V{12 = y(" — v = o[ - 0, cos Y i; + (B sin Y + ré)ji
Equation of meshing.—Using the equation of meshing
N, «vi{?=0
we get
fl6,.0) =0, +ro sin . =0

Equation (6.5.24) can also be derived by applying the equation (see ch. 4.5)

X — x(6) _ Y, — yi (6
N, N,

1 1
Here

X, =—-r¢

Y]ZO

(6.5.22)

(6.5.23)

(6.5.24)

(6.5.25)

are coordinates of the instantaneous center of rotation /; x, (8,) and y, (8,) are coordinates of a
point of shape E,, which is represented by equation (6.5.18); and N, and N, are projections of

the normal represented by equation (6.5.19).
Limiting point of the rack cutter.—Using equation (6.5.15), we get

dx
; —vx(lm sin . wh) cos Y,
: = = —w(rsin® ¢, + 8, cos y) =0
2[ _2[ d¢ 1 —wr sin ¥,
a6, o dt

Equation (6.5.26) yields that the limiting value of parameter 6, is

f, = — rtan ¥, sin .

(6.5.26)

(6.5.27)
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The negative sign of 6, means that 8, must be measured in the direction opposite to the direction
shown in figure 6.5.2. Point K of the rack cutter (fig. 6.5.2) will not undercut the gear shape I,
if the following inequality is observed:

[OK | < rtan y, sin y, (6.5.28)
The middle line of the rack cutter mm is located at a distance ¢ from the centrode of the rack cutter

aa; we denote the change of rack cutter setting by e.
According to the drawings of figure 6.5.2, we get

I_. a—e

OK| =

6.5.29
cos ¥, ( )

Equations (6.5.29) and (6.5.28) yield
-2 N )
a—e<rsin®y, = P sin® ¥, (6.5.30)
p

Here N represents the number of teeth on the generated gear, P is the diametral pitch, and a
is the standardized parameter of the rack cutter. Equation (6.5.30) determines the parameter of
rack cutter setting e which corresponds to gear tooth nonundercutting.

N
e=a— —sin’y, (6.5.31)
2p

Problem 6.5.1 The shape L, of a rack cutter is an arc of a circle (fig. 6.5.3) represented by
equations

r|(0|) = (a + p COS 01)il + (b + P sin 6])j| (6532)

Here a and b are coordinates of point K, the center of the circular arc. (Depending on location
of point K, parameters a and b can be given as positive or negative.) Shape L, generates gear tooth
shape E;. Determine the limiting point of shape L, to avoid undercutting of shape L,

Directions are as follows: (1) develop the equation of meshing, (2) determine the relative velocity
v{!2 and (3) apply equation (6.5.15) or (6.5.16) with the equation of meshing.

Answer.

. b . :
sm301——sm01——=0
r pr

Problem 6.5.2 A shaft is to be generated by a shaper (or by rolling with a master). The shaft
shape L, is represented by equation (fig. 6.5.4)

r (01) = hil + gljl 01. min < 91 < Bl,max (6533)
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Figure 6.5.3. Figure 6.5.4.

The angular velocity ratio by cutting is

(2}
1)

€

N
= (6.5.34)
rn N,

mp =

—

w

where r, and r, are centrode radii and N, and N, are numbers of teeth on the shaft and tool,
respectively.

The undercutting of the tool shape by the given shaft shape (the interference of these shapes)
does not occur if the tool shape is a regular curve (it has no singular points).

Develop an equation which relates the limiting value of 8,, the radius of the shaft centrode ry,
and the angular velocity ratio my;.

Directions are as follows: (1) develop the equation of meshing, (2) find the expression of relative
velocity vf”’, and (3) use equation (6.5.16). (Do not use equation (6.5.15). In this case it will
yield an identity.)

Answer.

1+m 2
2 - 62 — <__2_'> =0 (6.5.35)
2+ myy

Consider my, as given. To avoid undercutting, observe the following inequality:

1+m 2
12> 03 pax + <———‘2> h? (6.5.36)
2+ My,

where (67 max + h%)” is the radius of the shaft addendum circle.
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Chapter 7

Generation of Conjugate Shapes

Shape L,, which must be conjugated with a given shape I, is determined as the envelope of
the locus of curves I,. (See ch. 4.) In this chapter we discuss the kinematic principles of tooth
generation by which conjugate shapes may be generated automatically in the process of cutting.
These principles may be realized by the application of an auxiliary shape L5, which is in mesh
with conjugate shapes L, and L, which are to be generated.

7.1 Methods of Tooth Cutting

In general, tooth shapes are generated with a rack cutter, with a hob, and with a shaper. The
mesh of the tool with the generated gear during cutting simulates the mesh of a rack with a spur
gear (as with a rack cutter or a hob) or the mesh of two spur gears (as with a shaper).

The principle of tooth generation with a rack cutter is shown in figure 7.1.1. The gear to be
cut translates with velocity v and rotates about gear center O with angular velocity w. The velocity
Ivl and angular velocity w are related by the equation

|
I
~

(7.1.1)

where r is the radius of the gear pitch circle. The pitch circle of the gear and straight line aa of
the rack cutter are centrodes during cutting, and point /, the point of tangency of the centrodes,
is the instantaneous center of rotation.

During tooth generation, the rack cutter reciprocates parallel to the gear’s axis of rotation. The
gear tooth shape L, is generated as the envelope of the locus of rack cutter shapes L,, which is
formed in relative motion (fig. 7.1.2). The hob simulates a worm (usually a worm with a single
thread, fig. 7.1.3(a)). The thread is slotted in the axial direction to form a series of cutting blades.
The axial section of the worm may be considered to be a rack. The rotation of the hob simulates
the translation of the imaginary rack. During cutting the hob and the gear to be generated rotate
about their respective axes (fig. 7.1.3), while the hob gradually translates parallel to the gear axis.
This is the feed motion of the hob.

The angles of rotation of a single-threaded hob ®, and of the gear ¢, are related by

(7.1.2)

where N, is the number of teeth on the generated gear.
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Figure 7.1.5.

Tooth generation by a shaper simulates the mesh of two gears, one of which is the shaper
(fig. 7.1.4). The shape I, of the gear teeth is generated as the envelope of the locus of shaper
shapes L,, which is formed in relative motion (fig. 7.1.5).

7.2 Principles of Generation of Conjugate Shapes

Consider that the centrodes of a pair of gears are determined (fig. 7.2.1). These centrodes may
be provided with conjugate shapes I, and I, if the following principle of generation is applied:
A tool (a rack cutter or shaper) with a shape L, is put in mesh with gears 1 and 2 which are to
be generated, and the relative motion of the tool with respect to gears 1 and 2 is such that the
tool has the same centrode while in mesh with each other.

The three centrodes (two gear centrodes and one tool centrode) are in continuous tangency, and
the point of their tangency [ is the instantaneous center of rotation. According to the General Theorem
of Plane Gearing (see ch. 4.4), shapes L,, L, and £, are conjugate because their common normal
at the point of shape tangency passes through their common instantaneous center of rotation I

The tool shape L, is an imaginary curve which generates conjugate shapes I, and L,. In practice,
however, we must apply two separate rack cutters (fig. 7.2.2), which may be considered as a mold
and its corresponding cast. One of these rack cutters generates gear 1 and the other generates gear 2.

The above principle may also be applied to generate gears 1 and 2 by a shaper (fig. 7.2.3). The
shaper centrode is the same for both cases of meshing: the meshing of gear 1 with the shaper and
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the meshing of gear 2 with the shaper. Similarly, we must apply two shapers; one to generate gear
I (the shaper and gear 1 are in internal tangency) and the other to generate gear 2 (the shaper
and gear 2 are in external tangency).

It is assumed here that gears 1 and 2 transform motion with a constant angular velocity ratio,
and thus the gear centrodes are circles (figs. 7.2.1 and 7.2.3). However. the principles given above
may also be applied to generate gears with noncircular centrodes.

There is one important case where we may generate two gears with conjugate shapes by using
only one rack cutter (shaper). This is possible for involute gears. The generation of gears with
only one rack cutter allows us to interchange the gears freely.

7.3 The Camus Theorem

Consider that gear centrodes are given. An auxiliary centrode a (fig. 7.3.1) is in tangency with
centrodes 1 and 2, and [/ is their common instantaneous center of rotation. An arbitrarily chosen
point M is rigidly connected to centrode a. Point M traces out in relative motion (with respect
to centrodes 1 and 2) the curves E; and I,, respectively.

Camus’ theorem states that curves L, and T, may be chosen as conjugated shapes for teeth of
gears | and 2, respectively.

To prove this theorem, let us consider an instantaneous position of centrodes 1, 2, and a. Supposing
that centrode 1 is fixed and centrode a rolls over centrode 1, we say that the motion of centrode
a relative to centrode 1 is rotation about point /. Assume that centrode a rotates about point / through
a small angle. Then point M of centrode 3 traces out in this motion a small piece of curve I; (point
M moves along L;). Line M is the normal to I, at point M. Similarly, by rotation of centrode
a about I with respect to centrode 2, point M traces out a small piece of shape T, (M moves along
shape L,). Line M/ is also the normal to shape I, at point M.

Thus, shapes L, and I, have a common point M, are in tangency at M, and their common normal
MI passes through point /, the instantaneous center of rotation of centrodes 1 and 2. According
to the General Theorem of Plane Gearing (see ch. 4.4), the generated shapes £, and L, are
conjugate shapes.

2 (Auxiliary centrode)

N
> Gear
.

/' centrodes

//—2

Figure 7.3.1.
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Figure 7.3.2.

By applying the Camus theorem, we may determine the shape of a rack cutter which generates
gears 1 and 2. Consider a particular case where r, = ry/2, and the generating point M is located
on centrode a. The quantities r, and ry are radii of centrodes a and 1. The rack cutter centrode
3 is a straight line which is the tangent to centrodes I, 2, and a at point / (fig. 7.3.2(a)). Let us
suppose that point M coincides with 7 at the initial position of generation.

In coordinate systems S;, S,, and S; (rigidly connected to centrodes 1, 2, and 3) point M traces
out a hypocycloid I, epicycloid E,, and cycloid L, respectively. With r, = r/2, hypocycloid
T, becomes a straight line directed from / to O,. The generated cycloid forms the addendum shape
L, of the rack cutter (fig. 7.3.3). In a similar manner, the dedendum shape of the rack cutter I3
(fig. 7.3.3) and corresponding shapes L] and £3 may be generated by rolling of centrode a” over
centrodes 3, 1, and 2 (fig. 7.3.2(b)). With ra = ry/2, the generated hypocycloid T, becomes a
straight line 10,, directed from I to O;.

As mentioned earlier, the generation of conjugate shapes of gears 1 and 2, is accomplished by
the application of two rack cutters (fig. 7.2.2) which supplement each other like a mold and cast.
Shapes of these rack cutters are shown in figure 7.3.3. One of the rack cutters generates gear 1
and the other generates gear 2.

To generate cycloidal gears, the rack cutters may be designed by using more general considerations
than assumed in this section. For instance, the generating point M may be chosen outside of the
auxiliary centrodes.

Figure 7.3.3.
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7.4 Evolutes of Conjugate Shapes

Relations Between Directions of Shape Normals

Consider centrodes 1 and 2 with shapes I, and L, which are to be in mesh (fig. 7.4.1). We
denote the corresponding (contacting) points of the centrodes and shapes as J{", 1§, 1{?, . |
and M(", M{", M{", .. (i = 1,2), respectively. Due to pure rolling, the lengths of corresponding
centrode arcs are equal, that is,

——— —
11(1)]2(1) - 1](2)12(2J
IS e (7.4.1)
KLY = @)

The unit tangents to the centrodes and unit normals to the shapes are denoted by 7! and n?,
respectively. Gear rotation causes the corresponding points of centrodes /) to coincide with each
other, forming the instantaneous center of rotation. The corresponding unit tangents to the centrodes,
7V and 72, will also coincide, making a common tangent to the centrodes at their point of
tangency. At the same time, the corresponding points MP and M® and unit normals n‘” and n@
of shapes L, and L, must also coincide. This is possible only if the unit normals of conjugate shapes
are related by the following relations

70en® =7@,n? (7.4.2)

JOMM = jDpg(2) (7.4.3)

Figure 7.4.1.



Equation (7.4.2) expresses that the corresponding unit normals of conjugate shapes form equal
angles with the coinciding unit tangents of the centrodes. Equation (7.4.3) expresses that
corresponding segments of shape normals (measured from centrode point / to shape point M along
the shape normal) must be equal. Methods of generation of conjugate shapes must satisfy
requirements (7.4.2) and (7.4.3).

The orientation of the shape unit normals with respect to the centrodes depends on the methods
of generation. Let us consider some typical examples. By generation of noncircular gears (fig.
7.4.2), the centrode of the rack cutter is a straight line which rolls over the centrode of the noncircular
gear. The shapes of the rack cutter are straight lines which form an angle of 2¢.. The tangent
to the gear centrode 7 and the normal to the left-sided shapes n, form the angle ¥,; accordingly,
7 and the normal to the right-sided shapes n, form the angle = — y..

Consider figure 7.4.2. Position vector r is drawn from the center of gear rotation to the point
of tangency of the gear and rack centrodes, u is the angle formed by r and the centrode tangent
7. and \ is the angle formed by r and the shape normal n. The orientation of shape normals n
is represented by the following equations:

(1) Left-sided shapes.

N=pt Y, (7.4.4)
(2) Right-sided shapes.
N=rt+p—Y (7.4.5)

The angle X is measured in the same direction as u. When a circular gear is generated (fig. 7.4.3),
the angle u is 90° and A\, and A, are constant angles represented as

A= v (7.4.6)
2
3

A = 7” - (71.4.7)

A noncircular gear may be generated by a rack cutter whose centrode is in tangency with the
gear centrode at points on line On (fig. 7.4.4). This line is drawn from the gear center of rotation
O perpendicular to the direction of rack cutter displacement s. (See section 2.1.) Here the orientation
of shape normals is also represented by equations (7.4.6) and (7.4.7).

Rack

cutter

centrode —
\

' Polar axis
L
Gear
centrode —~

Figure 7.4.2.
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Figure 7.4.3.

cutter
centrode

“~— Gear centrode

Evoluteof T —=~

Direction of 6 3

Figure 7.4.4. Figure 7.4.5.

Shape Evolutes

Let a curve £ be given (fig. 7.4.5) with M;N; as a locus of radii of curvature of this curve. The
locus of curvature centers N, (i = 0,1,2, . . . ) is called the evolute of L. The evolute of the given
curve L may be determined as the envelope of the locus of normals to the curve E.

Consider that a gear centrode is given by the equation

r(f) = r(#) sin 8i + r(8) cos 6j (7.4.8)
where r(6) represents the magnitude of the position vector as a function of the polar angle 6
(fig. 7.4.6(a)). The orientation of shape normals is represented by the function A(8) € C', where

A is the angle made by vectors r and n.
The locus of normals n may be represented by the equations

r.,=r+{=[r(8) sin 0 + £sin (8 + N)]i + [r(6) cos 6 + £ cos ( + Nlj (7.4.9)

Here s the parameter which represents the location of a point N on the normal (fig. 7.4.6). Equation
(7.4.9) represents a locus of straight lines /N. The envelope of the locus of straight lines IN represents
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Figure 7.4.6.

the evolute of the shape whose normal orientation is given by function A(6) € c'.
The displacement of a point of the normal may be determined by

dr, = dx,i + dy,j (7.4.10)

Here
dx, = r cos 6df + dr sin 0 + ¢ cos (8 + N)(d6 + dN) + df sin (8 + N) (7.4.11)
dy, = — rsin 0d6 + dr cos 6 — £sin (6 + N\)d8 + d\) + dl cos (0 + N) (7.4.12)

At the point of tangency of the normal /N and the envelope (point N, fig. 7.4.6) the displacement
of the normal point dr, must be collinear to the envelope tangent 7. Taking into account that the
envelope tangent coincides with the normal IN, we may state that dr, must be collinear to the
normal IN. Thus,

dx, n, _sin (0 + N)

e AT 7 (7.4.13)
dy, n, cos @+ N
Equations (7.4.11) to (7.4.13) yield
d dN
rcos)\———rsin)\+£’ 1+—)=0 (7.4.14)
db de

The position vector r and the tangent 7 to the centrode form the angle p determined by
(fig. 7.4.6(b))

tan g = — (7.4.15)
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Substituting d—; with r cot pu, we get

rsin (A — p)
P:

(7.4.16)
inuf(1+4
Sin e
K 8

Equation (7.4.16) represents the function €(f), where ¢ is the radius of curvature of the shape at
represent the shape evolute.

the point where it intersects the centrode. Equations (7.4.9) and (7.4.16) considered together

Equation (7.4.16) may be expressed in terms of centrode curvature. The radius of curvature
p of a curve is represented by

ds
p:—.

(7.4.17)
da
Here ds = II" is the infinitesimal arc length between two neighboring points 7 and I” on the centrode
(fig. 7.4.7), and de is the infinitesimal angle between the unit tangent vectors 7 and 7" drawn
at points [ and /™.

The tangent 7 forms the angle u + 6 with the polar axis, and

do = db + du
The arc length is

(7.4.18)

o B o o 2
ds =N (IE)? + (EI')? = V(rd8)> + dn? = do \/ ~* + <(‘j~;>

(7.4.19)

¢ Centrode
)

1
\

r Shape 2
~1

- Centrode
Figure 7.4.7.

"~ Centrode
evolute
Figure 7.4.8.



Equations (7.4.15), and (7.4.19) give

rd6

sin p

ds = rdV'1 + cot? y = (7.4.20)

It results from equations (7.4.17), (7.4.18), and (7.4.20) that the centrode curvature is

p= (7.4.21)

Consequently,

(=p (7.4.22)

| +—
do

There is an important special case whereby the orientation of shape normals by the equation

A\ — u = constant (7.4.23)

is observed (eqs. (7.4.4) and (7.4.5)).

Equation (7.4.23) corresponds to the generation of circular and noncircular gears with the standard
tool applied for involute gears while the straight-lined centrode of the rack cutter rolls over the
gear centrode. For this case we get

£=psin (A — p) (7.4.24)

Equation (7.4.24) may be interpreted kinematically (fig. 7.4.8). Given are a gear centrode and
the centrode evolute. The centrode is provided with a shape L such that its normal n; and the

1
/ L Centrode

I
L Involute of shapes

Figure 7.4.9.
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centrode normal n. make a constant angle of 90° — . It is necessary to determine point N of
tangency of the shape normal with the shape evolute. Let us prove that point N, the point of tangency
of the shape normal n, and the shape evolute, is the point of intcrsection of n, and line KN. Line
KN is drawn from point K and is perpendicular to n,.

This statement is based on the following suggestions:

(1) Point K is the instantaneous center of rotation of straight line /K which rolls over the centrode
evolute.

(2) The velocity of any point N rigidly connected to /K is perpendicular to the radius of rotation KN.

(3) If point N is the point of tangency of the shape normal n, and the shape evolute, then the
velocity of such a point, vy, must be directed along the tangent to the shape evolute. This
requirement is observed if line KN is perpendicular to line IN.

It is verifiable that

IN =1IKsin g8

Taking into account that the centrode radius of curvature /K = p, IN =¢, and 8 = X\ — u, we get
equation (7.4.24).

Example problem 7.4.1 The centrode is a circle of radius r is given by the following equations
(fig. 7.4.9):

x =rsin @ y=rcoséf (7.4.25)

The orientation of shape normals is represented by equations (7.4.6) and (7.4.7). Determine the
evolute for left-sided and right-sided shapes.

Solution.

Step 1. —Determine ¢ for the left-sided and right-sided shapes by using equations (7.4.6), (7.4.7),
(7.4.15), (7.4.16), and (7.4.25).

rsin(A — u)
=10 = =rsiny, (7.4.26)

sin I + a
i il
U@

Step 2.—Determine the evolute of shapes I, and I, (fig. 7.4.9) by using equations (7.4.9),
(7.4.6), (7.4.7), and (7.4.26).
(a) Left-sided shapes L;

X, = rcos ¢.sin (0 + ¢,.) Yo = rcos Y. cos (0 + ¢.) (7.4.27)

(b) Right-sided shapes L,

X, = r cos . sin (8 — ) Ye = rcos Y. cos (8 — ) (7.4.28)

The evolute of shapes L; and L, is the circle of radius p = r cos y,. centered at the same point O
as the centrode.

Example problem 7.4.2 Consider that the displacement s of the rack cutter and the rotation angle
¢ of the gear are related by the function

N
s = ﬁ’d) +a sin ¢ (7.4.29)



Here N is the gear tooth number and P is the diametral pitch. Usually a = 0 and function (7.4.29)
is linear. The additional term a sin ¢ is induced by kinematical errors in the gearing which relates
the motions of the tool (rack cutter or hob) and the generated gear.

By applying methods presented in chapter 2, we may find that the gear centrode is represented
by the equations

N N
x=rsinf=|—+acosb)sinf y=rcos@=|—+acosb|cosb (7.4.30)
2P 2P
Here r = ds/d¢ and ¢ = 0. (See ch. 2.1.) The orientation of shape normals is given by equations
(7.4.6) and (7.4.7). Determine the equations of the evolutes of the gear tooth shapes.

Solution.

Step 1.—Determine { for left-sided and right-sided shapes by using equations (7.4.6), (7.4.7),
(7.4.15), (7.4.16), and (7.4.30).

N
— 4+ acosf
r
tanp=—= - ————— (7.4.31)
dr a sin 8
de

(a) Left-sided shapes

sin (A — ) sin A

. dn
smu<l +E>

dr .
r —rcos A=—sin A — rcos A
tfan p do

N
= —a sin f sin A — r cos )\=<§7)+a cos 0> sin ¥, — a sin 8 cos .

(7.4.32)

(b) Right-sided shapes
N . .
6 = (2—}) + a cos 6> sin . + a sin 8 cos ¥, (7.4.33)

Step 2.—Determine the evolutes of shapes by using equations (7.4.9), (7.4.6), (7.4.7), (7.4.32),
and (7.4.33).
(a) Left-sided shapes
X, =rsinf 4+ §sin (6 +N)
= rsin @ + (r sin . — a sin @ cos ¥,) sin <-;E +y, + 0>

N
= >p cos ¥, sin (6 + ) + a cos Y, sin ¢, (7.4.34)

N I
y. =rcos 8+ fcos (6+A)= 2P cos ¥, cos (8 + ) +acos” ), (7.4.35)
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Equations (7.4.34) and (7.4.35) represent a circle of radius

N
= — COS ¥,
Py 2P 14

centered at point O, (fig. 7.4.10(a)). Vector OO, and the y-axis make an angle Y. measured
clockwise from the y-axis and 1 00;! = a cos y,.. The evolute of left-sided shapes may be
represented in coordinate system S, by the following matrix equation:

[re] = [Me]lr.] (7.4.36)
Here
Xp cos ¥, —sin ¢, 0 X,
[red = | ¥ [Me] = | siny, cosy, —acosy, red = | » (7.4.37)
1 0 0 1 1

¥r Ye

Py

(@} (b)
Figure 7.4.10.

Coordinates (x,,y,) are given by equations (7.4.34) and (7.4.35). Equations (7.4.34) to (7.4.37)
yield

N N
Xp = —— €os Y. sin 6 )y = ~—— COS ¥ cos 8 (7.4.38)
Y ¥ Y 2p 1 )

(b) Right-sided shapes
X, =rsin g + £ sin (§ + N)
. . . , 3r
=rsin 8 + (r sin Y, + a sin 0 cos Y, sin 6+?-—¢/(.

N
= 5P cos ¢, sin (8 — ) — a cos ¢, sin ¢, (7.4.39)

142



N
y.=rcos 8+ sin(6+N= P cos y.cos (0 —y,)+a cos? ¥, (7.4.40)

To represent evolute equations in coordinate system S, (fig. 7.4.10(b)), we use the following
matrix equation:

[r] = M.]lr] (7.4.41)

where

cos Y. sin Y, 0
M, ]= | —siny, cosy. —acos Yo (7.4.42)
0 0 1

Equations (7.4.31) to (7.4.34) yield
N N
x, = — cos V. sin § , = — cos ¥, cos 0 7.4.43
P Ve Sy v ( )

Equations (7.4.43) represent the evolute of right-sided shapes as a circle of radius
N
o, = 2_P cos ¢, centered at point O,.

Summarizing our results we may state the following:

(1) The generation of spur gears by a rack cutter (a hob) with the function of displacements s(r)
represented as the sum of a linear function and harmonic function of the first order (see eq. (7.4.29))
results in the existence of two different evolutes for the left-sided and right-sided shapes of teeth
of the generated gear.

(2) The evolutes are circles whose centers are offset from the center of gear rotation (fig. 7.4.11).
This location of evolutes is equivalent to an error of eccentricity for the tooth shapes.

(3) Although gear teeth have different tooth thicknesses (fig. 7.4.11), these eccentricity errors
cannot be discovered by measuring the distance between a rack tooth and the center of rotation
of the gear.

Evolute of

;:]gahp::mj{ } ~-— Evolute of
left-sided
shapes

Figure 7.4.11.
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Problem 7.4.1 Consider that the gear centrode is an ellipse (fig. 7.4.12). Usually the center of
gear rotation is one of the ellipse foci, but we locate the origin of the applied coordinate system
at the symmetry center O and represent the centrode equations by

x=asinf y=bcosd (7.4.44)

The unit tangent 7 to the ellipse forms an angle  with the y-axis and is represented by the following
equations (see ch. 3.2)

9
T, = siny = a2 5 172 (7.4.45)
(a2 cos? @ + b2 sin’ 0) -
b sin 6
TSy = - SSEIANL] (7.4.46)
(a cos” @ + b* sin 0)
The unit normal to the ellipse n is (see ch. 3.2)
ne=r1, n,= —7, (7.4.47)
The radius of curvature of the ellipse p = MK is (see ch. 3.3)
2 2 2 in2 p)i?
dx dy (a cos” @ + b~ sin 0)
p = e e = — =
dn,  dn, ab (7.4.48)

(= e

W t involute of

left-sided
shapes

Invotuteof © 1 4
right-sided
shapes

Figure 7.4.12.

Normals n; to the left-sided shapes make the angle (y + y,) with the y-axis. Normals to the right-
sided shapes make the angle (y + 7 — y,) with the y-axis. Determine equations of shape evolutes
by using equations (7.4.9) and (7.4.24).



Answer.

2 02 2 2
“cos” 0+ b sinc 8
x,=asinf £ a_cos 5 s sin Y. (a cos 0 cos . F b sin 0 sin ¥,)
a

2 2 2 2
s“ 8+ b”sin” §
yezbcose—a cos ; Sk sin ¥.(a cos @ sin Y. + b sin 6 cos ¥,)
a

The upper sign corresponds to the evolute of left-sided shapes,
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Chapter 8

Surfaces

8.1 Surfaces: Definitions and Representations

Like the concept of a plane curve used in the Theory of Plane Gearings, we need the concept
of a surface based on strict definitions proposed in the field of differential geometry. (See the books
by Zalgaller 1975, Lipshutz 1969, Goetz 1970, and other authors.)

A parametric representation of a surface L is a continuous mapping of an open rectangle G, given
in the plane P of parameters (,0), onto a three-dimensional space R* such that

r(u,0) e C° a<u<b c<t<d (8.1.1)

Here r is the position vector which determines the point surface (fig. 8.1.1). The vector function
r(u,8) may be represented by

r{u,8) = f(u,0)i + g(u,0)j + s(u,0)k (8.1.2)

where i, j, and k are unit vectors of the coordinate axes.

Expression (8.1.1) sets the correspondence between points of plane P and surface L such that
only a single point r(u,6) corresponds to the given point («,8). One-to-one correspondence is not
guaranteed; it may happen that the given point r (u,0) corresponds to more than one point of the
plane P. For instance, the mapping

r = r,[(sin 6 — 0 cos 8)i + (cos 8 + 4 sin 0)j] + uk (8.1.3)

where — o < § < o and a < u < b represents a cylindrical involute surface of two branches,
I'and II (fig. 8.1.2). Lines of self intersection L of this surface belong to the plane x = 0 and may
be determined by equation (8.1.3) and the equation

0 —tan =0 8.1.49)

Consequently, any point M of the surface line L is determined by a single value of « and two different
values of 0: 8, and 6, (8, and 6, have the same absolute value but they are of opposite signs).



,~ Surface Z
/

Plane P of parameters {u, 6)

Figure 8.1.1. Figure 8.1.2.

A simple surface is a continuous mapping (8.1.1) with a one-to-one correspondence between
points of plane P (of parameters («,0)) and points of the three-dimensional space R>. In some cases
the mapping (8.1.1) may represent a simple surface just by the limitation (u,6) € G. For instance,
if we limit parameter 6 by

0<f<o (or —o <0 <0)
mapping (8.1.3) will generate a simple surface; only one branch of the pair I and II (fig. 8.1.2)
is formed. If mapping (8.1.1) is continuous and of one-to-one correspondence in the neighborhood
of the set of parameters (xo,Yo,20,40,00), We say that it represents a locally simple surface.
A surface in parametric representation is called regular if the requirements

r(u,6)¢eC' r,Xxr#0 a<u<b c<b<d (8.1.5)

are observed throughout the mapping from the plane of parameters (u,6) onto the three-dimensional
space. Here

Jr or
r,=_— l'g

du Y
A regular surface has a tangent plane at all its points. (See sec. 8.3)
Theorem A surface is regular locally if requirements given in equation (8.1.5) are observed in
the neighborhood of a point M (xo,Y0,20,49,05). It may be proven that such a surface is a simple
one in the neighborhood of point M.
Proof: The inequality
r,Xrg#=0 (8.1.6)

may be represented by
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xll .vll

k#0 (8.1.7)

xll yu :M =

Xo ¥y
Xo Yo ¢

The inequality (8.1.7) is observed if at least one of the three determinants of the second order
is not equal to zero. Taking into account the designations applied in equation (8.1.2), we say that
inequality (8.1.7) is observed if at least one of the following determinants is not equal to zero:

8u Su Su tu Ju 8u
(8.1.8)
89 So so Jo fo 8s
Let us suppose that just the determinant
Ju 8u
(8.1.9)
fo 86
is not equal to zero. Consider a system of three equations
Fi(u0xyz) =f(uf)—x=0 F(ubxyz)=gud)—-y=0
Fiy(u,0,x,y,2) =s(ub)—z=0 (8.1.10)
which are satisfied at the point
M (uy,80,%0,Y0,20) (8.1.11)

According to the Theorem of Implicit Function System Existence (app. B), equations (8.1.10) may
be solved in the neighborhood of point (8.1.11) by the functions

fu(x.y), 8(xy), z(x,y)]eC’' (8.1.12)
if the Jacobian
fu 8u Su
D(F\.F;,F3)
—_— = S #0 8.1.13
D(u.6.2) o 8 S ( )
00 -1

The inequality (8.1.13) is equivalent to the inequality (8.1.9); therefore, if inequality (8.1.9)
is observed, functions (8.1.12) indeed exist. Consequently, a definite point («,6) on the plane of
parameters (,0) is determined if the point (x,y,z) in the three-dimensional space R* is given. Thus,
the mapping (8.1.5) is of one-to-one correspondence in the neighborhood of point M, and this
mapping represents a simple curve.

The existence of function

z(x,y) € C! (8.1.14)



shows that a regular surface may be represented in the neighborhood of M by this function.
For certain reasons, other parameters—¢ and y—are to be applied for the surface parametric
representation. Two parametric representations

r(uf)eC (u.0)€G
and
R(¢.¥) e C' (o, ¥)€Q
represent the same regular surface if the following requirements are observed:

R(¢.¥) = rlu(¢,¥), 0(6.9)] {u(d.y), 6.9 € C!

du odu
Dwb) _ |36 oy
D(¢.¥) dp ab
86 3y

20 (8.1.15)

There is another form of surface representation known as the implicit equation of the surface.
Equation

F(x,y.2) =0 (8.1.16)

generally represents a set of points in three-dimensional space. To represent a surface, equation
(8.1.16) must be supplemented with additional requirements as follows:

FeC' \F) + IR+ IF 1 #0 (8.1.17)

Equation (8.1.16), with requirements (8.1.17), represents a locally simple and regular surface in
the neighborhood of point

My (x0.Y0,20) (8.1.18)
This statement may be proven with the Theorem of Implicit Function System Existence. Assume
that inequality (8.1.16) is observed because F, # 0. Then equation (8.1.16) may be solved in the
neighborhood of point (8.1.18) by the function
z(x,y) € C'

This function represents a simple and regular surface.

8.2. Curvilinear Coordinates
Considering the parametric representation
r(u,0) = x(u.0)i + y(u.0)j + z(u,0k r(ub)eC’ (8.2.1)
where a < u < b and ¢ < 0 < d, we say that with given values of (u,8y), the position vector

r (1,0, determines the surface point M (fig. 8.2.1). Thus, parameters (u,8) are called curvilinear
coordinates (Gaussian coordinates) on the surface.
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Figure 8.2.1.

Fixing the value of one parameter (assume u = u,) and varying the other parameter 8, we may
determine, by r(up,0), the coordinate line of 8 (the 6 line) on the surface (fig. 8.2.1). Similarly,
by setting 6 = 6,, we may determine, by r(u,8;), the u-line on the surface. Thus, the surface is
covered with u-lines and 6-lines, as shown in figure 8.2.1.

8.3 Tangent Plane and Normal Vector to a Surface
Consider a surface-fixed point M, determined by r(u,8;), and a neighboring point M
r(u, 0) =r{uy + Au, 9, + Af)
of a varied location. Draw a ray 4 from point M, to point M. The direction of this ray depends

on the ratio Au/Af. The position of the ray when point M approaches M, (when (u,8) approaches
(u9,60)) is called the limiting position. With M approaching M;,, we may find a set of limiting rays

(c}

Figure 8.3.1.



by changing the ratio Au/Af. We say that a surface has a tangent plane at M, if the set of limiting
rays fills in a plane.

Figure 8.3.1 shows three types of sets of limiting rays. In the first case, the set of limiting rays
fills in a plane P (fig. 8.3.1(a)). In the second case, two surface branches I and II are connected
by the so-called edge of regression, labeled L. The set of limiting rays corresponding to point M
of the line L fills in only a half-plane which is limited by the tangent T drawn to L at point M
(fig. 8.3.1(b)). In the third case, point M is the cone apex (fig. 8.3.1(c)), and the set of limiting
rays fills in the cone surface; the tangent plane does not exist.

A surface point at which the tangent plane exists is called a regular point. A surface point at
which the tangent plane does not exist is called a singular point. There are different types of surface
singular points. A surface may have one singular point (fig. 8.3.1(c)) or several separated singular
points. Also, singular points may form a line (the edge of regression) that connects two branches
of a surface (fig. 8.3.1(b)).

The tangent plane P to a surface (if such a plane exists) is determined by the pair of vectors
r, and r,, which are tangents to the u-line and 6-line, respectively (fig. 8.3.2). The tangent plane
P at the surface point r(uo,8,) is represented by the equation

[Ar,rg] =0 (8.3.1)

where

A =R — r(up.8p) = MM"

Position vector r(ug,8;) represents the surface given point M (fig. 8.3.2). Position vector R,
which is drawn from the same origin O as r(u,8), represents an arbitrary point M of the tangent
plane P. Equation (8.3.1) yields that vector A belongs to the plane P drawn through vectors
r, (ug,80) and ry(ug,0).

The normal vector N, at a regular point of the surface, is perpendicular to the tangent plane
P. Thus, N is perpendicular to vectors r, and ry (fig. 8.3.2) and we get

N=r,Xrg 8.3.2)

The surface normal may be expressed in terms of projections on coordinate axes by

ijk Yu Zu 2 Xy Xy Yu
N=1| x, Yu 2 | = i+ it k (8.3.3)
Xo Yo 28 Yo 26 29 Xp Xg Yo

The unit normal is represented by

N N,. N,. N
ne oMy Mgy Moy 8.3.4
NN N TN 8.3.4)

where IN| = (Nf + Nf. + N? 12

The direction of the surface normal N and unit normal n, with respect to the surface, depends
on the order of the factors of the cross product (eq. (8.3.2)). By changing the order of the factors,
we may change the direction of the normal to the opposite direction.

We call a surface point r(ug,80) a singular point if at this point

r,Xr;=0 (8.3.5)
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Vector equation (8.3.5) gives rise to the following four cases:

(Hr,=0and ry # 0

)r,#¥0andry =0

Byr,=0andry =0

(4) r, #0 and ry # 0, but r, = Arg(A # 0) and the tangent vectors to coordinate lines are
collinear.

As a rule, in this book we apply surfaces given in the parametric form. However, we consider
surfaces represented by the implicit equation (eq. (8.1.16)) with requirements (8.1.17). If these
requirements are observed, the surface points are regular. Considering a set of points given by
the equation

F(x,y,z2) =0 Fe(C' (8.3.6)
we say a surface point is singular if
F,=F,=F,=0 8.3.7)

Equation (8.3.6) may represent a set of points of which only a part belong to a surface. Therefore,
equations (8.3.6) and (8.3.7) represent all singular points of the set (including singular points of
a surface if this surface indeed exists).

Consider a regular point (xy,0,2) of a surface represented by equation (8.1.16) and expressions
(8.1.17). Let us develop the equation of the tangent plane drawn at point (xg,Y,20).

Suppose a line L is given in the three-dimensional space by

RW) =x(i+yv(Wj+ 2k [x(¥). y(¥). 2 e C'
lxgl + byyl + 1zl 20 Yy <y < (8.3.8)
Line L belongs to the surface
F(xyz2) =0 FeC' IFl + IFl + IF.| #0 (8.3.9)
if the identity
Fx(¥), y(¥), z(y) =0 (8.3.10)

is observed by any value of y.
The differentiation of equation (8.3.10) with respect to ¥ yields



Fxy,+Fy, +Fz,=0 (8.3.11)
Here
R¢ =x¢i +_Vvv,j +Z‘v,k (8312)
is the tangent vector to the line L, and
vF=Fi+Fj+Fk (8.3.13)
is the so-called gradient of the function F(x,y.z). Equation (8.3.11) yields
vF«R; =0 (8.3.14)
That is, the gradient VF and the tangent vector R, are perpendicular to each other.
Equation (8.3.14) is observed for all lines L which belong to the surface (8.3.9) and pass through
the point (x(.yo.2¢)- The tangent vectors R, are all located in the same plane P, which is tangent
to the surface at surface point (xo,¥o,20). The gradient vector v F is perpendicular to all tangent

vectors Ry. Thus, VF (x0,Y0.20) is the normal vector to the surface at surface point (xg,o.Zo)-
The tangent plane P drawn at point (xo,Yo.20) is represented by the equation

F.(xovozo) (X —xo) + Fy(xo.y0.20) (Y = ¥o) + F:(xo.¥0.20) (Z—-2) =0 (83.15)

where X, Y. and Z are coordinates of a point in the plane P (point M® in fig. 8.3.2), and xy, Yo,
and z, are coordinates of the surface point M.
The surface normal N at the point (Xg,Y0.20) 18

N = F,(x0.Y0,:20)1 + Fy(x0.¥0,20)J + F2(x0.¥0.20)K (8.3.16)

The unit normal n is

F.i+Fj+Fk
n=————"—

m

(8.3.17)

0\ 1/2

where m = (F(2 + Fl + ).

Generally, the direction of the surface unit normal is a function of both curvilinear coordinates
of the surface. An exception to this rule is a developable ruled surface. A ruled surface may be

Ruled
surface
!

Figure 8.3.3.
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generated by a certain motion of a straight line. Thus, a ruled surface may be considered as a family
of straight lines. We say that a straight line may be drawn through any point of a ruled surface
such that it lies entirely on the surface.

Considering surface unit normals distributed at points of the straight line L, we usually find that
the direction of the surface unit normal changes while the surface point moves along L (fig. 8.3.3).
However, there are known developable ruled surfaces for which the direction of the normal is the
same for all points of surface straight line. Such surfaces may be developed on a plane. Typical
examples of ruled, developable surfaces are the cone surface., cylindrical surface, and involute screw
surface. (See sec. 8.4.)

8.4 Examples of Surfaces

In this section, we will consider some types of surfaces which are widespread in the field of
spatial gear mechanisms.

Surface of Revolution

This surface (fig. 8.4.1) may be generated by rotation of a planar curve L about the z-axis; curve
L is located in a plane drawn through the z-axis. Consider that the planar curve L, which generates
the surface of revolution, is represented in the auxiliary coordinate system §, (fig. 8.4.2(a)) by
the equations

x, = f(8) Ya=0 Z, = g(h) (8.4.1)

The auxiliary coordinate system rotates about the z-axis and the coordinate transformation from
S.(X0Ye20) 10 S(x,y,2) (fig. 8.4.2(b)) is represented by the matrix equation

X cosy —siny 0 0 X,
¥ siny cosy 0 0O ¥,
= (8.4.2)
z 0 0 1 0 2
1 4] 0 01 1
Equations (8.4.1) and (8.4.2) yield
7
A
I;’ 2.24
=
Xy Oa
(a)
Figure 8.4.1. Figure 8.4.2.
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x = f(8) cos ¥ y = f(8) sin ¢ z2=g(® (8.4.3)
where 8, < 8 < 8, and 0 < y =< 2.

Problem 8.4.1 Given the surface of revolution represented by equations (8.4.3). Determine (1)
equations of the 6-lines and y-lines and explain their geometric essence and (2) equations of the
surface normal N and the surface unit normal n.

Answer. (1) The 6-line is represented by the equations
x = f(6) cos ¥y y = f(0) sin g 7= g8 (8.4.4)

where ), = constant and is located in the plane which passes through the z-axis and makes an angle
Y = ¢ with the x-axis (fig. 8.4.1). The y-line is represented by the equations

x = f(8p) cos ¥ y = f(Bp) sin ¥ z = g(8) (8.4.5)
Equations (8.4.5) represent a circle of radius
p = +y)"? = f(bo)

which is located in the plane z = g(f) and centered on the z-axis.
(2) With the cross product Iy X ry, the surface normal may be represented as follows:

N, = —f(8)g'(8) cos ¥ N, = —f(8)g' () sin ¥ N, = f(6)f (0) (8.4.6)

The unit normal is (provided fif) # 0)

_ g/B)ycosy . g'®siny _f®
n.=——//— nv—__—_- n,= —-

A ’ A

(8.4.7)

where

d d
Al =[N () (0 = - (f(0 0= - 6
G el PR () f® d()(f( ) g0 d()(g( )

Spherical Surface

This surface (fig. 8.4.3) is a particular case of the surface of revolution. The generating planar
curve L is a circle of radius p centered at the origin O of the coordinate system S(x,y,2). The
spherical surface is generated by the circle in rotational motion about the z-axis; L and Ly are
two positions of the generating circle, and y is the angle of rotation about the z-axis.

Consider again an auxiliary coordinate system S,, rigidly connected to the generating circle (fig.
8.4.4). The generating circle is represented in the coordinate system S, by the equations

x,=pcosb v, =0 Z; =psinf (8.4.8)

Using the matrix equation (8.4.2) and equation (8.4.8), we represent the equations of the spherical
surface as follows:

x = p cos B cos ¥ y = p cos f sin ¢ z=psind (8.4.9)
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Figure 8.4.3. Figure 8.4 4.

where 0 < § < 27 and 0 < ¥ < 2. The surface normal vector N = ry x ry is given by
N, = — p? cos’ § cos ¢ N, = — p? cos? B sin y N, = —p? cos 0 sin § (8.4.10)

The normal N is equal to zero at cos § = 0. Thus, points M, and M, (fig. 8.4.3) are singular.
We must differentiate between singular and pseudosingular points of a surface. Pseudosingular
points appear only as a result of the chosen parametric representation, and they become regular
by the changing of parameters of representation.
To prove this, let us consider that the spherical surface is generated by the circle L* in rotational
motion about the x-axis (fig. 8.4.3). The circle L* is represented in the coordinate system S, (fig.
8.4.5(a)) by equations

X, = p COS U Y. =pSinu 3, =0 8.4.11H

The coordinate transformation in transition from S, to S (fig. 8.4.5(b)) is represented by the matrix
equation

Figure 8.4.5.



X 1 0 0 0 X,

¥ 0 cos¢p —sing 0 Ya
= (8.4.12)
2 0 sing cos¢ O 24
1 0 0 0 1 1
Equations (8.4.11) and (8.4.12) yield
X=pcosu y = p sin u cos ¢ Zz=psinusin ¢ (8.4.13)
The surface normal N* is given by
N* =r, X ry = 0° sin wu(cos ui + sin u cos ¢j + sin u sin ®k) (8.4.14)

Surface points D, and D, (fig. 8.4.3), which correspond to sin u = 0, are singular because at these
points N* = 0. All other surface points, including points M, and M, (fig. 8.4.3), are regular. We
may see that the singularity of surface points M, and M,, which results from the parametric
representation (eq. (8.4.9)), disappears when the new parametric representation (eq. (8.4.13)) is
employed. But, at the same time, the singularity of surface points Dy and D, occurs.

Actually, a spherical surface does not have singular points; that is, the normal to the surface
has a definite direction at all surface points. This direction at pseudosingular points like M, and
M, and D, and D, may be determined by using a new parametric representation.

Considering the parametric representation (eq. (8.4.13)) and the equation of the surface normal
(eq. (8.4.14)), we find that the surface unit normal is (provided sin u # 0)

*

*
n =

NI = cos ui + sin u cos ¢j + sin u sin ¢k (8.4.15)

Cone Surface

This surface may be generated by a straight line L in rotation about an axis with which line L
forms an angle ¢ (the x-axis in fig. 8.4.6). Curvilinear coordinates of the cone surface are 6 and
u = |AM |, where A is the cone apex. Equations of the cone surface are

x=pcot Y. —ucosy, y = u sin ¥ sin 0 Z=usiny,.cos 0 (8.4.16)

where 0 < u < u, and 0 < 6 < 27.

Figure 8.4.6.
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Figure 8.4.7.

Equations (8.4.16) may also be derived using the following considerations:
(1) The generating straight line L is represented in the auxiliary coordinate system S, (fig.
8.4.7(a)) by the equations
X, = p cot Y, — u cos ¥, Ya=10 2y = usin i, (8.4.17)

(2) The coordinate transformation in transition from S, to S (fig. 8.4.7(b)) is

x 1 0 0 o0 X,y
y 0 cosd sinf O Yy
- (8.4.18)
z 0 —sinf® cosf O 24
1 0 o 0 1 1

Equations (8.4.17) and (8.4.18) yield equations (8.4.16).
A cone surface is an example of a developable ruled surface. The cone normal and its unit normal
may be represented by

N =ry Xr, = usin y(sin i + cos ¥, sin 8 + cos ¥, cos 6K) (8.4.19)
N . o .
n= NI = sin i + cos Y, sin 8j + cos ¥, cos Ok (by u sin . # 0) (8.4.20)

Equation (8.4.20) yields that the surface unit normal n is a function of only one curvilinear coordinate,
6. Consequently, the surface unit normals are the same for all points of the straight line L (fig. 8.4.6).

The cone apex, which corresponds to u = 0, is a singular surface point. This results from equations
(8.4.19), where N = 0 when u = 0.

Helicoid

A helicoid is a surface which is generated by a line in a screw motion. The generating line may
be a curve or a straight line. Helicoids are widespread in the field of gears. Surfaces of helical
gears and cylindrical worms of worm-gear drives are helicoids.



General equations of a helicoid.—Consider a screw motion of a planar curve L such that the
axis of screw motion is perpendicular to the plane of L. In this motion, curve L generates a helicoid.
Let us represent curve L in an auxiliary coordinate system S, (fig. 8.4.8(a)) by equations

X, = rJ0)cos b v, = r (@) sind z,=0 (8.4.21

where r, = O,M | and 6, <6 <8,. The axis of the screw motion is the z-axis (fig. 8.4.8(b)), and
the screw parameter is i. The screw parameter h represents the displacement along the z-axis,
which corresponds to the rotation about z through an angle of one radian. The sign of / is positive
for a right-hand screw motion.

L - helicoid
cross section . Xy 8

hy ' /
Oa

0"

la} (b
Figure 8.4.8.

Coordinate transformation in transition from S, to S is represented by the matrix equation

X cosy —siny 0 O X,
¥y siny cosy O O Ya
= (8.4.22)
b4 0 0 1 hy 24
1 0 0 0 1 1
Equations (8.4.21) and (8.4.22) yield
x =r,(0) cos (6 + V) y =r0)sin(@ + ) 2, = hy (8.4.23)
where 8, <8<8, and 0<y<2m.
The helicoid normal is
ar 9 (]
O I D) in @ 4+ ¢ + i — hcos (B + ¥ + Wi + ra@) cosuk]  (8.4.24)

_£ dt//_siny
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r(6)

where y = arctan
dr,

do

The helicoid unit normal is (provided r (8) # 0)

= [Asin(@ +§ + )i — hcos (8 + y + u)j + r, cos pk| (8.4.25)
NI Vr? 4 ricos?u

Helicoid with ruled surface. —A helicoid with a ruled surface is generated by a screw motion
of a straight line L. The axis of screw motion and the generating line may form a crossed angle
or they may intersect each other.

Given (a) two coordinate systems S, and S, rigidly connected to the generating line L (fig.
8.4.9(a)) and (b) a coordinate system § in which the helicoid is represented (figs. 8.4.9(b) and
(¢)). The coordinate system S, performs a screw motion with respect to S, and z is the axis of
the screw motion. Each point of the coordinate system S, generates in the screw motion a helix
on a cylinder. Point M generates a helix on the cylinder of radius O,M=p, and MT is the tangent
to the helix at point M (figs. 8.4.9(a) and (b)). We consider two lines MT and MN rigidly connected
with each other. Line MN is the generating line which, while performing a screw motion, generates
the helicoid.

We may derive the helicoid equations by using the rules of coordinate transformation. Consider
that the generating line is represented in the coordinate system S, by cquations

X, =0 Vp = UCOS b Zp = —usiné (8.4.26)

where u = MN. The coordinate transformation from S, to S is represented by the matrix equation

[ro] = Mool [Mp]lrs]

x S cosfl —~sinf 0 0O 100 p X,
¥ sinff cosf 0 O 0100 Vp
= (8.4.27)
z 0 0 1 ho 0010 Zp
| 0 0O 0 1 0001 1

Equations (8.4.26) and (8.4.27) represent the equations of the helicoid surface as follows:

r=(pcost —ucosdsin®i+ (psind + ucosédcosf)j + (hd — u sin )k (8.4.28)

Vector equation (8.4.28) represents a ruled surface. The u-line (surface parameter 8 is considered
fixed) represents a straight line and the 6-line represents a helix. Vector equation (8.4.23) is a general
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Figure 8.4.9.

equation of a helicoid. In a particular case, equation (8.4.23) may represent a helicoid with a ruled
surface if the generating plane curve L is given as a cross section of a helicoid with a ruled surface.
The normal to the helicoid with the ruled surface (eq. (8.4.28)) is

ar dr . . .
N=— X — = [(hcosd + psind)cos® — ucosdsindsinbli
du a9
+ [hcosd + psind) sinf + ucos dsindcos B]j + u cos’ 8k (8.4.29)

The unit normal is

N
N

2|2

(8.4.30)

where
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m? = (hcosd + osind)? + u?cos? s (8.4.31)

There are two particular but important cases of helicoids with ruled surfaces. In the first case,
the generating line L coincides with the tangent T to the helix on the cylinder surface C. The straight
line L generates a helicoid, an involute screw surface. We may obtain equations of such a surface
from equations (8.4.28) by setting § = —A, (fig. 8.4.9(a)). This yields

r={(pcos® —ucosh,sinhi+ (osind + ucos A, cos8)j + (k8 + usin Ak (8.4.32)

Equations of the normal N and unit normal n to this surface may be derived from equations
(8.4.29) and (8.4.30) to (8.4.31), respectively, making & = —M, where tan N\, = h/p. We then
obtain

heosd +psind =hcos\,—psin\, =0 (8.4.33)

m* = (hcosd + 0sin &) + u? cos?s
= u? cos? A, (8.4.34)
and

N = ucos A (sin A, sin 6i — sin A, cos 8 + cos A k) (8.4.35)

With ucos A, # 0, all points of the screw involute surface are regular, and the equation of the
unit normal at these points is

n = sin A,(sin 6i — cos 6j) + cos Ak (8.4.36)

The direction of the unit normal n does not depend on the surface parameter &. This means that
the unit normal has the same direction for all points of the generating straight line L, and the involute
screw surface is a ruled developable surface.

The second particular case of a helicoid with a ruled surface is the Archimedes screw surface.
This surface is generated by a straight line which does not cross, but intersects the axis of screw
motion. The Archimedes screw surface is applied not only for worms but for screws which are
cut by straight-edged blades.

The equation of the Archimedes screw surface may be derived from equation (8.4.28) by setting
p = 0. This yields

r =ucosdé(—sindi + cos 8j) + (h8 — usind)k (8.4.37)

Equations of the normal N may be derived from equation (8.4.29) by setting p = 0 and dividing
all three normal projections by a common factor cos § (with the assumption that § # 90°). This yields

N =(hcos® —usindsin®i + (hsinf + usin b cos 0)j + u cos 8k (8.4.38)



The unit normal n is

a=N
m (8.4.39)
where
m= (h2 + M2)1/2 (8440)

Relationship between helicoid coordinates and the surface normal projections.—This relationship
proposed by Litvin (1968) may be represented as follows:

yN, = xN, = N, =0 (8.4.41)
or

yn, —xn, — hn, =0 (8.4.42)

This statement may be proven by substituting in equations (8.4.41) and (8.4.42) helicoid
coordinates and projections of the surface normal N and the surface unit normal n with the formerly
derived expressions.

The kinematic interpretation of equations (8.4.41) and (8.4.42) is based on the following
suggestions: Consider the screw motion of a helicoid. The screw parameter of this motion A is
the same as the screw parameter of the helicoid. A fixed point of the helicoid traces out a helix,
and the velocity vector in screw motion v is a tangent to the helix. The helix belongs to the helicoid,
and the velocity vector v is a tangent to the helicoid. Consequently, the following equation must
be observed:

nev=Nev=0 (8.4.43)

The velocity vector in screw motion may be determined by the equation

v=(wXr)+ hw

ijk
=00 v |+hok

Xy x

= w(—yi + xj + hk) (8.4.44)
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The surface normal and the surface unit normal are determined as
N=Ni+ Nij+ Nk n=ni+nj+nk (8.4.45)

Equations (8.4.43), (8.4.44), and (8.4.45) yield relations (8.4.41) and (8.4.42).

Cross section of a helicoid.—The cross section of a helicoid is formed by cutting the surface
with a plane perpendicular to the z-axis, the axis of screw motion. This section may be represented
by the equations of the helicoid and the equation z = ¢, where ¢ is a constant. To simplify
transformations, we may set z = 0. The cross sections of a helicoid corresponding to z = 0 and
Z = c represent the same plane curve in two positions. One cross section will coincide with e
other after rotation about the z-axis through the angle

C

V=

(8.4.46)

Let us determine the cross section of the helicoid (eq. (8.4.28)) cut by the plane z = 0. Using
the relation

u=——129¢ (8447)

we get

&3
i
el

x =pcosf — BsinBhcotd y=psinf + 6 cosbhcotd (8.4.48)

In polar form the cross section may be represented as
r®) = (x*+yH"2 = [p2 + (6h cot 6)2]”2

y ptand + Ghcotd
tang=~-=—+————

(8.4.49)
x p—~0tanbhcotd

Here g is the angle which is formed by the position vector r(6) and axis x. The cross section is
an extended involute. The generation of such a curve is shown in figure 8.4.10.

Consider that a straight line S rolls over a circle of radius OA4 = h cot 5. Point B, whose location
is determined by

AB=A0 + OB =hcotd + p

is rigidly connected to the straight line S (fig. 8.4.10). The instantancous position of the rolling
straight line S is /A", and B is a point of the extended involute which is traced out by point B
considered above.
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Figurc 8.4.10.

Problem 8.4.2 Consider the cross section of an involute screw surface (eqg. (8.4.32)) formed by
cutting the surface with plane z = 0. Prove that the cross section represents an involute curve
corresponding to the base circle of radius p, and express the polar radius r(f) in terms of § and p.

Answer.

() = p(1 + 6%'"? (ptan X, = h)
Problem 8.4.3 Consider the cross section of an Archimedes screw surface (eq. (8.4.37)) cut by
the planc z = 0. Prove that the cross section represents an Archimedes spiral, and express the polar

radius #(8) in terms of 6, h, and 6.

Answer.

r(@) = 0hcotd
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Chapter 9

Conjugated Surfaces

9.1 Introduction to Problem of Conjugated Surfaces

Consider a gear mechanism consisting of two gears which transforms rotation between crossed
axes with the given ratio of angular velocities

9.1.1)

We assume that the ratio m,; is constant. However, the methods to be discussed may be applied
for a more general case where the angular velocity ratio is given by a function m,(¢,) € C! (¢,
is the angle of rotation of gear 1).

We then assume that surface I, of the teeth of gear 1 is given. We must determine the surface
L, of the teeth of gear 2 while observing the following conditions: (1) surface L, and L, must
be in line contact (they contact each other along a line which moves over them in the process of
meshing) and (2) teeth of gears 1 and 2, having surfaces L, and L,, must transform rotation with
the prescribed angular velocity ratio m,.

Surfaces of gear teeth where the required transformation of motion is observed are termed
conjugate surfaces. In some cases (discussed below), conjugated surfaces may not be in line contact
but in point contact.

In a mathematical sense, the determination of a conjugate surface is based on the theory of an
envelope of a locus (family) of given surfaces. Assume that gear 2 is fixed and consider the relative
motion of gear 1 with the given surface I, (with respect to the coordinate system S, rigidly
connected to gear 2). By using a method of coordinate transformation, we may get a locus of given
surfaces I;. The desired surface I, is to be determined as the envelope of the locus of surface
L,, which is generated in the coordinate system S,.

We will discuss in sections of this chapter the following topics:

(1) The generation of a locus of given surfaces

(2) The determination of the envelope £, of the locus of surfaces (including a simplified method
for this operation)

(3) Properties of the generated surface L,



9.2 Family of Given Surfaces

We set up three coordinate systems: Si(x1,y1,21) and Sx(xy,¥2,22), rigidly connected to gears |
and 2, respectively, and SH(xs Y20, rigidly connected to the frame. We assume that gears 1 and
2 rotate about crossed axes and we designate their angles of rotation by ¢, and ¢, and their angular
velocities by

ay _ 44 Lo = 4%
dt dt

w

Consider that the surface of teeth of gear 1 is regular and is given in parametric form as follows:

or, 9
£L,0) = [x,(0,0), Y1(.8), 21(u,0)] € C’ % x % 20 WHEG ©.2.1)
173

A family L, of generating surface L, is generated in the coordinate system S, by the relative motion
of £, with respect to E,. This family may be determined by equation (9.2.1) and the following
matrix equation:

[r2] = [My)]{r] = Myl [Mp](n1] (9.2.2)

Here matrices [M,7] and [My] represent the coordinate transformation from Sy to S, and from Y
to Sy, respectively. Equations (9.2.1) and (9.2.2) represent the family I, of surfaces L, as follows:

ar, 8
ry(u.0,6,) € C' a—'% x 3%2 20  WwhHEG a<¢ <b 9.2.3)
U

The surface I, may be given by an implicit equation

aF

9| |%F
ay;

axl

oF

F(x;,y1,21) =0 Fe(C'
621

+ #0 9.2.4)

To derive equations of the locus of surfaces, it is necessary to substitute x,, ¥;, and z; into the
equation F(x,y,z;) = 0 by using the expressions

x; = X (X2,¥2,22,91) Y1 =N (X2,¥2,22,%1) 21 = 21 (X2,¥2,22.91) 9.2.5)
Equations (9.2.5) may be derived from the matrix equation
[r] = [My,llr,] (9.2.6)

Here matrix [M,] is the inverse of matrix [M)].
Equations (9.2.4) and (9.2.5) represent the family L, of surface I; by

G(xyy2.22,8) = F(x,(x2,91,22.8), y1 (x2.¥2,22.9), 21(X2,52,22,9)) = 0

9.2.7)

aG

G G
v,

dax 2

aG
622

GeC! + #0
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9.3 Envelope of a Family of Surfaces: Representation in Parametric
Form

Consider a family (locus) L, of regular surfaces represented by

r(u,6,¢) € C' r,Xrpz0 0 €G ja<u<fand y <8<
9.3.1)
a<¢p<b

The function r(u,8,¢), with a fixed value of ¢, represents a regular surface of the family. To simplify
notations, we drop the subscripts 2 for ry, u,, and 6, and 1 for ¢,.

We begin with the definition of an envelope. A piece of the envelope of a locus of surfaces (9.3.1)
is a regular surface and may be represented as

r.0(u,0),0) =Rw,¢) €C' og<u<By ay<d<by R,xRyz=0
b(u,0) € C' (9.3.2)
or
r(u9.0).8.6) =p(.6)€C' v <0<8 a<¢<hy pyXpy#0

u(d,¢) € C! (9.3.3)

if the piece of the envelope is in tangency with a single surface of the locus at any value of ¢.
The total complex of the envelope pieces (which are determined separately for intervals (ay,8)
and (ag,by), respectively, and for intervals (y4,8¢) and (ag,by), respectively) represents the envelope
in totality.

Henceforth, we will differentiate between the necessary and sufficient conditions of envelope
piece existence. The necessary conditions determine the requirements by which, if observed, the
piece of the envelope can be in tangency with the surface of the locus. The sufficient conditions
determine the requirements by which, if observed, the piece of the envelope actually exists as a
regular surface and is actually in tangency with the surface of the locus.

Theorem of Necessary Conditions of Envelope Existence Consider the family of surfaces (9.3.1)
and assume that functions

O, ) €C'  or u@,p)eC' (9.3.4)

and a corresponding envelope piece (9.3.2) or (9.3.3) exist. The point (u,0y,¢q) corresponds to
the point of tangency of the envelope piece with the locus (family) of surfaces. The theorem states
that the point (uy,6,6,) must belong to the set determined by the equation

D(x,y.z) _

= 9.3.5
D(u,0,9) ¢ )

f(u’0v¢) = [ru ro r¢] =

Proof: Suppose the function 6(u,$) € C' exists and surface (9.3.2), designated by E,, is considered.
The tangent plane II to surface E| may be determined by vectors

R,=r,+rf, Ry=r,+rh, (9.3.6)

The tangent plane P to surface L, of the locus is determined by vectors (r,,re). If the envelope
piece exists, surfaces E; and L, are in tangency and planes II and P must coincide.



Equations (9.3.6) yield that vector R, belongs to plane P. Vector R, can belong to plane P if
the following condition is observed:

Ry r, 14l =0 9.3.7)

Substituting Ry by its expression in equation (9.3.6), we get [r, rgry] =0 which may be
represented by

Thus, the theorem is proven.
Similarly, the theorem may be proven for the case when the function u(f,¢) € C' is considered.

Theorem of Sufficient Conditions of Envelope Existence (Zalgaller, 1975) Consider the family
of surfaces (9.3.1) represented by r(u,8,¢) € C2. If at the point M(ug,0,¢) the following conditions
are observed:

fu,0,0) = [r,rarsl =0 feC' (9.3.8)
ol + ol =0 9.3.9)

and
N = (rg X F)f, + (ry X 1)fp + (r, X Tg)f, # 0 (9.3.10)

then the envelope piece exists in the neighborhood of point M and may be represented by the vector
function r(u,0.¢), with the relationship between parameters given by equation (9.3.5).

Proof: Let the inequality (9.3.9) be observed with fy # 0. Then equation (9.3.8) may be solved
in the neighborhood of point M by the function (u,¢) € C'. (See app. B.) Considering the identity

flu8(u,¢).6)=0 (9.3.11)
we get
fu+ 1, =0 fo + s =0 9.3.12)
These equations yield
f;l feﬁ
6,= -~ f,=—"— (9.3.13)
Ho h

From equations (9.3.13) and (9.3.6), we obtain

R,‘=ru —érg R¢=r¢ “‘&I'g (9314)
fs fy

According to the definition, the envelope must be a regular surface and therefore the surface
normal N # 0. Thus,
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N=R,xR, =0 (9.3.15)
Equations (9.3.14) and (9.3.15) yield the envelope normal
N =(rg X rg)fy + (rg X r,)fy + (r, X ry)fy # 0
The theorem is proven.

Contact Lines

Each surface of the family contacts the envelope at every instance along a line which is called
the characteristic or the contact line. The location of the instantaneous contact line on the contacting
surface depends on the parameter of motion ¢ and is changed in the process of motion. In the
coordinate system S, which is rigidly connected to gear 1 with the given surface L;, the contact
line is represented by the following equations:

r, =r(ub)eC? u,0)eG @ <u<pBandy <<
a<¢p<b f(u,0,0) =0 (9.3.16)

Here ¢ has a fixed value (¢ = ¢V, ¢ = 9@, ... ¢ = ¢™).

Surface L, is covered by contact lines which will in turn come into tangency by the rotation
of gear 1 (fig. 9.3.1). To determine an instantaneous point M of the contact line, the following
procedure must be applied:

Step 1.—Fix the parameter of motion ¢, for example ¢ = ¢'V

Step 2.—Choose one of the surface parameters, for example 6, and determine u from the equation

f(u,0,6) =0

Step 3.—Determine coordinates of point M by applying the vector function r,(,8) = x, (4,0)i, +

N0, + z; (u,0)k, .

Step 4.—To determine another point M~ of the same contact line, keep the same magnitude

¢ = ¢V, change the surface parameter 6, and apply the procedure described previously

2
r 0

Y1 ——— .

Figure 9.3.1.



The set of contact lines in the coordinate system S, rigidly connected to the frame, represents
the surface of action E,. This surface is determined by the following equations:

rf(u,é’,dﬂEC2 u0eG fa <u<Bandy<f <9
a<o¢p<h flu,6,0)=0 (9.3.17)
The vector function r(u,6,¢) may be determined by the matrix equation
[rel = [(Mp1){r] (9.3.18)
Here [My] is a 4 X4 matrix which represents the coordinate transformation by transition from the
coordinate system §; to S;. The method to calculate the points of the contact lines on the surface
of action is similar to the aforementioned procedure.
Contact lines on the envelope are represented by equations
ry(u,0,¢) € C? (u,0) €G fa<u<pBandy<8<§
a<¢<h flu,0.0)=0 (9.3.19)
Here
[ra] = [My][r1] = [My][Mp1lr1] (9.3.20)
The 4 X4 matrix [M,,] represents the coordinate transformation by transition from the coordinate
system S; to S,. The method to calculate the points of the contact lines is similar to the method
given above.
Example 9.3.1 Consider that a gear mechanism transforms translation into rotation. Link 1 is a
rack and link 2 is a gear. We set up three coordinate systems Sy, S,, and Sy, rigidly connected

to links 1 and 2, and to the frame, respectively (fig. 9.3.2(a)). While the rack translates a distance
s the gear rotates about the zy-axis through an angle ¢.

‘f

X X1 / X1
o S b

7~
- P
7 ¢ sin gy tan 4y {
S ‘w]\\’ // \\ b
Y —
e
LA
ol ~~ , !
0 U rinfy
1 t
X
,\m ¢ o
0y
Y2
(a) {b)
Figure 9.3.2.
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; fi -B
v Section A-A : Section B-p

Figure 9.3.3.

Equations of rack surface T;.—Figure 9.3.3 shows sections of a rack tooth. Surface I, which
generates the surface L, of the gear tooth, is a plane. The section of T; cut by the plane 71=0
is a straight line which forms an angle ¥, with axis x, (fig. 9.3.4(a)). The section of generating
surface L, cut by the plane x;, =0 is a straight line which forms an angle 8 with axis z; (fig.
9.3.4(a)).

To derive the equations of the generating surface L), let us use an auxiliary coordinate system
S, (fig. 9.3.4(b)). Consider that a straight line L, is rigidly connected to the coordinate system
S, and that O,M is the position vector of a point M of this line. The plane I, is generated in the
coordinate system S| as a family of lines L,, while the coordinate system S, translates with respect
to ). In this motion the axes of coordinate system S, are parallel to the corresponding axes of
coordinate system ), and the origin O, moves along the line L,. Homogeneous coordinates of
point M (see app. A) are represented by the matrix

ucosy,

u sin y,
[rad = (9.3.21)
0

1

where u = |O.M|.
Equations of the generating surface I, may be derived by the matrix equation

[rlJ = [Mlu][rul (9.322)

Here [M,,] is the matrix of coordinate transformation by transition from S, to S, (fig. 9.3.4(b))
represented as follows:

100 0
010 f{sinf
00 1 fcosB

000 1
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Figure 9.3.4.
where (= |0,0,].

Equations (9.3.21) to (9.3.23) represent the generating plane I, in parametric form as follows:

X) = ucos ¥, y =usiny, +fsin 3 7z, =1fcos B

where (u,f) € E. Here (u,f) are the surface coordinates.

(9.3.24)

Consider the section of generating surface L, cut by a plane P, which is drawn through axis
x, perpendicular to the line L, (fig. 9.3.4(b)). This section may be represented by equations

(9.3.24) and the equation
2
N

= —tan (3

Equations (9.3.24) and (9.3.25) yield
Xy = u oS ¥, y; = u sin ¢, cos’B 7 = — u sin y, sin 8 cos 8
The unit vector of straight line (9.3.26) is
1 . . 2 os . .
T, = —(cos Y,i; + sin y, cos” Bj; — sin ¥, sin 8 cos Bk))
m
where m”> = cos® ¥ (1 + tan? ¥, cos’ B).
Applying the relation
tan y, cos 8 = tan ¥,

we get m = cos y,/cos ¥, and the unit vector 7, is

T, = cos Y,i; + sin ¥, cos Bj;— sin ¥, sin Bk,

(9.3.25)

(9.3.26)

9.3.27)

(9.3.28)

(9.3.29)

The straight line (9.3.26) with the unit vector (9.3.29) represents the shape of a rack which is

applied for spur gears.
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The family of generating surfaces in the coordinate system S,.—This family may be represented
by equations (9.3.24) and (9.3.20), where matrix [M,] (fig. 9.3.2(a)) is

cos¢d sing 0 rcos¢ 1000
—sin¢ cos¢d 0 —rsin ¢ 010 s
[M>1] = [My][M;,] = (9.3.30)
0 0 1 0 0010
0 0o 0 1 0001

The translation s and the angle of rotation ¢ are related by
s=r¢ (9.3.31)
where r is the radius of the gear 2 axoid. It is assumed that the Zp axis is the instantaneous axis
of rotation in the relative motion of the rack and the gear. (See sec. 2.1.)
Equations (9.3.24), (9.3.20), (9.3.30), and (9.3.31) yield
X; =ucos (¢ —,) + fsin B sin ¢ + r(¢ sin ¢ + cos @)

Y2 = —usin (¢ — ) + €sin B cos ¢ + r(¢p cos ¢ — sin @) (9.3.32)

z=fcos g

where (u,f) € E and a < ¢ < b.
Equation of meshing. —To get the equation of meshing, we must apply the equation

ar, dr, or,
IR oz _, (9.3.33)
ou of 9o

which is similar to equation (9.3.5). From equations (9.3.32), we obtain

% = cos (¢ — Ypi, — sin (¢ — ¥}, % = sin B(sin ¢i, + cos ¢j,) + cos Gk,
u

?9—:; =[—usin (¢ — ¥,) + € sin B cos ¢ + r¢ cos dli (9.3.34)

+ [—ucos (¢ — ) — €sin B sin ¢ — r¢ sin ¢lj,

Equations (9.3.33) and (9.3.34) yield the following equation of meshing:
S(u,t,¢) = cos B[sin Y (r¢ + ¢sin ) + u] =0 (9.3.35)

Generated gear-tooth surface L,.—The tooth surface L, of the generated gear (gear 2) is
represented by equations (9.3.32) and (9.3.35) as follows:

r, = r2(u’fs¢) ﬂu,l’,qS) =0 (9336)

This is a parametric representation of a surface with three parameters (u,f,¢). These three parameters
are related by the equation of meshing.



Generally, it is hard (sometimes even impossible) to represent the generated surface by only
two parameters. The discussed case is an exception, because the equation of meshing (9.3.35)
contains all three parameters as linear parameters and it is easy to eliminate one of them from
equations (9.3.32). For instance, knowing that f,#0 and according to the Theorem of Implicit
Function System Existence (see app. B), we may solve the equation of meshing (9.3.35) in the
neighborhood of point (uo,&, o) by the function

u 1
(=- + 9.3.37
<sin ¥, r¢>sin B ( )

Equations (9.3.37) and (9.3.32) yield

X, = —ucot y, sin (¢ — ) +rcosé y2=—ucot¢,cos(¢—¢,)—rsin¢

= - “ +rep ) cot 8
“ sin y,

It is easy to verify that surface (9.3.38) is a screw involute surface. Let us consider a cross section
of the surface cut by the plane z, = 0. Equations (9.3.38) and the equation

(9.3.38)

u= —rosin y, (9.3.39)
represent the plane curve given by equations
Xy = —ré cos ¥, sin (Y, — ¢) + r cos ¢ y, = r¢ cos Y, cos (Y, — ¢) — rsin ¢
=0 (9.3.40)
These equations represent an involute curve with the base circle (fig. 9.3.5)
r, = r cos ¥, 9.3.41)

The geometric interpretation of equation (9.3.40) is as follows: Point / of the involute curve
has coordinates x, = r and y, = 0 and is generated when ¢ = 0. Points up to / (i.e., point M)

X2
\ — Involute curve
}
)
{
1

M

|

v

Y2

Figure 9.3.5.
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correspond to positive values of the rack parameter u, and to negative values of ¢. The position
vector of point M is

Here | O,N| = r and makes the angle —¢ with the x,-axis. Vector NM and the xp-axis form an

angle of 90° — (y, — ¢).
According to the method of generation of involute curves

INM|= —r¢ = —r¢ cos ¥, (¢ <0) (9.3.43)

We get equations (9.3.40) by applying equations (9.3.42) and (9.3.43) and the following equations:
0= OMei yy= OM +j 9.3.44)

Similarly, we may determine the cross section of surface (9.3.38) cut by the plane z, = m. This
cross section also represents an involute curve. For the cross section 23 = 0 to coincide with the

cross section z, = m, we must translate the z, = O cross section along the z,-axis by an amount
m and rotate about this axis by an angle ¢* where

¢.=mlan6

r

Investigation of the generated surface I,.—Sufficient conditions of envelope existence
guarantee that the generated surface is regular. The generated surface represented by

rwbe) € C* f(ule)=0 feC'
is regular if the following inequalities are observed (see inequalities (9.3.9) and (9.3.10)):
TARRIAEY (9.3.45)
and
N =(r X r)fy, + (rg X )fp+ (r, Xrpf, #0 (9.3.46)
In the case discussed above, the generated surface could be represented by two parameters instead

of three. (See egs. (9.3.38).) This simplifies the investigation of the generated surface to that of
a regular surface. We say that surface (9.3.38) is regular if its normal

LN 9.3.47)
ou d¢
is not equal to zero.
Equations (9.3.38) and (9.3.47) yield

t t

N, = u‘co ¢'+r cot 8 sin (¢ — ) N, = w+r cot 3 cos (d — )
sin y, ; sin ),
t

N,=— (ﬂ& + r> cos ¥, (9.3.48)

sin y,



The normal N =0 for

ucotvi  _g (9.3.49)
sin

To avoid the appearance of singular points on the generated surface I, it is sufficient to limit
surface I, of the rack. The limiting line on the surface T, may be determined by the following
equations (see eqs. (9.3.49), (9.3.37), and (9.3.24)):

u = — rsin y, tan ¥, (9.3.50)
o < e, r¢> 1 r(tan.lﬁ, —¢) ©9.3.51)
sin ¥, sin 8 sin B
x, = — rsin? y, y, = rtan y, cos? ¢, — ré z; = r(tan §, — ¢) cot 3 (9.3.52)

Equations (9.3.52) determine the limiting line on the generating surface L;. This line may be
found as the line of intersection of surface £, and the plane that is perpendicular to the x;-axis
and is represented by the equation

x, = — rsin’ Y, (9.3.53)

Figure 9.3.2(b) shows the cross section of I, which is formed by the cutting of L; by the plane
z, = 0. Point F is the point of intersection of the limiting line of the rack cutter with the plane
z, = 0. Equations (9.3.52) and z; =0 yield ¢ = tan y, and the coordinates of the limiting point
Fare givenby x, = — r sin®,andy, = — r sin? y, tan ¥,. Equation ¢ = tan y, determines the
parameter of motion with which point F will come in tangency with the mating point of the gear.

To avoid undercutting, we have to increase the radius of the pitch circle r (by increasing the
number of gear teeth) or set up appropriately the generating surface with respect to 0,. The
displacement of the rack cutter (a nonstandard machine setting of the rack cutter) is used for
generation of nonstandard gears.

Surface of action.—The surface of action may be determined as the locus of contact lines
represented in the fixed coordinate system S;. The surface of action is represented by equations
(9.3.24), (9.3.35), and the equation

[r) = (Mp1lr] (9.3.54)
where (fig. 9.3.2(a))
1000
010 re¢
Mp] = (9.3.55)
0010
000 1

Using equations (9.3.24), (9.3.37), (9.3.54), and (9.3.55), we may express the surface of action
by two parameters. These equations yield

,
U cos”
xf=ucostl/, y,=———.——¥/—' = -
sin ¥,

+ r¢> cot B (9.3.56)

sin Y,
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Equations (9.3.56) represent the contact lines as a family of parallel straight lines. The unit vector
of these straight lines is determined by

a_rf
du 1 2 t

T=——— =~ cos i — — l//’jf_ col r) 9.3.57)
ar; m sin sin ¢, -
du

where

3 cos? ¥, + cot’ 8
moe= s
sin‘ ¢,
It is easy to verify that the mentioned straight lines lie in a plane which passes through the zr-axis

and makes angles of (90°—y,) and (180° —y,) with the X~ and ys-axes, respectively. To prove
this, we consider three vectors 7, K, and a, where

a = sin y,i; — cos Al (9.3.58)

Vector a determines the orientation of the plane of action and k is the unit vector of the z-axis.
The triple product of 7, k, and a yields

sin , sin y,
[Tka] = 0 0 i ={ (9.3.59)

cos? ¥, cot 3
cos Y, — ——

siny, —cos v, 0

X4
¥s
Ly
X5
~P
Of -
AN
N
"
0
Figure 9.3.6.
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Thus, the contact lines lie in the plane which is drawn through vectors k and a. This plane P passes
through the z-axis and the x,-axis (fig. 9.3.6).

Using a new coordinate system S; (fig. 9.3.6), we may simplify the equations of contact lines.
Using the matrix equation

[rs] = [Msf][rf] (9360)

where
siny, —cosy, 0 0O

cosy, siny, 00
My] = (9.3.61)
0 0 10

0 0 01

we get the following equations of contact lines L, on the surface of action:

X, = u cot ¥, y,=0 = — < 'u + r¢> cot 8 (9.3.62)
sin y,

Contact lines L, belong to the plane y, = 0 and are parallel straight lines whose location in the
plane depends on the parameter of motion ¢ (fig. 9.3.7). Contact lines L,, which are located on
the generating surface L,, are also straight lines; but unlike contact lines Ly, the set of lines L,
belong to the screw involute surface I,.

Particular case of a generating surface.—Consider that parameter , of the generating surface
L,, represented by equations (9.3.24), is equal to zero. The generating surface E, is thus
represented by the following equations:

Xy =u yy ={sin B z1="0cos B 9.3.63)
where (u,f) € E. The equation of meshing (9.3.35) yields
u=0 (9.3.64)

The contact line on the generating surface L, is therefore represented by equations

,~ Contact lines

\
L Base cylinder

Figure 9.3.7.
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x; =0 ¥y =€sin g3 z1="fcos 3 (9.3.65)

Unlike the general case discussed above, there is only one contact line on the generating surface
L, which does not move over L; in the process of meshing.
Equations (9.3.64) and (9.3.32) yield the generated surface £, as

xy = {sin 3 sin ¢ + (¢ sin ¢ + cos ¢) Y2, ={sin 3 cos ¢ + r(¢ cos ¢ — sin ¢)
zy="0cos 8 (9.3.66)

This surface is a screw involute surface with the base cylinder 7, = r.
The surface normal is

ar, 8
N = % x a_:; = (¢'sin B + rg)(cos B sin @i + cos § cos ¢ j, — sin Bky) (9.3.67)

Singular points on surface I, exist for N = 0, which yields the following relation between the
surface parameters:

fsinB+rdp=0 (9.3.68)

Equations (9.3.66) and (9.3.68) yield that singular points of surface L, compose a helix which
belongs to the base cylinder of radius r and is represented by the equations

X; =1 COS ¢ Y, = —r sin ¢ = —r¢ cot B (9.3.69)

Appearance of singular points on the surface I, may be avoided by the limitation of the range
of motion parameter ¢.

9.4 Envelope of a Locus of Surfaces: Representation in Implicit Form

Representation of surfaces in parametric form is preferable to the implicit representation because
it allows more freedom for investigation. However, we will also discuss the implicit representation
so as to completely describe all methods of investigation.

We set up the same coordinate systems §,, S», and Sy used in section 9.2. Consider a locus
(family) of simple and regular surfaces given by expressions similar to (9.2.7)

aG

ox

G
dy

aG

G(x,y,2,¢) =0 GeC!
0z

+ #0 (ryv2)€ed a<o<bhb (9.4.1)

The subscript 2 was dropped to simplify the designations. Equations (9.4.1) represent, in coordinate
system §,, a simple and regular surface I, for any fixed-motion parameter ¢.

A piece of the envelope of a locus of simple and regular surfaces I,, represented in implicit
form, is a regular surface determined by

R(z.$) = r(x(2(¢), y(2.8)). 2) €C' R, xR, #0 2,<z<z a<o¢<b (9.4.2)

if for any value of ¢, the surface G(x,y.z.4) is in tangency with the envelope R(z,).



Another parameter, x or y, may be chosen instead of z so that the envelope may be represented
by the vector function R(x,$) or R(y,$), respectively, instead of the vector function R(z,¢). The
following discussion may be used for such a new case just by changing the designations of the
coordinate axes.

Similar to the discussions of section 9.3, we will differentiate the necessary and sufficient conditions
of existence of an envelope of a locus of surfaces given in the implicit form. Necessary conditions
of existence state the ability of a generating surface to be in tangency with the envelope if the envelope
exists. Sufficient conditions state the requirements which, if observed, insure the existence of the
envelope, its tangency with the generating surface, and regularity of the envelope for any fixed
value of motion parameter ¢.

Theorem of Necessary Conditions of Envelope Existence Consider the family of surfaces £,
given by equation (9.4.1) and assume that the envelope I, and surface L, are in tangency at the
point M (xg,¥0,20,®0). Then the point M belongs to the set of points determined by the equation

Gy(x,y,2,6) =0 9.4.3)
where G, is the designation of 3G/d¢.
Proof: Consider that the inequality in expression (9.4.1) is observed at point M just because
G, # 0. According to the Theorem of Implicit Function System Existence (see app. B), the
equation

G(x,y,z,¢) =0 9.4.4)
may be solved in the neighborhood of point M by the function

z2(x,y,¢) € C' (9.4.5)

Then the locus of surfaces (9.4.1) may be represented locally in parametric form as follows:

r(x,y,z,¢) = r(x,y.z(x,y,9)) € C! (9.4.6)

Here (x,y) are the surface coordinates and ¢ is the motion parameter. The differentiation of equation
(9.4.6) gives

r.={1,0,z] r, = (0,1, rs = 0,0,2,) (9.4.7)
Equations
G(x,y.2,¢) =0 z—z(x,y,¢) =0 (9.4.8)
yield
G, dx + G,dy + G,do = — G, dz Zedx + z,dy + z,dd = dz (9.4.9)
It results from equations (9.4.9) that
_G 6 G
G, G, G,
= = =1 (9.4.10)
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Equations (9.4.7) and (9.4.10) yield that

! G,
r.= 11,0, — g r,=10,1, - = r, =100, — % 9.4.11H
G, ’ G, G,

and

dr =r.dx + r,dy +ryd¢

G G, G
=dc(i——k])+dy(j— =k~ 2dok
) < GZ ) y <J GZ > GZ ¢

Gydx + Gydy + Gydy |
G.

<

=dxi+dyj— (9.4.12)

Vector dr represents the infinitesimal displacement of a point in absolute motion as the sum of
two components; (1} a component in transfer motion with the surface I, (this is the component
r,d¢), and (2) a component in relative motion over the surface I, (this is the component
r.dx + r,dy). Vector dr belongs to a plane tangent to the envelope L,.

Let us now determine the vector or of the displacement of a point over the surface L,. Fixing
the parameter of motion ¢ and differentiating function (9.4.6), we get

or =r bx +r,dy

9.4.13)

= bxi + 8y j ———Gxéx; GOy

Z

Due to the continuous tangency of surfaces L, and L, in the neighborhood of their common point
M, vectors dr and dr are collinear. Thus,

dr=Xér (AZ0) (9.4.14)

Equations (9.4.12) to (9.4.14) yield

de d G dx+ G,dy + G, d
dx _dy G ydy + Gedd 9.4.15)
éx Oy G, ox + G, dy

Equations (9.4.15) may be observed if, and only if, G, d¢ = 0. It is easy to verify that dg # 0
because the envelope points correspond to the continuously changing values of parameter ¢, and
G, d¢ = 0 because G, = 0. The theorem is proven.

Theorem of Sufficient Conditions of Envelope Existence Consider a family of surfaces given by

G(xy.2,9)=0 GeC* |G|+ [G|+|G|#0 (xy2)€4 a<¢p<b (9.4.16)

If at a point M (xq.¥9,20.¢) the following conditions are observed:



G(XO'yO’zO’¢O) =0 G¢ =0 G¢¢ # 0

D(G,G
A= \ (G.Go) #0 (9.4.17)

D(x,y)

+ D(G,Gy)
D(x,2)

, |P(G.Gy
D(y,2)

then an envelope piece exists in the neighborhood of point M and the envelope is a regular surface
that may be represented by equations

G(x,y,.2,¢) =0 and Gy(xy.z,4) =0 (9.4.18)
Proof: Assume that equations
G(x,5.2,6) =0 G,(x,y.2,4) =0 GeC? (9.4.19)

are satisfied at the point M(xg,¥,20.90), and the sum of the determinants A # O because the
determinant

D(G,G
DG.Go)

(9.4.20)
D(x,y)

According to the Theorem of Implicit Function System Existence (see app. B), equation
G(x,y,z,¢) =0 may then be solved in the neighborhood of point M by functions
x(z)eC' y(z9)€C' (9.4.21)
and the envelope may be represented in parametric form as follows:
R(z,¢) =r(x(z,9), y(z.¢),2) (9.4.22)
The plane which is tangent to surface (9.4.22) may be determined by the vectors
R, = (x,y,1) R, = [x4.74,0 (9.4.23)
A point of surface (9.4.22) is regular if the surface normal
N =R, xR, #0 (9.4.24)

Equations (9.4.23) yield that the envelope is a regular surface if its normal

Xz

N' = —ygi+x,§+ k=0 (9.4.25)

X Yo
The generating surface L, is a regular surface because (see expressions (9.4.1))
|G| + |G| + G,| #0
The normal N to the generating surface I; may be determined in the coordinate system S, by

N =Gi+G,j+ Gk (9.4.26)
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The generating surface £, and the envelope I, are in tangency if their normals differ from zero
and are collinear; that is, if

N° =)N (N" %0, N#0, A #0) (9.4.27)
or if
N, N N
—r=Z=t=N NI+ N+ N ]#0 N+ N+ N =0 A=o0 (9.4.28)
N. N, N, : »

Let us determine conditions by which expressions (9.4.28) may be observed. We begin with
the differentiation of equations

G(x(z,9).y(z,¢9).2,¢6) =0 (9.4.29)
Gy(x(z,9).y(2,¢),2.¢) =0 (9.4.30)
We get
G
—=Gx,+ Gy, +G, =0 (9.4.31)
az
G
% =Gxy+ Gy, + Gy = Gxy, + Gy, =0 (9.4.32)
because G, = 0;
d
a—z(G¢) = Gyx; + Gy, + Gy, = 0 (9.4.33)
d
5;(0‘#) = GoXy + Ggyys + Gy =0 9.4.34)

We may represent these equations as two subsystems of two equations in two unknowns. Equations
(9.4.31) and (9.4.33) yield

G, G, G. G,
Gcﬁ_v Gd»z G¢ Gox

Xy = ———— Y= ———— (9.4.35)
G, G, G, G,
G, G, Gy, G,

Similarly, considering the subsystem of equations (9.4.32) and (9.4.34), we get

G, 0 G, 0
Goy Gos Gor — Gy
Xo = T T Yo = ———— (9.4.36)
G:. G, G, G,
G¢x G¢y Gm GW



Equations (9.4.36) yield that

ol + sl # 0 (9.4.37)

if the following conditions are observed:

Gy # 0 (9.4.38)
IG,| + |G| # 0 (9.4.39)
and
DUG.Ge) _ ‘ G Ol Lo (9.4.40)
D(x.y) G,. Gy

According to equations (9.4.25), the envelope normal N" differs from zero if inequality (9.4.37)
is observed.

To prove the collinearity of surface normals N" and N, we must prove that expressions (9.4.28)
are observed. Using expressions (9.4.25), (9.4.26), and (9.4.28), we get

Yo _ Ko _XYeT Ve (9.4.41)

G, G, G,
Using expressions (9.4.35) and (9.4.36) for x, and y, and. x, and y,, respectively, we find that
equations (9.4.41) are indeed observed, surface normals N~ and N are collinear, and the envelope
I, is in tangency with the generating surface L;.

Remark: It is easy to verify that tangent T to the contact line of surfaces L; and L, is represented
by vector R_. This statement is based on the following consideration: The envelope is represented
by the vector function R(z,¢). Fixing the parameter of motion ¢, we get that the tangent T is

T=R,=xi+yj+k (9.4.42)

Here x, and y, are represented by equations (9.4.35).

Example 9.4.1 With the same conditions as those stated for example 9.3.1, let us consider that
the generating surface L, is represented in implicit form by the equation

x tan y,—y, +ztan § =0 (x;,y1,2))€B 9.4.43)

This equation may be derived on the basis of equations (9.3.24). Let us determine the envelope,
surface of action, and contact lines.

Family of generating surfaces in the coordinate system S,.—The coordinate transformation
from coordinate system S, to S is represented by matrix [M,], which is the inverse of matrix
[M,,] represented by expressions (9.3.30). We get

cos¢ —sin¢g 0 —r
sing cosod 0 —r¢
M2] = (9.4.44)
0 0 | ]

0 0 0 1
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and

X =X3€C08¢ —y,sing —r Yi=Xx3sin @ + y, cos ¢ — ro =20 (9.4.45)
Equations (9.4.45) and (9.4.43) yield

G(x2,¥2,22,0) = —x; 8in (¢ — ) — ¥, €O (¢ — )
+ 2z cos Y, tan B + r(¢ cos ¥, — sin ) =0 (9.4.46)
where
(x2,52,22) € E
a<¢p<b

Equation (9.4.46) represents the family of generating surfaces.
Envelope equations. —The necessary condition of envelope existence yields

Gy (x2,52,22,8) = —x3¢08 (¢ — ;) + y, sin (¢ — ;) + rcos yf, =0 (9.4.47)

If sufficient conditions of envelope existence are observed (see expressions (9.4.16) and (9.4.17)),
equations (9.4.46) and (9.4.47) represent the envelope (the generated surface L,) as a regular
surface. The envelope is a screw involute surface. To prove this, we may investigate cross sections
of the envelope by setting z, = constant in equation (9.4.46). (See example 9.3.1.)

Singular points of the generated surface.—Singular points occur on the generated surface if
Gss = 0, which yields

Gyp =x28in (¢ — ) + y3¢c08 (¢ — ,) =0 (9.4.48)

With G4 = 0, the generated surface normal N* cannot differ from zero.
Singular points on the generated surface are determined by equations (9.4.46) to (9.4.48) which
yield

X = rpcos (¢ — ) v, = —rysin (¢ — ) = —rptan Ay(¢ —tan )  (9.4.49)

Here r, = r cos y, is the radius of the base cylinder, r, tan A\, = r cot 8 is the screw parameter
h, and N, is the lead angle on the base cylinder. Equations (9.4.49) represent a helix on the base
cylinder.

Surface of action.—The surface of action is the locus of contact lines determined in the fixed
coordinate system Sy (S is rigidly connected to the frame). The contact lines in coordinate system
S (contact lines on the envelope) are represented by equations (9.4.46) and (9.4.47). To develop
equations of contact lines in coordinate system Sy, it is necessary: (1) to determine equations

X2 = XX, V020 0) Y2 = 2 (x5¥5259) 22 = (X Y20 0) (9.4.50)

which express the coordinate transformation from Sr 10 S, and (2) to substitute (x,,y,,2,) into
equations (9.4.46) and (9.4.47) using expressions (9.4.50).
Equations (9.4.50) may be derived from the matrix equation

[r2] = [Mylry] (9.4.51)

where (fig. 9.3.2)



cos¢p sing O rcoso

—sin¢g cos¢p 0 —rsing
[My] = (9.4.52)
0 0 1 0

0 0 0 1

Equations (9.4.51) and (9.4.52) yield
X; = x;€0S ¢ + y;sin ¢ + r cos o} Y2 = — X;sin @ + ypcos ¢ —r sin ¢

L= (9.4.53)

Using equations (9.4.46), (9.4.47), and (9.4.53), we get the following equations of coordinate
lines in coordinate system Sy

xptan ¥, — yr+ Ztan B+re=0 (9.4.54)
xs cos Y, + yysin ¥, =0 (9.4.55)

By fixing the parameter of motion ¢, equations (9.4.54) and (9.4.55) represent contact line L as
a straight line. Line L is the line of intersection of two planes: (1) generating plane I,, which is
represented by equation (9.4.54) and (2) plane P, which is represented by equation (9.4.55). Plane
P passes through axis z; and is tangent to the cylinder of radius r, = r cos ¥, (fig. 9.3.6). The
surface of action is the plane y, = 0. All contact lines represented in the coordinate system Sy
belong to the plane y, = 0 (figs. 9.3.6 and 9.3.7).

9.5 Theorem of Singular Points of Generated Surface X,

Sufficient conditions of envelope existence given in equations (9.3.8) to (9.3.10), if observed,
guarantee that the generated surface I, is the envelope of the locus (family) of regular surfaces
and all points of the envelope are regular points.

We consider the case when one of the requirements above N, # 0 is not observed (N, is the
surface T, normal) and singular points on the generated surface I, occur. The locus of these points
may be the edge of regression, the line which connects two pieces of the generated surface
(fig. 8.3.1(b)). Appearance of such a line means that the generated surface will be undercut by
the generating surface L, (the tool surface). This is the reason why the existence of singular points
of surface L, is to be investigated.

We may determine singular points of surface I, by setting N, = 0 in inequality (9.3.10). But
this method requires complicated transformations and therefore a more simple and effective method
(proposed by Litvin, 1968) is applied. The essence of this method is based on the following theorem.

Theorem Consider a family of surfaces in the coordinate systems S given by

ar, @
nwho) e P 2x2x0  weEG a<eo<bh 9.5.1)
Ju 08

Point M(uq,00, %) is given in the space of parameters (1,6,9) and at this point the following
requirements are observed:
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arz ar2 al‘2 1
Bp)y=——"=1=90 C 952
S(u.0,6) [au % aJ f€ 9.5.2)
L+ 1f] =0 9.5.3)

drydu  dr, d + ar, d¢

— = (9.5.4)
du dt 30 dt  0d¢ dr

A piece of the generated surface L, passes through point Q(x,,y,,2,), which corresponds to point
M (uy,00,40). This surface piece may be represented by

Ry(u,0) = ry(u,8(u,9),0) € C! 9.5.5)
if f # 0, or by
R™(0,6) = ry(u(6,6),0,6) € C’ (9.5.6)
if
f#Z0

At point Q the normal N, of the surface, given by vector function (9.5.5) or (9.5.6), is equal to
zero and point Q is a singular point.

Proof: Consider that the inequality (9.5.3) is observed just because Jo # 0. Then equation (9.5.2)
may be solved in the neighborhood of point M by the function (see app. B)

O(u,9) € C! 9.5.7)

As a result of expression (9.5.7), a piece of surface L, may be represented by equation (9.5.5).
To prove that point Q of this surface is a singular point, let us consider the following system of
four linear equations in three unknowns (du/dr, db/dr, doldr):

du db do

n—+ap—+a;—=0 i =1,2,3.4 9.5.8
aldt azdt aadt (i ) ( )
Here

oo _m oy

1t o 12 30 13 3

=

21 o 22 30 23 Py ©.5.9)

a —% a :ﬁ a —&

31 % 32 Y 33 3

ag = f, agp =J ags =f¢

By a randomly chosen value of dg/dr = 0, the system of equations (9.5.8) has a unique solution
for du/dt and db/dr if the rank of matrix



a ap an

dyy dx ax

asz) dxn asz

aqy dgy Aagn

is equal to two. Consequently, four determinants of the third order must be equal to zero.

D(x3.92,22) _
D(u,9,9)

D(y».2./) _ D(z3.x2.f) _

du 06
ay, 9y,

ou 30
9z, 0z

du 90

ax;
26
3
ad
9z,
36

=0 (9.5.11)

D(u,0,9)

D(u,8,9)

D(xp.y:.f) _ 0

(9.5.12)

D(u,6,9)

Equation (9.5.11) is the same as equation (9.5.2). Equations (9.5.12), if observed, yield that the
surface normal N, = 0. To prove this statement, let us transform the equation of the normal N;.
According to expression (9.3.10), we get

8r2 arz
N:)_ = — X — u +
a0 ¢

Equation (9.5.13) yields
8y,
du

ou
Ju

622
du

du
Ju

aX2
du

N, 2= a_y2
du

Ju

ar,
—x L+
d¢p du

3y
a9
3z,
36
fy

a4z,

a6
ax 2

a9
Jo

612
a6
3y
a0

Jo

6r2

alz
dd
822
d¢
fo

02;
o]
sz
0
Jo

612
d¢
3y,
a¢
Js

_ D(yy.22.f)

arz 3r2
— X — 9.5.13
<6u ae)fe» ( )

D (1.0.0) (9.5.14)
_D(z.x.f)

D(u.0.6) (9.5.15)
_ D(x2.32f)

D(1.0.6) (9.5.16)
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Equations (9.5.12) to (9.5.16) yield, if conditions (9.5.2) to (9.5.4) are observed, the normal
N = 0 and singular points on the generated surface occur.

The kinematic interpretation of this theorem may simplify its applications to the problem of
avoiding undercutting of the generated gear. Consider the generated surfaces L,, which is
represented in the coordinate system S, as follows:

r, =ru,f,4) € C! f(u,0.¢) =0 (9.5.17)

Vector function r,(u,0,¢) represents, in coordinate system S, the locus of generating surfaces
Ly f(u,0,6) = 0 is the equation of meshing.
Differentiating equations (9.5.17), we receive

or; d ar, dé  dr, d of d afdé  af d
r u+i_+j_¢ f_u+ f(_ _f¢—0

(9.5.18)

2=

du di 30 dr | o dr dudi M d dp dr

Here r, = v? is the velocity of the contact point in its motion with respect to the coordinate system
S, (over the generated surface L,). The velocity vector v/2 may be represented as a sum of two
components (1) v\, the velocity of a point which moves over the surface L, and (2) v"'? the
velocity of sliding (the velocity of a point which is rigidly connected to the generating surface I,
and moves with respect to L,). Thus,

VO =y 4 ya2) (9.5.19)

where

b o dradu o do

( d (9.5.20)
du dt 86 dr
gy _ Oz do 9.5.21)
¢ dt

According to the theorem discussed, singular points on the generated surface I, occur if equation
(9.5.4) is observed. Equations (9.5.4) and (9.5.18) to (9.5.21) yield that singular points of surface
L, occur if the velocity of the contact point in its motion over L, is equal to zero; that is, if

v =y 4y _ g (9.5.22)

Equation (9.5.22) is invariant under the applied coordinate system. Particularly, we may express
vectors of this equation in terms of components of coordinate system §;. Consequently, we may
consider equations

3 ar, do
orydu  or df viiD = o (9.5.23)
du dr 90 dr
du  dO d¢
RSP R 9.5.24
. dt f"dt fo dt ( )

Here v{'? is the velocity of sliding expressed in terms of components of coordinate system S,.

Equations (9.5.23) and (9.5.24) yield a system of four linear equations in two unknowns, which
is similar to the system in equation (9.5.8) and is represented by



du do
ag—tap—=>b
dt dt
Here
ax; ax,
a,=— ap=—" by = — v
"=, 125 g 1 1
ay ay
a4y =— ap=-—— by = — vi?
2= o 2= 2 ¥l
az, 621
ay = — ay = — by = — vi1®
3T 5 2= 2 3 g3
ay =1, a, = by=—-—
s =1 w2 =N 4 3¢ dr

of dob

(9.5.25)

where do/dt # 0 is an arbitrarily chosen value; for instance, d¢/dr = 1 rad/sec. The sliding velocity
must correspond to the chosen value dé/dr.
Similarly, for the discussions above, we say that this system has a unique solution for du/dt and

de¢ldt, if the matrix

has rank r = 2. This yields

ax,
u
ay;
ou
az,
du

9x,
a6
ay|
a6
az;
a0

axl
ou
a_y,
ou

Ju

ap
az
as,

as)

(12
—Vx )

12
— D

12
Ty

6x1
a0
all
a0

Jo

ap b
ay; b
ay b

as by

_[onon
du af

12
—wp

12 —
—v?

v%m] =0

(9.5.26)

9.5.27)

(9.5.28)
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o,

du 39 *

dz, dz, (12)

— = = =0 9.5.29

ou 90 Vi ( )
do

L i —fs ”

W

—Vxi
ou 90
aZ] aZ] (12)
— - = =0 9.5.30
ou 30 zl ( )

d
55 —f¢d—(f

Equation (9.5.27) is similar to the equation

-1
On 0 dny ) _ 190y 0ry ] (doN™ (9.5.31)
au 30 3¢ | | ou a0 dr
Here
Wi 9Ir2 d¢
0o dt

is the sliding velocity.
The triple vector product (9.5.31) does not depend on the chosen coordinate system. Therefore,

the triple vector product (9.5.27) may be applied instead of (9.5.31). Triple vector products (9.5.27)
or (9.5.31) yield the equation of meshing.

S(u,6,9)=0 (9.5.32)

Therefore, equation (9.5.27) is observed for all contact points of the conjugate surfaces L, and
L,. including singular points of the generated surface L,.
Equations (9.5.28) to (9.5.30) are additional equations to be observed if contact points of surface

L, are singular points. It is sufficient to apply only one of equations (9.5.28) to (9.5.30) if the
surface £, normal

_dry _dr

| =—

ou 99

is not perpendicular to any coordinate axis of system §,. Thus, any equation of the system (9.5.28)
to (9.5.30) yields the relation

F(u,0,6) =0 (9.5.33)

There is a simple way to avoid undercutting of the generated surface L, (proposed by Litvin,
1968). Equations (9.5.32), (9.5.33), and the vector equation which represents the generating surface



I, determine the line L on surface L, as a locus of points which generate singular points on the
surface L,. This line is represented by

r,(u.0) € C' flu,8,0) =0 F(u,0,¢)=0 (9.5.34)

To avoid undercutting of the generated surface L, we must limit the generating surface I, or apply
special machine and tool settings to exclude the limiting line L (see example (9.8.1)).

9.6 Envelope of a Family of Surfaces: Kinematic Method
of Determination

The determination of the envelope of a locus of surfaces is based on necessary and sufficient
conditions of envelope existence worked out in classical differential geometry. These methods are
of course workable, but the solution may be substantially simplified if a kinematic method of envelope
determination is applied.

The key to the problem of envelope existence lies in (1) determining the equation of meshing
and (2) observing the requirements that the envelope is a regular surface. We will discuss both
of these stages.

Equation of Meshing

Consider a family of surfaces given in parametric form by

ar, o
o) eCl  Ex2x0  wheG a<o<b 9.6.1)
Ju a0

We found in section 9.3 that the equation of meshing may be represented by

31‘2 31‘2 6r2
0 =1———1=0 9.6.2
Sf(u,0,9) [au Y 3¢] ( )

Equation (9.6.1), with the fixed parameter ¢, represents a single surface I, of the locus. The cross
product

i)
_arzx_l;z_

=2 9.6.3
ou af ¢ )

N;

represents the normal to surface L, in components of coordinate system S.

Vector dr,/d¢ represents the velocity v§'? of a fixed point M, on the surface L, with respect
to the point M, of the envelope L,. Points M, and M, coincide and form a common point M, the
point of tangency of surface L and I,. The subscript 2 in v4§'2 means that the velocity vector is
represented in terms of components of coordinate system S;.

The equation of meshing (9.6.2) may be represented as

fu,8,6) =Nyovi? =0 9.6.4)

The equality of the scalar product (9.6.4) to zero is an invariable property under the applied
coordinate system. Instead of equation (9.6.4), we may apply the equation

N,ev{?=0 (9.6.5)

with vectors expressed in components of the coordinate system S.
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Considering that the generating surface is given by the vector function

d d
nwohec TxMoo whes (9.6.6)
du 39
we obtain that
N] = % X (.92
du a0

and the equation of meshing may be expressed by

f(u,8,0) = [2—2 %v@] =0 9.6.7)

The velocity in relative motion (the sliding velocity v{'”) may be determined kinematically. (See
sec. 2.3.) The representation of the meshing equation by expression (9.6.5) simplifies the
transformations substantially.

Equation (9.6.4) may also be represented in terms of components of the coordinate system S;
as follows:

ary or
0.8) = NpovfiD = | LSy D] = g 9.6.8
f(u d)) f V} [au Py, Vf ( )

Here dr;/du and dr;/96 are partial derivatives of the vector function

3
r/(1,0.6) € C' a—rfx ‘;—'(;f;a 0  WhHEG a<g<b (9.6.9)
U

Vector function (9.6.9) represents the family of surfaces L, in the coordinate system Sy. It may
be derived on the basis of matrix equation

[l = (Mp]lry] (9.6.10)
Here
xi(u,6)
Yi (u,0)
[n] = (9.6.11)
Zl(u,())

are homogeneous coordinates of a point of the generating surface I, represented by the vector
function (9.5.6). In the modern theory of gearing, equations of meshing are applied in forms
represented by expressions (9.6.7) or (9.6.8).

Remarks: (1) The resulting equation

fu,6,8) =0



does not depend on the order of factors in the triple products (9.6.7) or (9.6.8) and (2) the vector
of relative velocity v'2 = — v('® may be applied instead of relative velocity v,

General Theorem of Conjugate Surfaces

Equations (9.5.4), (9.5.5), and (9.5.8) may be interpreted geometrically as the General Theorem
of Conjugated Surfaces: At points of tangency of the generating surface L, and the generated
surface I,, the common normal N to the surfaces is perpendicular to the relative velocity vectors
y(12 @n

or v,

There is a particular case when the input and output gears rotate about parallel or intersected
axes and the relative motion represents rotation about an instantaneous axis. (See secs. 2.1 and
2.2.) The relative velocity is

v = (12 % p (9.6.12)

Here w!'? is the angular velocity of rotation about instantaneous axis I-1 (fig. 9.6.1) and is directed
along that axis, and p is a position vector drawn from a point of axis I- to the point M of tangency
of surfaces I; and L,.

The triple product may now be represented by

Novi®D =N (wm) x p) = [No"Pp] =0 (9.6.13)

Equation (9.6.12) yields that vectors N, w12, and p must belong to the same plane drawn through
the instantaneous axis /-/. Thus, the common normal to contacting surfaces L; and L; must
intersect the axis /-7 of instantaneous rotation.

The discussion above may be summarized by the following theorem: Consider gears which
transform rotation between parallel or intersected axes. The instantaneous contact line of gear surfaces
must be such that the common surface normal at any point M of the contact line would pass through
the instantaneous axis of rotation in relative motion.

Applying this theorem, we may develop the following equation to determine the equation of
meshing:

Xl—xlzyl__"'lzzl_zl (9.6.14)
le N\*l Nzl

Here X,, Y|, and Z, are coordinates of a point of the instantaneous axis of rotation; x;, y;, and
z, are coordinates of a point of the generating surface L; and Ny, Ny, and N;, are projections
of the normal N, to the generating surface I,. Equations (9.6.14) yield the equation of meshing.

Figure 9.6.1.
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Determination of Singular Points on the Generated Surface

The appearance of singular points on the generated surface £, means that this surface will be
undercut by the generating surface I, in the process of meshing (generation). The existence of
singular points on the generated surface £, may be determined by the equation N, = 0, where N,
is the normal to the generated surface L,. This classical method needs a complicated
transformation. A more effective and simple method is based on the theorem proposed by Litvin,
(See sec. 9.5.) It follows from this theorem that singular points of surface L, are generated by
such points of the generating surface I; at which the following equation is observed:

vl +v{P =0 (9.6.15)

Here v\!! is the velocity of the contact point in its relative motion over the generating surface I,
and v{'? is the sliding velocity. Both vectors of equation (9.6.15) are expressed in components
of coordinate system S, rigidly connected to the generating surface L.

9.7. Envelope of Contact Lines on the Generating Surface I,

Usually, contact lines cover the entire working part of surface T,. There are cases (they are
not so rare) when contact lines on the generating surface have their envelope and, therefore, these
lines may cover only a part of the generating surface. Figure 9.7.1 shows a locus of contact lines
L, on the generating surface £,. Line D is the envelope of these contact lines which divides surface
L, into the following two parts: (1) part I, which is covered with contact lines (we include envelope
D in part I) and (2) part II, which is free of contact lines. Line E is the edge of surface L. The
conditions of lubrication and heat transfer become unfavorable near envelope D. This is one of
the reasons why the envelope D should be excluded from the meshing.

Consider generating surface L, represented by

@ X % Z=0 (ubeG 9.7.1)

ru,0) ¢ C?
1(u.9) o8

Surface I, is covered with a locus of contact lines L, whose location depends on the parameter
of motion ¢. Locus Ly is represented by the vector equation (9.7.1) and equation

ar, or,

» aavfszo fec! I£l+ [fl=0 a<o<b (9.7.2)

fu,0,9) = [

Here v{'? is the velocity of sliding at the point of contact of surfaces I; and L,. The equation

of meshing (9.7.2) relates surface L, parameters « and 8 with the parameter of motion ¢.

Figure 9.7.1.



We define a piece of envelope D as a regular curve
R(¢) € C' R, #0 (9.7.3)

on surface I,, which is in tangency with a single curve of the locus Ly at each value of ¢. We
propose the following theorems of necessary and sufficient conditions of envelope D.

Theorem The necessary conditions of existence of an envelope of a locus of contact lines on
the generating surface L, are described as follows: If the locus of contact lines L, has an envelope
D and point (ug,8,¢p) corresponds to the point of tangency of D with one of the contact lines L,
then this point (ig,8,,¢¢) belongs to the set determined by the equation

fo=q(ub,0)=0 9.7.4)

Proof: Consider vectors of displacement ér, along the tangent T to the contact line and dr, whose
direction differs from T. The parameter of motion ¢, which corresponds to the displacement along
the contact line or,, is fixed; however, ¢ must be considered as a variable for the displacement
dr,. Vectors ér, and dr; are represented as follows:

3 9
o = Dou+ 60 fudu+ f60=0 9.7.5)
ou ae
arl arl
dry=ddu+ Sdb foduk fdd +fdo =0 9.7.6)
U

If envelope D exists, displacement vectors or, and dr; must be collinear at the point of tangency
of the envelope D and a contact line. This yields the relation

6 60
2z 9.7.7)
du do
Equation (9.7.7) may be observed if, and only if,
fedd =0 9.7.8)

Equation (9.7.8) may be observed only if f, =0, because continuously varying values of ¢
correspond to different points of envelope D.

Theorem The sufficient conditions of existence of an envelope of a locus of contact lines on
the generating surface L, are described as follows: A locus L, of contact lines is represented by

ary _oar ar, or
r(u,0) € C? x1xo 0. = | LTyl —¢
e 6 fu0.8) =1 5, 36 "
9.7.9)
TARRVARY u.0) €G a<¢<bh
If at a point (uy,8,9¢) the following conditions are observed:
D(f,
fo=qub,¢)=0 Va4 o foo=4s 20 (9.7.10)
D(u,0)
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then an envelope piece D is represented by

IR,

Ri(¢) = ri(u(¢),0(¢),0) Ri(¢) e C! #=0 9.7.11)

Envelope piece D is a regular curve which is in tangency with a contact line of the locus L, at
any value of ¢. The envelope in question may be represented on surface I, by
r(u,6) € C? f(u.08,6)=0 fo=q(u,0,6)=0 9.7.12)
Proof: Consider a system of equations
f(u,6,0)=0 Jo=qub,9)=0 9.7.13)

which are satisfied at the point (u,8,,¢,). Because of the inequality

D(f.q)
D(u,6)

equations (9.7.13) may be solved by functions

{u(9),6(¢)} € C' 9.7.14)

in the neighborhood of point (u9,00,9¢). With functions (9.7.14) we may represent a curve on
surface L) by equations

Ri(®) = r1(u(4),6(¢)) Ri(¢)€ C' (9.7.15)

Let us now prove that the curve (9.7.15) is regular and that it is in tangency with a contact line
at the point (uy,8),¢¢). To prove this, we must observe the following conditions:

oR
%:xrl (A # 0) —lxg (9.7.16)
3¢ d¢

where T is the tangent vector to the contact line. A contact line may be represented by equations
rwe)eC®  fub,¢,)=0 9.7.17)

where ¢ has a fixed value.
A vector of displacement along the contact line or| is given by

ad
an:?awa—gae fou+f80=0 ]+ |nl=0 9.7.18)
u

Assuming that the inequality

fl+ 15 =0

is observed because f; # 0, we obtain



ar, ar, du
ory={—fi——f)— 9.7.19
I (aufe 60f> r ( )

Equation (9.7.17) yields that for fy # 0, the tangent T, may be expressed as

arl arl
T, =—f—-——f T #0 9.7.20
1= 60f 1 ( )

The tangent T, differs from zero because

3rl ar‘
—Ix—2%0 |+ 1] =0 9.7.21
= = 2 ARE] ( )

Let us now prove that equation (9.7.16) is indeed observed and that envelope D is in tangency
with the corresponding contact line of the locus L. After differentiation of equation (9.7.15), we

get

R, or, or

] 0 9.7.22
96 ou® a8 ° ©.7.22)

To determine the derivatives u, and 6,, let us differentiate equations

f(u(9),0(4),6) =0 q(u(9),0(4),¢) =0 (9.7.23)

We get a system of two linear equations in two unknowns, u, and 6,

fas + fbs = —fo Gy + gy = — 4o (9.7.24)
With
fu [
A= v | DU (9.7.25)
g qo | D9

and taking into account that f; = 0, we may get the following solutions for unknowns u; and u,
for points of the envelope:

Jodo f4s
= — 0 = — —
Uy A " A (9.7.26)
Equations (9.7.22) and (9.7.26) yield
aR] _ arl ar] q¢
2% <8uﬁ9 20 1. A 9.7.27)

Equations (9.7.27) and (9.7.20) yield that the envelope tangent (9.7.27) is collinear with the

199



200

contact line tangent (9.7.20), the envelope tangent differs from zero since dy =Jop # 0, and the
envelope is a regular curve. Due to the existence of functions (9.7.14), there is only one point
(u,6) which corresponds to the parameter of motion ¢. Consequently, the contact line has only
one point of tangency with the envelope D.

Representation of the Envelope on the Plane of Parameters (u,0)

Contact lines L, on surface £, may be obtained by mapping a locus of plane curves represented
on the plane (u,0) by equations

f(u,0,4) =0 flu,0,0) € C? Ifl+ 6] =0 w0 €eG a<é¢<b (9.7.28)

Here ¢, if fixed, corresponds to a single contact line of the locus.
The locus of plane curves, represented in implicit form by equations (9.7.28), has an envelope,
if the following requirements are observed (see sec. 4.3.):

D(f,q)

= 0.0) =0
Jo =q(u,0.0) Db

#0  f, %0 (9.7.29)

Requirements (9.7.29) are sufficient for the existence of the envelope D of the locus of contact
lines L, on the surface ;. Consequently, if the envelope D on surface L, exists, there is definitely
an envelope of the locus of plane curves (9.7.28) on the plane of parameters (u,8). This result
is important for applications. The graphical representation of the locus of contact lines Ly, and
their envelope D, on the generating surface L, needs complicated drawings. It is easier to represent
images of L, and D on the plane of parameters (,0). An example of the determination of envelope
D is discussed in example problem 9.8.1.

9.8 Conjugate Surfaces: Working Equations

Initial Conditions

Given the generating surface L, by

o, an

r(u,0) € C?
1(u.0) au 99

#=0 (u,0)eG 9.8.1)

The location of the rotation axes of gears 1 and 2 and the ratio of angular velocities are known.
The parameter of motion ¢ belongs to the interval

a<o<b

We set up three coordinate systems S;, S, and ¢ rigidly connected to gears 1 and 2 and the frame,
respectively. It is necessary to determine the generated surface L,, contact lines on surfaces L,
and E,, surface of action, condition to avoid undercutting of surface L,, and the appearance of
the cavelope D of contact lines on the generating surface L,. The stages of investigation and
solution are presented as follows.

Equations of meshing.—Generally this equation may be represented by

3r1 al"]
b,0)=|— —vi?P|=0 9.8.2
flu,0,9) [au 2 \{i ] ( )



Here v{'? is the velocity of sliding determined kinematically. (See ch. 2.3.) After determination
of equation (9.8.2) it is necessary to make sure that

IARRIER" 9.8.3)

If gears 1 and 2 transform motion between parallel or intersecting axes, the equation of meshing
may be represented not only by equation (9.8.2), but by

X; — x;(u,0) _ Y — yi(u0) _ Z, — zi(u,0)
Ny Ny N,

y z

(9.8.4)

Here x,, y;, and z; are coordinates of a point on surface L;; X;, Y, and Z, are coordinates of
a point of the instantaneous axis of rotation; and Ny, N,y, and N, are projections of surface normal
N, given by

oo

= 9.8.5
du 06 ( )

N,

Contact lines on surface L,.—Contact lines on surface L, are represented by expressions (9.8.1)
and (9.8.2) with fixed values of the parameter of motion ¢.

Surface of action.—The surface of action is the locus of contact lines determined in the coordinate
system Sy. This surface is represented by expression (9.8.1), equation (9.8.2), and matrix equation

[rd = Mallr] (9.8.6)

Here matrix [Mp] represents the coordinate transformation from coordinate system S, to Sy Vector
function (9.8.1) and equations (9.8.2) and (9.8.6) yield the following expressions for the surface
of action:

ar, @
M0 fub.¢)=0
U

re(u.0,¢) € C* P

(9.8.7)
£l + |fsl 20 ,0) € G a<¢p<b

Generated surface.—The generated surface £, is the locus of contact lines determined in the
coordinate systems S,. Surface L, is represented by vector equation (9.8.1), equation (9.8.2), and
matrix equation

[r2] = [M2)]lr] (9.8.8)

Matrix [M,,] represents the coordinate transformation by transition from coordinate system $; to
coordinate system S,. Vector function (9.8.1) and equations (9.8.2) and (9.8.8) yield the following
expressions for the generated surface Iy

rud,¢)€C flub,¢)=0 TARSIELY (u.0)€G a<¢<b (9.8.9
Nonundercutting of the generated surface ,.—To avoid undercutting of the generated surface

T, it is necessary to limit the dimensions and settings of the generating surface L. The limiting
line of surface I, is the locus of points of I; which generate singular points of the generated
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surface ;. This line is determined by

ar, dr ar, dr
r(u.0) € C? —Ix—txo — v =, 0,4)=0
1.9 o 08 u s 6.9
(9.8.10)
F(u,0.¢) =0 fl+ Il =o0 u,0)€G a<e¢<b
The equation
F(u,8,0)=0 9.8.11)
may be developed from equations
511 B_xl w12 ‘2{1 ail V(12 a.ll 6_\, p2)
u o8 u 0 u a6
I Wil = 9z oz Wi | = 9z, 9z, WD =0 (9.8.12)
du 98 ou 06 ou 08
do de do
fufof¢dr f“f"f‘”d, ﬂffaqudt

Usually it is sufficient to apply only one equality of the three equalities in equations (9.8.12) to
get equation (9.8.11).

Investigation of existence of envelope of contact lines on the generating surface L,.—It is
essential to investigate the existence of an envelope of contact lines considering the plane of
parameters («,0). The envelope in question is represented by equations

fwb)=0  flufd)eC’®  f,=qube¢) =0 I\l + sl =0

D(f.q)

=0 DeG <op<h 9.8.13
D(n.6) foo (u.0) a<o ( )

Example 9.8.1

Conjugate surfaces of a worm-gear drive are considered. Assuming that the surface of the worm
is given, we must determine (1) the equation of meshing, (2) the surface of action, (3) the worm-
gear surface, and (4) the equations of the envelope of contact lines on the worm surface. Conditions
of nonundercutting of the worm-gear surface may be determined with the aid of a computer program.
Because of the complexity of this program, it is not discussed in this example.

Solution

Worm thread surface. —Consider that the worm thread surface is an involute screw surface
(fig. 9.8.1). Such a surface may be generated by a screw motion of the straight line ML. This
line is the tangent to the helix on the base cylinder of radius ry. (The helix in question is traced
out on the base cylinder surface by point M, the point of tangency of the straight line ML with
the cylinder.) The generating line ML forms the angle A, with the plane perpendicular to the
Z)-axis.

The position vector for point N of the screw involute surface is

ON= 0K+ KM + MN (9.8.14)



Y1

)(1 ‘\
L Involute
Figure 9.8.1.

Here ]m[ = u is the segment of straight line ML measured from the tangency point M to the
point N, Q—K] is the base cylinder radius r, (vector O;K makes the angle 6 with the x-axis),
and ]m} = h# is the axial displacement in screw motion which corresponds to the rotation angle
6 (h is the screw parameter). Projecting the vectors of equation (9.8.14) onto the coordinate axes,
we get

Xy =r,cos 8 + ucos A, sin @ ¥y = rpsin 6 — u cos A, cos 8
2y = h0 —usin (9.8.15)

Equations (9.8.15) represent the involute screw surface with u and 6 as surface coordinates. It
is easy to verify that the cross section of the involute screw surface (cut by the plane z; = constant)
is an involute curve with the base circle of radius r,,.

The normal N, to surface (9.8.15) is

i ad
Nl - _r__l. X _rJ
du 08
i i k,
= cos A sin 6 —Cos A, cos 8 —sin A,
—rpsinf +ucos \ycos @ r,cos 0+ ucos N\, sin 8 h

Il

(— h cos A, cos B + 1, sin A, cos @ + u cos Ay, sin A, sin 0)i;
+ (r, sin Ay sin @ — u cos A, sin A, cos @ — h cos A, sin 8),

+ u cos? Mk, (9.8.16)
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Figure 9.8.2.

Developing the cylinder surface (fig. 9.8.2) on a plane, we may represent the helix by a straight
line and obtain

h
tan A, = — (9.8.17)
Ty

Equations (9.8.16) and (9.8.17) yield
Nj = u cos Ay(sin N, sin 6i; — sin A, cos 8, + cos Ky (9.8.18)
With u # 0 the screw involute surface is a regular surface and the surface unit normal is
n, = sin A, sin 6i; — sin \, cos 6j, + cos Ak, (9.8.19)

Coordinate systems.—We set up coordinate systems Sy, S,, and S; rigidly connected with
worm 1, gear 2, and the frame, respectively (fig. 9.8.3). An auxiliary coordinate system, also

?1‘ Zf

(e}

Figure 9.8.3.



rigidly connected to the frame, is designated by S,. The worm and gear rotate about crossed axes

which form an angle y. Usually v = 90°, but we assume that y # 90°.

Coordinate transformation.—The coordinate transformation by transition from system §; to Sy

is represented by the matrix equation

[rel = Mallr]
Here
cos ¢, —sing; 00
sing, cos¢; 00

Mn) =
& 0 10
0 0 01
Equations (9.8.18) to (9.8.20) yield
Xp = X| €OS @) — Yy sin @, Yy = X sin ¢ + y, cos (] =2

Matrix equation

[r,] = (Ma]lr)] = (Mo, )IMf1[Mpiri]

represents the coordinate transformation from S, to S,. Here

1 0 0 C

0 cosy —siny O

M, f] =
» 0 siny cosy O
0 0 0 1
cos ¢, sing, 00
—sin¢, cos ¢, 0 0

[My,) =
0 0 10
0 0 01

Equations (9.8.22) to (9.8.24) yield
Xy = x, (COS @) cOS ¢, + cos 7y Sin ¢; sin @)
+ y,(— sin ¢, cos ¢, + cos y cos ¢, sin ¢3)
— z; sin vy sin ¢, + C cos ¢,
y; = x;(— €os ¢, sin ¢, + cos y sin ¢ cos @)
+ y,( sin ¢, sin ¢, + cos 7y cos ¢, €OS @)
— z; sin y cos ¢, — C sin ¢,

7, = x| sin y sin ¢; + y; sin vy cos ¢; +z; €OS 7y

(9.8.20)

(9.8.21)

(9.8.22)

(9.8.23)

(9.8.24)

(9.8.25)
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Sliding velocity.—The sliding (relative) velocity vf'?) is
Vi1 =y —v@ (9.8.26)
Here v{" and v/* are velocities of the points of gears | and 2, respectively, which form their
mutual contact point. The subscript f means that vectors are expressed in components of coordinate
system S;; henceforth we will drop this subscript.

Gears 1 and 2 rotate about crossed axes z; and z, with angular velocities @ and w® (figs.
9.8.3 and 9.8.4). The velocity v!" may be represented by

v = w® xr (9.8.27)
where r is a position vector drawn from the origin Oy of the coordinate system Sy to the point of

contact.

The sliding vector w'? does not pass through the coordinate origin Oy We substitute this vector
by an equal vector w'®, which passes through Oy, and the moment (fig. 9.8.4)

m=Rx w? (9.8.28)
where R is a vector drawn from point Orto any point on the line of action 2, of vector w?. we
choose the vector R = 0,0,.

The velocity v@ is
v = (0?®xr) + (C x 0?) (9.8.29)
Equations (9.8.26), (9.8.27), and (9.8.29) yield
v = ((@® - 0?) xr) - (Cx ©?) = (w0 xr) - (C x w?) (9.8.30)

Here (fig. 9.8.4)

Ww'1? = ) Z (@ (9.8.31)

w2 ] i

Figure 9.8.4. OR'G'NAL PAGE 'S
OF POOR QUALITY



Taking into account that
WM =0k, w? = w@(sin yj;+ cos vk) C=-0Cy r = xi;+ yip + ks
we get

v = [— y(1 — my cos y) = zpmy sin Tw"

{12 = [x(1 — my cos ) — Cmy; cos y]w®
Q”’:ug+cmmsmyp“> (9.8.32)
Here my, = 0@/w,

The sliding vector v may be expressed in components of coordinate system S; by using the
matrix equation

[v{?] = LA (9.8.33)
The 3 X 3 matrix [L;] is represented by (fig. 9.8.3)

cos ¢, sing; 0
(Ll = —sin ¢, cos ¢; O (9.8.34)
0 0 1

Equations (9.8.21) and (9.8.32) to (9.8.34) yield
v = (= yy(1 = myy cos ) — zymy sin y cos ¢ — Cmyy €OS sin ¢Jw)
v = [x,(1 = my cos ) + zimy sin v sin ¢; — Cmy, cos 7y cos é)wV (9.8.35)
vl = [my, sin y(x; cos & — ¥, sin ¢, + C)]w”
Equation of meshing.—We apply the equation
N,+v{i? =0 (9.8.36)

where N, is represented by equation (9.8.18) and v{'? by equations (9.8.35). The involute screw
surface is a helicoid and therefore we may use the relation (8.4.41), which may be represented as

YNy — x;Nyy — hN; =0 (9.8.37)
Equations (9.8.15), (9.8.37), (9.8.18), and (9.8.36) yield the following equation of meshing:
f(u,8,6,) = (u — hb sin Ap) sin (8 + ¢;) siny
+ cos (8 + ¢,)(r, cos N, siny + C sin A, cos ) (9.8.38)
— [h(m;y — cos ) — Csin y] cos Ny = 0

where
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Surface of action.—The surface of action is represented by equations
[re] = [(Mqpllr] (9.8.20)
and
flu,6.6) =0 (9.8.38)
Matrix equation (9.8.20) yields equations (9.8.21). Thus, the surface of action is represented by
equations (9.8.15), (9.8.21), and (9.8.38).
Gear-tooth surface.—The gear-tooth surface is represented by equations
[r2] = My ](n] (9.8.22)
and
fu,0,0,) =0 (9.8.38)
Matrix equations (9.8.22) yields equations (9.8.25). Thus, the gear-tooth surface is represented
by equations (9.8.15), (9.8.25), and (9.8.38).

Investigation of the existence of the envelope D of contact lines on the generating surface
Z,.—The envelope D is determined on the plane of parameters (u,0) by equations (9.8.13).
Equation

qu(uﬁ,fbl) =0
yields
(u — hf sin N,) sin y cos (6 + ¢))

— [rp cos N, sin y + Csin N, cos y] sin (8 + ¢,) =0 (9.8.39)

Considering equations (9.8.39) and (9.8.38), we get

iny + Ctan \
cos p = 2 MY WY =6+ (9.8.40)
h(my; — cos y) — Csin vy

(u — hf sin Np) sin vy

(9.8.41)

sin » =
[A(my; — cos v) — Csin y] cos A,

Due to the inequality
— s cos(@+¢)=<1
we get that equation (9.8.40) may exist (consequently the envelope D may appear) if, and only if,
[r,, sin y + C tan A, cos 'y[ =< Ih(mlz — cos v¥) — Csin ’yl (9.8.42)
If inequality (9.8.42) and all inequalities of expression (9.8.13) are satisfied, the envelope D
indeed exists. This envelope is a straight line in the plane of parameters («,6) and may be represented

by the equation

(u — h8 sin N) sin y — [A(m;; — cos y) — C sin ] cos A, sin = 0 (9.8.43)
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where

rp sin y + C tan N, cos vy

cos v = -
h(m;; —cos y) — Csin vy

(See eq. (9.8.40).)

Figure 9.8.5 shows the locus of contact lines given by equation (9.8.38) and their envelope D.
(Envelope D is represented by equation (9.8.43).) The appearance of the envelope is inevitable
for worm-gear drives with the crossing angle v = 90°. This envelope appearance is a disadvantage
of such worm-gear drives.

With y = 90°, we represent the inequality (9.8.42) as

r, < |mah — C| (9.8.44)

It results from the geometry of involute worm-gear drives that

h N

rp = —— = —_ (9.8.45)
Vian? y +tan® A,  2P,Vtan® y, + tan® \,
w“) N2
mi, —52—)-_—&—1 (9.8.46)
N
C=rp+Ry=r,+ 2 (9.8.47)
s

Here r, and R, are the radii of pitch cylinders of the worm and of the worm gear, A, is the lead
angle on the worm pitch cylinder, P, = N,/2h is the axial pitch of the worm, P, = P, is the worm-
gear diametral pitch, N\ and N, are numbers of worm and gear teeth, and y. is the angle of the
worm shape in its axial section.

We may avoid the appearance of envelope D by using definite crossing angles y # 90°. To get
the range of angle v with which the envelope D does not exist, we may find edges of this area
making cos (8 + ¢,) = 1 and cos (6 + ¢,) = — 1 in equation (9.8.40); this enables us to obtain
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the limits of this range. We found that the area of v is 125° < y < 155° and 7° < y < 72° for
the worm-gear drive with parameters C = 150 mm, h = 12 mm, r, = 27.5 mm, and m,;, = 25:3.
By applying a worm-gear drive with a crossing angle v # 90°, we may provide better conditions
of lubrication due to the more favorable shape of contact lines. Figure 9.8.6 shows the contact
lines determined for the worm-gear drive with the parameters listed above and crossing angle
v =130".

u
A

sol_ N\\
l —» 8
[
100 200 300

Figure 9.8.6.

Example 9.8.2

Consider that a rack, with the given surface L,, generates the gear tooth surface L,. We set up
the coordinate systems S,,5,, and Sy discussed in example 9.3.1 (fig. 9.3.2). Equations of the
generating surface L, according to equations (9.3.24), are

X| = U Cos y, Yy =usiny, + fsin 8 z1=Fcos B (9.8.47)
where (u,f) € E.

Determine the equations of (1) meshing, (2) surface of action, (3) generated surface, (4) conditions
of nonundercutting of gear teeth, and (5) existence of an envelope of the contact line on the generating
surface.

Solution

Equation of meshing. —The normal to the generating surface is

i) d
N, = —; X aif’l = cos @ sin y,i; — cos B cos ¥, j; + sin 8 cos ¥k, (9.8.49)
u

We determine the sliding velocity by
VD =y — v (9.8.50)

The velocity of the rack is (fig. 9.3.2(a))
m ds .
Vi'=—) =wn) (9.8.51)
dt

The gear rotates about O, with the angular velocity
W, = wk; (9.8.52)

The sliding vector (9.8.52) may be substituted by the equal vector



directed along the z;-axis and the moment

m= 0102 X w (9854)

where (fig. 9.3.2(a))

0,0, = —ri; —sj; = —r(i; + ¢j)) (9.8.55)
Vector v; of the gear velocity is
v = (wxr) + (0,0, x w) (9.8.56)
where
r =xi + yij + 21k, (9.8.57)
Equations (9.8.48) and (9.8.50) to (9.8.57) yield
V{12 = w[(y, + rddiy — xi§y) = wl(u sin ¢, + €sin B + ré)i; — u cos ¥,ji] (9.8.58)
Using the equation
N evi??=0
we get
f(u,0,0) = cos BIsin y,(r¢ + £sin 8) + u] =0 (9.8.59)
which is the same as equation (9.3.35). It is necessary to emphasize that we got the equation of

meshing by a simpler method than the one applied in section 9.3.
Surface of action.—We use equation (9.8.59) and the matrix equation

[r] = [Malln] (9.8.60)
where (fig. 9.3.2(a))
100 0
010 r¢
(Mp] = 001 0 (9.8.61)
000 1

Equations (9.8.60), (9.8.61), (9.8.48), and (9.8.59) yield
Xp = u cos Y, yf=usin¢,+l’sinﬁ+rd> z=fcos 3
cos B[sin ¢, (ré¢ + sin B) +u] =0 (9.8.62)

With 3 # 90°, we represent the surface of action as follows:
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J u cos? y,
X; = u cos = —— = —
7 : ¥ — /

+ rd>> cot B (9.8.63)

sin y,

which coincides with equations (9.3.56) of the surface of action determined in example 9.3.1. The
surface of action is a plane shown in figure 9.3.7.
Generated surface.—We use equation (9.8.59) and the matrix equation

[r2] = [My][n] = [My](Mp][r] (9.8.64)
Here (fig. 9.3.2(a))
cos¢o sing 0 rcoso
—sin¢ cosd O —rsing

My = (9.8.65)
0 0 1 0

0 0 o 1
Equations (9.8.64), (9.8.65), (9.8.61), (9.8.48), and (9.8.59) yield
Xy = ucos (Y, — ¢) + £sin B sin ¢ + r(¢ sin ¢ + cos ¢)
Y2 =usin (Y, ~ ¢) + €sin 8 cos ¢ + r(¢ cos ¢ — sin ¢)
(9.8.66)
z;=fcos 8 S(u,0,6) = cos B[sin ¢,(ré + £sin B) + ul=0

(u0)e E a<¢<bh

~Rack cutter
' centrode

© Gear centrode



Equations (9.8.66), which represent the generated surface £, coincides with equations (9.3.32)
and (9.3.35). Eliminating parameter £ (see example 9.3.1), we may represent the generated surface
by

X, = —ucot y,sin (¢ —¥,) + rcos o Yy, = — u cot y, cos (¢ — ) — rsino

= - ( .u + r¢> cot 3 (9.8.67)
sin ¢,

It was demonstrated previously (see example 9.3.1) that equations (9.8.67) represent an involute
screw surface.

Conditions of nonundercutting of the tooth surface of gear 2.—We base the investigation on
the effective method proposed in this section. Using equations (9.8.12), we get

axl axl (12)
N - Vi
du ot cos ¥, 0 usiny, + £sin 8+ ro
a1 W . .
— TV = | siny, sin 3 —u cos Y, w=0 (9.8.68)
ou af
1 sin B sin y, rsin Y,
Lo S fow
Equation (9.8.68) yields
Fufp)=ro +lsin3—rtany, =0 (9.8.69)

Equations (9.8.69), (9.8.59), and (9.8.48) determine the line on surface L, by which £, must
be limited to avoid undercutting of the generated surface L,. This line is represented by

u = — rtan y, sin ¥, f= rtan y, — ¢) ,,'l/’ — ¢
sin 3
x=-r sin? ¥, y; = — rtany, sin? ¥, + r(tan ¥, — ¢) Zy = r(tan ¢, — @) cot

(9.8.70)

We derived equation (9.8.69) by using the first of three equations in equation set (9.8.12). We
would get the same result by using the second or the third equation in equation set (9.8.12). Equation

X, =-r sin® ¢, (9.8.71)

may be used to express conditions of nonundercutting in terms of the pressure angle of the rack
cutter y, an the number of teeth N of the generated gear.

Let us designate the limiting value of |x,| by a (fig. 9.8.7) where a is the height of the rack
cutter measured from the rack cutter centrode aa to the fillet. Equation (9.8.71) yields that

N
a < rsin? y, = — sin?
< 2 2P, ¥

where N is the number of gear teeth and P, is the diametral pitch measured in section AA (fig.
9.3.3).
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According to equation (9.3.28)

where Y. = ¥, is the shape angle of the rack cutter in section BB (fig. 9.3.3).
Investigation of existence of envelope of contact lines on the generating surface T,.—The
necessary condition of envelope existence is represented by the equation

a
5(; [f(uroyd))] =f¢(uv0a¢) = 0

Equation (9.8.59) yields that the envelope does not exist since f, # 0. This result may be
interpreted geometrically to mean that contact lines on the generating surface and on the surface
of action are parallel straight lines (fig. 9.3.7) and therefore cannot have an envelope.

We used the simplified method of investigation (proposed by Litvin) in problems 9.8.1 and 9.8.2.
Comparing this method with the ones used for solutions of problem 9.3.1 and 9.4.1, we may see
its advantages.



Chapter 10

Curvatures of a Surface

10.1 First and Second Fundamental Forms

Definition of Forms

Consider a regular surface given by the vector function
r(u,6) € C? r,Xrg#0 (u,0) € A (10.1.1)

The surface unit normal is represented by

n(ub) = I::—:i—:—l (10.1.2)
The first fundamental form of a surface is defined as follows:
1=dr? = (rdu + rydd)? = rldu® + 2(r, «r)du df + r} do*
= Edu® + 2F dudf + G db* (10.1.3)
Here
dr =r,du + rydf (10.1.4)
E =r? F=r,erg G=r} (10.1.5)

The far right side of equation (10.1.3) is a quadratic form in differentials du and 6.
The second fundamental form of a surface is defined by

I=dren= —dredn (10.1.6)
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The equality of scalar products
d’ren= —dredn (10.1.7)
results from the equation
dren=90 (10.1.8)
after its differentiation.

Equation (10.1.8) is based on the following considerations: (1) vector dr represents an infinitesimal
displacement over the surface from the given point M to the infinitesimally close point M* and
(2) vector dr is tangent to the surface at point M and therefore must be perpendicular to the surface
unit normal n at point M.

The differentiation of equation (10.1.8) gives

d(dren) = (d’ren) + (dredn) =0 (10.1.9)
Thus,

d’ren= —dredn

and equality (10.1.7) is proven.
Let us develop the equation

Il=dren (10.1.10)
The differentiation of equation (10.1.4) yields
d’r = d(r,du + redf) = r,, du’ + 2r,0dudf + reydb? + r,d% + r,d?0
and
I =dren=(r,~ndu’ + 2(rgem)dudf + (rs+n)db? + (v, n)d%u

+ (rpem)d®0 = Ldu® + 2M du df + N d6* (r,en=0 rpen=0) (10.1.11)

where
L=r,n M=r,4en N=rgen

The right side of equation (10.1.11) is a quadratic form in differentials du and 4.
We may get equation (10.1.11) by using the expression

II=—dnedr (10.1.12)
The differentiation of equation
n=n(u,b)

gives



dn = n,du + nydé (10.1.13)

Equations (10.1.12), (10.1.13), and (10.1.4) yield

I = — [(n,*r,)du? + (nger, + n,ro)dudd + (ny » rp)d8?] (10.1.14)

We may transform the right side of equation (10.1.14) by taking into account that vectors r,
and ry are tangent to the surface and therefore

ner,=0 ner, =0 (10.1.15)
Equations (10.1.15) yield
a
a—(n-ru)znucru+n-r,m=0 (10.1.16)
u
a
56(n-ru)=n9oru+n-ru0=0 (10.1.17)
0
a—(n-r9)=nu-rg+n-ru9=0 (10.1.18)
u
a
E(n-r3)=n9-rg+n-rg@=0 (10119)

Equations (10.1.14) and (10.1.15) to (10.1.19) yield expression (10.1.11).

Interpretations of Fundamental Forms
Consider a line L (fig. 10.1.1) given on surface (10.1.1) as follows:
r(u(r),8(1))eC r,xrg#0 u(t),0(n)eC’
|u,| + 16, = O (u.0) €A n<t<t (10.1.20)
where ¢ is the curve parameter.
A point is displaced along the line L from position M to M * and vector dr = MM is the

infinitestimal displacement of this point. With members of the first order only, we get

dr =r,du + rydf = rudt + vy, dr (10.1.21)

)

Figure 10.1.1. Figure 10.1.2.
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Here

d d8
du=udt=""dt  dh=6d=La (10.1.22)
dt dr

where r, and ry are the tangents to the coordinate lines (the u-line and the f-line, fig. 10.1.2) on

the surface; the derivatives r,, and ry, u,, and 6, are taken at the point M; and the displacement

vector dr lies in the tangent plane to the surface because vectors r, and ry belong to this plane.
The point displacement dr (provided du # 0) may be represented by

dé
dr = du<ru + r9—> (10.1.23)
du
Here (fig. 10.1.2)
_ _ df = dg
r, =MD ro = MN rg— = MN r,+r,—=MK (10.1.24)
du du

Vectors dr and MK are collinear. It results from equation (10.1.23) that the direction of the
point displacement over the surface depends only on the ratio

% = Z—: (10.1.25)
The point displacement is an arc of length
ds = |dr| (10.1.26)
and the first fundamental form I represents the squared length of this arc
ds? = dr’ =1 (10.1.27)

The first fundamental form is always positive and may be used for the determination of the length
ds? for different curves which pass through the same point. If the curve parameter ¢ is the time,

it is seen that
ds\’ 2| (10.1.28)
— ) =v,=— .1
dr dr?

where v, is the relative velocity, the velocity of the point in its motion over the surface. Vectors
v, and dr are of the same direction, and their direction depends on the ratio (10.1.25).

Now, let us prove that the second fundamental form represents the deviation of the curve point
M* from the tangent plane 7 (fig. 10.1.3). Vector 7 is the unit tangent vector to the curve L. The
perpendicular to the tangent plane T, drawn from point M ", intersects T at point B. Vector

BM* =n (10.1.29)

represents the deviation of point M” from the tangent plane. Here ¢ is a signed value, and f is
positive if the direction of vector BM™ coincides with the direction of the surface unit normal n.



Tangent
plane T-

riug, By'— “rlug +du, 8y + d8)

Figure 10.1.3.

There are two options for the determination of the direction of n, and they are represented by

X . TgXrT,
TuXPo o gt =0T (10.1.30)

n= =
'ro X ru‘

B I, X rg]

The unit normals n and n* have opposite directions.

The relation between the signed deviation ¢ and the second fundamental form II is based on the
following considerations:

(1) We designate the position vectors of points M and M * of the surface by r(ug,0;) and
r(ug + du,6y + df), respectively.

(2) Taking into account that

r(ug.0p) + MM™ =r(uy + du,8y + db) (10.1.31)

we get
MM® = r(ug + du,8y + d8) — r(uo,0) (10.1.32)
(3) The deviation { of point M" from the tangent plane is
¢=MM"+n (10.1.33)
Equations (10.1.32) and (10.1.33) yield
¢=[r(uy + du,8y + df) —r(up.bp)]+n (10.1.34)
{(4) We apply Taylor's formula to the difference
Ar = r(uy + du,0y + db) — r(ug,00) = MM* (10.1.35)

and limit the series expansion to the members of second order only. Thus,

1
Ar = (r,du + redf) + E(ru,‘ du® + 2rpdudb + reydb?) (10.1.36)
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The derivatives of the function r(u,0) are taken at ug,6,.
(5) The derivatives r, and ry lie in the tangent plane and

r,n=rgen=20 (10.1.37)

(6) Equations (10.1.33) to (10.1.37) yield

II

1
(= 5[(ruu- n)du® + (2r,5+ n)dudd + (rg e n)do?] = 3 (10.1.38)

Thus, the second fundamental form of the surface is equal to the doubled value of the deviation ¢.

Another representation of the second fundamental form is based on the relative acceleration a,,
the acceleration of a point in its motion along the curve L.

Considering that the curve L is given by equation (10.1.20) and the curve parameter ¢ is the
time, we get

dr du do
— =V, =r,— + rg— 10.1.39
dt “de  Car ( )
d’r du\’ du df a9\’  du 4%
=4 =T, —) +2ry——+rul—) +r,— +r,— 10.1.40
dr’ “"(dt) “dr dr 60<dt> d? " ar ( )
Taking into account that
r,»n=0 rg=n=20
we get
I
aen=— 10.1.41)
ar’ (

Equation (10.1.41) expresses the second form in terms of a,, n, and dr2.
Example problem 10.1 The surface of a cone (fig. 10.1.4) is represented by the equations
r(u,0) = u cos Y i+ u sin Y, sin 8j + u sin ¥, cos 6k
where
r(uf)ecC* k>2 O<u<u’ 0<f<2r (10.1.42)

and (u,0) are the surface coordinates (u = OM).
Determine the first and second fundamental forms.

Solution. The surface unit normal (provided u sin ¢, # 0) is

_ ruXra

= = —sin Y1 + cos Y, sin 0] + cos ¥ cos 6k (10.1.43)
‘ru X rG‘

The first and second fundamental forms are, respectively:



I = du® + u® sin® y.d6* (10.1.44)

I = — u sin ¥, cos ¥ df’ (provided u sin ¥ # 0) (10.1.45)

/0 / Z
b
Figure 10.1.4.

10.2 Surface Normal Section: Osculating Plane

Consider, on the given surface, various curves which pass through a common point M and have
the same unit tangent 7 at M (fig. 10.2.1). One of these curves (designated by L) represents the
normal section of the surface formed by cutting the surface with plane II. This plane is drawn
through the unit tangent vector 7 and the surface unit normal n (fig. 10.2.1). Curve L, is a plane
curve—all points of Lo belong to the plane II. Other curves, designated by L, are spatial curves.
But we can find such a plane P (fig. 10.2.2), that an infinitestimally small piece of a spatial curve
L may be located on P. This plane is called the osculating plane. Consider three infinitesimally
close points, M;, M, and M,, of the curve L (fig. 10.2.2). The osculating plane is the limiting
position of a plane which is drawn through three infinitesimally close points M|, M, and M, that
approach point M. The osculating plane for the curve L at its point M may be determined as the
plane which is drawn through the unit tangent vector 7 (or the relative velocity v,) and the
acceleration vector a, (represented by egquation (10.1.40)).

Let a point move along the curve L which is represented by equation (10.1.20). The total
acceleration a, in this motion may be represented as the sum of two components: the normal
acceleration a™ and the tangential acceleration a’. These components are determined as follows:

Figure 10.2.1.
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~Osculating plane P

~Tis + ds)

(a (bl
Figure 10.2.2.

7~
~w

“Surface normal
section Ln

g
Osculating plane P—

Figure 10.2.3.
. du'\? du df do\’
a =r,l — +2ru0——+r09 —_—
dr dr dt dt
al=r di +r 0
T A

(See eq. (10.1.40).)

(10.2.1H)

(10.2.2)

Vector a! is collinear with the tangent vector T. The direction of vector a defines the direction
of the so-called main normal m to curve L (fig. 10.2.3) which belongs to the osculating plane.
Thus, the osculating plane may be determined by vectors 7 and a;". The osculating plane and the

surface unit normal n form the angle & (fig. 10.2.3) determined by

10.3. Curvature of a Spatial Curve

Consider a regular spatial curve (fig. 10.3.1(a)) represented by the equations

r(s) € C? r, %0 5 <5< 5

(10.2.3)

(10.3.1)

where s is the length of the arc of the curve. M and M"* are the infinitesimally close points of



Osculating
plane —~_ /
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Figure 10.3.1.

the curve and 7(s) and 7(s + As) are the unit tangent vectors at points Mand M*, respectively.
The curvature k of the curve at point M is given by

Ax

As

k= lim, (10.3.2)

M—-M

where A« is the angle formed by the unit tangents 7(s) and 7(s + As) (fig. 10.3.1(a)).
We may transform equation (10.3.2) by using the following relations:
(1) The derivative r; represents the unit tangent vector 7(s); that is,
r,(s) = 7(s) (Jr)l=1D (10.3.3)

(2) The derivative 7,(s) of the unit vector T(s) is perpendicular to 7(s); that is,

T,(s)+7(s) =0 (10.3.4)

(3) The ratio is equal to the absolute value of the derivative ‘TS|; that is

- 10.3.5
= |7, ( )

Let us prove equations (10.3.3) to (10.3.5)
(1) The elementary arc of the curve is

ds = |dr| = |r,ds| = |r,|ds (10.3.6)

where r, is the tangent to the curve.
Equation (10.3.6) yields

Il =1 =7 (10.3.7)

where 7 is the unit tangent vector. Equation (10.3.3) is proven.
(2) Taking into account that

7(s) ¢ T(s) = 72(s) = 1 (10.3.8)

we get
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i(Tz(s)) =27(s)+7,(s) =0 (10.3.9)
ds

Thus, vectors 7, and 7 are perpendicular. Equation (10.3.4) is proven.

(3) To prove equation (10.3.5), we consider the unit vectors 7(s) and 7(s + As) which form
the angle Ac; points N and N* —the ends of the above vectors—belong to the circle of radius equal
to 1; the circle is centered at O (fig. 10.3.1(b)). With the radius of the circle equal to 1, we get

INN*| = |7]|ac| = |Aq| (10.3.10)
Then,
INN*| = |7(s + As) — 7(5)| (10.3.11)
We represent the ratio |— | by
As
Aa| |NN'| |NN'| |WNF As) — NN
Aa| _ MM T(s + As) T(s) Ak (10.3.12)
As As As NN* As NN*
The limit of this ratio as As—0 is as follows:
d As) — NN
= him 22| < g (TSR A) 2T NN (10.3.13)
ds As—0 |As As—0 As as~0 | NN*
Vector
7(s + As) — 7(s)
As
as As—0 approaches the derivative is
TS = LTS (rs) = rss
and
+ As) —
lim (LA —T()F Ir,| (10.3.14)
As—0 As
Taking into account that NN and NN* represent an arc and its chord, we get
NN
lim | —|=1 (10.3.15)
as—0 | NN*
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Equations (10.3.13) to (10.3.15) yield

—r, =1, (10.3.16)

Equation (10.3.5) is proven.
According to the definition of the curvature of a spatial curve, we get

k= |rg| = |7, (10.3.17)

(See eq. (10.3.2).)

We may represent the curvature of the curve in terms of the acceleration and the velocity of
a point which moves with constant velocity along the curve. We consider that the curve is represented
by the vector function r(s(r)), where s(r) is a linear function and ¢ is the time. Thus,

ds\2
v, = r“,(E =T a’ =ry @) = vir (10.3.18)
dt dt

Equations (10.3.17) and (10.3.18) yield

_ 7]

- (10.3.19)
vr

K

The curvature of a spatial curve is always positive. The radius of the curvature has the same
direction as the vector r,, or the vector of acceleration a, determined with the velocity
[v,| = constant. The radius of curvature lies in the osculating plane.

10.4 The Meusnier Theorem

Consider that on a surface a set of curves pass through the given point M and have a common
unit tangent 7 (fig. 10.2.1). We pick out from this set the curve Ly, which represents the normal
section of the surface, and a spatial curve L (fig. 10.2.3). The Meusnier theorem states the relation
between the curvatures of curves L and Ly. We assume that the normal curvature of the surface,
k,, the curvature of curve Lo, is not equal to zero. Plane P is the osculating plane for the spatial
curve L, and § is the angle formed between the surface unit normal n and the binormal m to the
spatial curve L at point M.

The Meusnier theorem states that the curvatures «, and « are related by the equation
k, = k cos &. Here k,, is the curvature of the curve Ly (which represents the normal section of the
surface),  is the curvature of the curve L, and 6 is formed between vectors n and m. The product
« cos & is of the same magnitude for all spatial curves which pass through the same surface point
M and have the common unit tangent 7.

Proof: We employ the following considerations to prove the Meusnier theorem:
(1) The product « cos & may be represented by the equation

I Ldu® +2Mdudf + Ndf’® (10.4.1)
1 Edu® + 2Fdudd + Gdf* o

K cos & =
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(2) The ratio du/d6 determines the direction of the unit tangent to a spatial curve. Assume that
a set of spatial curves passes through the given point M and they have a common tangent. Thus, we get

X cos & = constant (10.4.2)
(3) The curvature «, of the curve L, (the normal curvature) is represented by
K, = kK COS & (10.4.3)

(1) Let us begin with the proof of equations (10.4.1). According to equation (10.3.19), the
curvature of a spatial curve on the surface may be represented by

[a7]

K=

NS

\J

Taking into account that the acceleration a” and the main normal m (fig. 10.2.3) have the same
direction, we get

km=— (10.4.9)

We multiply both sides of equation (10.4.4) by the surface unit normal n. Thus,

a’en a,en

KMen = ——=——— (10.4.5)
\ \p
Here
a,sn=(a"+aj)sn=a"en (10.4.6)

because the component a’ is collinear with the unit tangent 7 and is perpendicular to the unit
normal n,
The dot product (fig. 10.2.3)

men = cos § (10.4.7)

Applying equations (10.4.5) to (10.4.7), (10.1.28), and (10.1.41), we get

I Ldu? 2
ccos 5 W _Ldu® +2Mdudg + Ndf (10.4.8)
I Edu® +2Fdudd + Gdo?

Equation (10.4.1) is proven.

(2) Equation (10.4.2) is based on the following considerations: (a) Coefficients L, M, N, E F,
and G are taken at the given point M which is the same for the considered set of spatial curves,
(b) The ratio du/df is the same for all the curves above because they have the common tangent
T at point M (fig. 10.2.1). Thus, the right side of equation (10.4.1) is constant for the given point
M and tangent 7. Equation (10.4.2) is proven.

(3) It results from equations (10.4.1) and (10.4.2) that the curvature x of the spatial curve of
the considered set of curves depends on the angle & which determines the direction of the osculating
plane with respect to the surface unit normal. The angle 4 is equal to zero for the curve L, (fig.



10.2.3). Thus the normal curvature, the curvature of the normal section of the surface, is represented
by

K, = — (10.4.9)

Equations (10.4.9) and (10.4.8) yield
K, = K COS O (10.4.10)
Equation (10.4.3) is proven, and, with this, the proof of the Meusnier theorem is completed.
Example 10.4.1 Consider that a spherical surface is represented by equations (8.4.9).
x =pcosfcosy y = p cos @ sin ¥ z=psind
where
0<f <27 0=y <27

The surface normal vector is represented by

z
I

a
X ﬁ = — p? cos B(cos O cos i + cos 6 sin ¥j + sin 6k)

Q;‘Q)
|-

The surface unit normal (provided by cos 8 # 0) is
n = — (cos 0 cos ¥i + cos 8 sin Yj + sin k) (10.4.11)

Let the surface be cut by the plane (fig. 10.4.1)

Figure 10.4.1.
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Z=a (a = constant) (10.4.12)

and let L be the curve by which plane (10.4.12) intersects the spherical surface (8.4.7). We may
represent the curve L by the equations

x =pcos 8 cos ¢ y = p cos § sin ¢ z=psinf=aqa (10.4.13)
It is necessary to determine the curvature « of the curve L at a point with § = Y, and 6 = 6, by

using equation (10.3.19).
Considering that y/(7) is a linear function and 6 is constant, we get

de, dy ay
V,=—i+-=j= —pcos 0L (sin i — cos ¥j (10.4.14
w T o 7 (sin i) )
d’x.  dly, dy\? o
a’=—i+—5j=—pcosf|—] (cos ¥i + sin j) (10.4.15)
dr* dr* dt

Here v, and a;" are the velocity and the normal component of the acceleration of a point in its
motion along the curve L.
Equations (10.3.18). (10.4.14), and (10.4.15) yield

I (10.4.16)
v;  pleos 8]

It results from equations (10.4.15) and (10.4.11) that vectors n and a,” form the angle 6 (fig.
10.4.1) determined by the equation

ne-a”

[a7"|

cos & = = |cos 6] (10.4.17)

The curvature of the curve L may be determined very easily if we employ the Meusnier theorem.
According to equation (10.4.3), we get

Kn

(10.4.18)

K:
cos o

Here «, = 1/p is the normal curvature of the spherical surface (the curvature of the curve Ly, fig.
10.4.1), « is the curvature of the curve L, and 6 is the angle formed by vectors m and n. We may
interpret equation (10.4.18) geometrically. Curves L and L, have a common tangent at point M.
It is evident from the drawings of figure 10.4.1 that

MC = OM cos 6 = p cos &

where MC is the curvature radius of curve L.

10.5 Normal Curvature

Consider that a surface L is given and the surface unit normal n at a regular point M of the
surface is determined (fig. 10.5.1). Unit vectors 7V, 7@, . 7@ belong to the plane that



Figure 10.5.1.

is tangent to the surface at point M and represent different directions on the surface. A plane II;,
drawn through the vectors n and 7', cuts the surface by a planar line L;. The normal curvature
k, of the surface at point M, is the curvature of the planar curve L atM, (i=1,2).

Let a regular surface be given by

r(u,0) € C? r,Xr#0 (u,0) €A (10.5.1)

Equations (10.4.10) and (10.4.8) yield that the normal curvature may be represented by

I Ldu®+ 2Mdudd + N d6*
K, = — =

1 Edu® + 2Fdudf + Gdb?

(10.5.2)

where L, M, N, E, F, and G are functions taken at point M. Expressions for the first and second
fundamental forms I and II are given by equations (10.1.3) and (10.1.11), respectively.
Using the kinematic interpretations of forms I and II (egs. (10.1.28) and (10.1.41)), we get

K, = (10.5.3)

Here a, is the acceleration of a point in its motion over the surface in the direction of 7 represented

by
du\? du df do\*
a, =ry, s + 2ru9—u — 4T | — (10.5.4)
dt dt dr dt

(In deriving eq. (10.5.4), we assumed that u () and @(r) are linear functions and that du/dt and
d6/dr are constant.) The velocity v, of the point is

d de
V, = I T (10.5.5)
dt dt
The surface unit normal is
n N n(u,0) (10.5.6)
=— = u, D
IN|
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The surface normal N is given by
N=r,xrg (10.5.7)
or by
N =ryxr, (10.5.8)
Another equation for the surface normal curvature «, is based on the following expression:
dren=0 (10.5.9)
The differentiation of equation (10.5.9) results in
(d’r+n) + (dr- dn)=0 (10.5.10)
which yields
asn=—v.e.n, (10.5.11)

Here

d d db
=2 =n, 0% (10.5.12)
dt dar dt

is the velocity of the tip of the surface unit normal n which changes its direction while the point
moves over the surface. Equations (10.5.11) and (10.5.3) yield

n,ev,

\

(10.5.13)

K, =
A positive sign for the normal curvature determined by equations (10.5.3) and (10.5. 13) indicates
that the center of curvature is located on the positive normal.
Example problem 10.5.1 Consider a cone surface given by equations (10.1.42). The surface unit
normal is represented by equations (10.1.43).

Derive the equation for the normal curvature.

Solution. Velocity vector v, is

du du df
=cos Y. — 1+ [ sin . sin @ — + u sin ¢, cos § — }j
v dt < v dt n v dt>J

d d
+ <sin V. cos o;“ — u sin y, sin 0—>k (10.5.14)
t

du\? do\’
vi={—) +u?sin? o — 10.5.15
dt n*y dt ¢ )



Vector R, is

d d8 do
i, =0, 2+ 0,2 = (cos ¥, cos 8 — cos Y sin Ok)— (10.5.16)
dr dt dr

The normal curvature is represented by the equation

o\’
u sin y, cos \&C(—)
nev, dt
Ky = — = - (10.5.17)

v du\* 2
Y 4 u?sin? y, d
dt dt

We may get the same result by using equation (10.5.3) for the normal curvature.

The normal curvature depends on the direction of vector 7, on the ratio du/d@. We consider
three particular cases as follows:

(1) The point moves along the u-line (9 is constant). Taking d8/dt = 0 in equation (10.5.17), we get

K, = 0 (10.5.18)

(2) The point moves over the f-line (u is constant). Taking du/dr = 0, we get

1
K, = — (10.5.19)
u tan Y,

The normal curvature x, < 0 and the curvature center C is located in the negative direction of
the surface normal.
(3) The direction of motion of the point over the surface is such that

Ter,
=cos g (10.5.20)
Ir. |
Here
A\ 4
7= (10.5.21)
Iv.|
Tu _ cos g0 + sin . sin 8 + sin y, cos 6K (10.5.22)

I

Equations (10.5.20) to (10.5.22) and (10.5.14) yield

du
dt

2 2
‘J du + u? sin? ¥, @
dt dt

=cos g (10.5.23)
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The ratio du/d6 may be determined from equation (10.5.23) by considering g and u sin , as
given. Then the surface normal curvature may be determined by using equation (10.5.17).

10.6 Principal Directions and Curvatures, Indicatrix of Dupin, and
Working Equations

Consider that a regular point M is taken on the given surface and the normal curvatures which
correspond to different unit tangents 7V, 7, . . | 7 are determined (fig. 10.5.1). As we
can see, the normal curvature of the surface depends on the direction of 7. The extreme values
of the normal curvature taken at a certain point of the surface are called the principal curvatures.
The directions of the normal sections of the surface with the extreme normal curvatures are called
the principal directions. We may determine the principal directions as directions for which vectors
v, and n, are collinear. (See app. C.) Here

du dé
V,=T,— +rg— 10.6.1
dr f}dt ( )
and
du do
n,=n,— +ny— 10.6.2
a (10-6.2)

We assume that the surface unit normal is represented by the equation
n = n(u,b6) (10.6.3)

Due to the collinearity of vectors v, and n, for the principal directions, we get

du + de du N dé du + df
Ay T Xg— - - 2yt Zp—
“ar  Vdr Yo TV d Car

= = (10.6.4)
du df du ds du de
ny,— + neg— Ry — + Ny — Ry — + R —
dt dt T dt dt dt dt

Here x,, Y. 2w Xg, Yo, 250 M Mys My, Mg, Ny, and n, are taken at the considered point M of
the surface.

According to the results of appendix C, section 3 (eq. (C.3.21)), the principal curvatures are
represented by the equation

Kinvr = — l.'l, (1065)
that yields
du + d6 du + dé du + dé
Moy~ +Ng— Ry —+ng—  nyu— + ngy—
a7 e P Mg i
= = = T Kn (1066)
du 4 dé du + de du 4 dé
X,— + xp— Yu— — Z— + 25—
Yt ar ar T d



The system of three equations (10.6.6) contains three unknowns, the ratio du/df, and the principal
curvatures &; and ;. The procedure for the solution of these unknowns is as follows:
Using one of the equations from (10.6.4),we may develop a quadratic equation

du\? d
A(EY 4282 v c=0 (10.6.7)
df df

The two roots of this equation correspond to two principal directions on the surface. By putting
both roots into equation (10.6.6), we may determine the principal curvatures «; and «q. We
emphasize that, in general, two orthogonal principal directions exist at each point of the surface
with different values of principal curvatures. A spherical surface is an exception; each direction
on the surface may be considered as the principal direction and the normal curvature is the same
for all normal sections of the surface.

Another exception is the case when the normal curvature of the surface is equal to zero for all
directions. This is true for a plane or for a surface which turns into a plane at a certain point (called
a flat point).

The product of the principal curvatures at the considered point M is designated by

K= KiKn (1068)
and called the Gaussian curvature of the surface at point M.

Indicatrix of Dupin; Three Types of Surface Points

Consider that the tangent plane 7 is drawn to a surface at its regular point M (fig. 10.6.1(a)).
The coordinate system (3, §), whose axes coincide with the principal directions of the surface at
point M. is rigidly connected to plane T. We know that, according to the theorem of Euler, the
normal and principal curvatures are related by the equation

K, = k; COS° q + Ky sin? ¢ (10.6.9)
(See app. C, sec. 3.)
Function «, (g) relates the normal curvature «, and the angle g. We consider that the principal

curvatures «; and k; are given.
We express the normal curvature «, by

K, = % ] (10.6.10)
n

where |R, | is the magnitude of the curvature radius in the normal curvature. We then represent
the position vector p (fig. 10.6.1(b)) by

p(q) = VIR, (10.6.11)

Equations (10.6.9) to (10.6.11) yield
K ‘R,,‘ cos® g + Ky lR,,l sin? g = Kki(p cos q)* + xylp sin g)?==1
pCos g=n psing=2%§ (10.6.12)
and

fp)y=xkm* + kg F1=0 AERIAEXY (10.6.13)
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Figure 10.6.3.

Equation (10.6.13) represents a plane curve—the so-called Dupin’s indicatrix. The magnitude of
the position vector p of such a curve is represented by equation (10.6.11).

There are three types of surface points as follows:

(1) The elliptic point—when the principal curvatures are of the same sign and the Gaussian
curvature K > 0 (fig. 10.6.2). (See eq. (10.6.8).)

(2) The hyperbolic point—when the principal curvatures are of different signs (fig. 10.6.3(a))
and the Gaussian curvature K < 0. The surface has the form of a saddle near the considered point
M. There are two such directions in the neighborhood of M where the normal curvature is equal
to zero. The above directions are called asymptotic.
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(3) The parabolic point—when one of the principal curvatures is zero (direction II in fig. 10.6.3(b))
and the Gaussian curvature K = 0.

Example problem 10.6.1 Consider a cone surface given by equations (10.1.42). The surface unit
normal is represented by equations (10.1.43). Determine the principal directions and curvatures
at a point (u,9).

Solution. Along principal directions, vectors Vv, and n, are collinear. (See app. C.) The
differentiation of equations (10.1.42) and (10.1.43) yields the expressions for v, and n, represented
by (10.5.14) and (10.5.16), respectively. Due to the collinearity of v, and n,, we get

[ n r { ar
Mo _ Myr _ M (10.6.14)
Vo o Vi

Z

VXV

Thus,

0
cos Y, cos §—
0 v dt

du u d
cos Y, —  sin . sin @ — + u sin Y cos § —
Ve v dt ve dt

d
cos Y, sin § —
v dt

= — (10.6.15)
d
sin Y, oS G—u — u sin Y, sin 0—0
dt
Equations (10.6.15) are satisfied if
du df
——=0 (10.6.16)
dr dt

d de
One of the principal directions corresponds to —dﬁ = 0; the other one to — = 0. These direc-
t t
tions are tangents to the surface coordinate lines as follows: (1) to the 8-line <; = > and
t

db
(2) to the u-line ; =0} that is the generatrix of the cone, OM (fig. 10.1.4).
t

We determine the principal curvatures by using equations (C.3.16) and (C.3.19), which yield

Kp=——=—L= = (10.6.17)

’ 2
Xxr v his v pig

d de
(See app. C.) One of the principal curvatures corresponds to 2o 0, the other one to — = 0.
Equations (10.6.17), (10.6.15), and (10.6.16) result in dt

1 d
= — -0 (10.6.18)
u tan y, dt
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d
k=0 <d—f = O> (10.6.19)

The center of the curvature , lies on the cone axis, and the curvature radius is perpendicular to
the generatrix OM = u (fig. 10.1.4). The negative sign for the curvature x; indicates that the
curvature radius is directed opposite to the surface unit normal.
Problem 10.6.2 Consider a surface of revolution represented by equations (8.4.3)

x = f(6) cos ¢ y =f(0) sin ¥ z2=g(8)

0, < 6 <8, O=sy <27

The surface unit normal is represented by equations (8.4.7)

8o €OS ¥ 8o sin Y Jo
n = — —— = —-—- n, =-—
A k A A

Whele

Determine the principal directions and principal curvatures of the surface at a point (8,y).

0
Answer. Principal directions | and II correspond to @ = 0 and 7 = 0, respectively. They
[4 (1

may be determined as tangents to the §-line and y-line of the surface.
The principal curvatures are

= _Jud = fods _ gwA — gody  (dy _ 0
Ag, A%, dt

and

Ki

8¢ ﬁ =0
Af(6) dt
Here
2

d d d?
Af;:%[/i(ﬂ)] Jos =cW[f(0)l 8o :‘W[g(e)]

Problem 10.6.3 With the conditions of problem 10.6.2, prove that the principal curvature x; may
be represented as the curvature of the generating plane curve given by equations (8.4.1) such that
x=f(0), y=0, and z = g(9).



Directions for solution. The curvature of a plane curve may be determined as follows:

dm, dm,
K= — — =
dr, dr,
(See ch. 3.3.) Here
dxi+dzk

T=—F— 575
(dx? + d2H)'"
is the unit tangent to the generating curve;

m = _|.XT
lix 7]

is the unit normal to the generating curve.
Problem 10.6.4 An involute screw surface is represented by equations (8.4.30)
r=(pcosf —ucosh\,sinfi+(p sin @ + u cos A, cos 6)j + (h8 + u sin Ak
The surface unit normal is represented by equations (8.4.34) (provided u cos A, # 0):
n = sin A, (sin 8i — cos 8j) + cos Ak
Determine the principal directions and principal curvatures at a point (1,0).

d d
Answer. The derivatives — and —u, which correspond to the principal directions I and II, are
determined as follows: dt dt

de du
a)—=0 —#0 rincipal direction I
(a) I 7 (princip )
de du .y ..
b)p—+cos\,—=0 (principal direction II)
dt dt

The principal curvatures are: «; = 0 and & = tan A/ u.
The radius r of a circle in the cross section, and the parameters u = MN and p (fig. 8.4.9) are
related by r’ = 2 +yl=p7+ u? cos? Ao

10.7 Geodesic Curvature

Consider a spatial curve L on surface T (fig. 10.7.1). Vectors 7, n, and m, taken at point M,
represent the unit tangent to the curve L, the surface unit normal and the main normal m to the
curve, respectively; vector m lies in the osculating plane.

The radius of the curvature for curve L has the same direction as vector m and belongs to the
osculating plane. The curvature of L is determined by equation (10.3.19).

Now, consider that the spatial curve L is projected on the tangent plane T and on the normal
plane N, respectively. Projections of L on planes T and N are designated by Ly and Ly (fig. 10.7.1).
Vectors 7, n, and b, where b = 7 X n, form a right-hand trihedron (fig. 10.7.2). We may express
the unit vector m of the principal normal to curve L as follows:
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.~ Tlangent plane T

~normal plane N
-

- Osculating ptane 0
(a) (b}
Figure 10.7.1.

m = (me+n)n + (m+b)b (10.7.1)
Multiplying both sides of equation (10.7.1) by the curvature of curve L, (x), we get
«m = x(men)n + k(m + b)b (10.7.2)
We have seen that the normal curvature is represented by the equation
K, = K CO$ § = k(m+n) (10.7.3)
(See section 4 of this chapter.) Equation
K, = k(m+b) = k[m« (7 X M)] = x[m 7 n] (10.7.4)
represents the geodesic curvature. The curvatures of curves Ly and Ly at point M (fig. 10.7.1)
are designated by «, and «,, respectively. Here, Ly and L; are projections of curve L on the normal
and tangent planes. It results from equations (10.7.2) to (10.7.4) that
km = kN + kb (10.7.5)
Let us now derive equations of the geodesic curvature. Consider that curve L is represented by
R(s) = r(u(s),0(s)) € C? 5 <5< 8 (10.7.6)
where s is the arc length. With equations derived in section 10.2, we obtain
«xm = R, 7=R; (10.7.7)
Equations (10.7.4) and (10.7.7) yield
k, = Rob =[R;R;n] (10.7.8)

Instead of equation (10.7.8) we may determine the geodesic curvature as follows:

_[a,v,n]

%= p (10.7.9)

Here

v, =R,— =Ry, (10.7.10)



Figure 10.7.2.

where v, is the velocity and a, is the acceleration of the point which moves along the curve L.
The acceleration a, may be represented by its two components, a™ and al. Here, a" is directed
along the principal normal to the curve (m) and a’ is collinear to 7. (See sec. 10.3.) Hence, we
have

[a,v,n] _[a]v,n] + [a}v,n] _[a]"vV,n]
B B AR

Ky = " (10.7.11)

v, ? A
since [a’v,n] = 0 because of the collinearity of vectors al and v,.

The positive sense of the geodesic curvature indicates that the curvature center of the curve Ly
(fig. 10.7.1(a)) is located on the positive direction of vector b (fig. 10.7.2); this vector is the normal
to curve Ly at point M.

A geodesic line (a geodesic) of the surface is a curve whose geodesic curvature is zero at each
curve point. It is proven in differential geometry (Hohn, 1973 and Lipschutz, 1969) that only one
geodesic line may be drawn through a regular point of a surface of class C % in each direction.
A small arc of a geodesic line on the surface is the shortest distance between two surface points.
It results from equation (10.7.11) that a regular curve on a surface is a geodesic line if and only
if vectors a" and n are collinear or if a" is zero. Vectors a™ and n are collinear if the osculating
plane coincides with the normal plane (fig. 10.7.1). Vector a;" = 0 if the curve on the surface is
a straight line. A great circle on a spherical surface is a geodesic line since the principal normal
to such a curve coincides with the surface normal.

We say that a curve is a geodesic line locally if x, = 0 at the given point M. We must observe
the requirement x, = 0 for local synthesis of approximate gearings to obtain a small piece of the
contact point path on the gear-tooth surface as a local geodesic line. Such a line does not deviate
from the desired direction in the neighborhood of the given contact point.

Consider that a surface is represented in parametric form by

r(u,0) € C* r,Xrg#0 (u,0) €A, (10.7.12)

We may represent vectors v, and a," as follows:

d dé
v, =0, 2 = (10.7.13)
ds dr
du\’ du df o\’
a =r,, ) + 2ru,,—E — 4+ rg| — (10.7.14)
dr dr dt dr

The derivatives du/dr and df/dr are related since the ratio du/df depends on the given direction
of point motion over the surface.
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Example problem 10.7.1 A cylinder surface is represented by
x=pcosf y=psinf I=u
Consider a helix on the cylinder surface given by the equation
u=hé
where

h =ptan A

A is the lead angle of the helix. Determine the geodesic curvature of the helix.

Solution.

ruxrg

= cos 6i + sin 8j
’ru X l'gl

do
v, = p;(— sin 0i + cos 8j + tan Ak)
t

do\*
a’'=—p <d_t> (cos 6i + sin 8j)

(10.7.15)

(10.7.16)

(10.7.17)

(10.7.18)

(10.7.19)

(10.7.20)

The geodesic curvature of the helix K, is zero because of the collinearity of vectors a” and n.



Chapter 11

Spatial Gearing Analysis

The problem of spatial gearing analysis may be formulated as follows: Given are equations of
gear-tooth surfaces, the crossing angle, and the shortest distance between the axes of rotation. The
gear-tooth surfaces are in point contact. It is necessary to determine (1) the law of motion (the
relation between the angles of gear rotation), (2) the line of action, and (3) the paths of contact
on the gear-tooth surfaces.

The method of gearing analysis (Litvin, 1968) may be used for the investigation of approximate
gearings (with nonconjugate surfaces), the determination of kinematical errors induced by errors
of manufacturing and assembly, and the investigation of the optimal synthesis of gears. The optimal
synthesis of spatial gearings is usually an iterative computational procedure, which needs intermediate
analysis between iterations. Such analysis provides information about the results obtained and is
the basis for the next iteration.

11.1 Tangency of Gear-Tooth Surfaces

We set up three coordinate systems Sy, Sy, and Sy, rigidly connected with gears 1 and 2 and
the frame, respectively. The tooth surfaces L, and L, are represented in coordinate systems S,
and §,, respectively, by the following functions:

ar, or
r(u,.8;) € C? ixgg;eo (u.0,) €E,  i=12 RIRR)
U; i

The surface unit normals are represented as follows:

dr; ar;
E— X _—

au,‘ 30,
= - (11.1.2)
ar; _ 0r;
» —

du, 36,

n,

Consider that gear i, with the tooth surface L;, rotates about a fixed axis located in the frame.
Thus, a locus of gear-tooth surfaces is generated in the coordinate system S;. The locus of these
surfaces may be determined by the matrix equation

[40] = gtrd G=12) (11.1.3)
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Here, the column matrix
x,»(u,»,@,)
yi(ul’el)
(ri]=
Zi(uiroi) (]l14)

]

represents the homogeneous coordinates of a surface point. The square 4 X 4 matrix (My]
describes the coordinate transformation in transition from S; to S;. Elements of this matrix are
expressed in terms of the parameter of motion ¢,. The column matrix

x,(u,,ﬁ,—,¢,)
[rfm] _ yilu,8,9;) (11.1.5)
LAUM KB
1

represents the homogeneous coordinates of a point of the locus of gear tooth surfaces in the coordinate
system S;. This matrix with the fixed parameter of motion ¢, represents a point of surface L, in
coordinate system Sj.

Similarly, we may also determine the surface unit normals by using the matrix equations

[nf‘”] =[Lidln) (=172 (11.1.6)
Matrices given by equation (11.1.6) are 3 X 3 matrices. Matrix [Li] may be determined from
matrix [Mp,;] by crossing the last row and column in [My;]. (See app. A))

The point of tangency of gear-tooth surfaces in the coordinate system Sy is a point at which the
position vectors and the surface unit normals coincide. Thus,

r/“)(ul:el’d)l) :rfgz)(uz:gz,‘bz) (11.1.7)
nfY (u,6),81) = 0/ (4, 61,02) (11.1.8)

Vector equation (11.1.7) yields three scalar equations, but equation (11.1.8) yields only two
independent scalar equations since

V| = Inf| =1 (11.1.9)
We may require the collinearity of surface normals with the equation
N“’(u,—,(?,,d)]) = >\N(2'(uz,92.¢z) (11.1.10)

instead of equation (11.1.8). However, equation (11.1.8) is preferable since it can be applied as
a basis for important kinematic relations.

It is important to emphasize that the directions of unit normals n'" and nfm may either coincide
or be opposite each other and still insure the tangency of surfaces I, and L,. We prefer to apply
equation (11.1.8) for the tangency of surfaces, since we can get the desired direction of the surface
unit normals by changing the order of factors in one of the cross products. For instance, vectors



. Or or . N,
N ="tx=! and nf=—p (11.1.11)
601 aul ‘Nl I
are opposite to vectors
ad ad N
N =M and o= (11.1.12)
alll 801 ’Nl|
11.2 Analysis of Meshing of Spatial Gearings
Equations (11.1.7) and (11.1.8) may be represented as
Q)] 9 — i I/ =0 11.2.1
rf) (w0100 — 177 (12,62.92) (11.2.1)
ﬂj“)(ul’ehdﬁ)_nf(z)(uz,oz,%):O (11.2.2)

Vector equations (11.2.1) and (11.2.2) yield five independent scalar equations in six unknowns,
u,,0,,9,,u42,6,, and ¢,. Here

fi(uy,8,.9,.u3,05.6,) =0 feC! (i=12,3,4,5) (11.2.3)
The aim of gearing analysis is to obtain from equations (11.2.3) the functions

{u, (¢1),01(¢1),u2(¢|)~92(¢1)-¢2(¢|)} €C' (11.2.4)

According to the Theorem of Implicit Function Systems Existence (see app. B), we may state that
functions (11.2.4) exist in the neighborhood of a point

P° = (.00, ,u3,69.61) (11.2.5)

if the following are true:

(1) functions {f,.fo.fs.fa.f5) € C'
(2) equations (11.2.3) are satisfied at point po
(3) the following Jacobian differs from zero; that is if

o oh o A
du, 36, du, 36, 3%

D(u,.0,,u;,0,,05)

= : : : : : # 0 (11.2.6)

s ofs Ofs s s
aul 601 auz 362 ad)z

Functions (11.2.4) provide complete information about the conditions of the meshing of gears
which are in point contact. Function ¢,(¢;) represents the relation between angles of gear rotation
(the law of motion). Functions
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ry(u,6y) u; (o) 8(¢)) (11.2.7)

determine the locus of contact points on surface L,. Similarly, functions

ry(u,6,) 1, (7)) 602(¢3) (11.2.8)

determine the locus of contact points on surface £,. The locus of contact points on surface L;
(i = 1,2) is the working line of the gear-tooth surface. The gear-tooth surface contacts the mating
surface at points of the working line only. The line of action of gear-tooth surfaces is represented
by functions

i b u(@)  6(4) (11.2.9)

or by functions
(8.6 wl(d)  dd) 6y (11.2.10)
In some cases, a variable parameter other than ¢, for instance u;, may be chosen when solving

equations (11.2.3). We may solve these equations in the neighborhood of point PY, which is given
by equation (11.2.5), if the respective Jacobian differs from zero, that is if

D(fi.fo.f2.fa:f5)
D(Bl »d)l 9“2'02,4)2)

#0

The solution of equations (11.2.3) will be obtained by functions

(D1(u)).0,(u)) 1 (u1),0(uy) . b2(u1) ) € C! (11.2.11)

11.3 Process of Computation

The determination of functions (11.2.4) (or functions (11.2.1 1)) requires an iterative numerical
procedure, which is based on the computer-aided solution of the system of five nonlinear equations
(11.2.3). Litvin and Gutman proposed a simpler method of solution (Litvin and Gutman, 1981a)
based on the separate solution of two subsystems which contain two and three equations of system
(11.2.3).

Consider a spatial gear mechanism with crossed axes (fig. 11.3.1) where C is the shortest distance
between axes of rotation, and H and Q are the axial displacements of pinion 1| and gear 2. We
may represent the equations of system (11.2.3) as follows:

Jilu,01,81,u2,60,,0,,C.Q.H) =0 (11.3.1)
L (u),01,0,.u5,0,,0,,C.Q.H) = 0 (11.3.2)
S3(u1,01.01,u3,05,6,,C.Q,H) =0 (11.3.3)
Jauy,0),0,,1u5,0,,67) =0 (11.3.4)
Ss(u1,01,0),u2,60,,¢,) = 0 (11.3.5)

Equations (11.3.4) and (11.3.5) do not contain parameters C, Q, and H, since projections of the
surface unit normal do not depend on the displacement of the surface.
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The iterative process of computations for the determination of numerical functions (11.2.4) is
based on the following procedure:

Step 1.—Choose points P, (u,,6,) and P, (u,,6-) on surfaces L; and L,, respectively, and start
computations with the set of parameters (u,,6,,4;,6,) as given.

Step 2.—Determine parameters ¢, and ¢, from equations (11.3.4) and (11.3.5).

Step 3.—Rearrange equations (11.3.1) to (11.3.3) as follows:

C= Fl(ul’el,u2v02v¢]s¢2) (1136)
Q = Fy(u),0,,u,0,,8,,42) (11.3.7)
H=F3(ul101’u2r029¢'l’¢2) (1138)

and determine C, Q, and H. If the values of C, Q, and H differ from the given ones, change
parameters (u,,0;.4,,0,) and start the second iteration.

As we can see, the iterative process of computations requires separate solutions of two subsystems;
(1) of two equations (eqs. (11.3.4) and (11.3.5)) and (2) of three equations (eqs. (11.3.6) to (11.3.8)).

It is important to notice that at every iteration only three parameters are to be changed. For instance,
one of the above parameters u;, may have the same value. We say that the system of equations
(11.3.1) to (11.3.5) is solved if equations (11.3.4), (11.3.5), and (11.3.6) to (11.3.8) are satisfied
by the set of related parameters (u;,0,,4,02,01.92).

Step 4.—Start the computations for the determination of another set of parameters
(u,,8,,u2,6,.6,,6,) which satisfy equations (11.3.1) to (11.3.5). Choose a new set of four
parameters (u,,0,,u42,6,) and repeat all operations mentioned in steps I, 2, and 3.

Using the above procedure, we can determine functions ( 11.2.4), the law of motion (function
é()), the line of action, and the working lines on the surfaces L, and L. (See sec. 11.2.)
Function

o
my (1) =F (11.3.9)
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which represents the angular velocity ratio, may be determined by direct differentiation of function
¢:(¢,) or by using the equation

n{" ey <. {[(wf‘” - wf?) x rf(”] ~ Ry x wf(z)} (11.3.10)
Here v{'?' is the relative velocity (the velocity of sliding) and rf" (x;y52) is the position vector
of the contact point. Vectors wf“) and w}z) are angular velocities of the gears (it is assumed that
the line of action of wf”’ passes through the origin O; of the coordinate system Sy, and Ry is a
position vector drawn from Oy to any point on the line of action of w}z’, for instance (fig. 11.3.1)
R, = Cj, (11.3.11)

For the case where v = 90°, equation (11.3.10) yields
~&"0r = O+ (0? = zpwMyn, + y0'n, = 0 (11.3.12)

Thus,

W@
My = —— =
w!! (yr— C)n, — xn,

— Iy + ypm,

(11.3.13)

By using function ¢,(¢,). we may determine the function of kinematical errors

N
Ady(¢)) = dx(d) — — ¢, (11.3.14)
N,

where N and N, represent the number of gear teeth and the linear function ¢,N,/N, represents
the ideal relation between angles of gear rotation.

As previously mentioned, the locus of contact points on the gear-tooth surface represents the
working line of the surface. Because of the elasticity of surfaces, the gears contact each other over
an elliptical area whose center coincides with the theoretical contact point. The locus of the contacting
ellipses represents the so-called bearing contact. The analysis of bearing contact is considered in
section 13.4.

Analysis of conditions of meshing and bearing contact is called tooth contact analysis (TCA).
Computer programs for TCA have been worked out by (Gleason Works, 1960) and by (Litvin
and Gutman, 1981a). In general, the application of the discussed method for spatial gearing analysis
is based upon a computer program from which we obtain numerical results. The following example
is a case in which the result may be represented as an analytical solution.

Example 11.3.1 Consider a direct contact mechanism with two movable links (fig. 11.3.2). Links
1 and 2 are interconnected by a highly kinematic pair of surfaces whose elements can be (1) two
cylinders as shown in figure 11.3.2, (2) a cylinder and a straight line, (3) a ball and a plane, or
(4) two straight lines, etc. We will limit the discussion to the case where links 1 and 2 are
interconnected by two cylindrical surfaces.

Links 1 and 2 are connected with the frame by revolute pairs and rotate about crossed axes.
We designate the cylinder axes by O, and O,. The angle which is made by the cylinder axes and
the perpendicular to the axis of rotation is designated by ~, (i = 1,2). Two planes which are drawn
through the axes of link rotation are designated by IT and K, respectively; o) and p, are cylinder
radii, and 4 is the shortest distance between the axes of rotation. Design parameters a, b, ¢, and
d determine the location of the link cylinders.

Consider the following coordinate systems: (1) §; and S,, which are rigidly connected to link 1;
(2) S, and S, which are rigidly connected to link 2; and (3) Sy which is rigidly connected to the
frame.



¥l

Figure 11.3.3.

The surface I, of link 1 is represented in the auxiliary coordinate system S, as follows
(fig. 11.3.3):

= u v, = py sin §, z, = p) cos B (11.3.15)
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The surface unit normal is given by
n, =0 Ny, = sin 6, n,, = cos 8, (11.3.16)

Similarly, surface T, of link 2 and the surface unit normal are represented in coordinate system
Sy by the following equations (fig. 11.3.4):

Xp = p3 COS 02 Yo = 02 sin 02 p = — U (11317)
ng = —cos 6, ny, = —sin 6, ny =0 (11.3.18)

Z

We obtain equations of surfaces L, and L, and their unit normals in coordinate system S;
(fig. 11.3.5) by using the following matrix equations:

(7] = s, Jird = (g (113.19)
[9] = liLiading = Lalin, (113.20)
[72] = Ml = M1 (11.3.21)
[ = WeltLanling = ol (113.22)

Here (see figs. 11.3.3 to 11.3.5)

[ cosy, O siny, ¢
0 1 0 O
(M,,] = (11.3.23)
—siny; 0 cosy, O
L 0 0 o0 1
cosd;, sing; 00
—sin ¢, cos¢p;, 0 O
(M) = (11.3.24)
) 0 0 10
L 0 0 01 ]

| cosy, O siny, 0
[My) = (11.3.25)
—siny, 0 cosvy, —d

0 0 0 1

1 0 0 b

0 cos¢, sing, —A
(Mp] = (11.3.26)
0 —sing, cos ¢, a

0 o 0 1

The matrix products are represented as follows:



cos ¢y cos vy, sin @, cos @y siny; € Cos

—sin ¢, cos y; cos ¢, —sin ¢, siny; —csin @,

M) = (11.3.27)
—sin vy, 0 cOoS ¥y 0
0 0 0 1
€Os ¥, 0 sin 7y, b
—sin ¢, sin y; cos @ sin ¢, cos v,  —(A4 + d sin ¢;)
Mgl = | (11.3.28)
.~ —cos ¢, siny, —sin¢;  COS ¢y COS ¥y a — dcos ¢
{ 0 0 0 1

We develop matrices [Lg,] and [Ls) from matrices [M,] and [Mp,] by deleting the fourth column
and row in the latter two matrices.
Equations (11.3.15) to (11.3.28) yield

(n

xp' = uy cos ¢y cos vy tp sin 6, sin ¢,
+ py cos B, cos ¢, sin | + ¢ cOs ¢,

v = — uy sin ¢; cos v, + p; sin 6, cos ¢, (11.3.29)
— p; cos @, sin ¢, sin y; — ¢ sin @,

Zf(” = — u; sin vy, + p; cos §; cos v,

ni! = sin 8, sin ¢, + cos 6, cos , sin vy,

n{p’ = sin 6, cos ¢, — cos §, sin @, sin v, (11.3.30)
n{ = cos 6; cos v,
x{2) = p; cos B, cos v, —up sin v, + b
yf¥ = — p; cos B, sin ¢, sin 2 + py sin 6 cos &,
— up sin @, cos y; — (4 + d sin ¢,) (11.3.31)
22 = — p, cos b, cos ¢, sin y3 — py sin B sin ¢,

— Uy COS ) €08 v, + (@ — d cos &)

nx‘f) = —cos #; cos 7;
n{f' = cos 6, sin ¢, sin y, — sin 8, cos ¢, (11.3.32)

9 . . .
' = cos B, cos ¢ sin y; + sin 6; sin ¢,
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At the point of tangency between surfaces L and E,, the following conditions must be observed:
rf D (u1,0,,0) = 142 (u2,60,,6,) (11.2.33)

0t (6,,6)) = nf? (6,.0,) (11.2.34)

Vector equation (11.3.34) is equivalent to two independent scalar equations only since

In®| = In®| = 1. Equations (11.2.33) and (11.2.34) result in five independent scalar equations
in six unknowns, u,,8,.u,,6,.¢,, and ®,, as follows:



£().0,.u2,0,.0).0) =0 fieC'  (i=1234)5) (11.3.35)

Remarks: The last two equations of system (11.3.35) do not contain u, and u,, since the surface
unit normals do not depend on these surface coordinates.

Eliminating unknowns u;, 6, and «, from equations (11.3.35), we get a system of two equations
in three unknowns

sin sin sin v, — COS ¢, COS Y| — €OS sin 7y; tan vy,
F,(6,.6,.62) = tan 6, - ¢ sin ¢, sin v, ‘ ) : Y1 gy siny any, _ o
cos ¢, sin ¢, + sin ¢, tan vy,

(11.3.36)
b si —Ac - + inf, —dco sin ¢,
Fa(0,.6,.6) = sin @, : 08 ?1 oy + p2) Sl.  —d cos ¢ sin ¢,
sin 1y, sin ¢| + cos ¢, sin ¢; €os 72
= k[b sin v, — (p; + py)(sin 6, sin ¢ sin y; + cos 8, cos ¢))
+ 4 cos ¢, €OS vy, — € €os ¢ sin y; — d €os ¢ cOs P, CO8 71=0 (11.3.37)

where

1
k=
sin v, sin y; + cos @; Cos @, COS y; COS 7Y

Usually, A = p, + p,, and when ¢, = 0, we get that §, = 37/2 and ¢, = 0. The corresponding
value of 6, is 7/2, which we may get from equations (11.3.35). Assuming that {F|,F>} € C' and

D(F.F,) 20
D(0,,¢1)

we may determine functions ¢,(¢) and 6,(¢,).
The remaining unknowns, u,, 65, and u;, may be determined from the following equations:

__bsing —Acos ¢ — (p; + py) sin 8 — d cos ¢, sin ¢,

L5) X - - (11.3.38)
sin ¢, sin y, + cos ¢, sin ¢, COS ¥,
sin 6, si + cos §, cos in
cos 6, = — > 1 Sin 9, 08 7 1810y, (11.3.39)
COSs v
+ o8 0 e + 5 +
u = (p) + p2) cos B, cos y; —a + (uy cos v, d) cos ¢, (11.3.40)

sin v,

The angular velocity ratio may be determined by using equation (11.3.13).
Particular case 1.—The cylinder axes are perpendicular to the axes of rotation. By setting
1 = 72 = 0 in equations (11.3.26) and (11.3.37), we obtain
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cot §; = — cos ¢, tan ¢, (11.3.41)
and
tan’ ¢,l(p, + p2)? — a?] cos? ol
—2a(A cos ¢, — b sin ¢) cos ¢, tan ¢,
+(p, +p2)2 — (A cos ¢, — b sing)> =0 (11.3.42)

Equation (11.3.42) represents, in implicit form, the position function of the discussed mechanism.
Neglecting radii p; and p; of the cylinders, we get

btan ¢, — A
tan ¢, = 201 — 4 (11.3.43)
a

The differentiation of this equation yields

ds;
dt b 2
my = 2= L _beos & (11.3.44)
W dp, acost P,
dt
Particular case 2.—The cylinder axes are parallel to the axes of rotation. By setting v, = — /2
and y; = /2 in equations (11.3.36) and (11.3.37), we get
3
8, =— — ¢, (11.3.45)
2
R _‘)
sin ¢, = CSM 01 ! (11.3.46)
d
where (=A4 — (p, + p7).
Equations n” = n{) (use egs. (11.3.30) and (11.3.32)) and (11.3.45) yield
™
92=5+¢2 (11.3.47)
The angular velocity ratio is
gy = O8O ceosd (11.3.48)

"~ dcos ®, - va? —m(rc sin ¢, — f)”

The discussed mechanism is applied in gauges. The optimal synthesis of such mechanisms is worked
out by (Litvin and Gutman, 1984).



Chapter 12

Basic Kinematic Relations of Spatial Gearings

Kinematic relations of spatial gearings are the relations between velocities and accelerations of
the points of contact of gear-tooth surfaces being in mesh, and the relations between velocities
and accelerations of the tips of the surface unit normals. These relations may be applied as the
basis for effective methods of determination of

(1) conditions of tooth nonundercutting (ch. 9.5)

(2) relations between principal curvatures and directions for two surfaces being in mesh (ch. 13)

(3) kinematical errors of gear trains
Basic kinematic relations and their applications have been proposed (Litvin, 1968 and 1969).

12.1 Relations of Contact Point Velocity and Surface Unit Normal
Velocity

Consider two gears being in mesh. Because of the continuous tangency of gear-tooth surfaces,
the position vectors and unit normals of both surfaces at their instantaneous contact point must
be equal at every instant. These conditions were represented by equations (11.2.1) and (11.2.2).
Since these equations are to be observed continuously at every instant, we may differentiate them.
This yields

FVu,,8,,0) = F7u2,0,,0,) (12.1.1)
nOu,8,,82) = 1%(uy,8,,6) (12.1.2)
Here ¢ (i = 1,2) is the velocity of the contact point in absolute motion (motion relative to the

frame), and n" is the linear velocity of the tip of the unit normal vector in absolute motion.
Equations (12.1.1) and (12.1.2) may be represented as follows:

ruy,0,.0) = ('E(—l-) dé, + __ar“’ du, + ar_(” duy

Vubs .
g d¢, dt  ou, dr 38, dr

ar® de, N ar® du, or?® de,
3(752 dt Buz dr 802 dt

FP(uy,0,,¢7) = (12.1.3)
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< (1) an'" de, an'V du, an'" 48,
n b)) =—r — + — —  —— —
ap, dr du, dr a6, dt

Nypy

an(z) dd)z an‘z) duz an(Z) (1’92
— + - — (12.1.4)
a¢2 d’ 6H2 d’ 602 dr

nNuy,0,,0,) =

Here ¢ represents time.

Let us interpret equations (12.1.3) and (12.1.4) kinematically. The velocity of the contact point
observed in the coordinate system S is the velocity in absolute motion v i). This velocity may
be represented as the sum of two components

vin =vi 4 v® (i=12) (12.1.5)

Here v, is the velocity of the contact point in its motion over the gear-tooth surface (in relative
motion with respect to the surface), and v} is the velocity of the contact point in its motion with
the surface (in transfer motion of the point which is considered as rigidly connected to the surface).
The relative motion of the contact point may be observed in a coordinate system rigidly connected
to the surface. Here

L or® do,
v 2 9 de, (12.1.6)
dp; dr

@ _or D du, 3ar® dp;
vty

C T ow @ 96 4 (12.1.9
Equations (12.1.3) and (12.1.5) to (12.1.7) yield
v — 2 =y (D (12.1.8)
By using the notation
v =y _ D (12.1.9)
we obtain
v =y 4y (12.1.10)

Here v!'% is the sliding velocity which is the velocity of point M, of surface £, with respect to
point M, of surface ;. (Points M, and M, coincide forming a mutual point which is the point
of tangency of the surfaces.)

In addition to the analytical determination of transfer velocity by equation (12.1.6), this velocity
may also be determined kinematically as was explained in section 2.3. Equation (12.1.10) is the
basic equation which relates the velocities of contact points of mating surfaces.

The advantage of equation (12.1.10) is that we can express the velocity v in terms of v/’ and
v2 Thus. we may determine the velocity v{?, although the equations of surface I, are not
known.

When using equation (12.1.10) we have to differentiate between the cases of line contact and
point contact of mating surfaces. In the case of point contact, only a line of the surface is under
the action (fig. 12.1.1(a)). At every instant, surface £, contacts the mating surface at a point, and
the working line of the surface is the locus of instantaneous contact points. The velocity v of
the contact point in the motion over the gear-tooth surface is the tangent to the working line. In
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Figure 12.1.1.

the case of line contact surface I; at every instant contacts the mating surface along a line. Thus,
the surface is covered with contact lines (fig. 12.1.1(b)). Consider two infinitesimally close contact
lines which correspond to the parameters of motion ¢ and (¢ + d¢), respectively. Let us designate
a point of the contact line L,(¢;) by M. To be a point of the new contact line Ly (¢; + de;), point
M can be moved over the surface in an arbitrary direction but different from the tangent to the
contact line L.

Taking into account that vector v(!2 may be determined for any point of contact of the surfaces,
we may state the following results:

(1) In the case of the point contact vector, v{" has a definite direction. Knowing the magnitude
of v{, we may determine the magnitude and direction of vector v? from equation (12.1.10).

(2) In the case of line contact, the direction of v}” is indefinite. We may determine vector v}z‘
from equation (12.1.10), if not only the magnitude but also the direction of vV is given. Similarly
we may kinematically interpret equations (12.1.4)

gy, =D + a0 =P +0a? (12.1.11)
Here vector
L F:) (i) do.
0 =2 de; (i=12) (12.1.12)
¢, dr

represents the transfer velocity which is the velocity of the tip of the surface unit normal in its
motion with the surface. Vector

. () an') duy; an'? 48,
n'’ = — + —
du; dt de; dr

(12.1.13)

represents the relative velocity of the tip of the surface unit normal which corresponds to the motion
of the contact point over the surface.
Equations (12.1.11) to (12.1.13) yield

a2 =aM + Al — af (12.1.14)

Thus. we can express vector 12’ in terms of n{", @, and n'2). This is a great advantage since
we are able to determine n?, although the equations of surface L, are not defined.

It is known from mechanics that if the transfer motion is rotational about a fixed axis, vector

n") may be represented b
Y
n) = wf? x nf” (12.1.15)

This result may be interpreted kinematically. Consider that ny is the surface unit normal vector
at point M (fig. 12.1.2), and T is the tangent plane to the surface at point M. (Superscript i’s are
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dropped.) The surface rotates about axis j-j with angular velocity w,. We may replace the sliding
vector Wy by the equivalent vector wf'passing through point M, and the moment

Here R, is a position vector drawn from point M to an arbitrary point N on the j-j axis; thus
R; = MN. The moment m, represents the velocity of point M in translational motion which is
perpendicular to the plane formed by vectors wrand MN. The transfer motion of surface E, with
unit normal n;, may be represented as a resulting motion of the following two components: (1) of
translation with velocity my and (2) of rotation about axis j-j’ with angular velocity w; = Wy Axis
JJ" is drawn through point M parallel to j-j. By translation, the unit normal n; will be moved
parallel to its original direction being translated with the surface and the surface point M. Thus,
while surface T with point M and surface unit normal Ry are translated with velocity

vector ng does not change its original direction. The direction of n;, however, will be changed
because of the rotation about axis j*j”.

Figure 12.1.2 shows two positions of the unit vector, n; is the initial position, and n; is the
changed position after rotation about axis Jj~j’ through an angle

The difference
n/— n; = dn, (12.1.19)

represents the displacement of the surface unit normal by rotation about axis jj*. Vector dn,, is
represented by the equation

dn"- = d¢/>< nf: (wa nf)dl (12120)



and

l.l,,= =wf>< nf (12121)

Equations (12.1.14) and (12.1.21) yield
A =a® + (wf“” x nf) (12.1.22)

where @'V = w(" — @f?. Equation (12.1.22) is the basic equation which relates the velocities
of the surface unit normals for mating surfaces.

12.2 Relations of Contact Point Acceleration and Surface Unit
Normal Acceleration

To determine relations between the accelerations of contact points, we may differentiate vector
equation (12.1.10). By using expression (2.3.7) for v('2 we represent equation (12.1.10) as
follows:

v = (o - o) g = (Ryx @f?) + v/ (122

After differentiation we obtain

d d
” (v,‘”) =a? + 0P xvP = - { (wf‘” - wf‘z’) X 1, — (fo w}”) + v,“)]

= (u‘:f‘” - obfm) X 1+ (wf“) - wf‘z)) Xy — (fo u}f‘z’) +al

+ o x vV

The differentiation of equation (12.2.1) was based on the following considerations:
(1) Vector v\ (i = 1,2) is represented in a movable coordinate system and therefore

) — a0+ (2 8 + (" xvf) = (wf? x )

(@ xr) = [@f x 0y = R)| (12.2.2)
where
wf(lZ) — w}l) . wf(Z)
%(v,‘”) = (wf? x v{7) + 2" (12.2.3)

The cross product @ X v} may be interpreted kinematically which is similar to the interpre-
tation of the cross product wy X ny. (See eq. (12.1 21) and explanations related with fig. 12.1.2.)

(2) Since Ry is a vector of constant direction and magnitude, its derivative d/dr (R is equal
to zero.
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Let us now derive the expression for fy.
Vector 1y is the position vector of a contact point at which two single points of two surfaces
coincide. Thus,
rp=rfD =r? (12.2.4)
The differentiation of equation (12.2.4) yields
fr=i" =2 =, (12.2.5)
By using equation (12.1.5), we may represent Iy in terms of vectors v!") and v{") and obtain
fr=v) 4 vl =y 4 (wf‘”xn‘”) (12.2.6)
Equations (12.2.2) and (12.2.6) yield
3 =2l + (0" xvil) + | (@ + ) x v,‘”:' ~ (w0 x v
+(@f > rf0) = @ x o - Ry (12.2.7)
Substituting for v?) in (12.2.7) by
v =y 4 Vi)

we get

3 = al +2(@f xvi) + (@ x Vi) - (wf) x Vo)

(@ x ) = [ x - R)| (12.2.8)

Equation (12.2.8) is the basic equation which relates the accelerations of contact points of two
mating surfaces.
Let us now get the relation between i and i". The differentiation of equation (12. 1 .22) yields

d . 2 . 2 e Y - 2 .
0 (n,‘z’> = /P x P + Y = @f? x [n,‘” + (w/““’ X nf):l +1% (12.2.9)
t

;[n,m + (™ x.,,)J () a0 () [ (@ - o) <n]
: _
= (@ x M) + RO + {q,'m x [ (wf" x n) + h,‘”]}

+ [(wf‘” - w}”) x nf} (12.2.10)
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Equations (12.2.9) and (12.2.10) yield

5,0 =i, 4 2 x b0 + o (@f D en) - of (wf ny)

() + [(w,“) — @) x nf] (12.2.11)

Equation (11.2.11) is the basic equation which relates the accelerations of the surface unit normals

of two mating surfaces.
The set of equations (12.1.10), (12.1.22), (12.2.2), and (12.2.11) represent the basic kinematic
relations for two mating surfaces of spatial gears.
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Chapter 13

Relations Between Curvatures of Mating Surfaces

13.1 Relations Between Principal Curvatures and Directions for
Mating Surfaces

Basic equations

Consider two gear-tooth surfaces L, and L, that are represented in the coordinate system S,
rigidly connected to the frame. The parameters of motion of both gears are given, and P is the
point of tangency of the surfaces. There are two cases of tangency of gear-tooth surfaces: (1) the
surfaces are in point contact, and P is the single point of tangency at the considered instant; and
(2) surfaces L, and L, are in line contact, and P is Just a point of the instantaneous line of contact.
We assume that at point P the principal curvatures and directions for one of the surfaces, for instance
surface L,, are given. The problem is to determine the principal curvatures and directions of the
second surface L, at the point of tangency P, without knowing the equations of L. The key to
the solution of this problem is the relationship between the principal curvatures and directions of
mating gear-tooth surfaces. (First proposed by Litvin, 1969 and then developed by Litvin and
Gutman, 1981.)

Consider that a set of parameters

0= (u?,0°,¢?,u?.03,¢§’) (13.1.1)

satisfies the following vector equations (subscript f is dropped):
U000 = 1P bhsy)  [r0r) e (13.1.2)
nV(u,.0,,¢)) = nP(uy,0,,¢,) (13.1.3)

Here r' is the position vector of the point of contact drawn from the origin of the coordinate
system Sy, and n‘") is the surface unit normal, represented by



N(i) ) (i) (i)
N N® =a;u x%—#o (i =12) (13.1.4)

(i) =

Parameters u; and 6; are the surface coordinates, and ¢; is the parameter of motion. It is assumed
that the function ¢,(¢,) € C? is given. Usually, ¢, (¢,) is a linear function. Surfaces X, and L,
are in tangency at point P since equations (13.1.2) and (13.1.3) are observed.

In the neighborhood of point P the following equations are observed:

FOuy,8,,01) = FP(up,0,,9,) (13.1.5)
nMu,,8,,6) = fl(z)(uz,62,¢2) (13.1.6)
d; ..
G ), D) = P
d{(n v ) 0 (=12 (13.1.7)

Let us note that

n .y = v, {[ (w(” _ w(2)> v l.(l):l _ (R % w(z))} -0 (13.1.8)

is the equation of meshing. (See ch. 9.8.)
It has been proven in chapter 12.1 that equations (13.1.5) and (13.1 .6) yield the following relations:

v =y 4 y02 (13.1.9)
A =W + (wuz) % n) (13.1.10)

To derive equation (13.1.7), we differentiate equation (13.1.8) considering that @ = constant.
This yields

(,-,m ,vuz)) +n'. {(_ & x r(n)
+ [(w“’—w‘z)) xr‘m] - (Rxd(z’)} =0 (3.L1D

We may transform equation (13.1.11) by using the following relations:

A0 =0 + (0 xn) (13.1.12)
PO =y 4y (13.1.13)
w? = 0Pk, = wVmyk, (13.1.14)
where
)

my (¢)) = o0

Here ¢, is the rotation angle of gear 1, and k; is the unit vector of the axis of rotation of gear 2.
The differentiation of equation (13.1.14) gives
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d d d do 2,
@y — (1) = D 1 —_ (1)
a (w ) w ar [m2](¢])] kz w dd)l [m2l(¢‘)] i kz (w ) m2|k2 (13115)

Here

my, = (%[mzn(dn)]

Equations (13.1.11) to (13.1.15) yield

(ﬁrm ,v(|2)> + li(w(:) % n) ,vuz)J _ {(w”’)zm{,n““ [kz % (rm _ R)}}

+n. [w‘m x (v,‘” + v},")] =0 (i=1,2) (13.1.16)

The triple product in equation (13.1.16) is transformed as follows:

(wm x ,,) ey = (wm xn). (v;,H _ vg,z)) (13.1.17)

Taking into account that

(w‘” X n) . <v,(,” - v,‘,”) + {n- [w”z) X (v,‘” + v,‘,’)):’} =n. {(w"’ X v,‘,”)
- (w‘z’ x v,‘,”)} —vi. (w“” x n) (i=12) (13.1.18)

the final expression for equation (13.1.16) is given by

1) (- e[ )
— (@) ne [kz x (r‘” - R)] =0 (=12 (13.1.19)

Equations (13.1.9), (13.1.10), and (13.1.19) are the basic equations which we will use to derive
the desired relations between the principal curvatures and directions of mating surfaces.

Basic Linear Equations

We may transform the system of equations (13.1.9), (13.1. 10), and (13.1.19) into a system of
linear equations by using a linear vector function that relates vectors v\” and i), (See app. C.)

Consider two right-handed trihedrons S.(ese,,n) and Sp(e,.e,,n) (fig. 13.1.1). The common
origin of the trihedrons coincides with the contact point M, the n-axis represents the direction of
the surface unit normal, e and e, are the unit vectors of the principal directions of surface Z,
e, and e, represent the principal directions of surface L,, and o is the angle formed between e
and e, (measured clockwise from e, to €sand counterclockwise from esto e;). Henceforth, we shall
drop the subscript r in notations such as v’ and 1" and designate these vectors by v and i 0",
respectively. Expressing v!"! and n‘” by their projections on the trihedron axes, we obtain



A
i
M e
Figure 13.1.1.
v = vile + viDe, = vile, + vile, (13.1.20)
A = e + Ve, = Al + nfle, (13.1.21)

The third projection of vectors v and i) is equal to zero because these vectors lie in the plane
that is tangent to the surfaces. Projections of vectors v and n‘? are related by the Rodrigues
formula. (See app. C.) Thus

ﬁ;” = —y 0 vj(” (13.1.22)
nfh 0 —« viD .
el k0] [

= (13.1.23)
r'zqm 0 -« véz)

Here «; and «, are the principal curvatures of surface Ly, and k; and «, are the principal
curvatures of surface L,. We designate the curvature matrices by

_Kf 0 — Ky 0
K] = K] = (13.1.24)
0 -« 0 -«
Matrices
cos ¢ sing
Lyl = (13.1.25)
—~sino cos o
and
cos ¢ —sin g
[Lap) = (13.1.26)
sinog cos o

represent the transformation from S.(ere;) to Sp(esey) and from S,(ee,) to Sa(er.ep),
respectively (fig. 13.1.1).
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Equations (13.1.9), (13.1.10), (13.1.19), (13.1.22), (13.1.23), (13.1.25), and (13.1.26) yield
a system of three linear equations

ag v + ay v = ag (i=1.2,3) (13.1.27)

in two unknowns v{" and v{".
Since equations (13.1.27) are represented in unknowns v" and v" instead of unknowns viD
and v;"), we are able to obtain a symmetric augmented matrix [4] such as

ayp ap dap
[A] = Qyy 4y ax (13128)

a3 a3 dag

This is the particular advantage of such a presentation.
Let us derive matrix (13.1.28). The matrix representations of equations (13.1.9) and (13.1.10)

are given by
v v y (12
o | = o + ) (13.1.29)
Vg Vq Vg~

T A2 alb (W' xn)ee, -
= + , (13.1.30)
Ay nlh (W' xn).e,

Vectors of equations (13.1.9) and (13.1.10) are expressed in terms of their projections on the axes
of the coordinate system Sy(e;.e).
Equations (13.1.23), (13.1.24), and (13.1.30) result in

2 nh (w12 x n).e,
K] | = + | (13.1.31)
i all (W' x n).e,
Take into account that

At U v vl
[ -‘1 :|=[L”“] { " :IzlLba][Kl] { | }: [Lp )KL, 5] { 1 J (13.1.32)
Ag" At v pD

Equations (13.1.31), (13.1.32), and (13.1.29) yield

y p 02 y (0 (@' x n) ee,
[Kzl{ J+[Kz]{ }=[LbaJ[KIMLa,,J{ " J + { } (13.1.33)

(1) ,(12)
vy vy



The following equation results from equation (12.3.33):

vs(l) ‘,5(12) (wmz) X n) .e,
(Lo (K Las] — (K21} { }[KZJ { }— { } (13.1.34(a))

M (12) (12
Vg Vq (w X n) ve,

We may represent equation (13.1.34(a)) as follows:
an ap vV as
L= (13.1.34(b))
az an Vq( ) ax

Matrix equation (13.1.34(b)) is the matrix representation of a system of two linear equations in
two unknowns. Here

ap 4
a; an

[Lpad [K1[Lep) — [K2]

cos o sino -k 0 cos o —sino —x, O
—sin o cos o 0 —«k sing coOs o 0 —x

(13.1.35)

ag v{1® (w1 X m)ee
— K] _ (13.1.36)
25X} Vq(lz) ((.0(12) X n) 'eq

Let us now transform equation (13.1.19). Taking the superscript index i = 2, we represent the
scalar products in this equation as follows:

v(lZ) T fl(z)

k) )

[-1;2> wy(2 = (13.1.37)
vq(l2) r-'{(iz)

(nxw')ee, 17 [ v®
—~ v (wuz) X n) = v,‘”(n X w“2>) - [ } l: S(z) } (13.1.38)

(nx w?) e, v

The superscript T indicates a transposed matrix. (See app. A.)
Equations (13.1.37) and (13.1.23) yield

2 7 vi2)
a@ 2 — | K : 13.1.39
r v VI;IZ) [ 2] v(z) ( )
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Transform equations (13.1.38) and (13.1.39) by substituting matrix
[ V_‘(Z)J
(2)
Vg
by its expression (13.1.29). Then we obtain

y 97 v(l) v(lz) T VUZ)
. 2) a2 _ s % s s X s 3
n" ey Y = (12) [K;] o + a2) [K,] (12) (13.1.40)
R v(/ vq vq i vq

(n X @1P)eg, 17 [ pD (nx @1?)ve, 17 [ i
— v (w(m x n) - 2 n |t 12 2
(nx @) e, | il (nx w'?).e, v
12 1T !
{ (n x )) e, [ " )J i (13,141
_ ¢ [ntaven] '
12 I
(n x 0!?).e, | vl

Equations (13.1.19), (13.1.40), and (13.1.41) yield
p12) T (nx @) e 7 pD y1) T p(12)
Ly (12) (K] + (n x w1).e LD T L) K] L (12)
q q q q q
_ [nw“z’v“z’] e [(w“’ X V) — (w? x vl(rl))]

+ {[(w“')zmz/,(n x kz)] “r - R)} (13.1.42)
This equation may be represented by
ay 7 vl
o= e (13.1.43)
as, v
Here

ay 17 y(120 97 (0 x w1¥).e 77
= " (Kol + >
as, v (n x w'?).e,
The coefficient a3 is represented by the right side of equation (13.1.42).

The final expressions for the coefficients a;1, @y, and a;3 (i = 1,2,3) of equations (13.1 .27) (for
the elements of the augmented matrix (13.1.28)) are as follows:



2 _ Kt ke KT K

a,,=xj—xfcosza—xh sin® o = «; 5 cos 20
K — Kp .
ap = a = S h sin 20
2
ap=4ay = — PRUSCUES [w“z)ne,]
) Kr¥ K Kf— Kp
az; = kg — xfsm2 0 — Ky cos’ o= Ky~ YTy T Hos 20 (13.1.44)

ay = an = — kg — [“’“2)“"4]

as K:(Vs“z))z + Kq<V‘§ l2))2 - [n w(lz) V”z)]

—n. [ (w(” X vf,z)) - (w(z) X vf,”)] + {[(w“’)zmél(n X xz)] o(r — R)}

Relations Between the Surface Curvatures

Equations (13.1.27) represent a system of three linear equations in two unknowns. Since the
number of equations is not equal to the number of unknowns, the system of equations (13.1.27)
may possess a solution if certain conditions are observed (see below). We will discuss these conditions
for two cases of surface contact, the mating surfaces contacting each other at a line and a single
point, respectively.

Consider that the velocity of the contact point in its motion over surface L, is represented by

viD =yMe +viVe,

In the case of the line contact of mating surfaces, the direction of vV is indefinite (fig. 12.1.1(b)).

This yields that equation system (13.1.27) must have an infinite number of solutions for v and
vib,

th is known from linear algebra that a system of linear equations in two unknowns possesses
an infinite number of solutions if the rank of the augmented matrix and the system matrix is equal
to one. The augmented matrix [A4] is represented by expression (13.1.28). The rank of [4] is equal
to one if all determinants of the second order that are formed from the elements of [A] are zero.
This yields

an _ 4 _ 93 au _%n _4u Qi _9n _ 93 (13.1.45)

a;; axp axn a3 dy3  am; apy  ayy 4

Equations (13.1.45) provide relations that may be represented as an equality of the following
symmetric matrices:
a)p ap 1 aly  apax
= — ) (13.1.46)
ap an 433 | apax;  an

Determinants of these matrices are equal to zero.
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From equation (13.1.46) we get

2
ars a 3ax ai
ay = —— ap = ay) = — (13]47)
as; as3 a3

Equations (13.1.44) and (13.1.47) yield

2
tan 2g = 412 (13.1.48)

Ay — ay + «, — Ky

2012 _azz —ap + Ky — K

4 (13.1.49)

Ky — Kp = ;
! sin 20 cos 20

Kf+ K,,=K3.+Kq—a” — an (13150)

Substituting in equations (13.1.48) to (13.1.50) coefficients ay. dy, and ay;, which are given by
expressions (13.1.47), we determine the desired relations between the principal curvatures and
directions of the two mating surfaces. This yields

2a,5a
tan 20 = St (13.1.51)
ax —aipy + (k — Kg)as
2 33— alh + (k, —
k= = 220083 7 A F (K~ K )ay (13.1.52)
dy3 sin 20 as3 cos 20
2 2
aipiy +
Kt = (g k) — LT AD (13.1.53)
as

Equations (13.1.51) to (13.1.53) express the principal curvatures ks, «;, and ¢ in terms of the
known principal curvatures «, and k4 and coefficients a3, ay3, and as;3, that depend on the given
principal curvatures (x, and kg) and the parameters of motion. (See eq. (13.1.44).) With these
equations we may determine the principal curvatures and directions of surface X, although
equations of this surface are not yet developed.

Let us now consider the case of surfaces that are in point contact. This case is typical for bevel
and hypoid gears with localized contact of tooth surfaces. The velocity of the point of contact in
its motion over the surface has a definite direction (fig. 12.1.1(a)). Thus the system of linear equations
(13.1.27) must possess a unique solution. Since the rank of matrix [4], represented by equation
(13.1.28), must be equal to two, we get

ap ap agy |
ap an ap |=0 (13.1.54)
a3 dy dasy

Thus, there is only one equation

F(ks kg K5 Ky, 0) =0 (13.1.55)



that relates the five parameters. Considering «; and k4 as given, we cannot determine «; &, and
o uniquely. This means that we can synthesize an infinitely large number of the mating surfaces
that are in point contact if one of the surfaces is given.

Modified Linear Equations

Consider that principal curvatures &¢and «j of surface L, are given and ,, k,, and o must be
determined. In this case it is preferable to use equations

by v + by w2 = by (i=12,3) (13.1.56)

instead of system (13.1.27). The coefficients by, by, and by are elements of the symmetric matrix
[B] represented by

bll bl2 bl3
[B] = b|2 bzz b23 (13‘57)
by by b33

The system of equations (13.1.56), representing equations (13.1.9), (13.1.10), and (13.1.19),

are derived as follows:
() (2) (12)
v v v
U S R (13.1.58)
e el ik

Vf” vfm (@' x n) ee;
(K] o= [Lp) K] L] - (13.1.59)

Vi V;Sz) (w“z) X n) L %

12y 9T (2) (12) 12 e 17 (2)
vy Vs vy (n X w ) €r Ve
(12) (K @ | "o {7 (12) 2)
vy Vi Vi (n X W ) * € Vi
_ [n wuz)V(m] e [(wm % ¥) — (W X Vw)]

+ ™ imine [kz x (rh = R)] =0 (13.1.60)

Equation (13.1.60) was derived from equation (13.1.19) by taking i =1 in the expressions for
n'" and v\,
Equations (13.1.58) and (13.1.59), after elimination of vf(” and v{", yield the following two

linear equations in unknowns v{*' and i)

Vn blz] {"fm}_ {b”} (13.1.61)
by bxn v b h
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Here

by by
= [K)] — [Lap][K2[ L) (13.1.62)
. bl2 b22
b3 (n x w1?) e, v
= + [K}] (13.1.63)
b3 (n x 012) v, oyt

Equation (13.1.60) yields the third linear equation
b13vf(2) + b23v,,(2) = b33 (13164)

Here

by =—n- [(w‘” X Vi) = (w® x vﬁr”)] + (@) my(n X ky) + (D ~ R

p2y 7T p{12)
+ [nwuz)vuz)] + [ ! J I { 4 J (13.1.65)

vh(lZ) vh(12)

In the case of line contact of surfaces, the elements of matrix ( 13.1.57) are related by equations
which are similar to equations (13.1.45) and (13.1.46). These relations may be represented by
the following matrix equation:

{ by blzJ 1 b, bi3byy
by by ba3 bi3by b%z .
Matrices (13.1.66) are symmetric and their determinants are equal to zero.

Derivations similar to those discussed above yield the following relations between the principal
curvatures and directions of the two mating surfaces:

(13.1.66)

2b3b

tan 20 = B (13.1.67)

b33 — bis — (kr ~ x,) b33

2b;3b b3 — b — (k, — k)b

K — k= by _ b 13 — (ky — ky) b3 (13.1.68)

b33 sin 20 b33 cos 20

b1, + b3
Kg + kg =K+ K,,+u (13.1.69)
33

Equations (13.1.67) to (13.1.69) determine the principal curvatures x, and k4 and the principal
directions of surface £, in terms of the principal curvatures ks, ky of surface I, and the parameters
of motion.



In the case of point contact, there is only one relation represented by the equation
YK KgoKpp Ky, 0) = 0 (13.1.70)

which is provided by the requirement

by by b
by by by | =0 (13.1.71)
by by by

Example Problem 13.1.1. Consider that a rack generates a helical gear (examples 9.8.1 and 9.3.1).
Derive equations of the principal curvatures and «, and principal directions of surface L, of
the helical gear. For the solution, use equations (13.1 .67) to (13.1.69) and consider the following
as given: (1) the principal curvatures and directions of surface I, (2) the surface of action, (3)
the unit normal to surface Z,, (4) the location of a contact point on the surface of action, and (5)
parameters of motion v''?, vi!’, vi?, o, and w®.

Solution. The surface of action was represented by equations (9.8.61) as follows (the subscript
f is dropped):

X = u cos Y, y=usiny, + fsin 3 + ro z=~0cosf
(13.1.72)
cos B[sin ¥,(r¢ + £sin B) + u] =0
Consider that the family of surfaces L, is represented in the coordinate system S, by the equation

r(ut¢)eC? (w0 €eE a<¢<b r,Xr #0

Here u and { are the surface coordinates and ¢ is the parameter of motion. The unit normal to
L, may be determined by

n=— N=r, Xr (13.1.73)

After certain transformations, we get

N, = sin y, cos B N, = — cos ¥, cos 8 N, =cos y, sin 3 (13.1.74)

We use the following relations between the gearing parameters (example 9.3.1):

t
tan y, = Y (13.1.75)
cos
ta
cos Y, = cos ‘//,,;i:—g=£% (13.1.76)
0
sin ¥,
sin , = v (13.1.77)
cos g
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Here , is the pressure angle in the cross section, ¥, is the pressure angle in the normal section
(fig. 9.3.3), 8 is the angle formed between the gear axis and the tangent to the helix on the pitch
cylinder, and B, is the angle formed between the gear axis and the tangent to the helix on the base
cylinder.
The derivation of equations (13.1.76) to (13.1.77) is based on the following considerations:
Step 1.—Let

—=cot 3

= cot By rg = rcos y,
2@r 2wry

where r and r are the radii of the pitch and base cylinders and H is the lead of the helices. These
equations yield

tan Bo .
cos ¥, = i
2 an 8 (1)
Thus, one of equations (13.1.76) is confirmed.
Step 2.—Using equations (13.1.75) and (i), we get
tan? 1 + tan? ¢, — sin? 1 tan®
—=1+tan?y, =1+ 2¢"= ¢;’ in” 8 — = 26
cos” ¥, cos 3 cos” f3 cos” ¢, tan” B,
The equation
tan’ B 1 +tan® y, — sin’ 8
tan? 8, cos? B
yields
cos ¢, = Sl.n B (ii)
sin 3
Then using equations (ii), (13.1.75), and (13.1.76), we obtain
. ¢ . y
sin ¥, = cos ¥, tan y, = sin By tan ¥, sin By sin ¥, _ sin y, cos B,
tan 3 tan 8 cos y,
Thus
sin g, = S0V (iii)
cos By
and equation (13.1.77) is confirmed.
(3) Equations (iii), and (13.1.75) yield
cos y, = sin y, _ cos B sin y, _ sin ¥, cos 8 ~ cos cos 3 (iv)
tan ), cos Bptany, cos B, tan y, cos fy

Thus the second one of equations (13.1.76) is confirmed.



We may now derive equations of the surface unit normal by using equations (13.1.74) to (13.1.77)
as follows:

n, = sin Y, cos By n, = — cos ¥, cos Bo n, = sin B (13.1.78)

We will also need the equations for v{", vi?, v1?_ and w"?, which are represented in the
coordinate system S (fig. 9.3.2). Since " =0, we have

w12 = oM — ® = — ok, (13.1.79)

where w = w?. (The motion of the rack is translation.) The rack translates parallel to the y,-axis
(fig. 9.3.2), and

v = wrjs (13.1.80)
The gear rotates about O, and

v =wxr?+ 0,0, Xxw

i; Jr Ky i Jr Kr
— 00 wl|+ | =r 00 |=wl-yi+ (x+nig (13.1.81)
Xy z 0 0 w

The velocity of sliding is given by
vD =y — v = w(yi; — xjp (13.1.82)

Here x, y, and z are the coordinates of the contact point represented by equations (13.1.2).

Now, let the trihedron S,(esej,n) be set up such that e; and e, (fig. 13.1.1) represent the
principal directions of surface L,. Since I, is a plane, its principal directions s and &, are zero,
and any pair of two perpendicular lines on the plane T, may be chosen as principal directions.
It is preferable to choose, for the principal direction of the rack, the line of contact of surface
T, and I,. The line of contact on surface L;(T) may be determined by equations (13.1.72) with
¢ = constant. Differentiating the fourth equation of equation system (13.1.72), we derive the
following relation between the derivatives du/dr and di/dt

sin ¥, sin Bdf + du =0 (13.1.83)

The tangent to the contact line is given by

2 t
T = ( cos iy — — ‘p'jf— cot 8 ;) du (13.1.84)
sin ¢, sin ¥,
The unit vector e is given by
T 1
&= — = ————=——(cos ¥, sin Yii; = cos’ y,Jy — cot k) (13.1.85)
IT| \gosz ¥, + cot? 8
Equations (13.1.85) and (13.1.76) yield
e, = sin y, sin Byi ; — cos ¥, sin Bojs — cos Boky (13.1.86)
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The unit vector e, is determined by the equation

iy Ir ky
€, =N Xe = | siny,cosfy —cosy,cos B sinB, |=cos iy + sin ¢, j; (13.1.87)
sin ¥, sin 8, —cos ¥, sin B, —cos B,

The sought for principal curvatures and directions of surface L, are determined by equations
(13.1.67) to (13.1.69), for which coefficients b3, b,;, and by, are represented by equations
(13.1.63) and (13.1.65). Considering that [K;] =0 (Z, is a plane) and my, = 0, because my is
constant, we get

by = [nw“z’ef] =0 (13.1.88)
bay = [nw“z) e,,] = w cos B, (13.1.89)
b= —ne [(w‘” % v,‘,z’) _ (wm x vf,”)} +ne (wuz) v v(12>>
—ne. [ (w(z) X Vi) )) _ (wm x v(lZ))] —n. (wm % V,(,z’)

= — w? cos B, [(x + r) sin ¥, — y cos x//,:l (13.1.90)

Substituting in equation (13.1.90) the expressions (13.1.72) for x and y we get

b33=—w200530<rsin¢,+ a ) (13.1.91)
tan ,

Equations (13.1.67) to (13.1.69), (13.1.88), (13.1.89), and (13.1.91) yield

6=0 =0 g =-——"F (13.1.92)
rsin ¢, + u cot y,

From equations (13.1.92), we find that one of the principal directions of a helical gear coincides
with the line of contact, and the principal curvature along this direction is equal to zero. The negative
sign of «, indicates that the radius of curvature is directed opposite to that of the normal to the rack.

An alternative way for the determination of the principal curvatures and directions of a helical
gear is based on the application of equations of the gear-tooth surface (it is a screw involute surface).
The reason the method discussed in chapter 13.1 is applied in this example is to illustrate the power
of this method. The advantage of the method is the fact that it is especially effective for the cases
when the surface of the generated gear is described by complicated equations (with three surface
coordinates related by the equation of meshing). This is typical for surfaces of bevel gears, hypoid
gears, and worm gears.



13.2 Contact Point Path as a Local Geodetic Curve

Introduction

Consider two gear-tooth surfaces that are in point contact. The contact point path—the working
line of the surface—must be along a definite direction. Figure 13.2.1(a) shows a contact-point path
that has the prescribed direction at the main contact point P (at the pitch point), but deviates from
this direction at other contact points. We may avoid such deviations, or at least reduce their
occurrence if the contact point path is a locally geodetic curve at P (fig. 13.2.1(b)). This means
that the projection of the contact point path on the tangent plane is locally a straight line. The above
condition may be observed by definite relations between the principal curvatures and directions
of mating surfaces (proposed by Litvin and Gutman, 1981). We may determine such relations from
conditions that the geodetic curvature of the contact-point path is equal to zero at P.

The geodetic curvature of a curve on surface L, is equal to zero (ch. 10.7) if

K = [a,‘”v,‘”n“’] -0 (i=12) (13.2.1)

where v!" and a/? are the velocity and acceleration, respectively, of a point that moves along
the curve, and n‘? is the unit surface normal.
Basic Equations

Consider the contact-point path on surface I, (i = 2). We apply the kinematic relations given
by the following equations (ch. 12)

v =y gyt (13.2.2)
n® =M 4 @' xa® (13.2.3)
a? =a' +e¢ (13.2.4)

For w'" = constant, ¢ is represented by (eq. (12.2.8))

= (2 ) + (o) = (2 )~ [60 xR 4329

n'? =nf" +d (13.2.6)
where w = constant and d is represented as follows:
d= (2w“2> x ﬁ}”) + w<”(w<'2>.n) - w‘”’(w<2>.n) — ")’ — (a@’ x n) (13.2.7)

(See eq. (12.2.11).) The subscript f in the above equations is dropped. To simplify the following
expressions, we apply the notations:

vr(i) =y I‘lr(i) =n ar(i) =g

—{ *

(@ (b)

Figure 13.2.1.
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Differentiating equations (13.1.22) and (13.1.23), we get

b (a(”“ Moy
/ i : f
. = [K)] + (K] (13.2.8)
i LV ] YR
n M al @

= [K + K 13.2.9
r'if) [K3] _aéz)d (K] i v,,‘z’d ( )

We substitute the contacting surfaces by two paraboloids. This substitution is equivalent to the
representation of surfaces with elements up to the third order. With such limitations we take
[K:] =0 where i = 1,2.

Existence of a Locally Geodetic Curve on Surface I,

The contact-point path on surface I, is a local geodetic curve at the pitch point P, if at point
P the following equation is observed

[v,‘z)na,m] =0 (13.2.10)
It will be proven that this equation provides a linear equation in unknowns v/® and v{? given by
b4]ij2) +b42\/;§2) =b43 (132]])
where
R A (13.2.12)
Equation (13.2.11) and the system of equations (13.1.56) represent relations between the principal
curvatures and directions of two mating surfaces.
The procedure for the derivation of equation (13.2.11) is as follows:

Step 1.—We derive linear equations in unknowns a/® and a?. To do this we first represent
equations (13.2.4) and (13.2.6) as follows:

( a(l) 7 a(z) 7 ( Cf’

U P A (13.2.13)
L aV | a? | | e
U A7 [ 4

..f, = { F - (13.2.14)
B I T U B A

From equations (13.2.8), (13.2.9), and (13.2.14), we get
ah 762 d a. @ " d
£ s ' i f

(K] |: " :l = (L) [ ..(2)} - |i } = [LyllK;) { (’):J - }
a, n, dh aq” L dh

af(z)'" df
= LK) [Lps) [ P [ ;] (13.2.15)
ap”

.



Substituting expressions (13.2.13) for a/” and af") in expression (13.2.15), we obtain the desired

system of two linear equations in two unknowns, a/> and af®

al? d c u
0| }— e =] (13.2.16)
aifz) dj, Ch up

(2,1 = [K1] — [Lap]K>2][Lpal) (13.2.17)

Here

is a symmetrical matrix;

u d c ds + keC
{f:\=_{f}+[xl]{f}:_{f ff} (13.2.18)
u, dy Cp dy + Kuh

Step 2.—We transform equation system (13.1.61), consisting of two equations in the unknowns
vf‘z) and v{¥, as follows:

vfm (n x w!'?) e vf““ bis my
[@:] = + (K] = = (13.2.19)
Vh(Z) (n X w(lZ)) € V;Elz) b23 ny,

Here, m is the notation of a vector represented by
m= MfEJ‘ + e, = b13ef + b23eh

Step 3.—Let us prove that equation (13.2.10) yields
v T 0 -1 al®
! Tl =0 (13.2.20)
Y2 10 o

The proof is based on the following considerations:
(1) Equation (13.2.10) may be represented in matrix form as

[v,mna,m] = [v,‘z)] T[n]" [a,m] =0

Here superscripts 7 and s designate a transposed and skew-symmetric matrix, respectively (app. A).
Equation (13.2.10) is satisfied because vectors n and a®? are collinear, that is, a® = An.
(2) We may represent vectors v(2', n, and a® by the following column matrices.

(2) 2}

v ny af
v = | p? n= | n, a? = | a®
0 n, al?

Here e;, €,, and e, are the unit vectors of the trihedron S, (fig. 13.1.1), and vector v/? lies in
the tangent plane formed by e; and e;.
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The skew-symmetric matrix [n]° is given by

We then obtain

T
[1',(2)] [n]* [a,‘Z)] = (—vf(z)ah(z’ + v,fz)af(“))n,, + (v/!z’n,, - v,,(z’nf)a,f” =0

Taking into account the collinearity of vectors a® and n, we get that equation (13.2,10) is satisfied if

— v + v Pa® = ¢

v T T o -1 a'®
f f -0
el I o ai
Step 4.—It is easy to verify that we may use the equation
my r 0 -1 us
' =0 (13.2.21)
ny, 1 0 uy,

instead of equation (13.2.20).

The evidence is based on the considerations that matrices of vectors u and m in equation (13.2.21)
may be substituted by their expressions (13.2.16) and (13.2.19) that yield

v )T [0 -1 al®
1 f
alnlf [0 el
1}(2) r 0 -1 (lf(z)
=17 [Qz]T[ ] le]{ , }=0 (13.2.22)
42 1 0 ai?

(See app. A.) The product of the matrices

or if

0 -1
[Q.)7 (i Lo } (0] ([@>] is a symmetric matrix.)

may be represented as follows:

278



qn 9n 0 -1 qn 92 0 -1
=A (13.2.23)
qi 9» 10 qi2 42 1 0

AN=q192 — ‘1%2

where

From equations (13.2.21), (13.2.22), and (13.2.23) we obtain

my )7 0 -1 u vid T 0 -1 al?
! Tlan] ! (13.2.24)
my, 1 0 uy, v 1 0 af?
and we may indeed use equation (13.2.21) instead of (13.2.20). Equations (13.2.19) and (13.2.21)
yield

—uhmf+ umy = —uhb|3 + ufb23 =0 (13225)

Substituting 1, and u, into equation (13.2.25) by their expressions in equation (13.2.18), we
obtain

(dh + KhC},)bl:;— (df+ chf)b'l:! =0 (13226)

Step 5.—We transform equations (13.2.26) to derive the desired linear equation (13.2.11) in
unknowns v*) and v{?). Rearranging equations (13.2.5) and (13.2.7), we may represent them as
follows:

c= (zw(IZ) % v,“’) 4 (wuz) % v[(fl)) _ (w(z) % v(m) _ [@(2) x (r(” _ R)]

= | 20012 x (vrm _ vuz))] + (wm) % V:(r”) _ (wa) x v(m)
=

— | @@ x (r(” - R)] = <2w“2) X vﬁm) - (w“’ X v“z)) + (w”z) X v§r2)>

- me x (r“’ —R)] = (Zw“z’ X v,‘“) +1t (13.2.27)

where

t= (—w“’ X v“”) + (w“” x v,<,2>) — @? x (r(” - R) (13.2.28)

d= (2w“2’ X r'n,‘”) + w“’(w“z’o n) - w“z’(w(z’ -n) — n(w'1?)?

(6 x m) = 201 x [,-,,m ~ (o x n)] + ()

_wuz)(w(z),n) _ n(w(m)2 _ (d,m x n) = (20)(12) X i]r(z)) +p (13.2.29)
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Here

p=-w?(w® .n) + w‘z’(w”z’- n) + n(m‘”’)2 - (0? x n) (13.2.30)

Let us transform equations (13.2.27) and (13.2.29). The matrix representation of equation
(13.2.27) is as follows:

¢ I [0 =@ @ vf(z) 4
o |=2[ )4 g | =2] W 0 e | |y s |,
Cn t [ —wf'? o 0 0 1,
[ — (@M en)y .
=2 (w”z)-n)vf(z’ + | 1 (13.2.31)
[ =i 4 oDy 1,

(See app. A.) Here [w‘m]‘ is the skew-symmetric matrix,

w(lZ) (12)

on =,

Considering the first two projections of vectors only, we may represent equation (13.2.27) by

. (2)
Cy —Vh t
2 2 + 7 (13.2.32)
Cy vfm th
where o = @@ «n.

For the matrix representation of equation (13.2.29), we use the following relations:

i o) e
|#2] = [ ) J =[1<21{ (,)} = (KallLy) [ (,)J
nq‘ vq“ Vp©

a2 a2 vf(z) vf<2J
f _ s _ N ~
[r'z,,mJ = [L] [ s J ={Lp) K[ Lp] 'i 2 J = {IKJ [Qz]} [ 2 :’ (13.2.33)

V) Vi

(See matrix equation (13.2.17) for [Q5].)
Equations (13.2.33) and (13.2.19) yield

nt? ey my Kfv‘z’ + my
R T S i =" (13.2.34)
) D my, kvt + my,
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The vector product in equation (13.2.29) is represented by

0 —wl? 7
w1 x hr(z) = w'512) 0 _wf(lz) fl;fz)
—w wf(lZ) 0 0
0 —{B 1D —Kfvf(z) — my
_ w1 0 _wf(IZ) — ko —m,
| — D wf(m 0 0
i (wm)-n) (Khv;% + b23)
= — (" en) (k> + by3) (13.2.35)
12 12 2
L w) )(Kfvf( Y+ b)) — wf(m(x;,vh“ ) + by3)

where @2 en = w{!?), m; = by3, and m, = by;. (See eq. (13.2.19).)
Considering the first two projections of vectors only, we represent equation (13.2.29) in matrix
form as

df 2a(x,,v,,(2) + b23) + pf
= R (13.2.36)
d, —2okpv[? + bi3) + py

Step 6.—We can now derive the desired linear equation (13.2.11) in unknowns v{*) and i,
Substituting in equation (13.2.26) the expressions dy, dy, ¢y, and ¢, of (13.2.36) and (13.2.32),
we get

by — byvi? = by (13.2.37)

Here, coefficients b3 and b,y are represented by equation (13.1.63) and

1 byy — ppbi3 + K4 — kb
by = b%3 + b§3 +Pf 23 — PrO13 KfbeS Kplp0D13 (13.2.38)
Kp — Kf 2a

Equation (13.2.37) provides conditions for the existence of a locally geodetic curve on surface
L,. This equation with the system of equations (13.1.56) relate the principle curvatures and
directions of two mating surfaces in the case when the contact point path is a locally geodetic curve
(a geodetic curve in the neighborhood of the considered contact point). One additional linear equation
in unknowns v/ and v;*) is represented by

b.ﬂ"fm + bopvP =0 (13.2.39)

This equation determines the direction of the tangent to the contact point path. Consider that
the tangent must form the prescribed angle p with the unit vector ey. This condition yields

vid) b
Vh b5|
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Equations (13.1.56), (13.2.37), and (13.2.39) represent the following system of five equations
in two unknowns v/*' and v

bilvf(Z) +bv® = by (i=1234,)5) (13.2.41)

Coefficients b;, (j = 1,2,3) have been represented by equations (13.1.62) and (13.1.63);
by) = b, byy = —by;3, and the coefficient b, was given by equation (13.2.38). If we take bs, = 1,
then b52 = —~tan pu.

It is known from linear algebra that the system of equations (13.2.41) possesses a unique solution
if the system matrix and the augmented matrix represented by

Cbu b | [ by bn by
by by by by by
by by b3 by by (13.2.42)
bz —by bis  —by by
I —tan p | 1 —tanp O

are of equal rank r = 2.
Considering the system matrix, we find that the rank r is indeed equal to two since

b by,
A= #=0 (13.2.43)
by, by

We have to remember that A = 0 if the surfaces are in line-contact. (See eq. (13.1.62).) We
are considering the case of point contact of surfaces, therefore A # 0. The augmented matrix is
of rank r = 2 if all six determinants of the third order are equal to zero. This condition yields
the three following independent equations:

bu by by by b by by b by
b by by | =0 by by by | =0 by bn by =0 (13.2.44)
b3 by by b3 —by by I —tanp O

Three equations (13.2.44) yield three relations between four principal curvatures of mating surfaces
and the angle o, formed between the unit vectors erand e (fig. 13.1.1), as follows:

Fy(Kpy KKy K@) = 0 (i=1273) (13.2.45)

Existence of a Locally Geodetic Curve on Surface L,

Similarly, we may investigate the existence of a local geodetic curve on surface I, by using
the equation

[v:”na;”] =0 (13.2.46)



This equation yields a linear equation in unknowns v{" and v{"
agviD + apvi" = ag (13.2.47)

We develop equation (13.2.47) following a similar procedure as discussed in the previous case.
Step 1.—We derive linear equations in unknowns al" and a" by using equations (13.2.4) and

(13.2.6) which yield
a1 [a"] Ta
= 1 + (13.2.48)
o |7 La |7 L,
n? A d,
- = . + (13.2.49)
i | La ] e

c =8 + Cs8,

Here vectors

d=de, +de,

are represented by equations (13.2.5) and (13.2.7), respectively.
From equations (13.2.49), (13.2.8), and (13.2.9) we obtain

al® ﬁf(') d, af“) d,
[K5] { (,)} = [Lpa) \:,,“)} + { } = [LyJIK1] [ 1 } + { }
al? ny d, ad? d,

as(l) d,
= [Lpa K I[Lop] [ “)} + { } (13.2.50)
a, dg

Equations (13.2.48) and (13.2.50) yield
alV d, c, d, + xc, u,
@iy . 1=- + (K] = — = (13.2.51)
aq d, cq d, + x4 ug

[01] = [Lpal[K{][Lap] — [K7] (13.2.52)

Here

Step 2.—We represent the system of linear equations (13.1.34(a)) as
v a3 mg
{04 = = . (13.2.53)
V; b ars "lq
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where vector m* is

* *
m* = mee; + mqeq = a)ze, + (123eq

Step 3.—We prove that equation (13.2.46) is equivalent to the equation
[m*nu*] =0 (13.2.54)
which yields

—uga;; + uay =0 (13.2.55)

(See the similar transformations for eq. (13.2.25).)
Substituting in equation (13.2.55) u: and u; for their expressions (13.2.51), we get

(dy + xep) a3 — (dy + K,c;) Ay = 0 (13.2.56)

Step 4.—We represent equation (13.2.5) as
c= <2w“2’ X v,“’) +t' = 2a<—v(;"es + v}”eq)
+ 2<ws‘]2)v‘§” - wq“z)vs(”)n + 1, + 1e, + 1, (13.2.57)

Here e, e,, and n are the unit vectors of the coordinate system §, (fig. 13.1.1), a = @ e p,
and

t* = (w“2> x v,(,“) - (w<2> x v<‘2>) - [u‘;(z) x (r“’ - R)] (13.2.58)
Equation (13.2.57) yields

¢, = —2avq“) +1! ¢, =2av{M + t; (13.2.59)

Step 5.—We transform equation (13.2.7). We begin with the transformation of n!" and use
equations (13.2.52) and (13.2.53)

o [ i o
A= = e | = LK) |
At Ay Vi

v

ph
,J=ﬁm+mﬂ[uj

Vg

= [Lpg) [K\J[Lgp] [

Vq

aps vs(l) a; — st.s‘“)
= +[Ky) = (13.2.60)
dsy Vq(” ayy — qu"q(”



Equations (13.2.60) and (13.2.7) yield
d, = 2a(—a23 + va(}”) +pr d, = 2a(a,3 - xj.vs“)) +p; (13.2.61)
Here o = w'? e,
p* =pie, + pje, = w”’(w“z) -n) - wm’(w(z’. n) - n(w(m)2 - (d)‘z) X n) (13.2.62)
Step 6.—We may now derive the desired linear equation in unknowns v{ and v,"). Substituting

¢, €4 dy, and d, for their expressions (13.2.59) and (13.2.61), respectively, in equation (13.2.56)
we get

apvi!) - azavqm = ag3 (13.2.63)
Here
y — pi +KI‘ —Kt‘a
ay = a% +a% + P13 — P23 213 515423 (13.2.64)
3 3 3
Ks_Kq 2

We may now determine relations between the principal curvatures and directions of two mating
surfaces which provide the existence of a locally geodetic curve on surface ;. We consider the
following system of linear equations:

i 1y _ 1 H_
apvi? + amz} Y =ay apvi! + aZZVq( )= ap
1 ) _ 1 1) _
a|3vs( ) + 0231)(; ) = [£2%) a13vs( Y — a23v; ) = 43 (13265)
vl + a52v,§” =0

The fifth equation of system (13.2.65) satisfies the condition that the tangent to the contact-point
path forms, with the unit vector e, (fig. (13.1.1)) the prescribed angle u*. Here tan p* = —as;
and angles u and p* are related because vectors of tangents vD and v?) are related by equation
(13.1.9).

We investigate the simultaneous existence of equations (13.2.65) and the existence of a unique
solution of these equations similar to the way it was done for the system (13.2.41). This results
in the conditions of existence of the three following independent equations:

ay ap ap ay  adp 4 an ap ap
ap ay axn =0 ap an ary =0 ap as ary =0 (13266)
a;; a; an a3 —ay 4s 1 —tanp* O

Equations (13.2.66) yield the three following equations:

Vi (Kp KK K@) = 0 (i =12,3) (13.2.67)

Total Number of Relations

Consider that locally geodetic curves are provided on both surfaces I; and L,. This is possible
if both systems of equations, (13.2.65) and (13.2.67), are satisfied. However, the above systems
provide only four independent equations since the coefficients of equations are related. The
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requirement of the dimension of the contacting ellipse (sec. 13.4) yields the fifth relation between
parameters kg, Ky, K, k4, and o. If additional requirements are to be satisfied, only one locally
geodetic curve can be provided by the gear synthesis.

13.3 Relative Normal Curvature

The relative normal curvature of two mating surfaces kg at the given point P is defined as the
difference of the normal curvatures of both surfaces taken in a common normal section of surfaces
and represented as

kg = K\ — k(D (13.3.1)

Consider that the tangent to the common normal section forms an angle g with the unit vector
e, and an angle (¢ + o) with the unit vector e (fig. 13.1.1). Euler’s formula yields

ki) =k cost g + k,sin’ g k() = krcos® (g + a) + &y sin? (g + o) (13.3.2)

(See eq. C.3.26.) Here «,'’ and > are the normal curvatures of surfaces L, and L, in the
common normal section. Thus,

kg = Ks €08’ g + &, sin’ g — k;cos? (g + ) — «, sin? (g + o) (13.3.3)

After simple transformations we get
_ 2 2 2 2 2 L2
Kg = (Ks — K7 COS” 0 — Ky 8in 0) cos® g + (xq — Kysin® ¢ — k, COS 0) sin® ¢
sin 20
+ (5= ) — " sin 2g (13.3.4)

Equation (13.3.4) and expressions for ay,, a,,, and a,, in equation (13.1.44) yield
Kg = O.S[a” + ay + (ay; — ay) cos Zq] + a,; sin 2q (13.3.5)

The principal values of the relative normal curvature are the extreme values of function kr(q).
The principal directions of the relative normal curvature are determined with the equation

d
— (k) =0 (13.3.6)
dq
Equations (13.3.6) and (13.3.5) yield
tan 2q = 2— 212 _ (13.3.7)
apy —ap

Equation (13.3.7) determines two solutions for ¢, which are ¢/ and ¢'* + 90°. This means that
there are two perpendicular directions for the principal directions of the relative normal curvature.
The principal values of the relative normal curvature are represented by the equation

Kp = 0.5{((1” + azz) + [(a“ - 022)2 + 4(1%2J]/2} (1338)



Equations (13.3.5), (13.3.7), and (13.3.8) work for both cases of contact of mating surfaces, which
are point contact and line contact. In the case of line contact, the coefficients a;;, a2, and ax
are related by

dyy = — (13.3.9)
(See eqs. (13.1.47).) Equations (13.3.8) and (13.3.9) yield that in the case of line contact, the
principal values of the relative normal curvature are determined as follows:
KR=O Kgp = dy) + ay; = (Ks+Kq) - (Kf+ Kh) (13.310)
One principal direction with xg = 0 coincides with the tangent T to the line of contact of mating
surfaces, and the other principal direction is perpendicular to T.

The determination of the principal values and directions of the relative normal curvature may
be interpreted as the diagonalization of the symmetric matrix

(] = [a“ an} (13.3.11)

ap an

It is known from the Theory of Matrices (Korn, etal., 1968) that such operation may be represented
by the matrix equation

ru O T a ap
= [C] [C] (13.3.12)
0 pn ap ap
where [C]T is the matrix transpose to [C]. We express matrix [C] by
cos g —sin g
[C] = (13.3.13)
sing ¢os g

Equations (13.3.10) and (13.3.11) yield

a —a sin 2
P12 = ay; €08 29 - 222) q=0
and
2a
tan 2q ==
ap —axp

Py = O.S[a” + ap + (ay — ay) cos Zq] + ay, sin 2¢q

pn = 0-5[011 + ay — (a) — ay) cos 261] —ayy sin2q

These equations are similar to the equations (13.3.7) and (13.3.8), which were determined previously.
Equations discussed in this section were first proposed by Litvin (1969).
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3.4 Contact Ellipse

Because of the elasticity of tooth surfaces, the contact of surfaces at a point is spread over an
elliptical area. The bearing contact of gear-tooth surfaces is formed as a set of contacting ellipses.

Consider that the following are given for the point of contact: (1) the approach of surfaces under
the load, (2) the principal curvatures of contacting surfaces, and the parameters of principal
directions. To determine the dimensions and orientation of the contacting ellipse, we use a procedure
based on the following considerations:

Figure 13.4.1 shows surfaces I, and E, in tangency at point M. The unit surface normal and
the tangent plane are designated by n and I1. The area of the deformed surfaces is shown by dashed
lines and designated by K\M\L, and K,M,L, for surfaces £, and L,, respectively.

Consider points N and N’ of surfaces I, and I,, respectively (fig. 13.4.1). The locations of
Nand N’ with respect to point M are determined with the coordinates of N and N’ which are given
by N(p,¢" and N’(p,0'), respectively (figs. 13.4.2(a) and (b))). The elastic deformation of
surfaces at M is designated by &, and ,, and the elastic approach of surfaces at M is given by
6 where 6 = &, + &,. The resulting displacement of a surface point may be represented as a
displacement having (fig. 13.4.2) (1) a component with the surface (given by 6, i = 1,2) and (2)
a component with respect to the surface, because of the elastic deformation at points N and N,
(given by f;, i = 1,2). The resulting location of point N is designated in figure 13.4.2(a) by N,,
and thus NN, is the resulting displacement. Let us represent N N, as

£
Figure 13.4.1.
'\Ii 2123 " el
] M = t
N S
1 ~_ 1D
(] n | 4
61 R N L M /[ Nz‘ 1
v | t / 2
) Z b 6, /
! y
N 7
- i N T T
P
L
£
fa) (b)
Figure 13.4.2.



Here [N N,| = 8, is the displacement with surface L, and NN, is the displacement with respect

to £, because of the surface deformation at point N;. The location of point N, with respect to
the tangent plane II is given by the equation

W= -5 +f (13.4.2)

Similarly, for point N’, we obtain (fig. 13.4.2(b))

N'N,= NN+ N N, (13.4.3)
which yields

@D = ¢ 4 5, — f (13.4.4)

Here £V and £ represent the deviations from the tangent plane for two mating points of contacting
surfaces. The notations €V and #2 represent the initial deviations from the tangent plane II for
points N and N’ of surfaces L, and I,, respectively. Points N and N’ will coincide with each other
and form a common point of contact of the deformed surfaces of £V and ¢V, This yields

s +f=0D48,-f (13.4.5)
Equation (13.4.5) yields

€D — =8, + 86— (fi + /) (13.4.6)
The right-hand side of equation (13.4.6) is always positive since 6,>f, and 8,>f,. Equation
(13.4.6) is satisfied for all mating points of contacting surfaces within the area of deformation and

at the edge of this area. However, at the edge of this area f; = O and f, = 0 and therefore equation
(13.4.6) becomes

D — D=8, +8,=28 (13.4.7)
Outside of the area of deformation
[REN (13.4.8)
and within this area
QNSRS (13.4.9)

We may correlate £ with the surface curvature as follows. Consider that a surface I is
represented by

r(u,0)€C? r,xrg#0 (ub)€E (13.4.10)

where (u,8) represent the surface coordinates.
Curve M M’ on the surface L may be represented by the equation

r =ru(s), 6(s)] (13.4.11)

where s is the arc length.

Let us designate the length of the arc which connects two neighboring points M and M’ of the
curve by As, where As =M M’ . The increment of the position vector r is designated by Ar, where
Ar = M M’. Expanding Ar with the Taylor-series expansion, we get
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d & P d’r (As)?
_ rAs+_r(As) d’r (As)

MM =Ar=— > 3 (13.4.12)
ds ds® 2! ds® 3!
Here
dr _ ordu 4 ardf
ds duds 98ds
d’r 3% (du\' 9% dudd r[do\’
*.,:—2— +2 ——+—.,_ y e
ds®  du” \ds dudbdsds 030°\ds
Plane I1 shown in figure 13.4.3 is tangent to the surface at point M. Vector
PM’ =¢n (13.4.13(a))

is perpendicular to plane II at point P, and f represents the deviation of the curve point M’ from
the tangent plane. The deviation £ is positive if PM’ and n are in the same direction. Equations
MM’ =Arand MM’ = MP + fn yield

_ dr d*r(As)?  d’r(As)?
MP +in=—As + — —
ds ds 2! ds® 3!

(13.4.13(b))

Vectors MP and n are mutually perpendicular. Taking the dot product on both sides of equation
(13.4.13(b)) with n, and limiting the expression for £ up to terms of the third order, we obtain

d* as’
f= (ds;'")_zs— (13.4.14)

It was mentioned in chapter 10 that the normal curvature of a surface may be represented by

d*r
n = N 13415
i ds? ( )
Thus,
A 2
¢ = K,,Ts (13.4.16)

[EX] (b} il

Figure 13.4.3,



Consider the coordinate system with coordinate axes n, 7, and { (figs. 13.4.3(a) and 13.4.3(b)),
whose origin coincides with point M, and axes # and { lie in the tangent plane II. It is easy to
verify that

As? =97+ 2 =p? (13.4.17)

where As = p = |[MP]|, and n and { are the coordinates of point P.
Equations (13.4.16) and (13.4.17) yield

1
f= EKnpz (13.4.18)
The normal curvature and principal curvatures of a surface are related by Euler’s equation. (See
app. C.) Considering the relations in Euler’s equation, the fact that e, is the unit vector of the
principal direction having principal curvature ;, and the fact that vector MP makes an angle ¢

with ¢;, we obtain
Ky = K cos? q + Ky sin® ¢ (13.4.19)
where «; and « are the principal curvatures of the surface at point M.

Consider again the coordinate system having coordinate axes n, 7, and { (fig. 13.4.3), whose
origin coincides with point M. The unit vector €; makes an angle « with the 5-axis, and the
orientation of MP is determined by angle p, where u = g + o. With these designations we obtain

K, = K €OS° (u — @) + Ky sin? (u — @) (13.4.20)
Equations (13.4.17), (13.4.18), and (13.4.20) yield
2= pz[K[ cos? (4 — o) + ky sin? (u — oz)] (13.4.21)

Let us now consider the contact of two surfaces, I, and £,, whose point of contact is M. The
tangent plane is formed by axes n and ¢ (fig. 13.4.4); e"” and e{*) are the unit vectors of the
principal directions of surfaces L, and L,, respectively; vector MP and the surface unit normal

n determine the common normal section of both surfaces. The deviation from the tangent plane
for point P ((MP| = p) may be expressed in terms of the curvatures of both surfaces as follows:

269 = p?[f" cos? (u — o) + aff sin® (u = )] (13.4.22)

(a (b
Figure 13.4.4.
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201 — pz[KI(Z) cos? (u — a®) + k2 sin® (u — a‘z’)] (13.4.23)

Here ¢V (j =1, II) is the deviation for point P of surface L; (i = 1,2,).

It was mentioned earlier that at the edge of the area of deformation, the deviations (¢7, ¢™)
and the surface approach at M () are related by equation (13.4.7). Equations (13.4.7), (13.4.22),
and (13.4.23) yield

pz[:q“) cos? (u — a'Vy + il sin? (n — &) — ? cos? (u — &)

— P sin® (u — a‘2>)] ) (13.4.24)

Transforming equation (13.4.24) by using the expressions

p=nitf  cosp="  sinp=? (13.4.25)
p

o
we obtain

n2<xl(” cos? a + & sin? oV — &P cos? a?® — «f) sin? am)
+ fz(xl(” sin? @V + kfP cos? o'V — K@ sin? «® — k) cos? a(z))
+ n;(gl sin 2a” — g, sin 2a‘2>) =126 (13.4.26)
where
g =n" -’  g=k? -«

Angle o'V that determines the orientation of the coordinate axes n and { with respect to e{",
may be chosen arbitrarily. For instance, o' may be chosen as satisfying the equation

g sin 2aV — g, sin 2a@ =0 (13.4.27)
where (fig. 13.4.4)
a@=aV +gq (13.4.28)

Equations (13.3.27) and (13.3.28) yield

an 2q0 = _$28IN20 (13.4.29)
81 — 82 cos 20

Equation (13.3.29) provides two solutions for 2a‘". We shall choose the solution represented by
equations

81 — £ CO8 20
172
(87 — 28182 cos 20 + g3)

cos 2oV = (13.4.30)

and



in 2
sin 200 = 82 S 29 (13.4.31)

172
(87 — 28182 cos 20+ )

Equations (13.3.30), (1 3.3.31), and (13.3.28) determine the orientation of axes » and { with respect
to the principal directions of the contacting surfaces. These equations yield

cos? oM = 0.5[1 + m(g) — g COS 20)] (13.4.32)
sin®> oV = 0.5[1 — m(g, — &2 €OS 20)] (13.4.33)
cos® a'? = O.S[l + m(g, cos 20 — gz)] (13.4.34)
sin? a® = 0.5[1 —m(g, cos 20 — gz)] (13.4.35)
where
1
m= (13.4.36)

172
(& — 20182 cos 20 + &)

Equations (13.4.26), (13.4.27), (13.4.32) to (13.4.36) yield

By? + AP = 6 (13.4.37)
Here
[ 2
A= — - (g% — 2g,g, €08 20 + gg)” | (13.4.38)
4 )
and
1 [ 1 > 2 2 1/2—1
B= Lx,g‘ @+ (g, — 2g,8, c08 20 + gz) (13.4.39)
Here
W =+ k) gi= k)

Equation (13.4.37) confirms that the projection of the area of elastic deformations on the tangent
plane is an ellipse whose axes coincide with axes 7 and {, respectively (fig. 13.4.4(b)). The axes
of the ellipse are

1/2 1/2

2b =2

13.4.40
B ( )

2a=2\—
A

Example problem 13.4.1. A cone surface T, and a spherical surface L, are in contact at a single
point M. Consider as given the approach of surfaces. Determine the dimensions and orientation
of the contacting ellipse.

Solution. The cone surface is represented in the coordinate system Sy by equations which are
similar to equations (8.4.14):

x{! = R cot . — u cos v, yi" = u sin Y sin 0 2" = u sin y cos § (13.4.41)
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The spherical surface is represented in the coordinate system S¢§?) by equations which are similar
to equations (8.4.11)

. . . R
X = p cos u ¥¢?) = p sin u cos ¢ z? = p sin u sin ¢<p < —7> (13.4.42)
cos

¢

The superscripts 1 and 2 in equations (13.4.41) and (13.4.42) indicate surfaces L, and L.,
respectively.

Point M of surface L, is represented in the coordinate system S; by coordinates x!" = 0,
yf(” =0, zf”) = R. Considering these coordinates and equations (13.4.41) we find that 6 = 0 and
u =AM = Ry/sin ¥, for point M. Point M of L, is represented in coordinate system S, by
coordinates x§” = p sin ., {2 =0, 2§ = p cos Y. With these coordinates and equations
(13.4.42), we find that p = 90° — y_ and ¢ = 90° for point M.

Surface I, may be represented in the coordinate system S; by the matrix equation

[rfm] - [Mfo] [r(gm] (13.4.43)
where
1 0 0 —p sin .
[M,(,] _| 0 : 0 0 (13.4.44)
0 0 I R—pcosy,
0 0 0 1

Equations (13.4.42) to (13.4.44) yield

(2) _

xf‘z’ = p (cos u — sin ¢,) ¥/ p sin p cos ¢

(13.4.45)

2;2’ =p (sin p sin ¢ — cos y.) + R

It is easy to verify that surfaces £, and L,, which are represented by equations (13.4.41) and
(13.4.45), are indeed in contact at M, since at this point rf‘” = rf‘z’ and the surface normals are
collinear. Here rf(" (i = 1,2) is the position vector for the point of contact.

Let us now determine the contacting ellipse with equations (13.4.28) to (13.4.40).

The principal directions of the cone surface at point M may be represented by the unit vectors.

0 cos Y.
=L =] a1 o
0 —sin y,

We recall that one of the principal directions of the cone surface coincides with the cone generatrix.
(The unit vector ef{’ of this principal direction is shown in figure 13.4.5.) The principal curvatures
of the cone surface (with the chosen direction of the unit vector n) are given by



X¢

Zf

_—

OfM =R

Figure 13.4.5.

cos ¥
=2 =0

The principal directions for a spherical surface may be chosen arbitrarily. Let us choose the
0 (See fig. 13.4.4.) The principal curvatures of

same principal directions as that of £,. Thus ¢ =

. . 1
the spherical surface are given by k2 =k’ = ~. Thus,
p

2
K“:cosyl/c =cos¢/c (=2 -0
L > S &
Using equations (13.4.38) to (13.4.40), we obtain
A=_i B=1 pcosy.—R
20 2 oR

12
amoen)® b= (R
R — pcos ¥,

The major axis of the contacting ellipse is 2b and it is directed along ef".
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Chapter 14

Pitch Surfaces

Limiting Contact Normal

14.1 Introduction

Although the term pitch surfaces (pitch cylinders, pitch cones) may be confusing, we have to
apply it since it is widely used in the engineering literature. However, the term pitch surfaces denotes
several types of surfaces that differ in a kinematical sense.

Consider a pair of spur or helical gears, both having parallel axes of rotation, in mesh (fig.
14.1.1(a)). The pitch circle is an imaginary circle that rolls without slipping over a pitch circle
of a mating gear. The pitch circles are in tangency at the pitch point /. The pitch circles are the
centrodes of mating gears, and the pitch point is the instantaneous center of rotation in the relative
motion. (See ch. 2.1.) We have to differentiate between the pitch circles of standard and nonstandard
gearing.

In the case of standard gearing, the centrodes of mating gears coincide with their pitch circles.
The gear pitch circle is a reference circle and, in addition, it is the gear centrode in mesh with

and is parallel to the direction of the rack translation,

In the case of nonstandard involute gears, we have to use two different terms, the operating pitch
circles and merely pitch circles. The operating pitch circles are the centrodes of the mating gears
while the pitch circle of the gear is its centrode in mesh with the rack. The operating gear pitch
circles of gears and their pitch circles do not coincide. Figure 14.1.1(c) shows the operating pitch
circles and the pitch circles for the case where C’ > C. We emphasize that only the radius of the
pitch circle but not the operating pitch circle may be expressed in terms of the standardized diametral
pitch and the number of gear teeth. Thus,

N
r,=-— 14.1.2
Fooop ( )
The radius of the operating pitch circle is represented by
N
r, =—0 14.1.2
PP ( )

where P’ is a nonstandardized diametral pitch.

Let us now consider bevel gears. In the case of standard bevel gears the pitch cones are the axodes
(ch. 2.3), the loci of the instantaneous axes of rotation in the relative motion (fig. 14.1.2(a)). The
line of tangency OI of the pitch cones is the instantaneous axis of rotation in the relative motion
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and y = v, + Y2, where v; and v, are the pitch cone angles. In the case of nonstandard bevel gears
(y’ # 7) the axodes are the operating pitch cones and the pitch cones are not in tangency. The
radii of the pitch cones (but not of the operating pitch cones) may be expressed in terms of
standardized pitches.

Summarizing, we say that in the case of transformation of rotation between parallel and intersected
axes, the operating pitch surfaces are the axodes and they coincide with the pitch surfaces in the
case of standard gearing only.

Drives of helical gears with crossed axes, worm-gear drives and hypoid gears transform rotation
between crossed axes. The gear axodes are two hyperboloids which roll as well as slide over each
over. (See ch. 2.4 and fig. 2.4.) The operating pitch surfaces have nothing in common with the
hyperboloids —they are cylinders (cones) with crossed axes in the case of worm-gear drives and

helical gears (hypoid gears).

14.2 Operating Pitch Surfaces: Transformation of Rotation Between
Crossed Axes

We define the operating pitch surfaces H, and H, as those surfaces that satisfy the following

conditions:
(1) The axis of rotation of the operating pitch surface coincide with the axis of the gear rotation.
(2) Surfaces H, and H, are in tangency at the main contact point P (the pitch point) in the fixed

coordinate system Sy.
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(3) The relative velocity v'? is directed along the common tangent to the helices on the surfaces
H, and H,. (In the case of transformation rotation between parallel and intersected axes the pitch
point P belongs to the instantaneous axis of rotation and v''? = ().

The last two conditions may be represented by the following equations:

neyld =g (i=1,2) (14.2.1)
[nWe®Or®) =9 (i=1,2) (14.2.2)

Here n‘” is the pitch surface unit normal at P and r is a position vector drawn to the pitch
point P from a point of the line of action of w ‘", Equation (14.2.1) yields that the operating pitch
surfaces H, and H, have a common tangent plane at P and vector v''? lies in this plane.

Equation (14.2.2) is based on the following considerations: (1) the unit normal to H, at the pitch
point P intersects the axis of rotation of H; (the line of action of w‘?), since H; is a surface of
revolution. (2) The position vector r‘") also intersects the axis of rotation. (3) Vectors n(?, r
and w ") belong to the same plane drawn through the pitch point P and the points of intersection
of vectors n” and w, and r'" and w .

Equations (14.2.1) and (14.2.2) determine the operating pitch surface only locally, within the
neighborhood of the pitch point P. This small area of the operating pitch surface may be represented
as an area of a cone or a cylinder because of the angle formed by vectors n'/ and @ ‘. The
operating pitch surfaces are usually chosen in the same way as the pitch surfaces of the gears.
The operating pitch surfaces of the helical gears (with crossed axes), the worm, and of the worm
gear are cylinders; the operating pitch surfaces of hypoid gears are cones.

It was mentioned above that in the case of crossed gear axes the operating pitch surfaces do
not coincide with the gear axodes. The gear tooth surface L, and the operating pitch surface H,
intersect each other. The gear tooth surfaces L) and L, are to be in tangency at the pitch point
P and their common normal n®” and the relative velocity v'¥ must be perpendicular to each
other; that is

n®) ey = (14.2.3)

If equation (14.2.3) is satisfied, the gears, with surfaces I, and I, being in contact within the
neighborhood of P will transform rotation about the crossed axes with the prescribed angular velocity
ratio.

14.3 Helical Gears with Crossed Axes and Worm-Gear Drives:
Operating Pitch Surfaces

The operating pitch surfaces are two cylinders of radii rs" and r{® with crossed axes and the
pitch point P is located at the line of the shortest distance between the axes of the cylinders (fig.
14.3.1(a)). Point P is the point of tangency of the pitch cylinders. Points P, and P, of these
cylinders coincide with each other forming the common point P.

Let us draw a common tangent plane II to the cylinders that pass through P. The straight line
t-t lies in IT and it is a tangent to the helices on the cylinders (fig. 14.3.1(b) and fig. 14.3.2(a)).
Such a helix is the line of intersection of the gear tooth surface with the operating pitch cylinder.

Figure 14.3.2(a).(b) shows two pitch cylinders of helical gears with the crossing angle v formed
by vectors w" and w™®. The gears are provided with left-handed screw surfaces L, and L,.
Surfaces L, and L, are in tangency at P. Vectors v'" and v represent the velocities of points
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P, and P,, respectively. Because of the continuance of tangency within the neighborhood of P,
the velocities vV and v must be related as follows:
(1) The relative velocity

VD =y — y@

is 1o be directed along t-. Vector v is the velocity of sliding at P.

(2) Projections of vectors v and v on line m-m (fig. 14.3.2(c)) must be of the same direction
and have the same magnitude (Line m-m is perpendicular to #-1.)

Consider the velocity polygon shown in figure 14.3.2(c). The crossing angle y which is formed
by vectors @ and @@, is given by (fig. 14.3.2(a))

v = 180° = (B) + B2) (14.3.1)
Velocities v’ and v of points P, and P, are represented by
vD = ® x ,.p(n v® = @ x r,SZ’ (14.3.2)
Here
| = w‘”rj” (i=12) (14.3.3)
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Since projections of v and v® on m-m must be of the same direction and have the same
magnitude, we obtain

v cos B; = v@ cos B, (14.3.4)

Equations (14.3.3) and (14.3.4) yield

8 (2)
w r,’ cos 8
my, = ﬁ = 1:”“2 (]4.35)
w rp ' cos B

Unlike the case of spur gears or helical gears with parallel axes, the prescribed ratio m,, can be
satisfied with a various ratio r,{?)/r{".
The magnitude of sliding velocity is given by (fig. 14.3.2)

V92 = w®rM sin B + 0Pr® sin g, (14.3.6)

Mating helical gears with crossed axes are usually of the same hand as is shown in fig. 14.3.2.
Figure 14.3.3 shows helical gears with crossed axes having opposite hands. Considerations similar
to the ones discussed above yield that (fig. 14.3.3)

(1) The crossing angle is

v =180° — (B; — By) (14.3.7)

(2) The projections of vectors v and v on line m-m have the same direction and magnitude,
(fig. 14.3.3(c)) and the angular velocity ratio is represented by equation ( 14.3.5) and
(3) The magnitude of the sliding velocity is given by
V) = wPr sin g, — W@ sin B, (14.3.8)
Let us differentiate between standard and nonstandard involute helical gears. The pitch cylinders
of standard helical gears are the gear axodes in mesh with the rack cutter. The velocity of translation
of the rack cutter (v) and the angular velocity of the gear (w) are related by

v = owr (14.3.9)

where r} is the radius of the pitch cylinder of a standard helical gear.

(ar tht e

Figure 14.3.3.

ORIGINAL PAGE IS
OF POOR QUALITY



o t
(1
¥y G
B2 By
/ 1800-y
parallel h-b -~ >
Pl
parallel t-t — ¥ w!V
a-—— TR -a
// P
t wm
y
wr D
~ b m
2)

%
€

{ai h

Figure 14.3.4.

1-900—\ M
N
N b

e
_ -~ Worm pitch

//// i Z cylinder
o Pl j
P < N /
Gear pitch / ]
cylinder ~ (2)
t el ARV
Y

b
1

&
ﬁh\

Figure 14.3.5.

The center distance of helical gears is equal to the sum of the radii of the pitch cylinders in the
case of standard helical gears. Nonstandard helical gears are generated by special settings of rack
cutters and the change of the center distance depends on these settings.

The above derived equations may also be used for the worm-gear drives with cylindrical worms.
A worm may be considered as a helical gear for which the number of teeth is equal to the number
of worm threads. The pitch point P is located on the line of shortest distance between the crossed
axes of the worm and the worm gear. The operating pitch cylinders of the worm and the worm
gear are two cylinders that are in tangency at P (fig. 14.3.4 (a); fig. 14.3.5). The radii of pitch
cylinders are r and R, respectively.

Plane II (fig. 14.3.4(a)) is tangent to the pitch cylinders at P. The helices on the pitch cylinders
have a common tangent (t-f) at P which lies in plane 7. Points P, and P, of both pitch cylinders
coincide with each other at the point of tangency P. The worm and the worm gear rotate about
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axes a-a and b-b with angular velocities ‘" and @ » respectively. The velocity of points P, and
P, are represented by equations

v = M) x p v = 0@ xR (14.3.10)

Similar to the previous discussions we may state that
(1) The relative velocity v12) (the sliding velocity) must be directed along the tangent 7-r
(2) The projections of velocities v" and v® on line m-m (it is perpendicular to r-r) must be
of the same direction and have the same magnitude.
The velocity polygon (fig. 14.3.4(b)) yields

v sin A; = v cos 6, (14.3.10(a))
It is evident from figure 14.3.5 that
Br=A; ~ (v —90°) =90° —(y=\) (14.3.11)

Here A, is the lead angle on the worm pitch cylinder represented by

r

h
A, = arc tan (—) (14.3.12)
where & is the screw parameter (h>0 for a right-handed worm)
y = oy v =, (14.3.13)

Equations (14.3.10(a)), (14.3.11), and (14.3.13) yield

w® rsin A,

A I 14.3.14
oV Rsin (y - \) ( )

my =

We have considered a worm-gear drive with a right-handed worm. Figure 14.3.6 shows the pitch
cylinders and the velocity polygon for a worm-gear drive with a left-handed worm. Derivations

Figure 14.3.6.
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based on analysis similar to the one discussed above yield
y—90° =X\ +5
Thus
By = (y — N\ — 90° (14.3.15)
and
v gin N, = v cos B, (14.3.16)
Equations (14.3.15) and (14.3.16) yield
wM rsin A\ = @? Rsin (y = A) (14.3.17)
The lead angle \,, if represented by equation (14.3.12), has a definite sense which depends on
the sense of the screw parameter & (h < 0 for a left-handed worm). Taking into account that the

worm thread is left-handed, and that the screw parameter h and A, are negative, we obtain from
equation (14.3.17) that

rsin A
my = — " (14.3.18)
Rsin (v + \p)
The general expression for the ratio m,; may be given by
in A
my = TR (14.3.19)

:t__————
Rsin (y ¥ M)

The upper sign corresponds to a worm-gear drive with a right-handed thread of the worm.

Let us differentiate between standard and nonstandard worm-gear drives. The operating pitch
cylinder of the worm of a nonstandard worm-gear drive does not coincide with the pitch cylinder
of the worm. The pitch of the worm is given on the pitch cylinder and the addendum and dedendum
of the worm are measured from the worm pitch cylinder. The cross section of a nonstandard worm-
gear drive is shown in figure 14.3.7. The pitch point P is out of the worm pitch cylinder. However,
it is located on the line of the shortest distance between the worm and the worm gear. Nonstandard
worm-gear drives are applied to improve the conditions of meshing.
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14.4 Hypoid Gears: Operating Pitch Surfaces

Basic Equations

Unlike the helical gears and worm-gear drives, the pitch point P of hypoid gears is located offset
of the line of the shortest distance, and the operating pitch surfaces are two cones (fig. 14.4.1).

Let us derive equations which relate parameters of the operating pitch cones with the coordinates
of the pitch point. These equations were derived by Baxter (1961), Litvin (1968), and Litvin, Petrov,
and Ganshin (1974).

We set up the following three coordinate systems: Sy (x1,y1,2;) and S (x,,y,,2,) rigidly connected
to gears 1 and 2, respectively, and S, rigidly connected to the frame (fig. 14.4.2). The origins
O, and O, are the apices of the pitch cones; 2y and z, are the axes of gear rotation (we will limit
the discussion to the crossing angle of 90°); d and d, determines the location of the cone apices;
C is the shortest distance between the gear axes of rotation; and P is the pitch point. The pitch
cones are in tangency at point P. The plane drawn through points Oy, 0,, and P is the pitch plane;
O/P and O,P are the lines of tangency of the pitch cones with the pitch plane.

We represent the equations of the pitch cone in the coordinate system §; as follows (fig. 14.4.3):

X; = u; sin y; cos 0; v, = u; sin 4, sin 6, Zi=u;cosy,  (i=1,2) (14.4.1)

Figure 14.4.1.
dz/
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Figure 14.4.2. Figure 14.4 3.



Here 0; and u; = |O;M | are the surface coordinates, and v; is the angle formed by the cone

generatrix and the cone axis.
The unit normal to the cone surface is given by

N 0.

IN;| - 3—91 oy

Equations (14.4.1) and (14.4.2) yield (provided y; sin vy; # 0)

n,; = cos 6, cos y; ny; =sin g, cos y; ny = —sinY;

(14.4.2)

(14.4.3)

Equations of the pitch cones and the surface unit normals are represented in coordinate system

Ss by the following matrix equations

Here

—
=
el
|
o e o
(o]
|
R

00 —-14d
[Mﬂ]z 010()2
0

0 0 1

(14.4.4)

(14.4.5)

(14.4.6)

(14.4.7)

(14.4.8)

(14.4.9)

Matrix [Ls;] may be derived from matrix [Mp] by deleting the last column and row. Equations

(14.4.1) to (14.4.9) yield

u, sin vy, cos 0,

u, sin vy, sin 8,
[71-

u, cos vy, — d

1

(14.4.10)
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cos 8, cos v,
[nf“’J = | sin 8, cos v, (14.4.11)

—sin Y1

Uy sin vy, cos 8, + C

—U; COs v, + d,
[r”)] = (14.4.12)
i 125) sin Y2 sin 02
1
cos 0, cos v,
[nf(z)] = sin 2 (144]3)

sin 8, cos v,

Since the pitch cones are in tangency at the point P the following equations must be satisfied

[,f(n] - [,fm] = [rfm] (14.4.14)

[n0] = - [2] (14.4.15)

(Here [rf(P N represents the pitch point P.) We have derived equation (14.4.15) taking into account
that the pitch cones are located above and below the pitch plane, and that the surface unit normals
are directed opposite to each other.

Equations (14.4.14) and (14.4.15) yield

) sin y; cos 8, = u, sin v, cos 6, + C = xij) (14.4.16)
up sin vy, sin 6; = —u, cos v, + d, = yf(P) (14.4.17)
Uy €os v, —dy = u, sin vy, sin §, = zf‘P) (14.4.18)
cos @) cos y| = — cos 6, cos Y2 (14.4.19)

sin 6, cos y; = — sin v, (14.4.20)

sin y; = sin 6, cos ¥, (14.4.21)

The system of equations (14.4.19) to (14.4.21) consists of only two independent equations because
" | = ,nf‘”‘ =1 (14.4.22)

The radius of the cone circle which passes through P may be represented as follows (fig. 14.4.3):

uisiny, =r, (i=1.2)



Equations (14.4.16) to (14.4.18) and (14.4.23) yield

rycos B, =rycos B + C= xf(P) (14.4.24)
ry sin 0, = —r; cot v +dy = ¥ (14.4.25)
r, cot y; — dy = ry sin 8, = 2{" (14.4.26)

Equations (14.4.24) to (14.4.26) and two equations of the system (14.4.19) to (14.4.21) represent
the basic system of eight equations, that relate the parameters of the pitch cones, the surface
coordinates, and the coordinates of the pitch point. The eleven parameters are the following: ry,
8, rs. 05, dy, d2, Y1, Y2 xf””, P and zf‘P’. Considering three of the parameters from the above
set as given, we may determine the remaining eight parameters.

Relations Between Cone Parameters

Let us derive equations that relate the six cone parameters ry, ra, d,, ds, v, and 7,.
Equations (14.4.25) and (14.4.20) yield

sin 7y,

—rycot ¥, +dy =r sin ;= —rj —— (14.4.27)
€os ¥
Rearranging equations (14.2.27), we get
ry cot y, cos y; — dy cos y; —ry siny; =0 (14.4.28)
From equations (14.4.26) and (14.4.21), we get
sin
ry cot y, — dy = 1y sin B = r—— 1 (14.4.29)
COs 7y,
Thus
ry ot yy €OS y3 — dj €os y, —ry siny; =0 (14.4.30)
With equations (14.4.24), (14.4.20), and (14.4.21), we get
r2(1 — sin?0,) — r3(1 — sin’,) — 2Cr; cos 6, — C? =
2 2 2 2 2 2
cos“y; — sin ry (cos“y, — sin
ri( ’le sinyy) _ ri ‘Yz2 71)—C2—2Cr2 cos 6, = 0
cos“ v CO8 ™2
Thus
ri(cos®y, — sin’y,) _ r3(cos?y, — sin?y;) _c? 2
cos?y, cos®y,
cos?y, — siny,
—4CH}| —————) =0 (14.4.31)
CoS Y2
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Three equations (14.4.28), (14.4.30), and (14.4.31) relate six cone parameters. Considering three
of these parameters as given, we may determine the remaining three.
It is easy to verify that the cone angles must satisfy the inequality
Y1+ v, <90° (14.4.32)

if the crossing angle is 90°. From equations (14.4.20) and (14.4.21), we see that since

sinf, =0 Gng < (14.4.33)
COS 7y,
sinf = " ing <1 (14.4.34)
€os 7y,
the following inequalities must be satisfied
Mnoy v (14.4.35)
COS vy COS v,
Inequalities (14.4.35) yield
sin y; < sin (90° —v,) sin 7y, < sin (90° — v,) (14.4.36)
and
Y1+ =90° (14.4.37)

From equation (14.4.31) we obtain that the equality v, + vy, = 90° may be satisfied only if
C = 0. Since the center distance of hypoid gears C # 0, the final relation between v, and v, is

Y+ 72 <90° (14.4.38)
There is an alternative system of equations that relate the pitch cone parameters. Consider that

C. v2, rzand y; < 90° — v, are given. We may then determine the remaining parameters d,, d,,
and r; by using the following procedure for computations:

Sin Y2

sin §, = — (14.4.39)

€os v,
sin #; = il cos 0, = — cos 8, s (14.4.40)

COS va COS >

C 6

r= m (14441)
cos 6,

dy =rysin 8, + ry cot v, (14.4.42)
dy =r coty; —rysin 6, (14.4.43)

(See egs. (14.4.19) to (14.4.26).)



Pitch Point Coordinates

Knowing the pitch cone parameters, we may represent the coordinates of the pitch point as follows:
(See eqs. (14.4.24) to0 (14.4.26).)

yf(P) = —n cot v, + d2 (14444)
§P =1y cotm — dy (14.4.45)
5P = xAfrE - (yf(P))2 (14.4.46)

Pitch Plane Orientation

The pitch plane passes through points 0,, 0,, and P (fig. 14.4.2). The pitch cones and the pitch
plane have a common normal at point P because they are in tangency at P. Therefore, the unit
normal to the pitch plane (n‘") may be determined as the normal to the pitch cone 1 at point P.
Equations (14.4.11) and (14.2.24) to (14.4.26) yield

n'?P) = cos 6, cos yig + sin 8, cos v,y — sin 11y

COos 7y . . )
= ! (xPiy + yfPiy) — sin viks (14.4.47)

The Tooth’s Longitudinal Shape

We begin with the determination of the unit vectors of the generatrices O\P and O,P (fig.
14.4.2). We designate these unit vectors by 7" and 7@, Equations (14.4.10) and (14.4.12) yield

7O =2 = =sin y,(cos 8i + sin ,jy) + cos YKy (14.4.48)

and

-
B
|
|

= = sin 7y, cos 8,i — cos y2js + sin 7y, sin 6;k; (14.4.49)
ar
-

6u2

The unit vectors 7" and 7 form an angle 4 (figs. 14.4.2 and 14.4.4) given by the equation
cosn=7"e7?.
Equations (14.4.48), (14.4.49), and (14.4.19) to (14.4.21) yield
cos 7 = tan vy, tan y; (14.4.50)

Let us now determine the relative velocity vector v12 at the point P shown in fig. 14.4.2

yi2 =y —y@ = oM x p P — (wm x 1" + 0,0 x wa))
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I T ¥ P Kk i b Kk

=/ 0 0 -V -1 0 -u® o0 |-]cCc o o
xf(P) )if(P) L (P) xf(P) yf(P) Zf(P) 0 _w(Z) 0
= (0DyP 4 M)~ P — 0@ (5" = )k, (14.4.51)

Vector v is directed along the tangent to the tooth’s longitudinal shape.
It is easy to verify that vectors v(" and v® lie in the pitch plane and are perpendicular to the
unit vectors 7" and 7'?, respectively. This may be proven with the equations

vilentP =0 vider(h =g (i=1,2) (14.4.52)
Since vectors v and v® lie in the pitch plane, vector v('2 = vV — y®@ 2150 lies in this plane.
Let us now determine the angle 8;(i = 1,2) formed between the unit vector 7' and the relative

velocity v'?), Taking into account that

D ey = 7@, _ g

we get
704y ‘r“)o(v“’—v‘z’) 7Dy
cos 3 = fv“z){ = |v“2)| = — iv“z)f (14.4.53)
and
@), (12) 2}, (1)
T ey T“ev)
cos 3, = |V“2)| = IVUZ)I (14.4.54)
Here (see eqs. (14.4.51))
v = 0P = O (P - i) (14.4.55)
v® = u® x rf“’) + OfT x w?® = wa)[ - f”’)if+ (x/”” - C)kf} (14.4.56)

and

2
2| = {(w“’)z[ (yf"”) + (xf‘”)z] + 2(0) (@P)y PP

172

+ (w‘z’)2[ (zf””)2 ¥ (xf“” — C)QB (14.4.57)

Equations (14.4.48), (14.4.49), (14.4.55), and (14.4.56) yield that

TWey® = wm[ =2/ cos 8, sin vy, + P — C) cos 'y]J (14.4.58)
and

7@y = w“’(yf‘m cos 0, sin y, + xf(P) cos 72) (14.4.59)



We may transform equations (14.4.58), (14.4.59), and (14.4.57) using the following expressions:
(See eqs. (14.4.26), (14.4.21), (14.4.24), (14.4.19), (14.4.25), and (14.4.20).)

. sin
2P = rysinby =1, " (14.4.60)
coS 73
cos 8, cos
XM = C=rycos b=~ pih Rl (14.4.61)
COS v2
. sin
yP = rysinf = = T2 (14.4.62)
COS Y
x{P) = ry cos 6, (14.4.63)
(xf<m>2 + (yfu’)>2 =r? (14.4.64)
(xfw) _ c)2 + (zfu’))z =7 (14.4.65)
We then get
cos 6 @,V cos? v, — sin’y
THoy®@ = — @y, L NP 4! T2 (14.4.66)
oS 2 COS 1y COS Y2
cos 8 Wy, Veos? y, — sin’y;
7@ oy = 4y s, _ @ nYeos mimin Y (14.4.67)
COS Y7 Cos 7y; COS >
, L]
IV(12)| = [(w(”rl) - Zw(l)w(z)rlrz tan vy, tan vy, + (w(z)rz) }
, 1
= {(w(”rl) — 2000 Prr, cos 1 + (wmrz) ] (14.4.68)

Here 7 is represented by equation (14.4.50). The final expressions for 3, and 8, are given by

w@r,NVcos? y; — sin’y,

[v{'2| cos vy, cos 7,

cos 3; = % (14.4.69)

wWrVeos? y, — sin’y;

cos 3, = % (14.4.70)

vt cos 7y, cos v2

Equations (14.4.69) and (14.4.70) determine the direction of the tangent to the tooth’s longitudinal
shape at P. These equations yield

o

(2}

r2 cos Bz (14.4.71)

mp =

w r; cos 6]
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Figure 14.4.4.

We may derive alternative solutions for B and B,. It is evident from figure 14.4.4(b) that

(1 (2)

vi = v cos n + v@ sin g tan B, (14.4.72)

v® =M cos 5 — v gin 7 tan B, (14.4.73)

Equations (14.4.72) and (14.4.73) yield

v —v@ cos g

tan 3,
e

l

: (14.4.74)
sin 75

v cos n — v@

tan 6, (14.4.75)

v sin g

From equations (14.4.55), (14.4.56), and (14.4.24) 1o (14.4.26), we obtain

/2

v () = [( (P)) ( (P)) :l = wr, (14.4.76)

172
b = wm[ (Zf(m)Z + <xf(m - C)Z:' = o, (14.4.77)

Equations (14.4.74) to (14.4.77) yield

tan B, = 1t = My Cos g (14.4.78)

myyry sin n
and

tan 3, = 71 €08 = myiry (14.4.79)

ry sin p

where m,; = w®/w®,



Optimal Synthesis of Pitch Surfaces

Consider that the gear center distance, the crossing angle and the gear ratio are given. To determine
the pitch surfaces in contact at the pitch point, we use equations which relate the design parameters.
Since the number of equations used is less than the number of varied parameters, the solution is
not unique. Thus, the design of pitch surfaces is a problem of optimization with some criteria.
For instance, the criteria of force transmission may be used. This problem was solved by Litvin,
Petrov, and Ganshin (1974).

14.5 Limiting Contact Normal

Consider that the pitch plane, the pitch point P and the direction of the sliding velocity v'?

are known (fig. 14.5.1). Let us draw through the pitch point P, the normal plane, which is
perpendicular to the pitch plane and to v\12_ The mating surfaces T and L, are in contact at point
P and the common unit normal n to £; and I, lies in the normal plane (fig. 14.5.1). The direction
of n is determined by the normal pressure angle ¥,. Since vector v js perpendicular to the
normal plane, the equation

n.v? =0 (14.5.1)

is satisfied for any pressure angle ¥,,. Equation (14.5.1) is the equation of meshing (sec. 9.8) and
the gear tooth surfaces are conjugate at P locally—they transform rotational motion with a prescribed
angular velocity ratio.

However, there is a limiting pressure angle ¥, which determines the direction of the limiting
contact normal. The problem of the limiting contact normal was the subject of research done by
Wildhaber (1946a), Baxter (1961), and Litvin (1968).

Let surface L, be covered with lines of contact at which £, comes into tangency with the mating
surface L,. Consider the particular case when the contact lines on I; have an envelope at the pitch
point P (fig. 14.5.2). As we know, (sec. 12.1) the velocities v¢" and v{? of the contact point in
the motion over surfaces L, and I, are related by the equation

v =y 4 y2 (14.5.2)

Normal plane -~
N,

Envelope of
contact lines —\
\

£ Contact lines

Figure 14.5.1. Figure 14.5.2.
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This equation is derived with the assumption that vector v/" can be along any direction but
different from the direction of the tangent to the contact line. It is evident that if at P the contact
line envelope exists, the velocity v{ is zero along any direction different from the direction of
the tangent T (fig. 15.5.2).

Let us differentiate the equation of meshing given by

nD ey = p, (wuz) xr) - ¢ x wm) =0 (14.5.3)

taking into account that an envelope of contact lines exists at P and v/ = 0. We assume that the
gear ratio and " and w® are constant. Thus

A0 40 (02 x E0) < (14.5.4)
Since v{" = 0, we have
10 = a0 = u® x pM = yh (14.5.5)
Equations (14.5.4) and (14.5.5) yield
nl. [_ (w“’ % vuz)) + (w(m X Vf,”):' =0 (14.5.6)
With the expressions
v =y v@ W1 = M @ (14.5.7)

W€ may represent equation (14.5.6) as follows:
n. [(w”’ x V,(3’> - (w‘z’ x vr(rl)):’ =

nV. {w‘” X [w‘z’ x (P - C)] - [w‘z) X (" x r””)]z =0 (14.5.8)

Here r ") is the position vector of pitch point, C is the vector of shortest distance between the
axes of rotation. Equation (14.5.8) and equation

nV.yld =g (14.5.9)
determine the direction of the limiting normal at the pitch point P. Synthesizing the gears we have
to choose the direction of the surface normal different from the limiting direction. Then the envelope
of contact lines at the pitch point will not occur. In the case of gear train with the crossing angle

of 90°, we get

wPew? =0 (14.5.10)

AC = (0w x w®) N\ #0) (14.5.11)
(The vector of shortest distance is perpendicular to the axes of rotation.)
oM x(W?xC)=0 (14.5.12)

(Vectors @™, @®, and C are mutually perpendicular.) Equations (14.5.10) to (14.5.12) yield that
equation (14.5.8) may be represented in the discussed case as follows

ne [H”’ X (@? x w‘”)] = —Aer® xC)=0 (14.5.13)



or (provided N # 0)
[nr(P)C] — (n_vZf(P) — n:yf(P))C =0 (14514)

The derivation of equations (14.5.13) and (14.5.14) from equation (14.5.8) is based on the
following considerations:
Step 1.—Considering the triple vector products in equation (14.5.8), we obtain

WM x [w(z; x (r® — C)] - [wm x (@M X r“”)] = @@ er P
P M e 0®) — 0 x (@@ x C) — V(@ er )

+ P (@M @) = @@ r?)) — @V(w?erP)

because
(1) @™+ w®? =0 (Because these vectors are perpendicular.)
2) 0" x (@? x C) =0 (See eq. (14.5.12).)
Thus the triple vector product in equation (14.5.8) may be substituted by
0@ erP) — @M@ er®) =P x (@0? x wh)
Step 2.—With equation (14.5.11), we obtain
wV x w?@=2C

Thus equation (14.5.13) is confirmed.
Step 3.—We derive equation (14.5.14) as follows:

L LY
[nr (7C] = (n,iy + nyjs + nkp o P P 2"

c 0 O

= (niy + nydy + n kP i — 3 PkC = (ngf - nyFHC =0

Thus, equation (14.5.14) is confirmed.

In the case of worm-gear drives, the pitch point P lies on the center distance and vectors
and C are collinear. Equation (14.5.14), which only works for orthogonal gear drives, is satisfied
with any direction of the surface unit normal n, since rF! x C = 0. This results in that the
existence of the contact line envelope at the pitch point P is inevitable for orthogonal worm-gear
drives. This is the reason why nonstandard orthogonal worm-gear drives may result in a better
efficiency.

Let us now express equation (14.5.14) in terms of the parameters of a hypoid gear drive with
a crossing angle of 90°.

Consider a coordinate system S, rigidly connected to the pitch plane with the unit vectors of
the coordinate axes, €, €, and ¢; (fig. 14.5.3). The unit normal to the pitch plane is given by
e,; e, coincides with 7, the unit tangent to the pitch cone (fig. 14.5.3 and fig. 14.4.2); the unit
vector e, is represented by the equation

r®

e, =e; X e (14.5.15)
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Figure 14.5.3.
The unit vector e, is represented in the coordinate system S, as follows: (eq. (14.4.47))

cos vy cos 8,
e = cos <y; sin 6, (14.5.16)

—sin ¥y,

Vector e; = TV is represented by (eq. (14.4.48))

sin 7y, cos 6,
ey = sin <y, sin 6, (14.5.17)
coS ¥
Equations (14.5.15) to (14.5.17) yield
—sin 01
e = cos 6, (14.5.18)
0

Equations (14.5.16) to (14.5.18) result in the following matrix:

cos vy, cos 8, —sin 8, sin v, cos 6,
[Le]l = | cosy,sinf; cos@; sin~y, sin g, (14.5.19)

—sin ¥, 0 cos vy,
Elements of matrix (14.5.19) a;, (k =1,2,3; ¢ — 1,2,3) represent the direction cosines; k is the
number of axis of Sy, and £ is the number of axis of S,. (See app. A). For instance,

ay3 = cos (jne3) = sin v sin 6,
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This matrix represents the transformation of a vector in transition from S, to S
The surface unit normal n (fig. 14.5.3) is represented in terms of e, e,, ; by the matrix

sin ¥,
in] = cos ¥, cos B (14.5.20)
—cos ¥, sin B
The surface unit normal is represented in terms of ig, jy, and Ky as follows:
(14.5.21)

[nf] = [Lft’] [ne]

Equations (14.5.19) to (14.5.21) yield

cos v, cos B, sin ¥, — sin 8, cos 3, cos ¥, — siny, cos 6, sin B, cos ¥,

[nd = cos 7, sin 6, sin ¥, + cos 6, cos B, cos Y, — sin , sin 6, sin 8 cos ¥,

— sin 7y, sin y, — cos y; sin B, cos ¥,
(14.5.22)

If the surface unit normal reaches the limiting direction, equation (14.5.14) must be satisfied.

Equations (14.5.22) and (14.5.14) yield

(cos y, sin 6, sin & + cos 8, cos 8, cos & — sin 7, sin 6, sin B, cos ayz”

P =0

+ (sin y; sin a + cos 7, sin B; cos a)yy (14.5.23)

Here « = , is the limiting pressure angle, the angle formed by the limiting normal with the pitch
plane (fig. 14.5.3); x®, yP), and z‘?) are the coordinates of the pitch point.
We may transform equation ( 14.5.23) by using the following expressions: (see eqgs. (14.4.17)

to (14.4.21) and (14.4.50))

sin 8, = — 012 (14.5.24)
cos ¥,
sin
zf(P) =r,sinf, = RE r, (provided u, sin vy, = 1) (14.5.25)
oS 7,
sin
yf(P) =r sinf, = — Y2, (provided u; sin y; = ry) (14.5.26)
COS 7y

sin? v, cos? 6,

s , s cos? v, — sin v3 1
sin“yp =1 —tan” vy, tan® y; = 3 3 = 3 1 5 3
COS™ 7y{ COS™ Y2 COs™ a2 COS™ 7 CO8” ¥z

(14.5.27)
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Figure 14.5.4.
cos ) = —sinycos vy, (provided cos 8, > 0)
=03 -5

Equations (14.5.23) to (14.5.29) yield that

_rpsin B + yf(P) cot 7, sin 3,

P
r tan Y2 _yf( )

tan o

ORIGINAL PAGE IS
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(14.5.28)

(14.5.29)

(14.5.30)

The orientation of the limiting normal (angle «) depends on the location of the pitch point.
Figure 14.5.4 shows tooth shapes of both sides in the normal section which passes through the

pitch point P. The surface unit normals n” and n® form angles ¢,{"’ and y,{*’ with the pitch plane.

These normals make the same angle with the limiting normal, that is, ¥,{") — & = ) + «. Thus,

YA By — ) =24 and the tooth shapes are asymmetrical.



Chapter 15

Axes of Meshing

We define the axis of meshing as a straight line rigidly connected to the frame through which
passes the common normal to the mating surfaces at any point of contact of the surfaces.

In the case of gears having parallel (intersected) axes of gear rotation, there is only one axis
of meshing and this axis is the line of contact of pitch cylinders (of pitch cones in the case of
intersected axes). It will be proven below that there are two axes of meshing if the axes of gear
rotation are crossed. In this case, the relative motion is a screw motion and one of the mating surfaces
is a helicoid. (This theorem was first proposed by Litvin, 1955.) The application of the axes of
meshing simplifies, in some cases, the gear synthesis and the tool design.

15.1 Crossed Axes of Gear Rotation: Axes of Meshing

Consider that a gear mechanism transforms rotation between crossed axes (fig. 15.1.1). The
relative motion is a screw motion, which is represented by rotation about and sliding along an
axis called the axis of screw motion. (See ch. 2.4.) Knowing the angular velocities of gear rotation,
the shortest distance, and the crossing angle between the axes of gear rotation, we may determine
the unique parameters of relative screw motion. The reverse case—the representation of the given
screw motion as rotation about two crossed axes—has an infinite number of solutions. However,
we may find a unique pair of crossed axes, among all of the pairs of crossed axes, which will
serve as a pair of axes of meshing by satisfying the following conditions: (1) The rotations about
the axes of meshing may be substituted by the given screw motion. (2) Al common normals to
the mating surfaces at points of surface contact intersect both axes of meshing.

Consider that such a pair of axes of meshing indeed exists. Since the common normal to the
mating surfaces must intersect the axes of meshing, the two following equations must be observed.

X(i) -x Y(i) _y_z(i) -z

n, n, n,

Z

(i =LII (15.1.1)

Here X, Y, and Z'" are the coordinates of a point on the axis of meshing; x, y, and z are
the coordinates of a point of contact of mating surfaces; and n,, n,, and n, are the projections of
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the common unit normal to the mating surfaces. The contact point of surfaces, the common unit
normal and the coordinates of the axes of meshing, are considered in the fixed coordinates system
Sixs, yp 2p) that is connected rigidly to the frame. (The subscript fin equations (15.1.1) is dropped
for simplification.)

Considering that the x;-axis is directed along the shortest distance between the crossed axes (fig.
15.1.1), we may represent equations (15.1.1) as follows:

x4 _ x Y(i) -y K(i)y(i) —z

n, n

(15.1.2)

¥ nZ

Here (X”, 0,0) are the coordinates of point O, (i = I,II), the intersection of the axis of meshing
with the xg-axis, and

ZO = gy (15.1.3)

where K determines the direction of the axis of meshing. Equations (15.1.2) yield

K (xn, — yn,) — xn, + zn,
)
K%n, —n,

X = (15.1.9)

It may be stated that the location and direction of the axis of meshing does not depend on (1)
coordinates of the point of surface contact or (2) on the projections of the surface unit normal,
if X' and K do not depend on the mentioned parameters. Let us prove that the location and
direction of the axes of meshing is constant if one of the mating surfaces is a helicoid. We begin
with the equation

yn, — xn, = hn, (15.1.5)

which is satisfied if the gear-tooth surface L, is a helicoid (sec. 8.4, eq. (8.4.40)); here & is the
screw parameter. We then determine the equation of meshing that relates the coordinates of the

Axis of
Meshing 1 ,
/

€
\
.

/
£ Axis of Meshing 11

Figure 15.1.1.



point of contact (x,y,z) and the projections of the surface unit normal (1, 1, 1) (See ch. 9.8).
The derivation is based on the following equation

nev? =ne [(@0 - @) xr? - R x 0] =0 (15.1.6)
Here
n=nit+nj+nk 15.1.7)
is the surface unit normal;
wb =Yk W@ = wB(sin yj + cos vK) (15.1.8)
are the angular velocities of gears | and 2 (fig. 15.1.1); and
r =xi+ yj+zk (15.1.9)
is the position vector of the point of contact;
R = 0,0, = — Ci (15.1.10)

Equations (15.1.6) to (15.1.10) yield

- nx[(l — my; COS Y)Yy + My Z sin 'y] + ny[(l — my, cos y)x — Cmy cos 'y]

z

+n [m2| sin y(x + C)] =0 (15.1.11)

Here my, = /0.

Taking into account that surface L, is a helicoid and equation (15.1.5) is satisfied, we represent
equations (15.1.11) and (15.1.4) as

1 —
xn:—znx—h——wnz—C(nycot'y—n:)=0 (15.1.12)

my; sin y

~K©Dhn, — xn, + 2n,

X = :
(i)
K'%n, —n;

(15.1.13)
Equations (15.1.12) and (15.1.13) yield

. . . , 1 —
(XDKD 4+ € cot y)n, + <K"’h _x —Cc+ hM)m -0 (15.1.14)
: my, sin ¥y

To be independent of the parameters of contact point, the coordinates X M and K9 of the axes
of meshing must satisfy the following equations:

XHOKD 4 Ccoty =0 (15.1.14)

‘ 1 -
K<1>h_x<,)_c+h_@m=0 (15.1.15)

myy sin Y
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Equations (15.1.14) and (15.1.15) yield

(K10y2 — g E_M +CC017:0 (15.1.16)
h my; sin ¥y h
. C cot
X0 = _ ;2)7 (15.1.17)

The solutions to these equations for X' and K are given by

K‘I’—l C 1 —my cosy +1 C 1—m2,C0572_4CCOI'y“2 (15.1.18)
2\h my; sin y 2 h my, sin h o
; C cot
X ]C(((’”Y (15.1.19)
K("’—] C 1~ my cosy 1 C_l—mzlcos'yz_4Ccot'y”2 (15.1.20)
2\ h my; sin y 2 h my) sin vy h o
C cot
X — ;3”7 (15.1.21)

For the case when the crossing angle vy =90°, we get

1
gn_¢_ 1 (15.1.22)
h my
xV=p (15.1.23)
K™ =90 (15.1.24)

Using L’Hospital’s rule, the fraction in equation (15.1.21) for ¥ =90° becomes

d
— (—Ccot )
(10 dy = h
XWe o = 4 (15.1.25)
d m,
- K(")(.Y)]
dvy [

The angular velocity ratio for the worm-gear drive is (sec. 14.3)

r, sin A,

my = % ;
R, sin (y = )\,,)

(15.1.26)

The upper sign corresponds to worms with the right-handed threads; r, and R, are the radii of
the pitch cylinders of the worm and the worm-gear; A, is the lead angle on the pitch cylinder of
the worm. Taking into account that C = ,+R,andh =z r, tan )\p (h < 0 for a left-handed
thread), we may represent the parameters of the axes of meshing by using table 15.1.1.
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TABLE 15.1.1.

kY Worm thread K" X0 K X
T Ccoty
v # — | Right — handed | cot A, —Ccot y tan N, =T,
2 rp
C cot
Left — handed | —cot A, | Ccoty tan N, =r,
rp
L H P —
y=— Right — handed | cot \, 0 0 8
2
Left — handed | —cot A, 0 0 -1,

Figures 15.1.2 and 15.1.3 show the location of axes of meshing for a worm-gear drive with
the right-handed thread, and with the crossing angles v = 7/2 and v # x/2, respectively. The
direction of the thread on the bottom part of the worm is indicated by dashed lines.

Let us now determine the angular velocities of rotation about the axes of meshing. Consider
a worm-gear drive. The relative motion of the worm with respect to the gear may be expressed
in terms of the angular velocities " and w® of the worm and of the gear (fig. 15.1.1), the
crossing angle y and the shortest distance C. Parameters of the relative motion are represented

by the angular velocity

012 = @M - @w?® = - 0P sinyj+ (w(” — w"? cos 'y)k (15.1.27)
Zf 1
Ap
~'p
~ Axis of
’ Meshing 1 Y
. A / 9 IT f\ > 11
L I~ M
TXL ) Axis of
Meshing 11
+ I
! 2
1
Figure 15.1.2.
Zf 1
e
-
Xf el
~Tp C cot
arctan (L04Y
—x!I" - cot y tan A /! ‘ < Mp o ( T
- -~ Axis of AN

N

L ) f / Meshing I g1 \

t / I

I - / 1 jS Ty i
\ N’

11 = 5 11

- Axis of
Meshing 11

g

)
A

Figure 15.1.3.
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and the moment
m=-Rxw?=-Co? cos yj + Cw® sin vk (15.1.28)
We may represent the relative motion as the rotation of the worm about the axes of meshing
with angular velocities w™ and w™. We determine w® and '™ by using the following equations
(fig. 15.1.1)
w® + @@ = (02 (15.1.29)

00 x w" + 005 x @™ =m = — R x @@ (15.1.30)

Equations (15.1.29) and (15.1.30) yield

W + o = = @ sin 5 (15.1.31)

wg) + w:un - K(l)w)('l) + K(Illw"(‘ll) =w® = u? cos v (15.1.32)
XOa® + xe = xOEO,M 4 XWEW,M = — @ cos (15.1.33)
XPo® + XMWy = @ in (15.1.34)

Knowing parameters X' and K" (i = 1,II), we may determine w” and w{ by using only two

equations of the equation system (15.1.31) to (15.1 .34). This system contains only two independent
equations in unknowns w!" and w{®.

15.2 Milling of Worms by Peripheral Milling Cutters:
Axes of Meshing

Consider a worm which is generated by a peripheral milling cutter (fig. 15.2.1). Let us set up
two fixed coordinate systems S, (x,, y,, zc) and Sp(xg, Yo. zp) (fig. 15.2.2). The surface of the
cutter is a surface of revolution. We may imagine that while the cutter is at rest, the worm performs
a screw motion which is determined by vectors w and hw, (fig. 15.2.2) where & is the screw
parameter. The axis of screw motion is the worm axis zp- The relative motion of the cutter with
respect to the worm is represented by the vectors (—w) and (—hw). We do not take into account
that the cutter rotates about the z.-axis, that determines the velocity of cutting only, since this
motion is not related with the process of generation of the worm surface.

Let us determine the axes of meshing. We begin with the determination of the equation of meshing
of the cutter and the worm that is being generated. We use the equation (ch. 9.8)

n.evi™ =0 (15.2.1)

Here n, is the unit normal to the cutter surface, and v ™ is the relative velocity of the cutter with

respect to the worm. We may determine v ) by substituting vector (—w), that is directed along

the negative z-axis, (fig. 15.2.2) by an equal vector that passes through O, and the moment given
by

m=0.0, X (~w) (15.2.2)

where (fig. 15.2.2) 0.0, = — Ci,. Therefore vector v becomes

Vi = —wxr, — hw + 0,0y X (—w)



v
e

Figure 15.2.1. Figure 15.2.2.
i, e K,
=| 0 —wsiny, —wcosy. | — whsinvyj. — wh cos vK.
x(' )Yl‘ Z('
i(' j(‘ k(‘
+ 1 =G 0 0
0 —wsiny, —wcosy,

= w[(—2z. sin . + Y. €08 ¥ )i, — (x, cos y. + h siny. + C, cos v.) e
+ (x, sin y. — h cos vy, + C sin v )k (15.2.3)
The unit normal to the cutter surface is represented by
n. = Mde + nyje + ngKe (15.2.4)

Since the cutter surface is a surface of revolution, a normal to the surface intersects the z.-axis.
The surface coordinates and projections of the unit normal n, (fig. 15.2.1) are related as follows:

Yclee = Xdlye = 0 (15.2.5)
(See equations (8.4.7) and (8.4.40).) Equation (15.2.5) is a particular case of equation (15.1.5)
because the screw parameter 4 for a helicoid is zero for a surface of revolution.
Equations (15.2.1), (15.2.3) to (15.2.5) yield the following equation of meshing:
X, — 21 — (h + C, cot y)n,. — (h cot vy — Con,.=0 (15.2.6)

One of the axes of meshing, axis I-I, coincides with the z,-axis because the unit normal to the cutter
surface intersects the cutter axis (fig. 15.2.1). The other axis of meshing, II-1I, may be determined
by using the following considerations:
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(1) The unit normal at the point of contact must intersect the II-Il-axis, and the following equation
is to be satisfied:

XPKMn, — X+ xn, ~zn,. =0 (15.2.7)
Equation (15.2.7) is derived from equation (15.1.4) taking into account that (eq. (15.2.5))
-x(ny(‘ = Y T 0
(2) Parameters n,., n,, n,, and x,z. must satisfy the equation of meshing (15.2.6) and
parameters X" and K" must be independent of the coordinates of the contact point and the
projections of the unit normal. Equations (15.2.6) and (15.2.7) yield

XK + k4 C oot y)nye + (=X 4 cot v, — Con,.=0 (15.2.8)

Parameters X" and K" do not change in the process of meshing if the following equations are
observed:

XM =pcoty. — C, (15.2.9)

K h+ C, cot v,

; (15.2.10)
C, — h cot vy,

Equations (15.2.9) and (15.2.10) determine the location and the direction of the second axis of
meshing (II-IT) in the coordinate system S,. We may determine the location and the direction of
this axis in the coordinate system S,, by using the matrix equation for the transition from the
coordinate system S, to S;. Thus

x4 1 0 0 G Cox

Yoy 0 cosy, —siny, 0 yin
Kydh - 0 siny, cosy, 0 KDy (15.2.11)

1 0 0 0 1 1
Equations (15.2.9) to (15.2.11) yield
X8 = h cot v, (15.2.12)
G

ke = - (15.2.13)

Equations (15.2.12) to (15.2.13) (first proposed by Litvin, 1968) determine the location and the
direction of the second axis of meshing (II-II) in the fixed coordinate system Sp. The location of
both axes of meshing is shown in figure 15.2.3. The angle § formed by the axis of meshing II-II
and the worm-axis z, and the parameter a are represented by

h
& = arctan <—> (15.2.14)
G
and
a=XW=hcoty, (15.2.15)
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Figure 15.2.3.

15.3 Application of the Theory of Axes of Meshing: Generation of
Worm With Concave-Convex Surface

Worm-gear drives with concave-convex surfaces of the worms, proposed by Niemann and Heyer
(1953) are produced by the Flender Company. Such worms may be ground with a grinding wheel
having a circular arc in the axial section. Generally the line of contact between the grinding-wheel
surface and the surface of the worm being generated is a spatial curve.

Litvin (1968) proposed a new type of a concave-convex surface of a worm, that represents a
locus of plane curves (circular arcs of the same radius). The proposed surface may be generated
by the same grinding wheel, that is applied by the generation of Flender’s worms. However, the
line of contact between the tool and worm surfaces is not a spatial curve. Rather, it coincides with
the axial section of the grinding wheel. This result is provided by special tool settings, that differs
from that usually applied.

It was proven in section 15.2 that there are two axes of meshing when a helicoid is generated
by a milling cutter with a surface of revolution. One of these axes, I-1, is the z.-axis of the cutter
(grinding wheel) (figs. 15.2.1 and 15.2.3), and the other is the II-I-axis (fig. 15.2.3). Parameters
of the II-II-axis of meshing are represented by equations (15.2.14) and (15.2.15).

The line of contact a-a will coincide with the axial section of the grinding wheel if the center
C of the circular arc a-a is located at the point of intersection of the II-Il-axis with the shortest
distance (C,) between the axes of the cutter and the worm. Parameters a and v, of the tool settings
are related by the equation (4 is given)

h
v, = arctan <-> (15.3.1)
a

The above statement is clear if we take into account that the cutter surface is a surface of revolution
generated by the circular arc a-a in rotational motion about the cutter axis I-1. Thus the normals
to the cutter surface at points of arc a-« indeed intersect the I-I and II-11 axes of meshing.

Parameters (a, v,) are related by equation (15.3.1) and determine the tool settings; parameter
a may be chosen arbitrary. However, the shape of lines of contact of the worm and the worm-gear
surfaces depends on parameter a. Litvin (1968) recommended to have
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a=r,+ hsiny, (15.3.2)

where r, is the radius of the pitch cylinder of the worm, and y, is the normal pressure angle.

Let us now derive equations of the worm surface. We set up the following coordinate systems:

(1) Sc(x.,¥..z,) rigidly connected to the tool (fig. 15.3.1).

(2) A movable coordinate system S, (figs. 15.3.1 and 15.3.2), where axis Zp is parallel to the
axis z., and the origin O, is located on the circle of radius d, that is drawn in plane z. = 0 and
centered at O,.

(3) The coordinate system S, (x1,y1,2;) rigidly connected to the worm.

(4) The fixed coordinate system S, (x0.Y0.20) rigidly connected to the frame (fig. 15.3.3).
The worm being generated performs a screw motion with components ¥ and Ay (fig. 15.3.3(c))
of the angle of rotation about and the translation along the screw axis (z,), respectively.

The circular arc is represented in the coordinate system §, by (fig. 15.3.1)

X, = —psiné yo=0 Zp =pcos B
The coordinate transformation in transition from the coordinate system S, to S.. is represented by
the following matrix equation (figs. 15.3.2 and 15.3.1):

B-B Section—
\

Xb

Vie— Zp

Figure 15.3.1.

)

Figure 15.3.2.



X, —p sin 8 cosv siny 0 —dcosvw —psin @

Ye 0 —siny cospy 0 dsinv 0
= [M) = (15.3.3)
2 p cos d 0 0o 1 0 p cos 8
1 1 0 o 0 1 1
that yields
x,=—(psinf +d)cosvy y. = (p sin 6 + d) sin » z.=pcosd (15.3.4)
Here
d=C —a (15.3.5)

Equations (15.3.4) represent the cutter surface in coordinate system S, » and 6 are the surface
coordinates. The surface unit normal is represented by the equations

N, a a
n, = ——  where N(=ix Te

Nl 15.3.6
N, | 30 av ( )

Equations (15.3.4) and (15.3.6) yield that the surface unit normal is represented by (provided
psinf+d=0)
n, = sin 6(cos vi. — sin ¥j,) — cos Kk, (15.3.7)
We represented the equation of meshing in general form by equation (15.2.6) as follows:
X — Zhe — (B + C cot yn,. — (hcoty. — Cln,=0

Substituting in this equation for x., Z, My fyer Mz d, cot v, the following expressions

x, = — (psinf +d)cosvy z.=pcos ny. = sin @ cos v
n, = — sin @ sin » n, = —cos @ d=C —~a
; a
cot y. = —
h

(see equations (15.3.4), (15.3.7), (15.3.5), (15.3.1)), we obtain
(C, — a)(1 — cos ¥) cos 6 — (C,% + k) sinysin0=0 (15.3.8)

There are two solutions of equation (15.3.8) for » and 6: (1) with » = 0 and any value of 6, and
(2) with values of 6 and » related by the equation

tan0=—_——;tan— (15.3.9)
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These solutions result in the existence of two lines of contact on the surface of the grinding wheel.
One of these lines (with v = 0 and any 6) is the circular arc a-a; the second line is out of the working
space of the worm and we do not take it into account.

With » = 0 the unit normal of the tool surface is represented by (equations (15.3.7))

n. = sin 8i, — cos 0k, (15.3.10)

This means that the normals to the line of contact lie in the same plane (y. = 0). Thus the analytical
solution confirms that the line of contact of the surfaces of the tool and the worm being generated
is a plane curve, and it is the circular arc a-o (fig. 15.3.1).

In section 15.4 we will need equations of the worm surface. This surface may be determined
as a locus of contact lines represented in the coordinate system S, (x;, v;, z;) (fig. 15.3.3). The
coordinate transformation in transition from the coordinate system S.. to the coordinate system S,
is represented by the following matrix equation (fig. 15.3.3)

X X —(psinf +d
M Ye 0

= [M,] = [Mo][My,] (15.3.11)
2 2 p cos @

1

—

1

We determined the coordinates x,, y,, z, for the contact line by using equations (15.3.4) and taking
into account that » = 0. Matrices [M,,] and [Mo] are represented as follows (fig. 15.3.3)

1 0 0 C
0 cosy. —siny, 0
Mo} = (15.3.12)
0 siny, cosy,. O
0 o 0 1

cosy siny 0 O

—siny cosy 0 O

Mol = (15.3.13)
0 0 1 —hy

0O 0 0 1

)/v Yo
|—] ‘{c

- / 0

(al (b) ic)
Figure 15.3.3.



where y is the angle of rotation of the worm that is in mesh with the tool. Equations (15.3.11)
to (15.3.13) and (15.3.5) yield

x; = — p(sin 8 cos y + sin vy, cos 6 sin y) + a cos ¢
y, = p(sin 8 sin ¢ — sin 7. cos 6 cos Y) —asiny (15.3.14)
7| = p €08 Y. cos § — hy

Here 6 and y are the surface coordinates.
The surface unit normal is given by

n = % where N; = % X % (15.3.15)
Equations (15.3.14), (15.3.15), and (15.3.1) yield
N,, = m(sin 8 cos ¢ + sin vy, cos @ sin )]
N, = — m(sin @ sin ¥ — sin vy, cos 6 cos ¥) (15.3.16)

N,; = — m(cos v, cos )

where m = p? cos 7y, sin § — (ph/sin ). The surface unit normal is represented by the following
equations (provided m # 0)

n, = sin 8 cos y + sin 1y, cos § sin ¥
ny, = —sin 6 sin  + sin vy, cos 8 cos ¥ (15.3.17)
n, = — COSs 7. cos b

We could obtain equations (15.3.17) in a simpler way just by using the matrix equation

[n] = [LiollLodin] (15.3.18)

Matrices [L,o] and [Lo.] may be derived from matrices [M,o] and [My] by deleting the last column
and the last row in them. (See appendix A.) Matrix [n] is given by (equations (15.3.10))
sin @
[n]= 0 (15.3.19)

—cos 0

15.4 Knots of Meshing

The surface of action may be represented as a locus of lines of contact of gear-tooth surfaces
in the fixed coordinates system rigidly connected to the frame. Generally a section of the surface
of action cut by a plane represents a plane curve. There are special cases where a section of the
surface of action represents a straight line if the following conditions are satisfied (proven by Litvin,
1968):
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(1) The gears transform rotation between crossed axes with a constant angular velocity ratio.

(2) The tooth surface of one of the mating gears is a helicoid.

(3) The surface of action is cut by a plane that is parallel to the shortest distance C between
the axes of gear rotation and is located at a definite distance from C. The contact lines of gear
tooth surfaces intersect the above mentioned straight lines. These points of intersection are called
the knots of meshing, since we may imagine that the lines of contact are attached to the straight
lines, that are obtained as sections of the surface of action.

Figures 15.4.1 and 15.4.2 show projections of contact lines of the worm and the worm-gear
surfaces on the plane (xr, ¥p. These contact lines are determined for the worm-gear drives with
the concave-convex surfaces of worms generated by methods proposed by Niemann and Heyer
(1953) (fig. 15.4.1) and by Litvin (1968) (fig. 15.4.2), respectively. Points ¢, f, €', and ' represent
projections of the lines of knots of meshing. Changing the location of the lines of knots, we can
improve the shape of contact lines to obtain better conditions of lubrication.

The evidence of the existence of lines of knots is based on the following considerations:

(1) Since the worm surface is a helicoid, two axes of meshing exist. The normal at any point
of contact of the worm and the worm-gear surfaces intersects both axes of meshing. (See sec. 15.1.)

(2) There can be a limiting case when the common surface normal intersects one of the two axes
of meshing and is parallel to the other one. (The normal intersects the other axis of meshing at
infinity.)

Figure 15.4.3 shows a cross section of the worm surface at two positions for a worm of a worm-
gear drive with a crossing angle of 90°. The normal n-n to the worm surface intersects the I-I-axis
of meshing and is parallel to the II-II-axis of meshing. The upper lines of knots of meshing are
S'f and €’-¢’, respectively.
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Figure 15.4.1.
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Figure 15.4.4 shows a cross section of the worm surface at two other positions. The normal
n-n to the worm surface intersects the II-Il-axis of meshing. The bottom lines of the knots are f-f

and e-¢, respectively.
Considering the general case of the crossing angle v # 90°, we represent the lines of knots by

the following equations. (See table 15.1.1.) (1) The upper lines of knots of meshing are determined
by

xp=X"= F Ccotytan )\, (15.4.1)
ns=0 (15.4.2)
ny_ g - S (15.4.3)
nr\f rp
X

~Right-handed worm
/

7
Axes of meshing <

e
Cross section —~ A

f
11/
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Axes of meshing —~ ‘
LGNV 3
N N i
i n !

1

|
“t Projections
of normals

Figure 15.4.4.
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Here, (x5y52y) are the coordinates of the point of contact of the worm and the worm-gear surfaces;
(nesnypn ) are the projections of the common normal to the surfaces; (xr¥p2p) and (n, WMy M) are
determined for an angle of the worm rotation when one point of the instantaneous line of contact
of mating surfaces is the point of the upper line of knots simultaneously.

Equation (15.4.1) results in that the upper line of knots intersects the I-I-axis of meshing. Equations
(15.4.2) and (15.4.3) yield that the common normal to the mating surfaces is parallel to the II-II-
axis of meshing.

(2) The bottom lines of knots are represented by

x=X""=—1p, (15.4.4)

ny=0 (15.4.5)

Mo kO = 4 ot N, (15.4.6)
Ry

Equations (15.4.4) to (15.4.6) are based on the same considerations. The upper and lower signs
in equations (15.4.1) and (15.4.6) correspond to the right-handed and left-handed worm thread,
respectively.

Example problem 15.4.1 Consider the worm surface and its unit normal that are represented in
coordinate system S, by equations (15.3.14) and (15.3.17), respectively. The crossing angle
v =90°,

Determine the lines of knots of meshing by using equations (15.4.1) to (15.4.3) and (15.4.4)
to (15.4.6), respectively.

Solution. We represent the equations of the worm surface and the surface unit normal in coordinate
system S, by using the matrix equations

[rs] = [Mp (1] (15.4.7)
(el = [Lpy)ln] (15.4.8)

Here (see equation (1.3.22))

Cos ¢, —sin ¢, 0 0
sin ¢; cos ¢, 0 0
M) = (15.4.9)
0 | 0
0 0 0 ]
cos ¢; —sing, 0
[Lpyl= | sing, cos¢p, O (15.4.10)

0 0 1

Equations (15.3.14) and (15.4.9), and (15.3.17) and (15.4.10) yield the equations of the worm
surface and the surface unit normal, respectively, as follows:



Xp= - plsin 8 cos (¥ —¢1) + sin 7. cos @ sin (v — ¢))] +acos W -9y
yr= plsin 8 sin (Y — @) — sin v, €OS 8 cos (Y — &) —asin (¥ — 1) (15.4.11)

= p COS Y €08 6 —hy

ny = sin 8 cos (Y — ¢,) + sin v, €os 6 sin (Y — é1)
ny = —sin 8 sin (Y — @) + sin 7y, cos 6 cos (y — &1) (15.4.12)
ng= — €Os 7y, €08 6

Here ¢, is the angle of rotation of the worm that is in mesh with the worm gear.

Using equations (15.4.11), (15.4.12), and (15.4.1) to (15.4.4), we obtain for the upper lines
of knots that

9= % sin(f — @) = % 1 x=0 y=%(0—a (15.4.13)

Similarly, we get for the bottom lines of knots that
tan § = — tan (Y — @) Sin ¥, cos (f — ¢) = — tan y, cot N, (15.4.14)

where (0 < 0 < 90°). Equations (15.4.11), (15.3.1) and (15.4.14) yield

x;= — atan vy, cot \, = — h cot A= =T (15.4.15)
cos 0 cos vy, .
yp= pr—t = asin (§ — ) (15.4.16)
cot A,

We may transform equations (15.4.14) taking into account that

1 cos A,
cos=——m——= (15.4.17)
\H + tanz [/} COS Y,
h
tan )\,,=ﬂ (15.4.18)
Tp
,,,,,,, I NI
sin( —¢) = % V1 - tan? Yo cot? A= % AT (15.4.19)
a
From equations (15.4.16) to (15.4.19), we get
yf=—_éh,—,:t vazFrZ (15420)
Vh? + 1}

Equations (15.4.15) and (15.4.20) determine the location of the bottom lines of knots.

The upper lines of knots (f* and ¢’) and the bottom lines of knots (fand ¢) are shown in figure
15.4.3 and figure 15.4.4. The tooth element proportions are nonstandard and r,, is the radius of
the operating pitch cylinder of the worm.
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Chapter 16

Methods for Generation of Conjugate Gear-Tooth
Surfaces

16.1 Introduction to Gear Generation

Gear-tooth surfaces are termed conjugated if the gears, having such surfaces, transform rotation
with a prescribed constant angular velocity ratio (the prescribed ratio function for noncircular gears).
The gear-tooth surfaces are usually generated with an auxiliary surface called the generating
surface. The methods of generation are applicable in practice if the generating surface (the tool

Method 1

The generating surface L, is identical to the tooth surface of one of the mating gears (say L.
In the process of cutting, the meshing of Le =L, and L, has to simulate the meshing of L, and
L, in the designed gear train.

Method 2

The generating surface L, differs from the gear-tooth surfaces, L, and L,. The principle of
generation is based on the imaginary meshing of three surfaces—L,, £, and L, simultaneously,
This method provides conjugate gear tooth surfaces with two types of the instantaneous contact:
(1) contact at a point and (2) contact along a line.

Method 3

Two noncoinciding generating surfaces, Ly and Lp, are used for generation of gears with
surfaces I, and L,. It is assumed that the generating surfaces contact each other at a line,
Generating surface L generates surface L, and is in line contact with L;. Similarly, generating
surface Lp generates surface L, of gear 2 and is also in line contact with £,. However, at every
instant, gear surfaces Ly and E, will contact each other at a point only.



Method 4

The gear-tooth surfaces are generated with one or two auxiliary lines. The shapes of these lines
are the shapes of the tool blades.

16.2 Generation Method 1

It was mentioned previously that the generating surface L, is identical to the tooth surface of
one of the gears (gear 1). A typical example of this method is the generation of gear-worm drives
with cylindrical worms, which is based on the following principles:

(1) The worm gear is generated by a hob, which is identical to the cylindrical worm of the
gear-drive.

(2) The meshing of the hob with the worm-gear being generated simulates the meshing of the
worm with the worm gear.

To design the generating worm, (the hob), we have to increase its addendums to provide a clearance
between the addendums of the worm and the dedendums of the worm gear. We also have to check
conditions of nonundercutting of the worm gear by the generating hob. The disadvantages of the
method discussed are:

(1) The use of a large number of tools, (the hobs), because for worm-gear drives with different
parameters of worms, we have to use different tools.

(2) The sensitivity of the worm-gear drive to misalignment and other errors of assembly and
manufacturing as a result of the line contact of surfaces I, and Z.

16.3 Generation Method 2

This well-known method is based on the following principles:

(1) Gear-tooth surfaces L, and I, are generated by the same generating surface L.

(2) Surfaces L, — I, and L,—L, are in line contact.

(3) The contact of surfaces £, and L, are either in (a) line contact or (b) point contact.
General considerations as to the type of contact that surfaces I, and I, may have are as follows:

Consider the mesh of surfaces I, and L. These surfaces are in line contact at every instant and
surface L, may be covered with lines Ly, (¢) (fig. 16.3.1(a)). Here ¢ is the parameter of motion
which determines the orientation and location of the generating gear and gear 1 in the fixed coordinate
system. Each line of the family L, (¢) will be the instantaneous line of contact of surfaces X,
and I, that are in mesh.

Considering the mesh of the generating gear and gear 2, we may also determine the family of
instantaneous lines of contact (Lg (9)) of surfaces £, and L,. It is evident that gears 1 and 2 will
be in line contact if and only if both families of contact lines, Lgl(¢) and L (o), coincide with
each other. Thus, at every instant, surfaces Zg, L,, and I, will contact each other along the same
line; that is, one of the lines of the family Ly, (¢) = Lo (9). Gears 1 and 2, with surfaces L, and
I,, will contact each other at a point only if the families of contact lines, Ly (¢) and L (¢), do
not coincide but have a common point at every instant (fig. 16.3.1(b)).

Figure 16.3.1.
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The analytical determination of L, (¢) and L,y (9) is based on the following procedure. Consider
that surface L, is represented by the vector function

r(u,6)eC' r,Xrg#0 (u.0) € E (16.3.1)
where u and 6 are the surface coordinates. The surface normal is given by
N(uf) =r, xrg (16.3.2)

Using methods described in section 2.3, we may determine the relative velocity v ¢") (¢) and
v (¢) of the generating gear with respect to gears 1 and 2.
The family of contacting lines L, (¢) on surface L, is represented by the equations

r=r(ub) NevE) = f(u6,6)=0 (16.3.3)
Similarly, we get that the family of contacting lines L, (¢) is represented by the equations
r=r(ub) NeviE) = £ (u,0,¢)=0 (16.3.4)

Surfaces £, and Z, are in line contact if functions f, (u,8,¢) and f; (u,8,¢) are identical. Surfaces
L, and L, are in point contact if these functions are not identical but the equation

H{u,0,0) =f(u,0,6) =0 (16.3.5)

possesses a unique solution for « and  with a fixed value of ¢. The graphical solution of equation
(16.3.5) with ¢ = ¢! is (uy,0,) as shown in figure 16.3.2.

An important particular case is when gears 1 and 2 transform rotation between parallel or
intersecting axes. In this case, the relative motion of the gears is rotation about the instantaneous
axis, that is the line of tangency of pitch cylinders (respectively, pitch cones). The generating gear
g will provide an instantaneous contact line for gear surfaces I, and L, if the relative motion of
&, with respect to gears 1 and 2, is determined with the same instantaneous axis of rotation. This
principle of generation is applied to spur gears, (fig. 7.2.1, fig. 7.2.3), to helical gears with parallel
axes, and to bevel gears. In the case of generation of bevel gears, the generating gear g, and gears
1 and 2 rotate about axes O-a,, O-ay, and O-a,, respectively (fig. 16.3.3). These axes lie in the
same plane and intersect each other at a common point O. Axis O-1 will be the instantaneous axis
of rotation for any pair of three sets of gears—g and 1, g and 2, and | and 2—if the line of action
of vectors

w(g|)=w(g)~w(l) w(g2)=w(k)_w(2) w(ll):w(l)_w(Z)



Figure 16.3.3.

coincide with O-1. This condition is satisfied with the following relations:

0® 0@ 0™ sinyy
— _ =sginy, —m =Sy —
wP @

2)

! (16.3.6)
sin 1y

w

Now consider the generation of gears with crossed axes by the generating surface L. Gears
| and 2 rotate about their crossed axes with the prescribed angular velocity ratio m); = 0 Mew?,
The relative motion of gears 1 and 2 may be represented as a screw motion whose components
are: (1) rotation about the axis of screw motion with angular velocity w2 = 0V — w® and (2)
translation along this axis with the velocity hw(1?. (Here h is the screw parameter.) We can
generate gears 1 and 2 having an instantaneous contacting line of their surfaces if and only if the
relative motion of the generating gear with respect to gears 1 and 2 is represented by the same
screw motion. If this condition is not satisfied, the generating gear g will generate gear-tooth surfaces
T, and I,, that are in point contact.

Generation of Drives with Beveloid Gearing

The principle of generation discussed is applied, for instance, for the generation of drives with
beveloid gearing. Beveloid gearing (Dudley, 1962), proposed by Vinco Corporation of Detroit,
is applied for the transformation of rotation between intersecting and crossing axes. Figure 16.3.4
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Figure 16.3.5.

shows a beveloid gearing drive with crossed gear axes. One of the gears (gear 1) is a regular involute
gear. The other gear (gear 2) is a noninvolute face gear whose generation is based on simulation
of the conditions of meshing of the gear train when the generating gear cuts gear 2. This can be
done if an involute shaper, identical to gear 1 of the train, would cut the noninvolute gear with
the same settings and gear ratio as the ones prescribed for the train. This method provides an
instantaneous line contact of gear-tooth surfaces I, and L,.

To reduce the sensitivity of the train to gear errors, a point contact of L, and L, is to be
provided. For this reason, an auxiliary generating surface L, is applied. (A surface of an involute
shaper whose number of teeth N, is larger than the tooth number N, of gear 1 is applied.) We
may imagine that surface L,, which is in internal tangency with I, (fig. 16.3.5), is simultaneously
in tangency with I,. The mesh of generating gear g with gear 1 is simply the mesh of two involute
gears with base circles of radii r,; and Tvg» Tespectively (fig. 16.3.5). The shapes of gears are in
internal tangency and / is the pitch point (the instantaneous center of rotation). However, the mesh
of generating gear g with gear 2 is a case of a spatial gearing.

The instantaneous lines of contact L, (@) are straight lines which are parallel to the axes of gear
rotation. The instantaneous lines of contact L, () are spatial curves and they do not coincide with
L, (#). However, lines of contact Lg (¢) and L, () have a common point for a fixed value of
¢. This point is the instantaneous point of tangency of gears 1 and 2.

It was aforementioned that the disadvantage of gears having line contact of their surfaces is the
sensitivity to misalignments and other errors of manufacturing and assembly. For these reasons,
it can be expected that the line contact of gears is to be substituted with a point contact, even for
the traditional types of gears —spur gears and helical gears with parallel axes.



16.4 Generation Method 3

This method of generation is based on the application of two generating surfaces Lp and Lp,
that separately generate gear 1 and gear 2, respectively. The generating surfaces are so designed
that they can contact each other at a line Lgp.

Consider that generating surfaces L and Tp, that contact each other at Lgp, are rigidly connected
to each other. The motion of rigidly connected surfaces L and Ip with respect to gears 1 and
2 may be represented as the motion of a rigid body. However, we assume that in the process of
generation surface I; is in mesh only with surface E and that E; is in mesh only with surface Ep.

Figure 16.4.1(a) shows the generating surfaces Lp and Lp, that are in contact at Lgp. Surface
Tr contacts surface L, at every instant along a line. Figure 16.4.1(b) shows the family of contact
lines Lg ($) on the generating surface. (Here ¢ is the parameter of generation motion.) Similarly,
each line of the set Lp;(¢) is the instantaneous line of contact for surfaces Lp and L, (fig.
16.4.1(c)).

It is evident that the generated surfaces I, and T, can have a point contact instead of a line
contact only if Ly (¢) is not identical to Lp2(¢). Such a point lies on line Lgp and is the point of
intersection of three lines—Lgp and two mating lines of families Li(¢) and Lpy (9). (Mating
contact lines on surfaces T and Lp are determined for the same fixed value of ¢.)

The advantage of the method of generation discussed is the localization of the bearing contact,
reduced sensitivity of gears to misalignment, and other errors in assembly and manufacturing.

Generation of Bevel Gears

Let us consider the generation process for bevel gears. Two bevel gears transform rotation between
intersected axes O-a, and O-a, with angular velocities w® and w®, respectively (fig. 16.3.3).
As mentioned above, the pitch surfaces are two cones of angles v, and y, which roll over each
other (see ch. 2.2). Axis O-I is the instantaneous axis of rotation which passes through O—the
point of intersection of axes O-a, and O-a,. Axis O-I is the line of action of vector
w12 = () _ @ that represents the angular velocity in relative motion (rotation about O-1).

Plane IT is a tangent plane to the pitch cones. While the pitch cones rotate about O-a; and O-a,,
respectively, plane II rotates about 0-O, with angular velocity w® (fig. 16.3.3). Axis O-1
represents the line of action of vectors W@ = w® — 1 and W) = w® — @ Thus O-I
is the instantaneous axis of rotation of members g and 1, and g and 2. Plane II is the pitch surface
of generating gear g.

We may generate gears 1 and 2 with conjugate surfaces if the following conditions are satisfied:
(1) Plane II is provided with a generating surface £, (2) surface L, is rotated about O-a, while
members 1 and 2 rotate about O-a, and O-ay, respectively, and (3) O-/ is the instantaneous axis
of rotation in the relative motion. With these conditions satisfied, surface L, will generate
conjugated surfaces L, and L, which are in line contact.

Figure 16.4.2 shows a head cutter that is used for the generation of Gleason’s spiral bevel gears.
This tool is provided with blades having straight-lined profiles. These profiles being rotated about
axis C-C form two cones that cut both sides of the tooth. Thus the generating surface is a cone surface.

In the process of generation the following motions are performed (fig. 16.4.3): (1) a rotational
motion of the head cutter about axis C-C, that provides the desired velocity of cutting and (2) a

= Lp2®
\?\\

~Lep

{c)

Figure 16.4.1.
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rotational motion of the head cutter about axis O-a, while the gear to be generated rotates about
axis O-a,. (The member of the cutting machine, that rotates about O-a, and carries axis C-C, is
called the cradle.)

Using the discussed method for generation, we obtain a line contact of gear-tooth surfaces L,
and I,. To obtain a point contact we have to use two generating surfaces that can contact each
other at a line. Two examples of such generating surfaces are shown in figure 16.4.4 and figure
16.4.5, respectively. They are

(1) Two cone surfaces with the same appex angle ., that contact each other at a common
generatrix (AB).

(2) A cone surface and a surface of revolution whose contact line is a circle.

Figure 16.4.4. Figure 16.4.5.

Figure 16.4.6.
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Generation of Helical Gears

Let us now consider the generation process of conjugate surfaces for helical gears with parallel
axes. The gears must transform rotation between axes O, and O, with angular velocities " and
w? (fig. 16.4.6(a)). The pitch surfaces of gears 1 and 2 are pitch cylinders of radii ry and ry,
respectively. Plane I, that is tangent to the pitch cylinders, is the pitch surface of a rack cutter.
While the gears are rotating with angular velocities " and @@, the rack cutter translates with
velocity v = w"r| = w@r,. To generate gears having a point contact of their surfaces we use
two generating surfaces, Lr and Ip (fig. 16.3.6(b)). Consequently, we use two rack cutters and
in this case surfaces Ly and L, contact each other along the line Lgp. Being rigidly connected,
surfaces Lr and Zp move together with plane II as one rigid body. They translate with velocity
v while the gears rotate with angular velocities w” and w®. We may imagine that surface Ly
generates surface I, of gear 1 and surface T, generates surface L,, the tooth surface of gear 2.
We assume that lines of contact Ly, (¢) and Lp, (¢) do not coincide, but that they have a common
point which lies on Lgp—the line of contact of generating surfaces £ and Lp. The common point
of the three lines (two instantaneous lines Lp(¢) and Lp,(¢) (¢ is fixed) and line Lgp) is the
instantaneous point of contact of gear-tooth surfaces L, and L,. The discussed method is used for
generation of helical gears with circular arc teeth.

16.5 Generation Method 4

This method is based on the generation of gear tooth surfaces by an auxiliary line L,, that is
the shape of a blade. We set up coordinate systems §;, S,, and S, rigidly connected with gears
1, 2, and the generating line L,, respectively, and the fixed coordinate system Sy System S,
performs a prescribed motion with respect to Sy, while the coordinate systems S, and S, perform
the prescribed motions with the given gear ratio. Together with these motions, line L, generates
surfaces L, and L, in coordinate systems S, and Sy, respectively. Surfaces £, and I, have a
common line L, at every instant. However, L, can just be a line of intersection but not a line of
tangency for surfaces L; and I,. Surfaces £, and £, will be conjugated if line L, is the line of
contact of L; and L, at every instant. This condition is satisfied if at any point of L, the following
equations are observed:

NWeyl? = N® oyl =g (16.5.1)

Here N and N are the surface normals, and v'? is the vector of relative velocity. If equations
(16.5.1) are satisfied, then line L, is the instantaneous line of contact of L, and L,, vector v('?,
determined for any point of L,. lies in the tangent plane to L, and £, and the surface normals are
collinear, that is

N = mN® (16.5.2)

We may develop some techniques for the generation of L, and L, by L, based on the following
considerations (proposed by Litvin, 1968). The surface normal may be determined by

N =v® x 7  (i=12) (16.5.3)
Here v %) is the relative velocity of a point M represented in the coordinate system S; with respect
to the same point represented in the system S,; 7 is the tangent vector to L, at M. Using equation
(16.5.3), we consider that the surface coordinate lines on L, are line L, and the path which is traced
out in §; by a point of L,.
Equations (16.5.1) and (16.5.3) yield
[v!97vI2) =0 (16.5.4)

[v(Zg)Tv(IZJ] =0 (1655)



We may represent v'? in equations (16.5.4) and (16.5.5) by
vy = y U8 _ y(28) (16.5.6)
and obtain, using equations (16.5.4) to (16.5.6), that
vi87rv®=0 (16.5.7)

It is easy to verify that equation (16.5.7) if satisfied, provides the collinearity of surface normals
N and N@. To prove this we use the equation

ND X N® = (v x 7) x (v x 1)
= vy ) g7] — 7y D7y 3] = —7[v 97V ) (16.5.8)

Equations (16.5.7) and (16.5.8) yield N® x N@ =0, and thus the surface normals are collinear.

On the basis of equation (16.5.7), we may propose the following two techniques for the generation
of conjugate surfaces L; and L,. These techniques are based on the satisfication of equation
(16.5.7) with:

(1) The collinearity of vectors 7 and v

(2) The collinearity of vectors vi® and v (i=1,2)
The evidence that equation (16.5.7) is satisfied with the proposed conditions is based on the following
considerations:

(1) Using the equation

rxvID =7 x (v —v®) =0

we obtain

7 x v =7 x y (28) (16.5.9)
Equations (16.5.9) and (16.5.7) yield
[v(lg)-rv(Zg)] — [v(l.e),,-v(lg)] =0

(2) Using the equation

V(8 % yU2 =g

we obtain

VU8 % (v8) —y 0y = —y (18 5 y (3 =0 (16.5.10)

Thus, equation (16.5.7) is satisfied due to the collinearity of vectors v{'¢’ and v(28) A similar
result may be obtained by using the equation

v8) x vy =g

Technique 1: Vectors 7 and v2 are Collinear

Consider that gears 1 and 2 transform rotation between crossed axes and that the relative motion
is represented as a screw motion (fig. 16.5.1). We assume that the conditions of generation are
as follows:

(1) L, translates along the axis of screw motion A, with an arbitrary chosen velocity v ‘€.

(2) The shape of L, is a helix on a cylinder whose axis coincides with the axis of screw motion.

(3) The screw parameter of the helix is the same as the screw parameter of relative motion for
gears | and 2.
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Let us prove with the aforementioned conditions, that vectors 7 and v'? are indeed collinear.
The velocity of a point in its screw motion is directed along the tangent to the trajectory traced
out by such a point. Line L, is a helix traced out in screw motion. Consequently, the tangent to
L, and vector v are collinear, and equation (16.5.7) is satisfied. Line L, being translated along
the axis of screw motion, while the gears are rotated, generates conjugate surfaces £, and L,.

With this method, we may generate, in particular, conjugate surfaces for gears which transform
rotation between parallel axes. In such a case the relative motion is rotation about an instantaneous
axis /. This axis is a particular case of the screw axis with the screw parameter equal to zero.
The generating line L, becomes an arc of a circle of radius p centered at axis / (fig. 16.5.2). Line
L,, being translated along the instantaneous axis of rotation while the gears rotate about axes O,
and O, generates conjugate surfaces I, and £,. Considering that the ratio v(®) /0w (; = 1,2)
is constant, we conclude that surfaces T, and I, are two helicodes. Here v® is the velocity of
L, in translational motion.

Figure 16.5.2.



Technique 2: Vectors v® (i = 1,2) and v12 y(12) are Collinear

Let us prove that vectors v® and v(* become collinear if the generating line L, performs a
screw motion.

Consider that A4, the axis of screw motion for L, intersects the shortest distance between the
axes of rotation of gears 1 and 2 and lies in plane II that is perpendicular to C (fig. 16.5.1). We
may determine the velocity v!'¢) as follows:

V8 =y —y(® (16.5.11)
Here
v =P xr (16.5.12)
is the velocity in rotational motion of a point for gear 1; r is a position vector drawn from a point
which lies on the axis of rotation of gear 1, O;; and w is the angular velocity of rotation about
0,. Vector
v® = (0® x )+ @ X w®) +pe® (16.5.13)
is the velocity in screw motion of a point of the generating line L,. Here (#) and p,w (8 are the
angular velocity in rotation about and translation along the screw axis A,. Here p, is the screw
parameter in screw motion for L,, and d is a position vector drawn from 0, to O,. We assume
that d is a vector of shortest distance between axis O, and O,.
Equations (16.5.11) to (16.5.13) yield
Ve = (M - ®) xr—(dXw®) - pw® (16.5.14)
Velocity v(12) in relative motion for gears 1 and 2 is represented by the equation

V2 =y —y@ = 1D x r — € x @? (16.5.15)

Here w2 = ¥ — @@, and C is a vector of shortest distance drawn from O, to 0,.
Vectors v'8 and v\'¥ are collinear, that is,

vi®) = \v(? (16.5.16)
Equations (16.5.14) to (16.5.16) yield
@V - @®)xr—(dxa®) -pw® = x[(w“] —@P) xr—(C X w‘z’)} (16.5.17)
Rearranging equation (16.5.17), we get
[0 =0 — 0@ + Mo®] X1+ NC x @) - @ x @) —pw®=0  (165.18)

Remember that r is a position vector which is drawn from a point on axis Oy to a point on line
L,. Equation (16.5.18) will be satisfied for a generating line L, of any shape if

@P1 =N —w® + ra®=0 (16.5.19)
MNC X @?) — (d X 0®) —p,w'® =0 (16.5.20)
Vector equations (16.5.19) and (16.5.20) are to be used to determine &), pe d. and A\

considering that C, @), and w® are given. The line of action for d is the same as that for C,
and we may represent d by
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d
d=—cC
IC|

Vectors of angular and linear velocities represented in equations (16.5.19) to (16.5.20) lie in planes
that are perpendicular to C. Thus vector equations (16.5.19) to (16.5.20) yield only four scalar
equations in five unknowns: two projections of w, d, Pg, and A. Fixing one of these unknowns,
for instance d, we can determine the four remaining unknowns.

Consider that axes 0,-O, and 0,-0, of gear rotation make an angle +; the location and
orientation of A, (the axis of screw motion) is determined with d and 6 (fig. 16.5.1). Projections
of the vectors of equations (16.5. 19) and (16.5.20) on axes X5, ¥p, and zy are represented as follows:

—w® sin 6 + Aw@ siny =0 (16.5.21)
(1 =N —w® cos § + Ao cos y = 0 (16.5.22)
[ ky i Ky
AN —-C 0 0 - -d 0 0
0 w® sin y w® cos v 0 w'® sin & w® cos 6

— pgw ‘#)(sin 8j; + cos 8ky = 0 (16.5.23)

Equation (16.5.23) yields
ACw™ cos v — dw'® cos 6 ~pw® sind=0 (16.5.24)
— ACw? sin y + dw'® sin & ~pw'® cos 6 =0 (16.5.25)

Equations (16.5.21) to (16.5.25) give

(8)
w'® sin &
x —

= o . (16.5.26)

wPw® sin ¥

w8 =
@ sin 6 + w? sin (y—96)

(16.5.27)

_ _sm(y—é)sméc

Py : (16.5.28)
sin y

in & -8
_ Sin 6 cos (y )C

d= ~p,cot(y—9) (16.5.29)

sin y

Equations (16.5.26) to ( 16.5.29) determine all parameters of the screw motion of generation if
& is chosen.

The discussed method may be used for the generation of conjugated surfaces for gears with crossed
axes by a screw motion of a generating line of any shape. The generated surfaces I, and L, will
contact each other at every instant along the generating line Z,. The discussed technique may also
be used for the generation of screws, pumps, and feeders.
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Figure 16.5.3.

There is an important case of screw generation by a circular arc line L, centered at the axis of
screw motion A, as proposed by Litvin and Polytavkin (Litvin, 1968). Consider that two screws
transform rotation between crossed axes 0;-0, and 0,-0,, that make the angle v (fig. 16.5.3(a)).
Vectors @' and @P(jw "] = [@?| = ) are the angular velocities in rotation about these axes,
and C is the shortest distance between the axes. Axis A, of screw motion of generating line is
located in plane IT and makes the angle & with 0,-0,. Since L, is a circular arc centered at Ag,
the rotation of L, about A, is not necessary. Therefore, the generating motion of L, can be
performed as translation only, instead of screw motion. Thus, while screw i is rotated about axis
O;-0; with angular velocity w, the generating line L, is translated along A, with velocity v ) The
generating tool can be a blade as shown in figure 16.5.2(b), or as a rotating milling cutter.

As mentioned previously, parameters of generating motion for L, are determined by equations
(16.5.36) to (16.5.29). In the considered case, oD = w?® = @, and the angle § may be chosen
as & = 0.5y. The velocity of L, in translational motion is given by

_wsin(y—é)sinéc

: X (16.5.29)
sin § + sin (y — 8)

The negative sign of p, and (&) indicates that the screw parameter p, is negative and vector v ()
is opposite to w &’ (fig. 16.5.3).
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Chapter 17

Synthesis of Spiral Bevel Gears

17.1 Introduction to Gear Geometry

There are different types of spiral bevel gears, based on the methods of generation of gear-tooth
surfaces. A few notable ones are the Gleason’s gearing, the Klingelnberg’s Palloid System, and
the Klingelnberg’s and Oerlikon’s Cyclo Palloid System. The design of each type of spiral bevel
gear depends on the method of generation used. It is based on specified and detailed directions
which have been worked out by the mentioned companies. However, there are some general aspects,
such as the concepts of pitch cones, generating gear, and conditions of force transmissions (see
ch. 19.2) that are common for all types of spiral bevel gears.

Pitch Cones

Consider that rotation is transformed between two intersected axis, Oa, and Oa,, which make an
angle v (fig. 17.1.1). (See also sections 2.2 and 14.1.) The angular velocities in rotation about
these axes are w'? and w™®. The instantaneous axis of rotation (Of) is the line of action of the
relative angular velocity

w1 = ) _ @ (17.1.1)

or
W = @ _ M (17.1.2)

The instantaneous axis of rotation is the line of tangency of the pitch cones that roll over each
other without slipping. The apex angles of the pitch cones y, and v, are represented by the
following equations:

my, + cos Y

cot y; = T (17.1.3)

my; + cos
cot :Z’STVY (17.1.4)



Here

o™ N, d w® N,
mp =—=——and my; = —7 = —
w® N, o® N,

are the gear ratio; N, and N, are the number of gear teeth.
For the most common case when v = 90°, we obtain

cot vy =mp cot y, = my,

(17.1.5)

Plane II is a tangent plane to the pitch cones (fig. 17.1.1). We may imagine that plane II rotates
about axis Oa, with angular velocity w ‘¢’ while the pitch cones rotate with angular velocities w
and w'? about axes Oa; and Oa,, respectively. Plane I1, limited with the circle of radius O/, may
be considered as a particular case of a pitch cone surface having an apex angle vy;, which

approaches 90° and has an outer cone distance equal to O

Generating Gear: Types of Spiral Bevel Gearing

Consider that a generating surface I, is rigidly connected to the pitch plane II. Surface L, rotates
with the pitch plane II about Oa, (fig. 17.1.1) while the gear blanks rotate about Oa, and Oa,,

Figure 17.1.1.
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respectively. Surface I, generates tooth surfaces I, and L, on gears 1 and 2. Such a generating
process provides conjugate gear-tooth surfaces £, and I, which contact each other along a line
at every instant. The instantaneous line of contact moves over surfaces L, and L,. Gears 1 and
2, having surfaces I, and L,, will transform rotation about axes Oa, and Oa, with the prescribed
gear ratio. The type of spiral bevel gearing depends on the type of generating surface L,.

The generating surface for Gleason’s spiral bevel gearing is a cone surface (ch. 16.4). The head
cutter (fig. 16.4.2), that cuts the gear, carries blades with straight-lined profiles. Consider a
coordinate system S, that is rigidly connected to the head cutter and rotates with it about the C-C
axis. The head-cutter blades, being rotated about C-C, generate a cone in the coordinate system
S.. The angular velocity of rotation about C-C does not depend on the generating motions and
provides the desired velocity of cutting only.

To generate the gear tooth surface the head cutter has to go through two motions:

(1) Rotation about Oa, while the generated gear rotates about Og; (fig. 16.4.3)

(2) Rotation about C-C

Rotations of the generating gear and the gear being generated are related since the instantaneous
axis of rotation is O/. The rotation of the head cutter about C-C may be ignored by considering
that a generating cone surface is rigidly connected to plane IT (with axis C-C of the cone) (fig.
17.1.1) and rotates about axis Oa,. The motion of the generating gear (rotation about Oa,) is
simulated by the rotation of the cradle of the cutting machine which carries the head cutter.

Consider the line of intersection L of the generating surface with the pitch plane I1. In the case
of Gleason’s gearing, L is a circular arc of radius R (fig. 17.1.2(a)). Line L generates a spatial
curve on the gear pitch cone that is more like a helix rather than a spiral although the gears are
called spiral bevel gears.

The type of spiral bevel gears is related to the type of the longitudinal shape of the gear. We
differentiate between the following types of spiral bevel gears.

(1) The Gleason’s gearing (fig. 17.1.2(a)): where the longitudinal shape is a circular arc of radius
R.

(2) The Palloid System of Klingelnberg (fig. 17.1.2(b)): where the longitudinal shape is
approximately an involute curve for a base circle of radius 7,. The generating surface of the Palloid
System of Klingelnberg is generated by a conical worm. The tool is a conical hob which simulates
the conical worm.

(3) The Cyclo-Palloid System of Klingelnberg and Oerlicon System (fig. 17.1.3): where the
longitudinal shape is an extended epicycloid, traced out by point P of the finishing blade of the
head cutter. The blade and circle of radius p are rigidly connected and represent a rigid body.
The circle of radius p rolls over the gear circle of radius r. Thus these circles are centrodes of
the head-cutter and of the generating gear. The head cutter rotates about O, and the generating
gear rotates about O,. Unlike the generation of Gleason’s gearing, the rotations of the head-cutter
and the generating gear in the case of the Cyclo-Palloid System are related: point / is the instantaneous
center of rotation in the relative motion of the head cutter with respect to the generating gear.

Figure 17.1.2.



In reality the methods of generation discussed are more complicated because they have to provide
a localized contact of gear-tooth surfaces. It is for this reason that two generating surfaces are used
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Figure 17.1.3.

instead of one. (See ch. 16.4.)

Henceforth, we will designate the direction of the tangent to the longitudinal shape at point P
by 8. Point P is the point of intersection of the instantaneous axis of rotation O, and the shape
(figs. 17.1.2 and 17.1.3). The longitudinal shape (the spiral) can be right-handed or left-handed,
similar to the right-handed and left-handed helical gears. Figure 17.1.3 shows right-handed spirals.

Tooth Element Proportions

The axial section of the Palloid gearing and the Cyclo Palloid gearing is shown in figure 17.1.4(a).

This gearing has a constant height of the teeth.

< Pitch cone

o

Pitch
meter

Pitch

diameter

Figure 17.1.4.
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The axial section of the Gleason's gearing is shown in figure 17.1.4(b). Tooth height changes
proportionally to the distance from the apex and the three cones —the pitch cone, dedendum cone,
and addendum cones —have the same apex. In some cases, the gears are designed with different
apices for the mentioned cones to provide a constant backlash between the dedendums and addendums
of mating gears.

The transverse diametral pitch is given for the back cone. The pitch diameter for the gear is
determined by

N,
d = =12 17.1.6

where P is the diametral pitch and N, is the tooth number.
The outer cone distance A, is determined by

d;

Ap = — (17.1.7)
2 sin v,
The addendum and dedendum angles are represented by (fig. 17.1.4(b))
A =tan' L (17.1.8)
Ao
b
A, =tan"'— (17.1.9)
Ao

Here a and b are the dimensions of the addendum and dedendum for the back cone expressed
in terms of the diametral pitch.

17.2 Introduction to Synthesis

Gleason’s gearing has obvious technological advantages: (1) The velocity of cutting does not
depend on the generating velocities. (2) It is easy to grind. (3) The axial shape of teeth (fig. 17.1.4(b))
provides favorable conditions for bending stresses and resistance to elastic deformations. (4) The
contact of surfaces is localized. However, the gear-tooth surfaces can be generated as conjugated
surfaces if special machine-tool settings are used only. This may be explained with figure 17.2.1.
Consider two pitch cones having angles v, and v,. The instantaneous axis of rotation of the pitch
cones is OI. Gears 1 and 2 are generated by generating surfaces Ly and Lp, respectively. The axis
of rotation of the generating surface must be perpendicular to the generatrix of the root cone. Thus,
the axes of rotation of the generating gears, Oz ‘" and 0z", do not coincide, but rather make
an angle of A + A,, where A; (i = 1,2) is the dedendum angle of the gear. Since axes 0z ‘P
and 0z‘7) do not coincide, we cannot use a method of generation that provides the gears with
conjugate surfaces. For this reason some compensating machine-tool settings must be used and
the determination of such settings is the subject of optimal synthesis. The methods for the synthesis
of spiral bevel gears and hypoid gears with Gleason’s gearing are based on the application of tooth
contact analysis. These methods have been worked out: (1) by Gleason’s engineers (1970), (2)
by Litvin (1968), and Litvin and Gutman (1980). The approach, proposed by Litvin (1968), and
Litvin and Gutman (1980), is based on application in two stages; the local synthesis and the global
synthesis.

The purposes of local synthesis are to provide: (1) contact of gear-tooth surfaces at the mean
contact point, and (2) improved conditions of meshing within the neighborhood of the mean contact
point. The purpose of the global synthesis is to provide optimal conditions of meshing for the whole
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area of meshing. The criteria of conditions of meshing are the kinematical errors and the bearing
contact.

Synthesis of spiral bevel gears discussed in this chapter is based on the research performed by
Litvin, Hayasaka, Rahman, and Wei-Jiung Tsung. A new method for generation of Gleason’s spiral
bevel gears with conjugate tooth surfaces has been recently developed by Litvin, Tsung, Coy, and
Heine (Litvin et al, 1986).

17.3 Generating Surfaces and Coordinate Systems

Here the generating surface is a cone surface (fig. 17.3.1). This surface is generated in the
coordinate system S, while the blades of the head cutter rotate about axis C-C (fig. 16.4.2).
The generation of gear-tooth surfaces is based on application of two tool surfaces, Lr and Lp,
which generate gears 1 and 2, respectively. The generating surfaces (generating cones) do not
coincide; they have different cone angles, P and Y!P), and different mean radii, riF and r. (P
(fig. 17.3.1(a)). Special machine-tool settings, AE, and AL, (fig. 17.3.3(b)), must be used for the
generation of the pinion.

Considering the generation of the gear 2 tooth surface we use the following coordinate systems:

(1) S'2, which is rigidly connected to the generating surface Tp (fig. 17.3.1(b))

(2) The fixed coordinate system ${?) that is rigidly connected to the frame of the cutting
machine

(3) The coordinate system S, which is rigidly connected to gear 2 (fig. 17.3.2)

In the process of generation, the generating surface rotates about the x{?)-axis with angular velocity
Q™. while the gear blank rotates about the z,-axis with the angular velocity Q@ Axes x\? and
2, intersect each other and form the angle 90° + v, — A,, where 4, is the dedendum angle for
gear 2. Axis x{?) is perpendicular to the generatrix of the root cone of gear 2. The coordinate
system Sy shown in figure 17.3.2 is rigidly connected to the housing of the gears and will be used
for the analysis of conditions of meshing of the gears.

Considering the generation of the pinion, we use the following coordinate systems:

(1) S, that is rigidly connected to the generating surface Lp

) S, that is rigidly connected to the frame of the cutting machine

(3) S,, that is rigidly connected to the pinion (gear 1) (fig. 17.3.3)

Axes x\!) and z, do not intersect but cross each other; AE, and AL, are the corrections of machine-
tool settings that are used for the improvement of meshing of the gears. In the process of generation,
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the generating surface rotates about the the x{D-axis with angular velocity Q® while the gear
1 blank rotates about the z;-axis with angular velocity Q0. Axes x" and z; form the angle
90° — v, + A, where 4, is the dedendum angle of gear 1 and axis x! is perpendicular to the

generatrix of the root cone of gear 1.

17.4 Generating Tool Surfaces

The tool surface is a cone and is represented in the coordinate system SY) as follows (fig.
17.3.1(a))

xY ri cot $& — u; cos YN
) u; sin Y7 sin 6;
0 = u; sin ¥ cos 6 (j=FP) (17.4.1)
s
1
1

where u; and 6, are the surface coordinates.

The coordinate system SY (j = F,P) is an auxiliary coordinate system that is also rigidly
connected to the tool (fig. 17.3.1(b)). To represent the generating surface Ly and Ip in coordinate
system SY' we use the following matrix equation (a left-hand generating gear is considered)

XD x4 1 0 0 0 x
y 0 ¥ 0 cosg; —sing; —b;sing »
= [M“J] = _ (17.4.2)
zP A 0 sing; cosgq; bjcosg; 2
1 1 0 0 0 1 1

Here b; and q; are parameters that determine the location of the tool in coordinate system S
Equations (17.4.1) and (17.4.2) yield

xU) = r¥ cot YY) — u; cos Yy
¥ = u; sin U sin (§; — g;) — b; sin g; (17.4.3)
29 = w; sin 2 cos (8, — q;) + b; cos g

where j = (F.P).
The unit normal to the generating surface L; (j = F,P) is represented by

. N© o oarY
nd = —- N = —~— < (17.4.4)
N9 a9; Ou,
Using equations (17.4.3) and (17.4.4) (provided u; sin :,b}” # (), we obtain
nY = sin yViY + cos dzCU)[sin 6 — g)i + cos (§; — qj)k,,(’)] (17.4.5)
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17.5 Equations of Meshing by Cutting

Generation of I,

We derive the equation of meshing of the generating surface Ly and the gear-tooth surface L,
by using the following procedure:

Step 1. —First, we derive the family of surfaces L which are represented in the coordinate
system S, Such a family is generated while the coordinate system S is rotated about the
xyD-axis (fig. 17.3.3). We recall that the generating surface Ly is rigidly connected to S We
use the matrix equation

erl) X((F)
1 F
' [Mm e (17.5.1)
= (FJ] 5.
2 me S (F)
m Lo

for the coordinate transformation.
Here (fig. 17.3.3)

1 0 0 0
0 cose,. sing, O
[M,f,”‘-(ﬂ] = d f (17.5.2)
0 -sin ¢p cos g, 0
0 0 0 1
where ¢ is the angle of rotation about the x.\’-axis.
Using equations (17.5.1), (17.5.2), and (17.4.3), we obtain
x riF) cot Y& — ugp cos ¢ P
yib u sin Y7 sin 7 — by sin (g, — ¢
(] = —
0] = = (17.5.3)
AL up sin Y$F cos 7 + bg cos (9 — ¢p)

1 1

where 7 = 0 — 4 + ¢p Equations (17.5.3), with the parameter Pr fixed, represent a single
surface of the family of generating surfaces.

Step 2. —The unit normal to the generating surface L; may be represented in coordinate system
S as follows:

N
NG|

orl  arD
© 80 dup

(1 —

M

(1)

m

(17.5.4)

We may also use an alternative method for the derivation of the unit normal. This method is based
on the matrix equation



[n,i.”] = [L,ﬁ,”}”] [nﬁ”] (17.5.5)

Matrix L,f,”(m] may be determined by deleting the 4th column and row in matrix (17.5.2).
The column matrix [n(‘.F )] is given by vector equation (17.4.4). After transformation, we obtain

sin P
[n,ﬁ,”] = | cos ¢'Psin 7¢ (17.5.6)

cos Y\F) cos 7

Step 3.—We derive the equations of the relative velocity as follows:
v = v\ — il (17.5.7)

where v\P) is the velocity of a point M on surface Ly and v.D is the velocity of the same point
M on surface I;.
Vector v\ is represented by the equation

viP = QP x il (17.5.8)
Here (fig. 17.3.3):
_Q(F)
[9,&,”] - | o (17.5.9)
0

Vector 1)) is represented by equation (17.5.3).
Equations (17.5.8) and (17.5.9) yield

0
[v’;r)] Q| L (17.5.10)

1
_yrsl)

Gear 1 rotates about the z;-axis with the angular velocity 2" (fig. 17.3.3). Since QD does not
pass through the origin O, of the coordinate system S we substitute € by an equal vector
which passes through O\ and the vector moment represented by

oM 0, x BV

Then, we represent v\ as follows:

Vi =00 xrD + 0 0, x B (17.5.11)
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Here

L sin A, sin (7y; — A))
0D0, = | -AE, [9,;”] = -0 0 (17.5.12)
—AL] Cos ('Y| - A])
where L = O,N. Equations (17.5.11) to (17.5.12) yield
Wk
[v"ﬁ”] = -2 | sin(y, —4) 0 cos(y, — A
NI
iy in" k"
- Lsina, —AE —AL,
sin (y; =4y, 0 cos (y; — A
[ - (y,f,” + AE,) cos (y; — 4,
= - (x,f,” — L sin Al) cos (y; — A)) — (g4 + ALy) sin (v, — A))
i (82 + 4E,) sin (v, - ay)
(17.5.13)
The final expression for v\ is
I:vygfl )] =
My, (H —
-0 (y,,, + AE,) cos (y; — Ap
QFZ0 4 Q“){(x,f,” — Lsin Al) cos (y; — 4A)) — (z,ﬁ” + AL,) sin (y, — A,)}
~QHyh 4 Q”)(y,},” + AEI) sin (y; — 4))
(7.5.14)
Step 4. —The equation of meshing by cutting is represented by
n{eyF =g (17.5.15)

Using equations (17.5.15), (17.5.14), (17.5.6), and (17.5.3), we obtain



{—up + [rcm cot yF) — Lsin A, — AL, tan (y; — AI)] cos 111((”} sin 75

+ b [sin viP sin (g, — ¢;) + cos v &P sin 0 mg — sin (v l)]

cos (y; — 4y)

— AE, [sin Y — cos ¢4 tan (v, — A)) cos TF]
= fi(up, Op, @) =0 (17.5.16)

where mp; = QF/Q". Equation (17.5.6) relates the generating surface coordinates (up, 0F) with
the angle of rotation (¢ F).

Generation of X,

Using a similar procedure, we may obtain the equation of meshing for surface Lp by using the
following steps.

Step 1. —Equations of the family of generating surfaces Lp represented in the coordinate system
S are

x5 ré® cot Y — up cos s
y’gz) = uP sin \I/LSP) Sin Tp — bP Sin (qp - ‘pP) (]7517)
7 up sin y$F) cos 1p + bp cos (g, — ¢p)

Step 2. —The unit normal to Zp is represented in 5L by the column matrix

sin ¢ P
[n,ﬁ,z)] = cos x//C(P)sin Tp (17.5.18)

cos Y P cos 7p

where 7p = 0p — g, + ¢p.
Step 3.—The velocities v, v, and v{P?) are represented in S}’ as follows:

0
[v,f,P)] —| @ (17.5.19)

2
_yrﬁl)

WD cos (v2 — Ay)
[v,w] - _o@| - (x”‘,z’ + L sin A2> cos (72 — Ay) — @2 sin (y2 — Ay) | (17.5.20)

(2)

Ym sin (72 - AZ)
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[v;f’“] = [v"‘,”)] - [v;ﬂ] (17.5.21)

Step 4. — The equation of meshing
neyifD =9

yields the following equation:
.fZ(uPr 0,:’ ﬂop) =

[up - (r((P) cot ¥'P + L sin Az) cos l,’/C(P):I sin 7p — bp sin (4, — ¢p) sin A

mpy = Sin (2 — &) _

0 (17.5.22)
cos (y2 — Ay)

+ bp cos P sin 0,

Here mp, = QP /02,

17.6 Local Synthesis: Conditions of Tangency

The purpose of local synthesis is to provide (1) tangency of gear-tooth surfaces at the main point
of contact, (2) transformation of rotation with an instantanteous gear ratio equal to the given ratio,
and (3) determination of the range of machine-tool settings which correspond to the motion of contact
point along and across the gear-tooth surfaces, respectively. The solution of the first two problems
is discussed in this section.

Tangency of Surfaces £, and I,

We consider that the main contact point M lies on the instantaneous axis of rotation of gears
l'and 2 (fig. 17.3.2). This axis is the pitch line —the line of tangency of gears 1 and 2. The generating
surface Lp and the gear-tooth surface being cut will be in tangency at M if the following conditions
are satisfied: (1) the generating surface Lp passes through M and (2) the instantaneous axis of
rotation by cutting coincides with the instantaneous axis of rotation for gears 1 and 2.

It is easily verified that the second condition is satisfied with

sin vy,

(17.6.1)

mpy =
cos A,

To prove this we consider the collinearity of vectors @2 and ‘O,M. Here (fig. 17.3.2):
—Q(P) + Q(z) sin ('Yz - Az)

QP Q@ _ Q@ = 0 (17.6.2)

Q@ cos (v, — &y

where ©72) is the angular velocity of the generating gear P with respect to gear 2 and
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sin A2
OM=L| 0 (17.6.3)

cos A

The conditions of collinearity yield

—0P 4+ QD sin (v, — &) —0% cos (v, — Ay
sin A, cos A

(17.6.4)

Thus mp, = @7 /Q? = sin y,/cos A, and equation (17.6.1) is confirmed. Equation (17.6.1)
determines the angular velocity ratio for the generation of gear 2.
We may determine the machine-tool settings by taking in equation (17.5.17)
D=0  yP=0 P =Lcosh (17.6.5)

where x{2, v, and z\? are the coordinates of point M (fig. 17.3.2). Equations (17.5.17) and
(17.6.5) yield

ri
Up = W (1766)
riP) sin 1p — bp sin (9, — ep) = 0 (17.6.7)
r{® cos 7p + bp cos (g, — ¢p) = L cos Ay (17.6.8)

where 7, = bp — qp + ©p Using equations (17.6.1), (17.6.6), (17.6.7), and the equation of
meshing (17.5.22), we obtain:

L A, si
P

Equations (17.6.7) to (17.6.9) relate parameters of machine-tool settings: bp, g, and 8p. These
equations may be satisfied for any value of ¢,. For example, with ¢, = 0 and from drawings of
figure 17.3.1, we obtain

Bp=90° — (8p — q,) =90° — 7p (17.6.10)

The final expressions for equations (17.6.7) to (17.6.10) therefore become

r{ cos Bp — bp sin g, = 0 (17.6.11)
r{P) sin Bp + bp cos g, = L cos A, (17.6.12)
L cos A,
sin 0p = ﬂ—b‘c—osﬂ’ (17.6.13)
P

An alternative solution is based on the equation for 6, where
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0P=TP+qP=9O°_BP+qP

Considering Bp, r!f’, L, and A, as given, we may determine the parameters of the machine-tool
settings for gear 2 from equations (17.6.11) to (17.6.13).
The common unit normal for surfaces Lp and L, at their contact point M is represented by

sin y!P
[n,f,z’] = | cos 4P cos Bp (17.6.14)

cos ¢ P sin Bp

(See eq. (17.5.18).)

Tangency of Surfaces £,, ., and I,

We set up the following coordinate systems rigidly connected to the frame of the cutting machine:
Sn S5, (fig. 17.3.3), and S, (fig. 17.6.1(a)). Axis z$" and z, intersect each other at point N
whose location is determined by O,N = L; A; is the dedendum angle of gear 1; and axis z,
coincides with the rotation axis of gear 1.

We consider also coordinate systems Srand S (fig. 17.6.1(b)) which are rigidly connected to
the coordinate system S,\? (fig. 17.3.2). Point M which is located on the zraxis is the point of
tangency of surfaces Ly and E,. In the simplest case, point M may coincide with N and coordinate
systems Syand S; may coincide with coordinate systems 8, and S, respectively. The three surfaces
Lp, Ly, and Lp will then pass through the same point. However, Lr will be in tangency with I,
and I, if the normal to L, coincides with the normal to Lp. This condition can be satisfied with
a special relation between the blade angles ¥ " and viP) and special machine-tool settings. For
practical reasons it is important to make ¥{ = y /" and use blades with the same angle. This
becomes possible by choosing a new point of contact 4 for surfaces Lr Lp, and L,.

Consider that the generating surface L is set up in the coordinate system S, but the settings
of L are not yet determined. The generating surface Lp is set up in the coordinate system Lsand
its settings are known: L passes through point M and the surface unit normal at M is represented
in the coordinate system S\?’ by equation (17.6.14). Surfaces Lp and I, are in tangency at M.
Initially, the coordinate system S; coincides with S}, and S, coincides with S,. We may consider
that coordinate systems S, S, §,;”’, and surfaces Lp and I, form a rigid body B. Now, consider
that B is rotated about the z,-axis through an angle 6 (fig. 17.6.2) which is just a setting angle.
Axis z; being rotated about the z,-axis will move over the surface of the pitch cone with the apex
angle v,. Consequently, point M, which is the point of tangency of surfaces Lp and E,, will come

Zy

@) (b)
Figure 17.6.1.



Figure 17.6.2.

to a new position which we designate by N. However, point N lies on the pitch cone of gear 1.
Surfaces Ly and Lp (consequently, I, Lp, and E,) will be in tangency at N, if the following
equations are observed:

[,’fn] - [th] [,fw)] (17.6.15)
[nhm] - [th] [n;m] (17.6.16)

Here

(17.6.17)

7]

N o ©

is the column matrix of point M.
Matrix [nf‘M )] is the column matrix of the unit normal to surface Ep at point M. Matrix Lth]
represents the coordinate transformation in transition from S; to S, and is determined as follows

(figs. 17.6.1(b) and 17.6.2):

[th] = [Mha][Mak][Mkf] =

cosy; O siny; O cosd —sind 0 0 cosy, 0 —siny, 0

0 1 0 0 sind cosé 00 0 1 0 0

—siny; 0 cosvy; O 0 0 10 siny; 0 cosy, O

0 0o 0 1 0 0 01 0 0 0 1
cos & cos? y, +sin®y; —sin 8 cosy; (1 —cosd)cosysiny O
sin & cos v cos O —sin d sin vy, 0

(1 — cos &) cos v, siny; sin & sin cos & sin® y; + cos’y; 0
Y1 Y Y

0 0 0 1
(17.6.18)
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Matrix [L,,f] may be derived from [M,,f} by deleting the fourth column and row,

The column matrices [r,fF ’]

surface unit normal.

Matrix equations (17.6.15) and (17.6.16) provide six equations which determine the machine-
tool settings for the generating surface Tr. The derivation of these equations is based on the
following procedure:

and {n{P |, represent in coordinate system S, surface I, and the

Step 1. Determination of the matrix product [M,,f] [r}M)] in equation (17.6.15). — Using
equations (17.6.17) and (17.6.18), we obtain

(I — cos 8) cos v, sin 7,

—sin § sin «y,
(My] [r,‘”’] =L (17.6.19)
cos & sin? y, + cos? v,

1

Step 2. Representation of surface Ty in coordinate system Syu.—Surface Ly is represented in
the coordinate system S\ by equations (17.5.3). We may represent L in S, by using the following
matrix equation:

[r;.‘”] = [M;S,L’] [r,f,"] (17.6.20)
where (figs. 17.3.3 and (17.6.1)

cos A, 0 sin &) —(Lcos A; — AL}) sin A,

0 ! 0 AE,
[Mh‘n',’] = (17.6.21)
—sinA;, 0 cos Ay Lsin? A, + AL cos A,

0 0 0 1
Equations (17.5.3) and (17.6.21) yield
= (rC(F’ cot Y'F) — ug cos \//(!F)) cos A,
+ [up sin Y cos 7 + by cos (g, — ¢F)] sinA; — (Lcos A, — AL)) sin 4, (17.6.22)
AP = up sin Y5 sin 71 — bp sin (9. — ¢p) + AE, (17.6.23)

7= - (r(.(F’ cot ¢ 5 — ug cos \LC‘F)) sin A

+ [uF sin Y\ cos 7 + by cos (q, — qop)] cos Ay + Lsin® A + AL, cos A,  (17.6.24)
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Step 3. Determination of basic equations provided by matrix equation (17.6.15).—Using
equations (17.6.15), (17.6.19), and (17.6.22) to (17.6.24), we get

(r}” cot Y — up cos \L}F)) cos Ay + [uF sin 4P cos 77 + bp cos (g, — th)] sin A,
— (L cos A; — AL)) sin A; = L(1 — cos 8) cos 7, sin 7, (17.6.25)
up sin yF) sin 7y — besin (g, — ¢p) + AE; = —Lsin b sin vy, (17.6.26)
- (r}” cot Y \F) — up cos ¢C‘F)) sin Ay + [up sin Y\F) cos 75 + bp cos (¢, — ¢F)] cos A,
+ Lsin? A, + AL, cos A; = L(cos 8 sin y; + cos” v}) (17.6.27)
The three basic equations (17.6.25) to (17.6.27) provide that surfaces Ir, Lp, and L, have a

common point P.

Step 4. Representation in coordinate system S, of the unit normal to surface Lp. —The surface
unit normal at point P is represented in coordinate system 5.3 by equation (17.5.18). Parameter
7, = 90° — Bp at point M (fig. 17.3.1). The unit normal is represented in the coordinate system
S, by the matrix product [L,E,%,)] [n,ﬁ,z)j

Here (figs. 17.3.2) and (17.6.1)

[L2] =1 [L2)] =

cos & cos® y, +sin?y, —sin 8 cos y; (1 — cos 8) cos ¥, sin v,
sin & cos v, cos 0 —sin 8 sin 7,

(1 —cos 8) cos y; siny, sindsiny, cos?d sin? y; + cos? v,
1 Y

cos A, 0 —sin A,
0 1 0 (17.6.28)

sin A, 0 cos 4,
Using equations (17.6.28) and (17.5.18), we obtain
n{f) = cos & cos v, [sin YiP cos (y; + BAg) — cos Y sin (y; + 4y) sin Bp]
+ sin 'y][sin WP sin (v, + A + cos ¥ cos () + Ay) sin BP]

— sin & cos ¢ 'P? cos v, cos Bp (17.6.29)
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n'? = sin 6[sin U cos () + Ag) — cos &P sin Bp sin (y, + Az)]

+ cos & cos \HP’ cos 3p (17.6.30)
niP = —cos & sin v, [sin ¥F) cos (v, + Ay — cos ¥ sin Bp sin (y, + Az)]
+ cos ¥, [sin P sin () + Ay) + cos 4P sin Bp cos (v, + Az)]
+ sin & cos ¥'P) cos Bp sin Y (17.6.31)

Step 5. Representation in coordinate system S, of the unit normal to surface L. —The unit
normal to surface Ly is represented in coordinate system S') by equations (17.5.6). We may
represent this unit normal in coordinate system S, by using the following matrix equation:

[n,ff’] - [L,ﬁ,‘,,’] [n,ﬁ,”] (17.6.32)
Here (see matrix (17.6.21)):

cos A; 0 sin A
|2i0] = 0 1 0 (17.6.33)
—sin A; 0 cos 4,

Using equations (17.6.32), (17.6.33), and (17.5.6), we obtain

n% = sin yF) cos A, + cos YF cos 74 sin A, (17.6.34)
n$ = cos y!F) sin 7 (17.6.35)
ni) = —sin Y sin A, + cos P cos 75 cos A, (17.6.36)

Step 6. Determination of basic equations provided by matrix equations (17.6.16). — Using
equations (17.6.16), (17.6.29) to (17.6.31) and (17.6.34) to (17.6.36), we obtain
sin ¢/ cos A, + cos ¢ P cos 7 sin A,
= cos 6 cos v, [sin &P cos () + A,) — cos ¥ P sin (y; + 4y) sin Bp]
+ sin 'y,[sin v P sin (v + Ay) + cos Y!P) cos (v, + Ay) sin BP]

— sin & cos ¢! cos vy, cos Bp (17.6.37)

cos ¥ !P sin 7 = sin 5[sin WP cos () + A) — cos ¢ sin Bp sin (v, + Az)]

+ cos & cos ¥P) cos Bp (17.6.38)



—sin ! sin A + cos Y cos g cos A

—cos 6 sin 7, [sin ULP) cos () + Ag) — cos Y7 sin Bp sin (y; + Az)]

—+

sin & cos ¥'F! cos Bp sin y; + cos v [sin VP sin (v, + Ay)

+

cos Y.F) sin Bp cos (v; + Az)] (17.6.39)

The three basic equations (17.6.37) to (17.6.39) provide that surfaces Lr, Lp, and L, have a
common normal at point P and are in tangency at this point. Only two equations of (17.6.37) to
(17.6.39) are independent since n{"| = ™| = 1.

The satisfaction of equations (17.6.25) to (17.6.27) and (17.6.37) to (17.6.39) yields that the
three surfaces r, Lp, and £, have a common point N and are in tangency at this point. All four
surfaces I, Ly, Lp, and I, will be in tangency at N if at this point the equation of meshing of
Trand L, is also satisfied. This condition can be fulfilled with the appropriate value of the ratio
for cutting mg = @F1/QM. (See sec. 17.7.)

17.7 Basic Machine-Tool Settings

The basic equations (17.6.25) to (17.6.27) and (17.6.37) to (17.6.39) determine the relations
between the machine-tool settings for the generating surfaces Ep and Lp. We may determine these
settings by using the following procedure.

Determination of Settings

Step 1. Determination of Tp.—Consider equations (17.6.37) and (17.6.39). Multiplying these
equations by sin y; and cos 7, respectively, we get, after simplifications, that

COS Tp =

sin ¥P) sin (y; + Ay) + cos 7 cos () + Ay) sin Bp — sin P sin (v, — AD
cos Y\ cos (v, — A

(17.7.1)

Using this equation, we make " = ¢ = y,, where y, is the standard angle of the blades of

the head-cutter.
Equation (17.6.40) provides two solutions for 7. We have to choose the solution which gives

7 close to (90° — Bp).
Step 2. Determination of 6. —Represent equations (17.6.37) and (17.6.38) as follows:
Asind+Bcosd+C=0 (17.7.2)

Dsind+Ecosé+F=0 (17.7.3)
These equations provide one solution for é

6 A(E+F)-D(C+B
tan — = ( ) ( ) (17.7.4)
2 BF — CE

Step 3. Determination of uy.—Consider equations (17.6.25) and (17.6.27) simultaneously.
Multiplying these equations by cos A; and sin 4, respectively, we get, after simplifications,
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r!F cot Y B — L sin v, cos (y; — A))(1 — cos
iy = ¥ 84 (F)('Yl 1)( ) (17.7.5)
cos .

Step 4. Determination of (qF — ¢J) and bg.—Consider equations (17.6.25) and 17.6.27)
simultaneously. Multiplying these equations by sin A, and cos 4|, we get, after transformations,

br cos gy — ¢g) = L[ €0s vy €os {y; — —A;) + cos b sin vy, sin (y; — Al)]
— AL} — ug sin P cos 75 (17.7.6)

Equations (17.7.6) and (17.6.26) yield

%
tan (qF — <pF) == 17.7.7)
G
Q = ug sin Y7 sin 7o + AE| + L sin 6 sin v, (17.7.8)

G = L[cos Y1 €08 {y; —Ay) + cos b sin v, sin (y, — A,)] — AL,
e sin b F) cac
up sin "’ cos 1p (17.7.9)

Equations (17.6.26) and (17.7.9) yield

by = ——— ¢ (17.7.10)
sin (g, — ¢r)
Alternative Solutions for (qF — )
We may represent equations (17.6.25) and (17.6.26) as follows:

br cos (g —wp) =4 (17.7.11)
br sin (qF — <pF) =B (17.7.12)

Equations (17.7.11) and (17.7.12) yield
br = V4% + B? (17.7.13)

—¢r VA + B — 4

tan £ — #F _ (17.7.14)

2 B

Step 5. Determination of 0p.—Consider that 7 and (g, — ¢,) are known. Then we may
determine @ using the equation

0F=TF+qF_§0F (17715)

Step 6. Determination of my,.—Surfaces Ly and T, will be in tangency at point A if the equation
of meshing (17.5.16) is satisfied for this point.

We transform equation (17.5.16) by using expressions (17.7.5), (17.7.6), (17.7.10), and (17.7.16)
for ug, br cos (g — ¢¢), by sin (g — @), and O, respectively. After transformations we get the
following equation for mp,:

hﬂ

My = = (17.7.16)

try



Here

QP

My = 0y
Q(l)

is the angular velocity ratio for cutting of gear 1.
T =L sinvy, {cos 8 sin 75 — sin 5[cos (v, — &) tan Y —sin (y; — 4) cos T[:]} (17.7.17)
E = L sin 7l[cot v, €os (y, — Ay) sin 7 + cos b sin (v — A)) sin 7p
+ sin § cos -rp] — AL, sin 1 + AE; cos 7¢ (17.7.18)

Generally, the ratio my, depends on the corrections of machine-tool settings, AL, and AE;. There
is a particular case when the corrections AE, and AL, are related with the equation

AE,| cos 7p = AL, sin 7p (17.7.19)

For this particular case the ratio mg; does not depend on the corrections of machine-tool settings.

17.8 Local Synthesis: Determination of Corrections of Machine-Tool
Settings

Basic Equations

The purpose of the corrections of machine-tool settings is to make the first derivative of the gear
ratio dide, (my2(¢)), equal to zero at the main contact point 4. The determination of the
corrections AE, and AL, is based on the use of the following equations:

vr(z) _ Vr(” = 2 (17.8.1)
l'.lr(z) —_ nr(” — w(lz) X n (1782)
d 3
° (n(l)_vu.)) =0 (17.8.3)
t
d
. (n(m . v(pZ)) -0 (17.8.4)
t
d
E(n(m,v(m) =0 (17.8.5)
t

(See eqgs. (6.1.12) and (6.1.13).)

Equations (17.8.3) to (17.8.5) are the differentiated equations of meshing for gears 1 and 2.
the generating gear P and gear 2, and the generating gear F and gear 1, respectively.

Here v (i = 1,2) is the velocity of the contacting point in motion over the surface; (" is the
velocity of the tip of the surface unit normal in motion over the surface; v(!? is the sliding velocity;
n is the common surface unit normal; and w'? = 0w — 0@ where w? is the gear angular
velocity.

Let us transform equation (17.8.1) by using the following relations:

viD =y 4y P = P (17.8.6)
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Here v7) = 0 since point M of tangency of surfaces Lp and L, lies on the instantaneous axis of
rotation (fig. 17.3.2)

vi) =y (P 4 y (D (17.8.7)
vl =v@ (17.8.8)

because point N of tangency of surfaces I, and £, lies on the pitch line and v('? = 0.
Equations (17.8.1), (17.8.2), and (17.8.6) to (17.8.8) yield

v =y 4 oy D (17.8.9)

Using similar transformations for equation (17.8.2), we get
02 = 0P 4 QD x (P (17.8.10)
" =P + QU x (17.8.11)

Here 2 = QP — Q@ and QED = QE _ QD where @ is the angular velocity in the
generating process; n” = n® = n" = n‘® at the point of contact.
Equations (17.8.2) and (17.8.10) to (18.8.11) yield

0" + Q2 x n® — 02 x g = g 4 QUED x n P (17.8.12)

Let us now differentiate the equations of meshing (17.8.3) to (17.8.5) by taking into account
that the main contact point v!'¥ =0 and v» = 0. Let us also assume that @ = constant,
w'? = constant, and m/>(¢,) = 0. Thus we obtain

d (h“’-v“z’) = .2 4 n(l).ﬁ[w(m % r”’] _ [n(l)w(lml:(])] -0 (17.8.13)
dt dt

%(n(")-v‘m)) = [n”’)ﬂ“’”r‘“”] =0 (17.8.14)

A Py (F) [n‘F)Q‘F”i“”] =0 (17.8.15)

Litvin (1968) proved that the basic equations mentioned provide two sets of the corrections with
which the motion of contact point is directed across and along the tooth surface. Of the two motions,
the more favorable case is the motion of the contracting point along the tooth surface, because
it provides reduced kinematical errors and better conditions of lubrication. For these reasons, we
limit the discussion to the mentioned case.

Kinematic Considerations

Consider four surfaces Lp, ¥y, Lf, and T, which are in tangency at point A. Point A lies on
the pitch line of gears 1 and 2. Gear 1, having surface L,, rotates with angular velocity @ and
is in mesh with surfaces Ly and I,. Thus @@ = Q" and @9 = 0P, where o P = oWy,
Similarly, we may state that gear 2, having surface I,, rotates with angular velocity w‘® and is
in mesh with surfaces Lp and ;. Here w® = 0@ and w® = QP where o ® = wPmp,. All
four surfaces will be in contact within the neighborhood of point 4 if they have a common point
and common normal.

Equations (17.6.37) to (17.6.39) provide that surfaces Lp and Ly are indeed in tangency at point
A. Considering that surfaces Lp and Ly are in tangency within the neighborhood of 4, we have
to change Bp for the variable 75. Then, equations (17.6.37) to (17.6.39) become equations with



variables 7p = 0p — g, + ¢, and 7p = O — 4 + ¢p- These equations can be satisfied in the
process of meshing with certain relations between 7p and 75, There is a particular case when
equations (17.6.37) to (17.6.39) are satisfied within the neighborhood of A4, because 7p and 1 are
constant. We remind that 7 and 7p, for point A, are not equal but related with equation (17.7.1);
where 7p = 90° — f3p for point A. Thus the contacting normal to surfaces Lp Keeps its original
direction within the neighborhood of 4.

Figure 17.8.1 shows two longitudinal shapes of surfaces Lp and Lr at two positions when they
contact each other at A and A*, respectively. The contacting normals have the same direction at
A and A*, and intersect the instantaneous axis of rotation at A and B, respectively.

’

Considering that 7p ad 7 are constant within the neighborhood of A, we get

d d do
fr_og B2 _TF (17.8.15)
dt dt dt
d d db
aTr _ der _ _TE (17.8.16)
dt dr dt
Determination of AE;: Basic Equations
The determination of AE, is based on the following equations:
dup A dlp Yider _Shdup (% h\de_o 751y
aup dt BBP dr a¢p dt 8up dt 6<pp 60p dt
O dup | Oy dbp | Oy der _ O due (3 9 \der_ (17818
3uF dt 66,:‘ dt 6(,0,: dr au}:‘ dr aan 60p dt
v D = v LD 4y DD (17.8.19)
Here
fr(up, 0p, wp) =0 (17.8.20)

is the equation of meshing of surfaces Lp and L,, represented by equations (17.5.22), and fi (ur,
0r ¢r) =0 is the equation of meshing of Lr and I,, represented by equation (17.5.16). Let us
differentiate the equations of meshing, considering that 7p and 7p are constant. (See eq. (17.8.15)
and (17.8.16).) Equations (17.8.17), (17.5.22), and (17.8.15) yield

Projections of
contacting normats

/
/

£ Instantaneous axis of rotation
Figure 17.8.1.
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di 1 9
Mr_ bp[cos 8p cos /P tan A, — cos gp sin :L(YP)] - Zer
dt cos Bp dt
= [L(sin A; cos Y P sin Bp — cos A, sin ¥ P)
P (gin &P g (P) I dep
+ 77 (sin ¢ sin Bp — cos ¢} tan Az)] - (17.8.21)
cos Bp dr
The derivative dpp/dt may be represented as follows:
w® sin 7, w® sin ¥,
=my,y; = — ——=my =
w? P cos A, o™ T in s
Thus
p) _ dep m _ siny ¥
w' = — = mpymy 't = —= (for w""! =1 rad/sec) (17.8.22)
dt cos A,
The final expression for du,/dr is
dup P g ; in (P
m = [L(cos Y. sin Bp sin Ay — sin Y7 cos A,)
t
+ r'P(sin ¢ !P) sin Bp — cos P tan Az)] _mn (17.8.23)
cos Bp cos A,
Equations (17.8.18), (17.5.16), and (17.8.16) yield
AE in ! s K\K, — Ky sin 7pcos (y, — A d
AE; _upsin y." sin e Bky — Ky sin 7p cos (yy — Apmyp dup (17.8.24)
L L K, KL dt
Here
K =- [sin (yi —4) — mF,] cos Y F) cos 7p + sin i cos (v, — A (17.8.25)
Ky = cos y) cos (y; — Ay) + cos & sin vy, sin (y; — A)) (17.8.26)
Ky = sin 6 sin v, sin 7y cos $ (P [mF, — sin (y; - Al)] (17.8.27)
— cos MF)[ sin (y; — A)) — mpl] + cos ¢ sin Y5 cos (y, — A))
K, = (17.8.28)

sin 75

We may determine AE|/L by expressing dug/dr in terms of dup/dr. The relation between dugldt
and dup/di may be determined by using equation (17.8.19). We obtain vector vl by
differentiating equations (17.5.3). Then we get

d -
VI LD = = cos P 7“5 (17.8.29)
t



Vector v.F!) was represented by equations (17.5.14), and for @ = »M = 1 rad/sec it yields
vl = — (y,g” + AE1> cos (1 — Ap) (17.8.30)

We may express y{! in terms of the coordinates of the contacting point of surfaces L,and Lp
by using the following coordinate transformation:

xiP 0
o) 0

L= [M&L’][th] (17.8.31)
AN L

1 ]

Here (0, 0, L, 1) are the homogeneous coordinates of the contacting point M (fig. 17.3.2), which
are represented in the coordinate system S;. Matrix M, was represented by equation (17.6.18)
and matrix [M{,] is as follows (fig. 17.3.3):

cos A, 0 —sinA; L sin A,

o 1 O —AE,
{M.il”h} = (17.8.32)
sin A, 0 cos 4 —-AL,
o 0 O 1

Equations (17.8.30) to (17.8.32) yield
VD LD = L sin & sin y, cos (i — A1) (17.8.33)

To determine vector vP) and represent it in the coordinate system S,,, We differentiate equations
(17.5.17). Then we obtain

[~ du 7]
oy G
—cos Y —=
v dt
d db
[v,‘P’] = sin 7 sin Tp'yﬁ + up sin YP) cos Tp—b (17.8.34)
dt dt
d a9
L sin Y7 cos TP—E—P — up sin P sin Tp—r
dt d

We transform equation (17.8.34) as follows:

dfp _ dep dep _ P — @ _ N _ sin v
—_—= = = WP = wmpy = mynpe =
dt dt dt cos A
(for ' = 1 rad/sec) (17.8.35)
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For the main contacting point we have
p=90° - Bp and wpsin (P = r!f
Equations (17.8.34) to (18.8.36) yield

[ du
~cos yP
dt
5 1 (P) duP Py - sin Y1
[V’ J = sin Y7 cos B, — — r!® gin B,
dr cos A,
. . du sin
sin b7 sin B, —£ + (P cos Bp\‘y'
-~ dr cos A, J

To represent vector v,* in coordinate system SSU, we use the matrix product

|20 ] = [240,] g [0

Here (fig. 17.3.2)

cos A; 0 —sin A,
(L] = 0 1 0

sin 4, 0 cos A,

(17.8.36)

(17.8.37)

(17.8.38)

(17.8.39)

Using equations (17.8. 19), (17.8.29), (17.8.30), and (17.8.37) 10 (17.8.39), we obtain the following

equation which relates duy/dr and dupld:

Here
a; = [cos (i + 4y) + tan 7 sin Bp sin (y, + Az)] cos & cos (v, — A))
+ [sin (vi + 4;) — tan /P sin Bp cos (y, + Az)] sin (y; — A))
+ sin 6 tan ¥/ cos Bp cos (v, — A))
and

(P)

b, = {L sin & sin 7y, cos (y, — A,) + fc_cos Bpsin

cos A,

[cos 8 cos (v, — A)) sin (v1 + 4y) —sin(y, — A} cos (y, + Az)]

(P)g; : G
re’sin 6 sin Bp sin v, 1
T T T T ————cos(y; —A) I}
cos A, cos ¥,

376

(17.8.40)

(17.8.41)
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Equations (17.8.24) to (17.8.28) and (17.8.40) to (17.8.42) determine the required correction
AE,/L.

17.9 Bearing Contact at the Main Contact Point

The bearing contact of surfaces L and L, at the main point of contact A may be represented
by the contacting ellipse. The dimensions and orientation of the contacting ellipse depend on the
principle curvatures of L, and L, and the angle which is formed between the principal directions
of these surfaces. (See ch. 13.4.)

Principle Curvatures and Directions of L,

Consider that the principal curvatures of Lp are known. The principal curvatures and directions
of T, may be determined by using the following equations (ch. 13.1):

(2)
tan 2¢ 7% = 2F (17.9.1)
P — kP + G o

K+ k) =P+ ki + s@ 17.9.2)

(P) _ KﬁP) + G

(D — @ =M 17.9.3
! f cos 20F? ( )
(2),(2)
FO = a3i a3 (17.9.4)
b{¥ + (v“’z).il"’))aﬁ’ + (v(m)oiﬁp))ag)
2 2
(o) - (e8)
G = (17.9.5)
b + (v(”).i}”’)aﬁ) + (v(n)-ihp))ag)
2 2
() + ()
§@ = (17.9.6)
b + (v i) afd) + (v i) ald
ad = [n(P)w(PZ)il(P):I with v(%) = 0 (17.9.7)
ad) = [n"”w(m)iﬁ”] with v(P2 = 0 (17.9.8)
b = [n“”wmvs,”)] _ [nmw(mvgp] (17.9.9)

Here (fig. 17.9.1) i’ and i} are the unit vectors of the principal directions of Ep; i{” and i
are the unit vectors of the principal directions of L,. Angle 0P is formed between the unit vectors
i and i{, and is measured counter-clockwise from it o if? (fig. 17.9.1). The principal
curvatures of Ep and L, are x? and «{P, respectively. Vector n‘? is the unit normal to surface
Ty P = w® — w®, where @ ® and w® are the angular velocities of the generating gear
P and generated gear 2, respectively.

Vectors v\ and v represent the transfer velocities of the contact point M in the rotational
motion with Zp and Z,, respectively (fig. 17.3.2). These vectors are determined as follows:

viP = 0® xr™ (17.9.10)

v = @ xr®™ (17.9.11)
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Figure 17.9.1.

viP) = v because the contact point lies on the instantaneous axis of rotation, zr (fig. 17.3.2).

The generating surface Lp is a cone surface and its principal directions are directed along and
perpendicular to the cone generatrix. The unit vectors i and if? are represented in 52 as
follows (see equations (17.5.17)):

(2)
W | ’
P .
il = =] s | = sin Bp (17.9.12)
ar,,;
30, | —sin 7p —cos Bp
o) —cos P —cos ¢
du
i = (’2’) =| sing® sinz, = | sinyP cos By (17.9.13)
ar,,;
3 | sin VP cos Tp sin /P sin Bp
P

Here Tp = 90° —Bp.
The principal curvatures of the cone surface are

1 cos y P
(P) — — c
K = - = - 17.9.14
: up tan y /P (P ( )
=0 (17.9.15)

The unit normal vector n‘? is given by (eq. (17.5.18))

sin y )
[P =| cos ¢ cos Bp (17.9.16)

cos P sin Bp

We represent vectors '™, ™, and w® in the coordinate system $2 as follows (fig. 17.3.2):
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0
[r™y = . (17.9.17)
cos 4,
1
—w!” —sin (y, = &)
[wm] — 0 [w(l)] — w(2> 0
0 CcOos ('Y;_ - A2)
A
w? = C?S 2,07
sin 7y,
Sin A2
—A
[0 = [0 - [«?] = - C—OS—(:——Z)N” 0 (17.9.18)
sIn 7y,
cos A,

Using equations (17.9.7) 10 (17.9.11) and (17.9.16) to (17.9.18), we obtain

w P cos - A
ay = ——(—72—2 (sin w{P" sin Bp cos A, — cos P sin A;_) (17.9.19)
sin v

_ w® cos (y; — Ay) cos Bp cos A, (17.9.20)

sin v,

as;

(PN2L cos Ay cos (y2 — A
by = (w7 s 4 cos (v ~ &) [cos WP sin Bp sin A, — sin $7 cos Az] (17.9.21)

sin Y2

Equations (17.9.1) to (17.9.6) and (17.9.19) to (17.9.21), with vP2) = 0, determine the principal
curvatures «2 and «’ for I, and the angle o "%

Let the principal directions of L, be represented in the coordinate system Sy Consider two
trihedrons S, (it”, i, and np) and S, (if?, iff’, and n®) (fig. 17.9.1) which are located in the
tangent plane (it is tangent to surfaces Lp and I, at point M). Transformation of vector components
in transition from S, to S; is represented by the matrix equation

[Lpy) = [L},ﬁ’] [L‘"?a’][Lab] (17.9.22)
Here
cos 0P —sin g 0
(L) = | sing™ cosa'™ 0 (17.9.23)
0 0 1
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0 —cos P sin ¢ P

[L,f,”a} = sin 3p sin P cos Bp cos Y7 cos Bp (17.9.24)
—cos Bp sin ¢/ sin Bp cos Y7 sin B,
cos A2 0 —sin Az
[L}j’] = 0 I 0 (17.9.25)
sin A, 0 cos A,

Matrices (17.9.23) and (17.9.25) are based on figure 17.9.1 and figure 17.3.2, respectively.
The derivation of matrix (17.9.24) is based on equations (17.9.12), (17.9.13), and (17.9.16).
Elements of this matrix represent the direction cosines of angles formed by the unit vectors i/ ",
i, and n ‘") with the unit vectors of the coordinate axes of $2

m .

We may now represent the unit vectors if> and iff’ in the coordinate system §; as follows:

—cos Y7 sin 0" cos A; + (cos Bp cos 0P — sin Y sin Bp sin a P )sin A,

o

sin Bp cos 0" + sin Y P cos Bpsin o 2

—cos Y7 sin 6" sin A, — (cos Bp cos 0P — sin ¥.'") sin Bp sin 0 F)cos A,
(17.9.26)
.

{zﬂ =[Lp] | |
0

i

—cos Y cos 6" cos Ay — (cos Bp sin ¢F2 + sin P sin Bp cos P )sin A,
—sin Bp sin 0" + sin Y Pcos Bp cos o P2
(P2)

—cos Y cos 0P sin A, + (cos Bp sin 072 + sin ¢ P sin Bp cos aP)cos A,

(17.9.27)

Principal Curvatures and Directions of I,

Consider that the principal curvatures and directions of the generating surface Ly are known.
We may determine the principal curvatures and the directions of L, by using equations similar
to equations (17.9.1) to (17.9.27)



F
tan 20 = 2 (17.9.28)

P — P+ GD

K+ ) = P+ o + 5O (17.9.29)
(F) F) (n
ny _ 1)_K1 "'K}] +G
P (17.9.30)
(1 (1)
M _ 431 a3 (17.9.31)
i+ (V‘F‘).il(F))a§}) + (v‘”’oi}f’)ag’
(Y2 _ (D)
G = (a3‘ (a32 ) (17.9.32)
b{V + (vm)oil(F)a_%}) + (v(“)-ihﬂ)aﬁ})
()2 ()2
S = (aff)' + (at?) (17.9.33)
bt + (v‘”’-i}”)aﬂ’ + (v‘”’-i{,”)aﬁ{’
all = [n‘”w‘“’i{”] — kP (V(F”oil‘”) (17.9.34)
al)) = [n(”w‘”)iﬁ”] — kP (V(F]) 'iﬁ”) (17.9.35)

b{» = [n(”w“‘vff’] _ [n‘”w‘”v},”] (17.9.36)

Here i© and i’ are the unit vectors, which are directed along the principal directions of the
generating surface L; () and «f" are the principal curvatures of Ly i{" and ifj’ are the unit

vectors of the principal directions of I;; o'“!) is the angle between the unit vectors il and i{"
measured counter-clockwise from i to i{".
The generating surface L is a cone surface and its principal directions are directed along and

perpendicular to the cone generatrix. We may represent i(" and if" as follows:

0
(N 4
i[(F) - ar_’"_ - (&"_ — cos T (provided ug sin ¢((F) # 0) (17.9.37)
36, 36
—sin 7f
—cos YiF
(1) (1)
i =0 % | | sin g P sin 7 (17.9.38)
auF allp

sin \F) cos 7

Here ¢ = y" and 71 is determined by equation (17.7.1).
The principal curvatures of the generating surface Ly are represented by the following equations:
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(F)
WP = Coi(f; (17.9.39)

=0 (17.9.40)

We may represent vectors v, vi" and v*") in the coordinate system S5 by using equations
(17.5.10), (17.5.13), and (17.5.14), respectively. The coordinates x.", y{", and z{! of the

contact point 4 may be obtained by using equation (17.8.31). Assuming that Q" = 1 rad/sec, we
obtain

i 0
Ay = s o ; : . AL,
V'] = mg\L [cos & sin 7, sin (y; — A}) + cos 7y, cos (v, — Ay — -
AE
sin & sin v, + —
L
L i
(17.9.41)
sin & sin v, cos (y, — A))
= -1L —cos § sin 7, (17.9.42)
—sin § sin v, sin (y; — A))
1= 1P - v =
sin § sin v, cos (y; — 4))
. . AL, .
L | mg| cos & sin v, sin (y, — A)) + cos v, cos (y; — A;) — 7| cos 4 sin v,
in 6 sin v, + 251 in 8 sin v,(y, — 4))
mg | sin & sin —— | — sin & sin -~
Fl Y1 AL Y1itn I J
(17.9.43)

Using equations (17.9.28) to (17.9.43) and (17.5.6), we may determine the principal curvatures
x{" and «ff’ for £, and the angle o F".

Let us represent the principal directions of I, in the coordinate system §;. Consider two
trihedrons S, (if", if”, n'P) and S, (i{", if’, nV) which are located in the tangent plane. The
origin A of these two trihedrons coincides with the point of contact, A, of surfaces Lrand L,
The transformation of vector components in the transition from the coordinate system §, to S, is
represented by the following matrix equation:

el = [L60] L2 ] (L (17.9.44)

Here



(FH _gingF 0

cos @
gl = | sino cos gD 0 (17.9.45)
0 0 1
0 —cos ¢ P sin /P
[L,E,IJI] = coS Tp sin P sin 7 cos Y ) sin 75 (17.9.46)

—sin 7 sin VP cos 7 cos VP cos 7

cos A, 0 sin 4,
[L,‘,,)] = 0 1 0 (17.9.47)

—sin A; 0 cos 4y

Matrix equations (17.9.45) and (17.9.47) are based on figures 17.9.2 and 17.3.3, respectively.
Elements of matrix (17.9.46) represent the direction cosines of angles which are formed by the
unit vectors if ", if, and n ) with the unit vectors of coordinate axes of the coordinate system
SV, (See egs. (17.9.37), (17.9.38), and (17.5.6).)

The final transformation of vector components in transition from S, to Sy is based on the
following matrix equation:

(L) — (gl |20 [ £ ] L) (17.9.48)

Equation (17.6.18) yields

cos 8 cos? 4, +sin’y, sin 8 cosy; (1 —cos d) cos v, sin vy

(L] = —sin § cos 7, cos 6 sin & sin 7, (17.9.49)
(1 — cos &) cos vy, siny, —sindsiny, cos?d sin® v, + cos?® vy,
(1 (F)
iy Iy
ot
i
(F1)
M Y |1IF)
n'fl.pb
Figure 17.9.2.
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We may represent the unit vectors i{ and iff’ in the coordinate system S¢ by using the following
equations:

[,‘{W}:[Lje] 0 (17.9.50)
0.
1

[i}l",rJ:[Lfe] 0 (17.9.51)
0

17.10 Contact Ellipse

Consider that surfaces £, and I, are in contact at point A. The principal curvatures 2, kP,
and «{", fj’ of both surfaces are known. The unit vectors ii” and if"’ of the principal directions
make an angle 02", measured counterclockwise from i{?’ to i{"’ (fig. 17.10.1). The elastic approach
of the surfaces is given by 8. The discussion is limited to the case of a left-hand generating gear
(fig. 17.3.1). The angle 6" is determined as follows:

cos 02 = i i) (17.10.1)
sin 0" = £ ne (i x ifV) (17.10.2)

The upper and lower signs are given for the convex- and concave-gear-tooth side respectively.
The axes 2a and 2b of the contracting ellipse and angle o may be determined as follows:

[_ I/'Z—

1 3
A= 2 kD — D - (gl2 — 2g,8, cos 2021 + gz‘) (17.10.3)
Ll (a2 2 @ 2172
B :Zl k'l =k + (gl — 2g18; cos 20" + g5> (17.10.4)
L 1
K n

28 % 4

Figure 17.10.1.



(o

2n

5 12
— 17.10.5
) s

g sin 20

tan 2o = (17.10.6)

g — & cos 0@V

(See ch. 13.4.) Here
KO ="+ k) and g = KD — k(i =1,2)

Angle o is measured counterclockwise from the ¢ axis to i{2. The major axis of the ellipse is
directed along the n-axis (fig. 17.10.1).

17.11 Tooth-Contact Analysis

The tooth-contact analysis is based on the following equations
£ (6.0000) =12 (8p0ret) (17.11.1)
0 (6r.0r.01) =0 (0.0r.03) (17.11.2)

(See ch. 11.1.)

These equations represent the tangency of surfaces I, and L, in the fixed coordinate system S,
which is rigidly connected to the frame (fig. 17.3.2); ¢; and ¢, represent the angles of rotation
of the gears ; r}” and rf‘z), nf“) and n@ with fixed values of ¢ and ¢, represent the position vectors
and the surface unit normals of I; and E;, respectively.

Derivation of rf“’ and nf“’

Equations (17.5.3) and (17.5.16) represent the family of lines of contact between surfaces Lr
and L. Using these equations, we may eliminate uy and represent the family of contacting lines
by the equation

ri =iV (0p.0p) (17.11.3)
Surface L, may be determined with the family of contacting lines represented in the coordinate
system S; rigidly connected to gear 1. The coordinate transformation from SM to S, is based on
the following matrix equation:
(M = i M4 (17.11.4)
Here (fig. 17.11.1)

cosA; O sinA, —LsinAjcos 4+ AL, sin A,

[M,‘,,‘,,)] = 0 1 0 AE, (17.11.5)
—sin A; 0 cos A L sin? A, + AL, cos A,
0 0o 0 1

Matrix [M,E,})] is the inverse for matrix [M,(,,},)] represented by equation (17.8.32)
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Figure 17.11.1.

cos y; 0 —sin ¥,

0
0 1 0 0
0

M,] = (17.11.6)
sin y; 0 cos v,
0 o0 0 1
cos ¢; —sing; 0 0
singp; cose¢; 0O
M, = (17.11.7)
0 0 10
0 0 01
Then surface I, will be represented as follows:
[ri] = [M,‘,,‘,’] [r,S.”] (17.11.8)
We determine r;" by using the following matrix equation:
[70] = MMMt (17.11.9)
Here
cos ¢, sing; 0 0
—sin ¢, cos ¢ 00
(M, = (17.11.10)
0 0 10
0 0 01

where ¢, is the angle of rotation of gear 1, which is in mesh with gear 2. We must differentiate
between ¢, and ¢,: ¢ is the angle of rotation of gear 1 which is in mesh with the generating gear
provided with the surface Zy.
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Matrix [M,,] is the inverse matrix of [M,,] which is represented by equation (17. 11.6). Matrix
[My] is the inverse matrix of [M,s] which is represented by equation (17.6.18).
The final expression for [r}”] is as follows:

(1] = st 00,000 325 | [ 47 (7.11.11)

It is important to note that the product of matrices [M,][M,] does not yield a unitary matrix
since the elements of these matrices depend on different parameters, ¢, and ¢, respectively.
However, elements of the matrix [M,,] = [M,][M,] may be expressed in terms of (¢; — @1)-

Similarly, we may derive [n;”] by using the matrix equation

[17] = LML LA [L432] 25" (17.11.12)

where [n!"] is represented by equation (17.5.6).

m

Derivation of r}z’ and nf(z’

Equations (17.5.17) and (17.5.22) represent in the coordinate system $¢2) the family of lines
of contact between surfaces Zp and I,. Eliminating up, we may represent the family of contacting
lines as follows:

r =@ (8p.0p) (17.11.13)

Surface I, is determined by the family of contacting lines represented in the coordinate system
S,. The coordinate transformation is based on the following matrix equation:

[ra) = MM [M2] s (17.11.14)

Matrix [Mf(f,)J is represented as follows (fig. 17.3.2)

cos A, 0 —sin Ay L sin A, cos 4,

0 1 0 0
[M}j’} = (17.11.15)
sin A, 0 cos A, L sin® A,
0 0 0 1

It is evident from the drawings of figure 17.11.2 that

Zt,Zz

Figure 17.11.2.
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cosy; 0 siny, O

0 1 0 0
[My] = (17.11.16)
—siny; 0 cosvy, O

0 0 0 1

cos ¢, sing, 00

—sin ¢, cos¢; 0 0
[My] = (17.11.17)
0 0O 10

0 0 01

Equations (17.11.13) to (17.11.17) represent surface L, in the coordinate system S,. A family
of surfaces L, is generated in the coordinate system Sy while gear 2 rotates about the z,-axis. Using
the matrix equation

[ ‘2’] (M7 [M,,]1r,)] (17.11.18)
we obtain the column matrix [r(2’]. Equations (17.11.14) and (17.11.18) yield
f
[ "’] (M1 [M2)[My,][My] [M},ﬁ’] [r,ﬁf'] (17.11.19)

Here [Mf,] is the inverse for matrix [M,]; elements of matrix [M,,] are expressed in terms of ¢,
where ¢, is the angle of rotation of gear 2 in mesh with gear 1; but elements of matrix [M,,] are
expressed in terms of ¢, where ¢, is the angle of rotation of gear 2 in mesh with the generating
gear provided with surface Lp. Elements of matrix

M,] = [M,](M,,] (17.11.20)

are expressed in terms of (¢, — ¢3).
Using a similar procedure we may derive [nf(z)] as follows:

1] = WaiLanLa iz [ L2 | [28] (17.11.21)
where [n2)] is represented by (17.5.18).

Analysis of Contact of Surfaces I, and I,

Equations (17.11.1) to (17.11.2) yield a system of five independent equations in six unknowns
as follows:

fiCer.0p.Te p1.0p.0p, Tp, pi3) = 0 (i=123) (17.11.22)
Silrrn o) =0 (j=4.5.6) (17.11.23)
Here
T =0+ 0p — g Tp=0p+ p—qp w=e - el
w=e-e et o=t (17.11.24)



Vector equation (17.11.1) yields three equations (17.11 .22) and vector equation (17.11.2) yield
three equations (17.11.23). However, only two equations of (17.11.23) are independent since
n{| = = 1.

To solve the above system, we adopt the following computational procedure: Fix p; and consider
the system of five equations ((17.1 1.22) to (17.11.12)) in five unknowns (use two of three equations
(17.11.23) only). The solution of these equations is based on an iterative process with the following
considerations: (1) With the chosen parameter u,, equation system (17.11.23) is a system of two
equations in two unknowns, 75 and 7p. (2) Then two of the three equations (17.11.22) will
represent a system of two equations, 0 and 6p, since ¢ and ¢p can be expressed in terms of 7¢,
85, and fp, Op, respectively. The solution of these two equations will provide 6 and 8p. (3) The
remaining equation of (17.11.23) is used as a checking equation. (4) The iteration will give the
correct solution for all the unknowns with the fixed value of y, if all the unknowns u, 7p, 7r,
8p, and 0 satisfy the checking equation. If the checking equation is not satisfied, then we have
to try a second iteration. Such an iterative process is a computer method of solution of a system
of nonlinear equations which is based on the use of a subroutine. The mentioned subroutine is
a part of the computer library.

The solution obtained for the unknowns provides information about (1) the line of action of surfaces
T, and L, and (2) the kinematical errors of the gear train.

The line of action is the set of points of contact of surfaces I; and L, which is represented in
the coordinate system S;. We may obtain the line of action as a set of points with coordinates xf“ ),
y{", and z{”, where i = 1,2. The location of each point of contact depends on ;.

To determine the kinematical errors of the gear train, we have to obtain the function gozl(cpll).
The solution of equations (17.11.22) and (17.11.23) provides py, ¢, ¢, as numerical functions
of u,. Since Pr and pp are known, we may determine ¢; and ¢, (eq. (17.11.24)). We may then
determine ¢, and ¢, by using the following equations:

P1L=¢1 M 1= P2 T W2

The kinematical errors may be determined by a function of #, as follows:

A /( ’ ’ ’ N]
2 <P1) =¢2 e
Ny
where N, and N, are the number of gear teeth.
To reduce the kinematical errors we have to use the appropriate values of AE, for the chosen
r{F) — ¢{P)|. (It is assumed that the correction of machine tool settings AE, and AL, are related

by eq. (17.7.19)).
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Chapter 18

Kinematic Precision of Gear Trains

18.1 Introduction

Kinematic precision is affected by errors which are the result of either intentional adjustments
or accidental defects in the manufacturing and assembly of gear trains. The criteria of kinematic
precision of a gear train may be represented by the function

A¢y(¢, AQ) (18.1.1)
Here ¢, is the angle of rotation of the driving gear 1,
AQ = (aqy, Ag,, ...) (18.1.2)
is the vector of gear errors, and
A¢y =62 — ¢ (18.1.3)

is the kinematic error of the gear drive, represented as the difference between the theoretical and
actual angles of rotation of the driven gear 2. The theoretical function #9 is represented by

=0, — (18.1.4)

where N, and N, are the numbers of gear teeth.

Until now, we considered a gear drive consisting of only two gears. Methods for the determination
of error functions (18.1.1) is also easy to use for a gear train which is composed of a set of gears.
In this case the kinematical error is represented by the function

Ad, = ¢5 — ¢, = ¢ymY) — ¢, (18.1.5)



where

0 _ ,,0 0 0
mp = Mpn—1yM(n—1)(n=2)---M21

is the angular velocity ratio for an ideal gear train which can be represented by the ratio of the
number of teeth of the gears. For instance, the ratio m3, is represented by

N
p @ _ M1 (18.1.6)

where « and 'V are the angular velocities of the ideal gears 2 and 1. Henceforth, we will
differentiate between the ideal gear ratio which is constant and the instantaneous gear ratio which
is not constant, if errors of gears exist. Consider gears 2 and 1 which are in mesh. Because of
the gear errors, the angles of rotation of the gears are related by a nonlinear function f(¢,); that is,

¢, = f(d) (18.1.7)

The instantaneous angular velocity ratio is given by

a6,
pyy = = — ==y (18.1.8)
d¢'l d(bl w
dt

d
where f; = o, (f(e1).
1

We may also consider the ratio of gear revolutions. This ratio may be represented for both cases,
for gears with and without errors, as follows:

where n; and n; are the revolutions of the gears.

The precision of gears was investigated by Litvin (1968), Litvin, Goldrich, Coy and Zaretsky
(1983b), Michalec (1966), and other authors.

In this chapter two methods to determine function (18.1.1) worked out by Litvin and his coauthors
are presented: (1) a numerical method for computer solution and (2) an appropriate solution which
leads to simple results in analytical form.

18.2 Theory and Exact Solution Method for Kinematic Precision

In the process of motion the tooth surfaces of two gears, I, and I, (fig. 18.2.1), are in tangency
if the following equations are satisfied (see ch. 11):

r}l)(ul» 6], ¢l) = rf(Z)(u?,t 02, ¢2) (l821)
“f(”(uly 6, 91} = nfm(uz, 6, ¢7) (18.2.2)

Here r") is the position vector of the contact point on gear i; n") is the surface unit normal vector
at the contact point M; u;, and 8, are the surface coordinates of the gear surfaces; and & is the
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Figure 18.2.1.

angle of rotation of gear i (i = 1,2). Subscript f denotes a coordinate system which is rigidly
connected to the frame.

For a gear set with kinematic errors, represented by AQ, and AQ,, conditions for tangency may
be expressed as

vV (uy, 0, ¢, AQ) = 1/ (u, 6, ¢, AQ,) (18.2.3)
0, 61, 61, AQ) = 0P (uy, 6, ¢,, AQy) (18.2.4)
Equations (18.2.3) and (18.2.4) yield the functions
$2(¢1, AQy, AQy) = ¢3(6)) + Ady(¢y, AQ,, AQ,) (18.2.5)
ui(o1, AQy, AQy) 8:(¢1, AQy, AQy) (18.2.6)
The functions
00 8)  w(d, AQL AQ)  6(éy. AQ, AQ) (= 1,2) (18.2.7)

represent the path of the contact point on gear surface E; corresponding to the meshing of gears
with errors of manufacturing and assembly. Functions

fO(ud@0. #%6)) e, 8% (=12) (18.2.8)

represent the path of the contact point on gear surface L; corresponding to meshing without errors.
Comparison of functions (18.2.7) and (18.2.8) yields the change of the contact point path induced
by errors.

Consider the solution of equations (18.2.1) to ( 18.2.2) and (18.2.3) and (18.2.4). Vector equations
(18.2.1) to (18.2.2) yield only five independent scalar equations, since m® = m®| = 1. These
equations may be represented as

j;-(ul, 0|, d’l’ u, 02, ¢2)=0 (]= 1, 2, ey 5) (1829)
It is assumed that {f,, £, £i, fi, fs} € C. Let us mentioned once again that the symbol C! indicates
that functions J; have continuous partial derivatives at least of the first order for all its arguments.

It is assumed that equation system (18.2.9) is satisfied by a set of paremeters

PO = (V. 611, 6", u, o0, g0) (18.2.10)



and that surfaces £, and I, are in tangency at point Mo. Surfaces I, and I, will be in point contact
in the neighborhood of M, if for the set of parameters PW the following Jacobian is not equal
to zero (see app. B)

o O O O %
aul 801 3u2 602 3¢2

DU, fo fan fa Ss) _ R (18.2.11)
D(ul, 01, Uz, 02v ¢2)

o s Ofs o U
au] 801 8u2 802 a¢2

If inequality (18.2.11) is satisfied, equation system (18.2.9) may be solved in the neighborhood
of PV with the functions

{u1(¢l)’ 0,(¢1), uz(9y), 02(d1), ¢‘z’(¢,)] eC' (18.2.12)
The function $3(¢,) represents the ideal law of motion. In most cases (for conjugate tooth action)

function ¢g(¢1) is linear.
Equations (18.2.3) to (18.2.4) also yield a system of five independent equations in six unknowns

(uy, 01, &1, Uz 0,, ¢7)
gi(uy, 01, &1, Uz, 0,, 62, AQ) =0 (=12, ..9 (18.2.13)
It is assumed that this system is satisfied by a set of parameters

P(z) = (ul(z); 0%2)7 ¢§l)’ u2(2)r 652)a ¢§2)) (18214)

with the same value of (" as in the set P!, If in the neighborhood of P®@ the Jacobian

D(gi, 82 83 84, 85) %0 (18.2.15)
D(uy, 0y, 4z, 02, ¢2)

then system (18.2.13) may be solved with the functions

{un(dn, AQ), 8y(¢1, AQ), 1(¢1, AQ), 62(91 AQ), baéy, AQ)] ecC! (18.2.16)

Function ¢,(¢,, AQ) represents the actual law of motion transformation—the law of transformation
of motion which corresponds to errors of manufacturing and assembly. Kinematic errors of the
gear drive are represented by the function

Ady = 02(61, AQ) — 33(&)) (18.2.17)

This method of solution can provide, not only the kinematic errors of a gearset, but also the new
path of the contact point. (See functions (18.2.7).)

In general, the numerical solution of a system of five nonlinear equations is a difficult problem
which requires many iterations. To save computer time an effective method of solution was proposed
by Litvin and Gutman (1981a). The principle of this method is as follows:

The system of equation (18.2.13) may be represented as
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fl(ul’ 0!* ¢1’ U, 02, ¢2’ Ar Hl) HZ! AQ) = 0 (18218)

fluy, 61, &y, uy, 6, ¢y, A, Hy, Hy, AQ) =0 (18.2.19)
Siluy, 01, @y, uy, 05, 62, A, Hy, Hy, AQ) =0 (18.2.20)
faluy, 01, uy, 0, ¢, AQ) =0 (18.2.21)
S5y, 61, uz, 65, ¢, AQ) =0 (18.2.22)

Equations (18.2.18) to (18.2.20) are determined from vector equation (18.2.3), and equations
(18.2.21) to (18.2.22) from vector equation (18.2.4). Here, A represents the shortest distance between
the axes of rotation of the two gears and H, and H, represent the axial settings of the gears
(fig. 18.2.2). Systems S, (x, y|, z;) and S,(x;, y,, z,) shown in figure 18.2.2 are rigidly connected
to the driving and driven gears, respectively. Let us now suppose that two arbitrary points
M, (uy, 8,) and M,(u,, 8,) on surfaces I, and E, are chosen. With a set of known parameters
(uy, 6y, uy, 83), equations (18.2.21) and (18.2.22) become a system of two equations in two
unknowns which may be expressed as

Fi (¢, ;) =0 (18.2.23)
Fi(¢1, ¢) =0 (18.2.24)
y

Hy / .2

X2

Xl, )(f

Figure 18.2.2.



Upon solving for ¢, and ¢,, one can check that the following equations are satisfied:

A—K\(u, 0, ¢, u, 0, d5, AQ) =0 (18.2.25)
H, — K> (uy, 0y, &1, up, 03, ¢, 4Q) =0 (18.2.26)
Hy, — Ki(u,, 6), ¢1, uz, 6, ¢, AQ) =0 (18.2.27)

where A, H,, H,, and AQ are given values.

In general, the solution of the above two systems of equations (18.2.23) to (18.2.24) and (18.2.25)
to (18.2.27) requires an interative procedure. In practice, one of the four variable parameters
(u;, 6y, uy, B,) is to be fixed, and the other three are changed such that the two-equation system
is satisfied.

The advantage of the above method lies in the ability to divide the system of five equations
((18.2.23) to (18.2.27)) into two subsystems of two and three equations, and to solve them separately.

18.3 Application of Theory to Helical Gears with Circular Arc Teeth:
Sensitivity to the Change of Center Distance

Generation of Gear-Tooth Surfaces

The generation of gear-tooth surfaces is based on application of two rack cutters (fig. 16.4.6,
see ch. 16.4). The surfaces of these rack cutters contact each other along a straight line; the normal
section of each rack cutter surface is a circular arc. The generated surfaces of gears are in contact
at a point at every instant.

Using the method for an exact solution (see sec. 18.2), we will investigate the influence of change
of center distance on the conditions of meshing. It will be proven that the change of center distance
may cause an unfavorable bearing contact if some gear parameters are not limited. The solution
of the discussed problem is based on the research completed by Litvin (1968) and Litvin and Tsay
(1986).

Rack Cutter Surface

The normal section of the rack cutter is a circular arc which is represented in an auxiliary coordinate
system S{) as follows (fig. 18.3.1):

2 = psin 0, + £ 3 = = (pcos b~y " =0 (=LI) (83D

Here x,fcl) and y(fcl) are the coordinates of the circle center, C;. Equations (18.3.1), with i =1,
II, represent the normal sections of rack cutters which generate gears 1 and 2, respectively.

The generating surface of the rack cutter is obtained by the translational motion of the coordinate
system S along a straight line O OJ" (fig. 18.3.1). The coordinate transformation is
represented by the matrix equation

x? 1 0 0 0 xfD
yif 0 sinA cos A u;cos A y i
= , (18.3.2)
sl 0 —cos N sin A usin X\ zD
1 0 0 0 1 1
Here u; = l oM ol l and \ is the lead angle of the helix on the gear pitch cylinder. Equations

(18.3.1) and (18.3.2) yield
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Figure 18.3.1.

{ O sin 0,‘ + xa(Ci)

xf =
¥ = — (p;cos 6, — D) sin X + u; cos A (18.3.3)
2! = (p; cos 8; — y{) cos N + u; sin A

Equations (18.3.3) represent the generating surface of the rack cutter, £, in the coordinate
system S,
The surface unit normal is represented by the equation

, N Lot e
n = where NW = 2 % (18.3.4)
N 3,  ou
Equations (18.3.3) and (18.3.4) yield
sin 8,
[r91= | —cos @, sinA (18.3.5)

cos §; cos A

It was mentioned above that we consider two generating surfaces of rack cutters. These surfaces
contact each other along a straight line determined as follows:

S
nl = nil n) = p{v (18.3.6)
Equations (18.3.3) to (18.3.6) yield the following relations:
up = uy, pr sin 8 + x{V = py\ sin 6, + x/W

~py cos 6 + y{DV = — p. cos oy + y W 0 =6y =y,

where Y. is the pressure angle at the point of contact of helical gears measured in the normal
section of the rack cutter.



Tooth Surface of Gear 1

We set up three coordinate systems considering the mesh of the rack cutter with the gear being
generated (fig. 18.3.2). Systems SV (i =1, 1) and §; (j = 1, 2) which are rigidly connected to
the rack cutter and the gear, respectively, and a fixed coordinate, Sé” (i=1,1D.

While the rack cutter with the coordinate system S translates, the gear being generated rotates
about axis z,(,” _The instanteous axis of rotation is /-/, and the axodes of the gear and of the rack
cutter are the pitch cylinder of radius r, and plane I, respectively. Plane I is tangent to the pitch
cylinder.

The line of contact of the generating surface T with the gear-tooth surface L; may be

determined in the coordinate system S as follows (see ch. 9.8):
rd =r®. ) NOv =0 (18.3.7)

Here r®(u;, ) is the vector function which represents in the coordinate system 5O the generating
surface ZO; N® is the normal to the generating surface; vD is the relative velocity; the subscript
¢ indicates that the vector components are represented in the coordinate system S,

There is an alternative solution for the case of transformation of motions represented in figure
18.3.2(a). Instead of equation N, +v{" = 0, we may use the equation

X I X I )/(I I Z I I
1 I 1
NK(C) N)(yc) NZ(C)

(18.3.8)

Equation (18.3.8), if satisfied, provides that the common normal to surfaces LD and I, at their
points of contact intersects the instantaneous axis of rotation I-I. Here (fig. 18.3.2)

x® =0 YO = 4, 0 =¢ (18.3.9)

are the coordinates of a point of -/ represented in the coordinate system S® ; ¢, is the angle of
rotation of gear 1; parameter £ determines the location of a point on the axis I-/; x®, y®, and z{
are the coordinates of a point on surface I which are represented by equations (18.3.3); N®,
N® and NO are the projections of the surface normal. (We may also use n®, n{®, and n instead
of NO, NO, and NY.)

X) 1 N \\
© S~
1 // ~ Axodes
Y(U c
0,.0.01 p

b —f-

v

[EY th

Figure 18.3.2.
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Equations (18.3.3), (18.3.5), (18.3.8), and (18.3.9) yield the equation of meshing represented by

(r1®1 — u; cos N — aj sin \) sin 6; + b cos 6§ sin A = filuy, 61, ¢,) =0 (18.3.10)
Here x{%) = — b;, y(%) = g, are the coordinates of center G (fig. 16.4.6(a)).

The equation of meshing (18.3.10) and equations (18.3.3) of the generating surface L
considered simultaneously represent a line on surface P (line L;), which is the line of contact
of Z{ and L,. The location of this line on TP depends on the parameter of motion ¢, . In the
case of by = 0, equation (18.3.10) yields that

u =M (18.3.11)
! cos A '

for any ;. Thus the line of contact is a circle of radius pp (fig. 18.3.3(a)).
Figure 18.3.3(b) shows the contact lines for the case where by # 0. From equation (18.3.10),
we obtain

rié;

up = by cot 6 tan \ + )\—a[ tan A (18.3.12)

COs

Parameter u; and the contact lines approach infinity if 8 approaches zero.
Surface I; may be determined with the family of contact lines represented in the coordinate
system ). Using the matrix equation

[r1] = IM)r®) = (M, IMP ™)

cos ¢, —sin ¢; 0 ri(cos ¢, + ¢, sin ¢)) xP
sing, cos¢; O ri(sin ¢, — ¢, cos @) y®
= . . | . 2 (18.3.13)
0 0 0 1 1
v
\

\
N
Contact \ r
lines
bt
~ I'I BI -

(b}

Figure 18.3.3.



and equations (18.3.3) and (18.3.12), we obtain
x; = (py sin 6; — by + ry) cos ¢ + (o cos & — by cot ) sin ¢ sin A

y; = (pg sin ) — by + 1)) sin ¢; — (o cos by — b; cot 8)) cos ¢, sin A

&

zy = py cos 0 cos N — + by cot ; tan \ sin N + rié; tan A

cos A

(18.3.14)

Equations (18.3.14) represent the tooth surface of gear 1 with surface coordinates 6 and ¢,.
To derive the surface unit normal, we may follow the usual procedure and use the following
equations

N oy oy

= where N| = — (18.3.15)
IN | d¢, 96

n,

Here r (¢, 6)) is the vector function which represents the surface given by equations (18.3.14).
A simpler way of derivation is based on the consideration that the rack cutter surface t® and
the gear-tooth surface £, have a common normal at points of contact. Thus

] = (LM (18.3.16)

Here [L{V] is the matrix which transforms the direction cosines in transition from S®to ;.
Deleting the last column and last row in matrix [M{{'], we obtain
cos ¢; —sing; O
[LO]= | sing;, cos¢ O (18.3.17)
0 0 1

Equations (18.3.16), (18.3.17), and (18.3.5) yield

sin @) cos ¢, + cos f; sin A sin ¢,
[n,] = | sin 6, sin ¢; — cos 6; sin A cos ¢, (18.3.18)

cos 8 cos A

Tooth Surface of Gear 2

Similarly, we may derive equations of the tooth surface of gear 2. The equation of meshing of
the rack cutter II and gear 2 is given by

(I‘zd)z — Uy COS A= an sin )\) sin 011 + bII Ccos 0[1 sin A =fi1(u]l’ 011, ¢2) =0 (18319)
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The line of contact of £V and L, is represented in SI” by equations

Xc(m = py sin O — by

(I —

Yo (p” €Oo8 0" - aH) sin A + b" cot 8" sin A — an sin A + r2¢2

2™ = p cos 0 cos N —

+ by cot Oy tan X sin X + r,0, tan A
cos

(18.3.20)

Fixing the parameter of motion ¢,, we may determine coordinates of the contact line on L as
functions of &y

To derive equations of tooth surface 2, we have to use the coordinate transformations from S
to §;, which is represented as follows (fig. 18.3.2(b)):

[r2] = [My,1IM,, (")

[ cos¢, sing, 00 100 -r ° x
—sing, cos¢, 0 0 01 0 —r, y
0 0 10 001 0 ZI
L 0 0 01 000 1 1
[ cos ¢, sing; 0 —ry(cos ¢, + ¢, sin ¢) x
—sin ¢, cos ¢; O ry(sin ¢, — ¢, cos ¢,) yim
= (18.3.21)
0 0 1 0 zm
| 0 0 0 1 |
Equations (18.3.21) and (18.3.20) yield
% = (pu sin 8y — by — r3) cos ¢, — (oy; cos i — by cot 6y) sin ¢, sin A
Y2 = = (pu sin by = by — ry) sin ¢, — (oy cos Oy — by cot fyy) cos ¢, sin A
23 = pyy cos Oy cos A — “u + by cot By sin A tan A + ryé, tan A
cos A
(18.3.22)
The surface unit normal is represented by the following matrix eguation:
(2] = [L{")n ] (18.3.23)



From the matrix equation (18.3.21), we obtain

cos ¢, sing; O
(LM = | —sin¢, cos ¢, O (18.3.24)
0 0 1

Equations (18.3.23), (18.3.24), and (18.3.5) yield

sin 0y cos ¢, — cos By sin A sin ¢,
[n,] = —sin 8y sin ¢, — cos By sin A\ cos ¢, (18.3.25)

cos By cos A

Simulation of Conditions of Meshing

The conditions of meshing of gears which have some errors may be simulated by using equations
of continuous tangency of gear-tooth surfaces. We set up three coordinate systems S, and S,
rigidly connected to the gears, and Sy, rigidly connected to the frame. Using these coordinate
systems, we may simulate the errors of manufacturing and assembly of the gears, such as the change
of center distance, the misalignment of axes of rotation, and so on. We limit the discussion to the
case of the change of center distance, C, considering that the operating center distance C (fig. 18.3.4)
is not equal to the sum of the radii of pitch cylinders. Thus C # r; +ra.

Consider that the gear-tooth surfaces, L, and I,, and their unit normals, n; and n,, are
represented in the coordinate systems S, and S,, respectively. We represent Liandn; (i=1,2)
in the coordinate system Sy by using the following matrix equations:

[r{7] = (Mzlr] (n}" = [Lslln] G=1,2) (18.3.26)

e
L

Here (fig. 18.3.3)

Zf,Z]_

Y2

¥l

i

Figure 18.3.4.
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[ cos ¢, sing, 00
, , cos ¢, sin é, 0
—sin¢, cos¢, 0 0 , ,
M) = [Ly)=| —sin¢, cos ¢, 0 (18.3.27)
0 0 10

0 o 01| ° o !

[ cos ¢, —sinp, 0 C ) ,
, , COS ¢, ~—sin ¢, 0
sing, cos¢p, 0 O , ,
[Mfz] = [Lﬂ] = sin ¢2 Ccos ¢2 0 (18328)
0 0 10

0 0 1
']

0 0 0

#, and ¢, are the angles of rotation of the gears in mesh; recall that ¢, and ¢, are the angles of
rotation of the gears while they are generated with the rack cutters (fig. 18.3.2).
Using equations (18.3.26) to (18.3.28), (18.3.14), (18.3. 18), (18.3.22), and (18.3.25), we obtain

xf“):Al cos u; + By sin p, ¥ = Ay sin py — By cos p,
(18.3.29)
zf“’ = pj cos & cos A — l + by cot O tan A sin N + r,¢, tan A
cos A
Here
Al(ol) = Py sin 0[ - b[ + ry Bl(0]) = (p] cos 01 - b] cot 6]) sin A
m=¢ —¢
sin 6y cos u; + cos 6 sin A sin g,
[7{"] = | sin 6 sin p; — cos 6; sin A cos “ (18.3.30)
cos 6; cos A
x(®) = 4, cos p, — B, sin py + C
) = — Aysinp, ~ B
yf 2Sln H2 2COS Ha (18331)
a
zf(z’ = py cos Oy cos N — —— + by cot B sin A tan A + ry¢, tan A
cos A
Here

A2 (On) = py sin 6y — by — 1y B, (8y) = (py cos by — by cot fy) sin A

Ha =&, — ¢,



sin By cos g, — cos Oy sin A sin
[nf‘z’] = | —sin 8y sin g, — cos Oy sin A cos u, (18.3.32)

cos O cos A

The gear-tooth surfaces are in continuous tangency and therefore the following equations must be
satisfied (see ch. 11, egs. (11.1.17) and (11.1.8))

r,‘”(Ou up b)) = rf(z) Oy, p2s 92 (18.3.33)

nfV (61, wy) = nfH (O, p) (18.3.34)

Equation (18.3.33), if satisfied, yields that the position vectors r{D and r!? coincide at the point
of contact of gear-tooth surfaces, I; and L,. Equation (18.3.34) if satisfied yields that the surfaces
have a common unit normal at the point of contact.

Equations (18.3.33) to (18.3.34) yield a system of five independent equations only since
in®| = |n®| = 1. These five equations relate six unknowns: 6y, p1, ¢y, by, p2, ¢; thus, one of
these parameters may be varied.

The equation system (18.3.22) to (18.3.34) yields the following procedure for computations.

Step 1.—Using equation ) = 3}, we obtain

cos ) cos A = cos 0y cos A
Thus
6] 201[ =0 (18335)

Step 2.—Using equation n{}) = n®, ¥ =y, and x{" = x(*), we obtain a system of three
equations in three unknowns (8, u,, and pu,) where

sin 8 sin p; — cos @ sin X cos 4, = — sin 6 sin u, — cos 8 sin X cos p; (18.3.36)

(p; sin @ — by)(sin 8 sin , — cos 6 sin X cos p;) + ry sin 6 sin p,

= — (py sin 8 — by)(sin 8 sin p; + cos 0 sin X cos uy) + ry sin § sin py (18.3.37)

(p; sin @ — b))(sin @ cos p; + cos @ sin X sin w;) + ry sin 6 cos p,
= (py sin 8 — by)(sin @ cos py — cos @ sin X sin py) — ry sin 6 cos py + Csing (18.3.38)
We may check the solution for 8, p,, and p, by using equation ni}) = ngfz) which yields
sin @ cos p, + cos 6 sin A sin p; = sin @ cos p; — cos § sin A sin y, (18.3.39)
The solution for 8, u,, and p, provides constant values whose magnitude depends on the operating
center distance C. The magnitude of 6 determines the new location of the contact point caused
by the change of C.

Step 3.—Knowing 6, we may determine the relation between parameters ¢, and ¢, by using
equation zf“) = z}z) which yields
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py cos 8§ cos A — + by cot & tan A sin A + r;¢; tan A

Ccos

a1
cos

= pycos 6 cos A — X + by cot @ tan A sin A + ry¢h, tan A (18.3.40)

Equation (18.3.40) provides a linear function which relates ¢, and ¢, since 6 is constant.

Step 4.—1t is easy to prove that since 6, u,, and #o are constant values, the angular velocity
ratio for the gears does not depend on the center distance. The proof is based on the following
considerations:

(1) Equation (18.3.40) with @ = constant yields that r,d¢, = rydg, and dg;/dd, = ryfr,.

(2) Since p; = ¢, — ¢, and p, = #, — ¢, are constant, we obtain do| = do,, deé, = d¢, and

Thus the gears keep the same angular velocity ratio although the center distance is changed. The
disadvantage of the discussed gears is the substantial change of location of contact point caused
by the change of center distance.

Step 5.—It is evident that since 6, u,, and u, are constant values, the line of action of the gear-
tooth surfaces in the fixed coordinate system represents a straight line, which is parallel to the
¢raxis. We may determine coordinates x/” and ¥{" of the line of action by using equations
(18.3.29) or (18.3.31). The location of the instantaneous point of contact on the line of action may
be represented as a function of the angle of rotation ¢, of gear 1. Knowing y, and fixing ¢,, we
determine ¢ by using the equation

¢ =u + ¢ (18.3.41)

Equation (18.3.41) and the equation for z") in the system equation (18.3.29) yield

qa

zf“) = pycos 0 cos N\ — >\+b1 cot f tan \ sin X + r; tan Ay, + ¢,) (18.3.42)

cos
Step 6.—We may also derive an approximate equation which relates # and the center distance
C. Since u; and u, are small values, we make cos #; = 1 and sin w; = 0 (i = 1, 2) in equation
(18.3.38). Then we get
plsine—b,-FrI =pIISin0—b[l—r2+C
=pusin® —by~r, + (r;, + , + AC) (18.3.43)
Here C =r; + r, + AC where AC is the change of center distance. Equations (18.3.43) yield

AC + b' - b"
Ar — P

sin § = (18.3.44)

The nominal value of # which corresponds to the theoretical value of the center distance is given by

b~ b
sin 60 = ﬁ (18.3.45)
1~ P



Compensation of Location of Bearing Contact

It results from equation (18.3.44) that the location of the bearing contact depends on the error
AC of the center distance. If the normal pressure angle 8 becomes too small, the bearing contact
will be located on the bottom of the tooth of one gear and on the top of the tooth of the other
gear. Such a bearing is not acceptable and should be avoided.

The sensitivity of the discussed gears to the change of center distance AC may be reduced by

increasing the difference joy — p1|. However, this results in the increase of the contacting stresses.
The dislocation of the bearing contact may be compensated by regrinding one of the gears (preferably
the pinion) with new tool settings.
Consider that 6° is the theoretical value of the normal pressure angle, Y and b, are the theoretical
values of tool settings, and p¥and pJ are the theoretical values of the radii of circular arcs. These
parameters are related by equation (18.3.45). Equation (18.3.44) yields that the location of the
bearing will not be changed if the pinion will be reground with new tool setting b; determined
as follows:

0:AC+b1—b‘,’,

(18.3.46)
o} — ot

sin 6

Equations (18.3.46) and (18.3.45) yield

by=bY— AC (18.3.47)

18.4 Approximate Method for Calculation of Gear Drive Kinematic
Errors

As a general rule, when using exact methods, the determination of kinematic errors of a gear
drive must be obtained numerically by using a computer. This is a disadvantage of the exact method.
Therefore, an approximate method with the idea of obtaining accurate results analytically is now
presented.

Figure 18.4.1 shows two gear surfaces I, and £, which are not in tangency due to errors of
manufacturing and assembly. Points M" and M® and surface unit normal vectors n/ and n®
do not coincide, and position vectors rf(” and rf(z) are not equal. To bring the two surfaces into
contact it is sufficient to hold one gear fixed and rotate the other gear by an additional small angle.
Since the gear with surface I; is the driving gear, it is preferable to fix the position of surface
T, and rotate surface L, to bring it back into contact with L,. The additional angle of rotation A¢,
represents the change of the theoretical angle of rotation #9, which is brought about by errors of
manufacturing and assembly. The angle Ag; is as yet an unknown function of the vector of errors
AQ and varies in the process of motion. Thus

Ad; = f(¢1, AQ) (18.4.1)

The determination of function (18.4.1) is based on kinematic relations between velocities
(displacements) for a contact point and a surface unit normal which move over the tooth surfaces
of mating gears. (See ch. 12.1.)

The following equations are used for the determination

dsSV + ds(V + ds{V = ds{? + ds{P + ds? (18.4.2)
D + dn" + dn{V =dnf) + dn® + dn(? (18.4.3)

Here ds{") is the displacement of the theoretical contact point in transfer motion, with the tooth
surface; ds!” is the displacement of the theoretical contact point in the motion over the tooth
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Figure 18.4.1.

surface; ds!") is the displacement of the contact point caused by the gear errors (i = 1, 2).
Similarly, dni”, dn!”, and dn/” (i = 1, 2) are the changes in the direction of the surface unit
normal in transfer and relative motion and due to the errors. Unlike equations (12.1.9) and (12.1. 15),
both equations (18.4.2) and (18.4.3) consist of additional members having the subscript . These
members are due to gear errors. To bring surfaces into contact, it is sufficient to rotate only gear
2, holding gear 1 at rest. Therefore, dsi!’ and dni! are zero and

ds{V + ds{!) = ds{? + ds/P + ds(? (18.4.4)

dnf" +dn[" = dn{® + dnf? + dn? (18.4.5)

To determine relations between ds}*) , ds{!, and ds{*, we take the following scalar products:
ne(ds!! + dsi) = ne(ds{? + ds!? + dsi?) (18.4.6)

Since vectors ds!) and ds?' lie in the common tangent plane II, equation (18.4.6) is transformed
as follows:

n.ds{? =nads{") — ds{®) (18.4.7)
Vector ds\?) may be represented by the following cross product:
ds{?) = d¢@ x riM) (18.4.8)
where d¢® is the vector of the incremental angle of rotation of gear 2 and ri™ is the position
vector drawn from an arbitrary point on the axis of rotation to the contact point M. Equations (18.4.7)
and (18.4.8) yield
(46 £ n] = (ds{ - ds?) o (18.4.9)

Equation (18.4.9) is the basic equation for the determination of kinematic errors of gear drives.
Its application will be demonstrated in subsequent sections.



Similar scalar products can be derived on the basis of equation (18.4.5). It may be proven that
these scalar products are zero because the vectors in equation (18.4.5) all belong to the tangent
plane. Henceforth, the following notations will be used:

ragl) = as{! LAq(? = As{¥ (18.4.10)

where ZAq(" and ZAq/? represent the sum of linear error vectors due to errors of manufacturing
and assembly of gears 1 and 2, respectively.

In many cases, however, errors in gear trains do not result from linear displacements, but rather
from angular displacements. For instance, kinematic errors may result from the misalignment of
gear shafts.

Figure 18.4.2 shows the axis of gear 2 rotation a-a in its ideal position. Consider that, because
of an error of assembly, axis a-a is rotated about the crossed axis B-B. Such an error of assembly
may be represented by vector A, which is directed along axis B-B, where the direction of Aé
corresponds to the direction of rotation by the right-hand rule. With the given vector Ad, the
displacement Aq®@ of contact point M may be determined as follows:

(1) Vector Ad, directed along the axis B-B, is substituted by an equal vector Ad, which passes
through the origin O, and the vector moment R X Aé. Here R is a position vector drawn from
0, to an arbitrary point on the line of action of vector AS (fig. 18.4.2).

(2) The displacement Aq® of the contact point M caused by the angular errors Ad may be
represented by

AQ? = Ad x 1™ + R x Ab = A8 x (ri*) ~ R) (18.4.11)

A similar equation may be derived to determine the displacement of the contact point M brought
about by an angular error of assembly of gear 1.

With notations (18.4.10) equation (18.4.9) which determines the kinematic errors may be
represented as follows:

(A¢(2) X rz(M) + ZAq) .n(M) =0 (18412)

where £Aq = ZAq(? — LAq{" and n is the surface unit normal at the contact point M.

The location of the contact point M and the direction of the unit normal n‘™ change in the
process of motion. A further simplification of equation (18.4.12) is based on the following
considerations: (1) The contacting tooth surfaces have a common normal at all positions and (2) this
normal passes through the contact point M and the pitch point P. For planar gears the pitch point
P coincides with the point of tangency of the pitch circles (gear centrodes). The pitch point for
bevel gears is located on the line of tangency of pitch cones. In both cases the surface unit normal
n is collinear with PM and

M =P + PM =r{P + \n* (18.4.13)

Figure 18.4.2.
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Equations (18.4.12) and (18.4.13) yield
[(Aw” x r{P) + EAq] ™ =g (18.4.14)
because
(A¢@ X r{M)y e n™) = [M,m x (rfP + )\nw))] on™
= (A6@ X £P) en ™ 4 [A¢(2) An‘M n“"’]
— (8@ X r{P) e n ¥ (18.4.15)

The application of equation (18.4.14) instead of equation (18.4.12) has the advantage that the
location of the pitch point may be considered as a constant (ry”’ = const). However, the direction
of the surface unit normal is a function of ¢,. Three types of gears—involute (spur and helical)
and Wildhaber-Novikov—are exceptions to this statement. For these gears the unit normal of the
gear surfaces, at their contact point, does not change its direction.

Because of kinematic errors, the angular velocity ratio fluctuates in the process of meshing of
the gears. Figure 18.4.3 shows functions for two types of kinematic errors. The first is a piecewise,
nonlinear, periodic function whose period depends on the ratio

My = —=- (18.4.16)

Here N; (i = 1, 2) is the number of gear teeth and b and a are the minimum integral numbers
with which the ratio m;, can be expressed. The angle of rotation of gear 1, which corresponds
to the period of function A¢?(¢,), is equal to 27a. Such functions of kinematic errors are caused
by (1) the eccentricity of gears or (2) by the noncoincidence of the theoretical axis of the gear
and the axis of rotation, and thus making a crossing angle with it.

The second type of function A¢®(6,), shown in figure 18.4.3(b), has a period of ¢, = 27/N,
(periodic with tooth mesh cycle). This function of errors is typical for the case when the generating
process provides nonconjugated tooth surfaces, but all teeth of a gear have the same surfaces. An
example of such a generating process is the generation of Gleason’s gearing.

N1 A02)
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2n (2n ' | !
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1 N
2na
(a) ib)
Figure 18.4.3.



18.5 Application of Theory to Eccentricity of Involute Spur Gears

Figure 18.5.1 shows two base circles of radii ri" and r§? for two involute spur gears. The
rotation centers of the gears are designated by 01 and 0?. The involute shapes are in tangency
at point M of the line of action KL, if the centers of base circles O; coincide with centers of rotation
0 and vectors of gear eccentricity Ae, = 0¥ 0; (i =1, 2) are zero.

To model the meshing of gears with eccentricity, we translate the gears from their theoretical
positions by a distance 0" O; = Ae;, where Ae; is the gear eccentricity. Now, center O; of the
base circle does not coincide with the center of gear rotation. After the displacement, the involute
shapes are no more in tangency, rather they intersect each other or lose the contact.

To bring the involute shapes into tangency once again, it is sufficient to rotate gear 2 through
a small angle Ad®. Using equation (18.4.14), we obtain

(A¢? x riP)yen™ = (se, — Ae))on™ (18.5.1)
The triple product results in (fig. 18.5.1)
(06D x r{Pyen™ = A¢p@r{P cos ¢, (18.5.2)

where . is the pressure angle. Vectors of eccentricity Ae, and Ae, form angles 8, and (; with
vector 000 0% these angles are measured in the direction of gear rotation (fig. 18.5.1). The
scalar products yield

Ae,*n™ = Ae sin (¥, + B))

(18.5.3)
Ae,on™ = Ae, sin (Y. + B2)
From equations (18.5.1) to (18.5.3), we obtain
Aey sin + + Ae, sin -V,

AG? = e, sin (B, + ¥ o e sin (B — ¥o) (18.5.4)

Ty
_— Polar axis
Figure 18.5.1. Figure 18.5.2.
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where the radius of the base circle of gear 2 is
152 =P cos y, (18.5.5)

The center O, (i = 1, 2) of the base circle rotates in the process of meshing; 0" and 0,
are two instantaneous positions of this center (fig. 18.5.2). Angles 3, and 8, may be represented
as follows:

Bi1=Bi0 + ¢ Br=580+ ¢ (18.5.6)

where 8, and 3,, correspond to the initial positions of centers O, and O,, with ¢, = ¢, = 0.
Equations (18.5.4) and (18.5.6) yield

Ael sin (¢1 + 'Yl) + Aez sin (¢2 + 'Yz)

o

A8 =

(18.5.7)

where v, = (810 + ¥.) and y; = By — V).
For convenience, consider the kinematic error function to have zero magnitude at
¢V = ¢® = 0. Then, the kinematic error becomes

A6 = ApD(p)) — A¢PH0) =

Ae[sin (¢ + ;) — sin 'Yl]m

+ Aeyfsin (¢; + v;) — sin vy,]
)
Ty

e

21 (18.5.8)

where my, = 0@/ = riVyrf? = N,/N,. Equation (18.5.8) represents the kinematic error of
a gear train with two gears as the sum of two harmonics. The periods of these harmonics are equal
to the periods of complete revolutions of the gears.

Equation (18.5.8) may be represented symmetricly as follows:

207 — Ae,[sin (¢, Jr“q)/,) — sin ] my + Ae,[sin (¢, +2‘Yz) — sin 72];;122
'y T’S )
2 . .

- E Ae[sin (¢, +(3,») — sin ;] (18.5.9)

i=1 "

Here, myy; = 1 and ¢2 = ¢|"’l21.

Equation (18.5.9) may be generalized for a train with n gears as follows:
n . .
Ae; , ) — sin v,

AG(") — E e,[sm (d): + 71) S1n 'Yl]mm_ (18510)

(i)
i=1 T
where A8™ is the resulting kinematic error of the gear train represented as the angle of rotation
of gear n (the output gear).

A complicated gear train is a combination of pairs of gears. The parameter y, may be
represented as

Yi = Bio+ ¥



Agjlo,)

Sy =X
\\-// Y 3

Figure 18.5.3.

for the driving gear of the pair, and as
Yi = Bio — ¥e

for the driven gear of the pair. For instance, for computational purposes, a train of three gears
must be replaced by two pairs of gears. The idler (intermediate gear) is considered as the driven
gear in the first pair, and as the driving gear in the second pair.

We designate the kinematic error exerted by the eccentricity Ae; of gear number i as

_ Aejlsin (¢; + i) — sin ;]

- 18.5.11
rél) ( )

A8,

where Af; is the error of the rotation angle ¢;. The maximum possible value of this error is

2 Ae;
Abimax — Abimin = —()e‘ (18.5.12)
Tp
The kinematic error of the train may be represented as
n
A" = Y afm, (18.5.13)

i=1

Gear trains are usually applied for the reduction of angular velocities and thus m,,; is less than 1.
It results from equation (18.5.13) that the last gears of a train (numbers n, n — 1, n — 2) induce
the largest part of the resultant kinematic error A9 ("} Therefore, the precision of these gears must
be higher than the others.

The largest value of the kinematic error function A8 and its distribution above and below the
abscissa depends on the combination of parameters v; (i =1, 2, ..., n). Figure (18.5.3) shows
the distribution of a function Af;(¢,) exerted by eccentricity of gear i of the train.

The resulting errors of a gear train may be compensated partly by using definite rules of assembly
of gears with eccentricity. For instance, for gears with tooth numbers N, = N, and equal
eccentricities Ae; = Ae,, the resultant kinematic error will be approximately zero if the eccentricity
vectors Ae, and Ae, (fig. 18.5.1) are directed opposite each other.
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18.6 Application of Theory to Eccentricity of Spiral Bevel Gears

For spatial gears the term “‘eccentricity”’ is used to describe that the geometric axis of a gear
is parallel to, but does not coincide with, its axis of rotation (fig. 18.6.1). As the eccentric gear
rotates, its geometric axis generates a cylindrical surface of radius Ae. The eccentricity vector Ae
is a vector which rotates about the gear axis. The initial position of vector Ae (its position at the
beginning of motion) is given by angle « (fig. 18.6.1).

Figure (18.6.2) shows coordinate systems S, (x,, y,, 21) and Sy(xs, yp, z7) which are rigidly
connected to gear 1 and the frame, respectively. System S, is an auxiliary coordinate system, which
is also rigidly connected to the frame. Driving gear | rotates about axis z4. The position of Ae,
in coordinate system S, is given by the angle «;, which is made by Ae; and axis x;. The current
position of Ae, in coordinate system ¢ (or ) is determined by the angle (¢, + «,) and the matrix
c€quation

Geometrical axis
T

\
{nitial \
position \

Current ¥ __
position
of a@— "

\- Axis of rotation

Figure 18.6.1.

Zh'zl

Zf

Figure 18.6.2.



cosy; O sin vy, Ae, cos (¢, + o)
[Ae}”] - [Lf,,] [Ae,f“] - 0 1 0 —Ae, sin (¢ + &) (18.6.1)

—siny; 0 cos v, 0

Here [Ae"] is the matrix of vector Ae;, which is represented in the coordinate system S,. The
3 x 3 matrix [Lg,] transforms elements of the column matrix {Aef!’] to coordinate system Sy from
the coordinate system Sj.

Matrix equation (18.6.1) yields

Ae; cos (9, + ay) €Os vy
[Ae}”] = —Ae; sin (¢, + o)) (18.6.2)

—Ae; cos (¢ + ay) sin v
The vector of eccentricity of the driven gear may be determined similarly. Figure 18.6.3 shows
coordinate systems S, and S; rigidly connected to gear 2 and the frame, respectively. The auxiliary

coordinate system S, is also rigidly connected to the frame.
Vector Aefm is represented by matrix equation

cos y; 0 —siny; Aey cos (P + o)
[8¢/?] = [1][ae] = | 0 1 0 Aey sin (¢, + o) (18.6.3)
siny, 0 cosvy 0

which after matrix multiplication gives

Ae, cos (¢, + ay) COS ¥,
[Ae}”] - Ae, sin (¢, + a2) (18.6.4)

A€2 cos (¢2 + az) sin Y2

Figure 18.6.3.
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Kinematic errors induced by gear eccentricities may now be found by using equation (18.4.9) as
follows:

20/ o ] = (ag" — a¢?) e n? (18.6.5

Here Ae!') and Ae/?! are given by matrices (18.6.2) and (18.6.4), and vector Agf? (fig. 18.6.3)
is represented by the matrix

COS 72 0 —sin Y2 o _'Ad)z sin Y2
(86 = [L,][a62] = | 0 1 o 0o |= 0 (18.6.6)
siny,; O cos~y, Ag, A¢; COs v,

Vector pf?) represents the position vector of the contact point which lies on the line of action
of the gears and n; represents the common unit normal of the gear surfaces at their point of
tangency.

Equations (18.6.5) and (18.6.6) yield

n, LAe, + n, LAe, + n, LAe,

A, = ] .
—ycos y:n, + (xcosy; + zsin Y2)n, — ¥ sin yyn,

(18.6.7)

where
LAe, = AelV — Ael?, Lae, = Ae{" — Ae!?), and Lae, = Ae!" — Ael?
(the subscript f was dropped).

Projections n, and n; of the surface unit normal n, and coordinates x, y, and z of the contact
point change in the process of motion. But since the changes in these variables are relatively small,
they may be neglected. The surface unit normal n;and the point of contact P may be represented
as follows (fig. 18.6.4).

n; = sin Y iy + cos y(cos Bj;+ sin Bky) (18.6.8)

=20 y=0 =1L (18.6.9)

Figure 18.6.4.



The derivation of equations (18.6.8) and (18.6.9) is based on the following considerations:

(1) Axis z is the instantaneous axis of rotation of the generating gear and the gear being
generated.

(2) Point P is the point of tangency of the gear-tooth surfaces, because it lies on the axis of
instantaneous rotation.

(3) The common surface unit normal to gear-tooth surfaces, ng coincides with the unit normal
to the generating surface which is the cone surface. Vector ny is determined as follows:

nf=a><b

where a and b are two unit vectors which are mutually perpendicular (fig. 18.6.4).
Equations (18.6.7) to (18.6.9) yield

A(¢))
A = 18.6.10
290 L sin v, cos ¥, cos 8 ( )

where
A(@)) = a; sin (¢, + ) + by cos (o, + o)
+ a, sin (¢y + o) + by cos (¢, + a)
a, = —Ae, cos Y. cos
a, = —Ae; cos Y, cos
b, = Ae,(cos v, sin ¥, — sin y; cos ¥, sin B)

by = — Aey(cos v, sin Y, + sin 7y, oS Y. sin B)
b2 = S
2 IN2

Equation (18.6.10) yields that the kinematic errors caused by the eccentricity of spiral-bevel gears
may be represented as the sum of four harmonics: the period of two harmonics coincides with
the period of revolution of gear 1; and the period of the other two coincides with the period of
revolution of gear 2.

Function Ag,(¢,), represented by equation (18.6.10), is a smooth function with continuous
derivatives which serves as a first approximation. In reality, the derivative of function ¢,(¢))
breaks as different sets of teeth come into mesh. (See fig. 18.4.3(a).) This break can be discovered
if Ag,(¢,) is determined by equation (18.6.7).

18.7 Backlash of Spur Gears

The driving gear 1, if reversed, puts into motion the driven gear not right away, but only after
the driving gear is rotated through a small angle. The contact of gear-tooth surfaces stops temporarily
if the gear motion is reversed for the following reasons: (1) There is a backlash between the teeth
on the other side; and (2) because of the change of direction of the elastic torsion of the gear shafts.
The backlash between the surfaces depends on the errors of the center distance, errors of the distance
between the teeth, shape errors, and gears eccentricity . The magnitude of the backlash is changed
in the process of meshing due to the gears eccentricity.

Consider two mating gears without errors. The direction of rotation of the driving gear (gear 1)
is indicated by k (fig. 18.7.1) and M is the point of contact for the indicated direction of rotation.
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(a) ib)
Figure 18.7.1.

Assuming that the backlash is zero, we say that the nonworking shapes (shapes on the other side
of teeth) are in tangency at point L. Because of gear errors, the shapes will be Jammed if the backlash
is zero. To avoid this, we have to foresee a backlash magnitude. We designate the vector of initial
backlash at point L by NL. This vector is directed along n‘"—the unit normal to the nonworking
shapes at L.

We have to differentiate between two types of backlash which may be exerted at point M and
point N, respectively. Consider first that the mating gears do not have errors and the gear-tooth
surfaces contact each other at point M. We then consider new conditions—the contact of tooth surfaces
of gears 1 and 2 having some errors LAg " and ZAg ?), respectively. Because of these errors
gear-tooth surfaces cannot contact each other at M until gear 2 will be turned through a small angle
A9{M . We may determine this angle (A61)y by using the following equation (it is similar to
equation (18.4.14)):

[(Ao;"“ x riP) + £aq® — EAq}”] en™ =g (18.7.1)
The superscript M in A85* indicates that we consider the angle of turn of gear 2 with which
the contact of working shapes at M can be reestablished again. However, the turn of gear 2 changes
the initial backlash at N between the nonworking shapes.

Consider then that we try to put the nonworking shapes into contact at N. We can obtain this
contact by turning of gear 2 through an angle A" (the superscript N in Ar§™ indicates that
contact at N is provided). We determine A6 by using the following equation

[(Aogm x t{M) + EAQ‘Z'] on™ =g (18.7.2)

Here vector EAQ'Q' represents all of the “*errors’” which induce a backlash N: this vector is
represented by

LAQW = (A0f™ x rf) + Laq/? — Laq!" + IN (18.7.3)



Equations (18.7.2) and (18.7.3) yield
[(AO:“” x rgN)) + (Aoz“‘“ x rz(P)) +TAq® — ZAq(D + L—IV)] on™ =0 (18.7.4)
The further transformation of equation (18.7.4) is based on the following considerations:
(1) The unit vectors n™ and n™ make an angle 2y, where Y, is the pressure angle.
Thus
n™+n® +a=0 (18.7.5)
Here |a| = 2 sin y, and vector a has the same direction as vector 0™ 0 of the shortest center
distance.
Equation (18.7.5) yields
a™ = — (@™ 4 a) (18.7.6)

(2) Using equations (18.7.4), (18.7.6), and (18.7.1), we get
- [ (AOZ(N) X rz(N)) + (AGZ‘M) X rz(P)) + £aqf? — LAq" + W)] . (n“‘“ + a)
= [(AHZ‘N’ x ré"”) + L'I_V'} on™ — [(A(iz‘“) X rl‘”) + Loqf® - EAq.‘”] . (n‘M’ + a)

= [(A02(N) X rz‘N’> + Zﬁ] en™ - [(A02(M) X l'z(P)) + Lag? - EAq,-‘”] °a=0

(18.7.7)
Then, we have that
[AGZ‘M) r{? a] -0 (18.7.8)
because of the collinearity of vectors ri”) and a.
Equations (18.7.8) and (18.7.7) yield
(205" x r) en®™ = (zag? - £Aqf") ea + 4b, (18.7.9)
Here
Ab, = —(IN*n'Y)) = NLe n‘t (18.7.10)
is the initial backlash NL measured from N to L along the unit normal n™.
(3) A further simplification of equation (18.7.9) is based on the following:
iV =P + PN [Aog(N) riV n(N)] = [A(){M riP) n‘N’] (18.7.11)
because | A85Y Wn‘L’J — 0, due to the collinearity of vectors PN and n‘D.
Equations (18.7.9) an (18.7.11) yield
(Aﬂz"‘” x rz“’)) end = (qu}2> - EAq,-“)) oa+ Ab, (18.7.12)
1t is easy to verify that
[Aez(m r{P n‘“] = A0IM P cos ¥, = ABSY 1y (18.7.13)
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where 7,, is the radius of the base circle of gear 2; Ag™ is positive if gear 2 is rotated
counterclockwise.
The final equation is

(2) _ (1
ABSY) = (EAqJ XAq; ) *a + Ab,

(18.7.14)
Tz

Using this equation, we can determine the backlash A8§™ in radians induced by errors of gears.

Example problem 18.7.1 Consider that the acting error is the increment AC of the center distance

due to the displacement of the rotation center of gear 2. Determine the angular backlash A9M
(take Ab, = 0).

Solution. Using equation (18.7.14), we get

AN — ACea 2ACsiny,

2AC
ta

Tp2 Ty2 r

n Y, (18.7.15)

where r, is the pitch radius of gear 2.

Example problem 18.7.2 Given the eccentricity vectors Ae, = Aq{" and Ae, = Aq® of gears
1 and 2, respectively (fig. 18.7.1(a)). Determine the angular backlash induced by the eccentricity
of gears.

Solution. Using equation (18.7.14), we obtain

A0 = (Ae; — Aej)*a + Ab, _ 2 sin ¥, (Ae, cos B, — Ae, cos B) + Ab,

Fp2 I'n2

(18.7.16)

Here |a = 2 sin . and vectors Ae, and Ae; make angles (8, and 3,, respectively with vector a
which is directed along 0'"0®. We represent angles 8, and B, as follows

By = B0~ ¢y, and B, = By + ¢, (18.7.17)

where 3,5 and 8, determine the initial positions of eccentricity vectors, and ¢, and ¢, are the
angles of rotation of the gears.
Equations (18.7.16) and (18.7.17) yield

260 = 2 sin Y [Ae; cos (Bap — ¢2) — Ae; cos (B + ¢,)] + Ab,

Tp2

(18.7.18)

Here Ab, is the constant part of the linear backlash represented in inches; A" (@,) is the variable
part of the angular backlash represented in radians.
The gear teeth will not be jammed if

' N
AG(:\!) (d)l) >0 0< ¢, < 27"1] d)z = d)lvz (18719)
B

where n; is the number of revolutions of gear 1, which determines the period of function AgM
(#1), and N, and N, are the numbers of gear teeth. Using equation (18.7.18) and expression
(18.7.19), we may determine the initial backlash Ab, with which we can avoid the tooth jam.



18.8 Application of Theory to Transformation of Rotation With a
Varied Ratio by Eccentric Gears

Noncircular gears are applied for transformation of rotation with a nonlinear relation between
the angles of gear rotation. For some cases, eccentric gears can be used instead of noncircular
gears. However, the application of eccentric gears is limited due to the jamming of gear teeth which
have great magnitudes of eccentricities. The danger of the jamming of teeth is substantially decreased
if identical eccentric gears are applied. Equation (18.7.18) yields that

Ab
AV = =2 (18.8.1)

Tp2

if Ae, = Aey, Ny = N,, and 8o = B0

Thus A8 is constant (it does not change in the process of meshing). The position function
of such eccentric gears may be determined with equation (18.5.4). Taking in this equation
Ae, = Aey, = Ae, ¢ = ¢, = ¢, and B1p = Bro = Bo, We get

2 A elsin(¢ + Bg) cos ¥

Q) _
Ag™ = e
b

(18.8.2)

Equation (18.8.2) represents the varied part of the angle of rotation of gear 2, ¢,. The total angle
of rotation of gear 2, ¢'%, is represented as follows:

N 2 A e[sin(¢ + Bo) cos ¥.]

18.8.3
ey ( )

0P =¢

where ¢ is the angle of rotation of gear 1, and ri?) is the radius of base circles of the gears.

18.9 Measurement of Rotation Angles With Eccentric Disks

The theory of eccentric gears may be also applied for the measurement of angles of rotation
with eccentric disks. Such disks, provided with scores, are the basic part of optical, electro-optical,
and electromagnetic instruments designed for the measurement of angles of rotation. Because of
the eccentricity of disks, the angle of rotation registered by the instrument differs from the real
angle of rotation. This error may be compensated if the angle of rotation is registered by taking
signals (or reading the rotation angles) from the opposite scores that are located on the same diameter
of the disk. Figure 18.9.1(a) shows a disk whose center of rotation is O and the geometric center
is 0,; 00 = Ae, is the eccentricity vector; a is the fixed index; and M,, is the point of the disk
which is under the index at the initial position. The eccentricity vector forms with OM,, at the
initial position the angle B¢, which is measured from OM,, to QO in the direction of disk rotation.
While the disk is being rotated, the geometric center O; of the disk and the eccentricity vector
rotate about O.

Consider that the disk was rotated about O through the angle ¢ and the position vector OM coincides
with Oa. If the disk would be rotated about O, instead of O, point M would be under the index
a after rotation through the angle ¢, = My0,M. The error of measurement of the angle of rotation
is represented by

Ab=¢, — ¢ (18.9.1)

It is evident from the drawings of figure 18.9.1(a) that
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Figure 18.9.1.

¢, =0 — Ag, + Ag,
where
——— ———
Ad)] = OIMO, and Ad)z = 0]M()0
Thus

Ad = A¢| — Agy

Considering the triangles O,MO and O,M,0, we get
sin Ag; = A_re(¢ + Bo) sin A¢, = A_re sin By
Since A¢; and A¢, are small angles, we may represent equation (18.9.5) as follows:
Agp, = érf sin (¢ + Bg) Ag; = % sin 8y

where r is the disk radius.
Equations (18.9.4) and (18.9.6) yield

A
Ad = Te [sin (¢ + Bo) — sin Bo]

(18.9.2)

(18.9.3)

(18.9.4)

(18.9.5)

(18.9.6)

(18.9.7)

Equation (18.9.7) represents A¢(¢), the error of measurement of the angle of rotation caused by

disk eccentricity.

The error A¢(¢) can be compensated for if the angle of rotation is registered with the aid of
two indices which are located opposite each other at the line a ‘" 0a'? (fig. 18.9.1(b)). Consider
that point M and M) are under the indices a"’ and a® at the initial position. The eccentricity
vector (00,) makes angles 85" and 8" with Oa " and Oa ¥, respectively. Disk points M (!
and M® will be under ‘") and a?, respectively, after the disk rotation through the angle ¢.



However, the instrument will register angles ¢ and 6,2 with the aid of indices a'') and a?®,
respectively. Here

/\/\
o = M{MOMD, and ¢/P = MPOM?D (18.9.8)

Using equation (18.9.7), we may determine the errors of measurement as follows
A
A(,‘b(l) = ——e[Sil‘l (¢ + Bg)) — sin 6&”] (18.9.9)
r
A
26®@ = 2 [sin (¢ + BL) — sin B (18.9.10)
r

where 882 = BS" + = (fig. 18.9.1(b)). The superscripts 1 and 2 correspond to a® and a?,
respectively.
It is easy to verify that the true angle of rotation ¢ may be determined with the equation

2

® (18.9.11)

where ¢! and ¢’ are the angles which were registered by indices a® and a®, respectively.
Thus, using two indices, we may compensate the error of measurement exerted by the eccentricity
of the disk.
The derivation of equation (18.9.11) is based on the following considerations:
(1) Equation (18.9.1) yields that
¢V =¢ + ap™" (18.9.12)
$@ =¢ + A¢? (18.9.13)

where A¢') (i = 1, 2) is the measurement error.
(2) Equations (18.9.9) and (18.9.10) yield that

20 + AP = 0 because 85 =B + 7

Thus ¢ + 2 =2¢ + A¢) + A¢® = 2¢ and equation (18.9.11) is confirmed.
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Chapter 19

Force Transmission

The problem of force transmission by spatial gears is related to the type of gear geometry.
However, a general solution of this problem may be proposed. This solution is based on the use
of geometric parameters of gear surfaces which are common for all types of gears. The proposed
solution is applied in this book for helical and spur gears, worm-gear drives, and bevel gears.

19.1 Force Transmission of Gears With Crossed Axes

Force Transmission

Consider a gear mechanism with crossed axes of rotation—a worm-gear drive or a mechanism
formed by two crossing helical gears (fig. 19.1.1(a)). We set up two fixed coordinate systems rigidly
connected to the frame, Si(xp, Y5 %) and S,,(x,,, ¥p» 2,). Gears 1 and 2 rotate about axes Zr and
Zp, respectively, which form the crossing angle y. This angle is measured counterclockwise from
w" to w®. Gear 1 is the driving gear and gear 2 is the driven gear. Gears 1 and 2 are loaded
with the driving moment M, and the resisting moment M,. Here P is the pitch point and O =r|
and O,P = r, are the radii of pitch cylinders; C is the shortest distance between the axes of
rotation. Figure 19.1.1(b) shows the velocity polygon at point P. (See ch. 14.3.) The common
tangent to the helices on the pitch cylinders is r-; 8, and B, are the angles formed between r-1
and the gear axes. Projections of vectors vV and v on line Pm must be of the same magnitude
and direction. (Line Pm is perpendicular to r-1.)

Considering as given the driving and resisting moments, M, and M,, we have to derive equations
for the normal reaction F'%' transmitted from gear 1 to gear 2. We assume that the gear-tooth
surfaces contact each other at the pitch point, and F"'? is directed along the common normal to
the gear-tooth surfaces.

We recall that the normal to a surface T may be represented by (see ch. 8.3)

N=axb (19.1.1)

where a and b are the tangents to lines L, and L, on the surface (fig. 19.1.2(a)). Line L, is the
line of intersection of gear-tooth surface I, with the pitch cylinder of radius r, (fig. 19.1.2(b)).
The unit tangent to line L,, a, makes an angle 8, with the Zp-axis. Line L, on surface £, is the
line of intersection of L, with plane d-d, which passes through point P and axis X,, and is
perpendicular to vector a. The section of pitch cylinder represented by plane d-d is the ellipse with
axes 2r, and 2r,/cos 3,, repsectively. The section of L, represented by plane d-d defines the normal
section of the surface. The unit tangent b to the tooth shape in the normal section forms an angle
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Y, with the x,-axis (, is the normal pressure angle). We represent vectors a and b in the

coordinate system S, as follows:

a = — sin By, + cos B:K, (19.1.2)

b = cos Y,i, + sin ¥, cos Bajp + sin ¥, sin 8.k, (19.1.2a)

where i,, j,, and k, are the unit vectors of the coordinate axes X, ¥, and z,, respectively.
The surface normal is represented by

[oe]
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i, Jp k, ‘

N=axb= 0 -sin 3, cos f3,

cos ¥, sin y, cos B, sin y, sin G,
= —sin yY,i, + cos B, cos Y, j, + sin B, cos vk, (19.1.3)
Since [N| = (N3, + N}, + N2,)'2 = 1, we get that the surface unit normal is as follows:
Ny = —siny, ny,=cosy,cosB, ny,=cosy,sinpB, (19.1.4)
Equations (19.1.4) may be used for all types of worm-gear drives and helical gears.
We may now determine the contacting force F'? which is directed along the unit normal to
the gear-tooth surfaces.
F'? = Fi'9p, (19.1.5)
Representing F'? in terms of Xp“z), Y,,“z), and Zp“z’, we obtain
X\ = —FPsiny, ¥ =F o5y, cos B,
Zp“z’ = F12 cos y, sin B, (19.1.6)
Consider conditions of static equilibrium of gear 2. The gear is loaded with F'¥ M,, and
reactions F®® and F(°® (fig. 19.1.3) transmitted from bearings A and B (we neglect the forces
of friction). The conditions of static equilibrium provide six equations. We may express the
components of F''? in terms of the resisting moment M, and the geometric parameters 3, and
¥, by using one of the six equations, that is
M, + (O,P x F'?)] ¢k, = 0 (19.1.7)
Here (fig. 19.1.1(a))
M, = -M -k, (19.1.8)

and

Figure 19.1.3.



iP jp kp
OPxFM=1 r, 0 0 (19.1.9)

12 12 12
x{2 ygn zi
Equations from (19.1.7) to (19.1.9) and (19.1.6) yield

M
yp(m =20 = FO2) cos ), cos By (19.1.10)
r

Thus, the contacting force is given by

M
FO = — " —— (19.1.11)
rp COs Y, c0S B,
Using equations (19.1.6) and (19.1.11), we get
M, ta
xow = - M n v (19.1.12)
ry cos 35
M,
i == (19.1.13)
n
M,
Z{™M = —tan B (19.1.14)
n

Component Z,fm represents the thrust load of contacting force F@D_ The derivation of F, which
is transmitted from gear 2 to gear 1, is based on the following considerations:

(1) F®) = —F" (19.1.15)
and
(2) F@V is represented in the coordinate system Sy by using the matrix equation
[F§20] = —[LpllFs ') (19.1.16)

Matrix [Lg,) transforms projections of vectors in transition from the coordinate system S, to Sy.
This matrix is given by (fig. 19.1.1(a)):

1 0 0
[Lpl = 0 cosvy —sin vy (19.1.17)
0 sinvy cos ¥
It is also known that
—(F{'P1 = [F*) (19.1.18)

where [F§'?] is the column matrix represented by equations (19.1.12) to (19.1.14). Equations
(19.1.16) to (19.1.18) and (19.1.12) to (19.1.14) yield
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21

X - cos B (19.1.19)
M +

Y = _%7652) (19.1.20)
2 2
M, sin (y +

zpon = Mesin(y + 8y (19.1.21)

r; cos 3,

We may express components of F*!) in terms of M, 8,, and y, based on the following
considerations:

(1) ¥ = 180° — (8, + B,) (see fig. 19.1.1(b))

and
v+ B, = 180° -3, (19.1.22)
(2) The gear ratio is
_ o _rpcos 3,
mp = ﬁ = rlTsB]

(See sec. 14.3, figs. 14.3.2, 14.3.3, and fig. 19.1.1(b).)
(3) Since the friction forces are neglected, the power of gears | and 2 is the same and

Mo = M, @

Thus

. de(l) _ r; COs 62

M, M 19.1.23
w®  rcosB, ¢ ( )
Equations (19.1.18) to (19.1.22) yield
xn = Matan ¥, (19.1.24)
ry cos f3,
M
pi =4 (19.1.25)
r
M
Z{™ = — —dqan g, (19.1.26)
r

Equations (19.1.12) to (19.1.14) and (19.1.24) to (19.1.26) may be used for all types of worm-
gear drives, crossing helical gears and helical gears with parallel axes. However, we have to abide
by the following rules: (1) The directions of axes Zrand z, must coincide with the directions of
w" and w®, respectively, and the coordinate systems Sy and S, must be right-handed. (2) Both
gears must be left-handed. For a right-handed gear we have to change the sign of tan §; in the
derived equations. In the case of helical gears with parallel axes one of the gears is left-handed
and the other is right-handed; however |8, = |3,].
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In the case of spur gears, we make angles B, = B, =0 in equations (19.1.11) to (19.1.14),
(19.1.24), and (19.1.26), following the rule of orientation of the coordinate systems Sy and S,.
Axes z;and z, make an angle v = 180° and 0° for external and internal spur gears, respectively.

The derivation of equations (19.1.12) to (19.1. 14) may also be based upon geometric consideration
(fig. 19.1.4). Consider that the driven gear rotates in the direction represented by vector v The
direction of the transmitting force coincides with v® and its magnitude is equal to M,/r;. The
direction and magnitude of the axial force are determined from the condition that the geometric
sum of the transmitting and axial forces is perpendicular to line #-z (which is the tangent to the
helix at the pitch point P). Considering the normal section of the gear, we can determine the
contacting force and the radial component.

Bearing Reactions
The determination of bearing reactions is based on equations of static equilibrium of the gear.
Considering the driven gear (fig. 19.1.3), we may represent these equations as follows

FO2 4 FO0 4 FOB — (19.1.27)

(ij F“2>) + ((7,71 x F(‘“’) + (T)E x F‘OB’) +M, =0 (19.1.28)
Here F''? is the force transmitted from the driving gear which passes through the pitch point P.
Force F'¥ is represented in the coordinate system S, by equations (19.1.12) to (19.1.14).
Reactions F9Y and F©® are transmitted from the frame and pass through points 4 and B. Only
one bearing, say 4, resists not only the radial load but also the axial load.

We transform equation (19.1.28) as follows:

i, § Kk 0
O,P xF!'? = rn 0 0 = | -zZ%n (19.1.29)
X’EIZ) YAIZ) Z;]Z) Y[slz) r
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Equations (19.1.27) to (19.1.31) and (19.1.12) to (19.1.14) yield

b ta
BNV | B,
X0 — 1 ry cos B3,
yoh . _ 2
n(h +46)
Z(OA) = - tan 62
r
f) tan y,
J — tan 62
X = 1 ry cos 3,
4L+ 6
yon - _py b

"+ )

The bearing reaction

F(OA) ~ X(OA)i + Y(OA)j + Z(()A)k

exerts a radial and axial load. The radial load in bearing A is given by

o0 | e o

and the axial load is given by

’FG(OA) ' — 7(04)

The bearing reaction

F(OE) — X(OB)i + Y(OB)j

(19.1.30)

(19.1.31)

(19.1.32)

(19.1.33)

(19.1.34)

(19.1.35)

(19.1.36)

(19.1.37)

(19.1.38)



exerts only a radial load represented by

|F,‘OB’ ‘ - IF(OB’ | = \/6(‘0‘”)2 + (Y‘O’”)2 (19.1.39)

Similarly, we may determine reactions in the bearings of the driving gear by using equations of
equilibrium for this gear.

19.2 Force Transmission for Spiral Bevel Gears

Surface Unit Normal

The mean contact point is represented in the fixed coordinate system S; (fig. 19.2.1). We
consider two lines on the gear-tooth surface and two unit tangents to these lines: (1) vector by is
the unit tangent to the longitudinal shape and (2) vector ay is the unit tangent to the tooth shapes
in the normal section A-4. The normal to the tooth surface is represented as follows

N;= by X as (19.2.1)
Here
ap = cos W, iy + sin Y cos B jr+ sin ¥, sin 8 ky (19.2.2)
and
b, = —sin 8 js + cos B ks (19.2.3)

where i; jp, and Ky are the unit vectors of axes x5, yp and z;; and V. is the pressure angle in the
normal section.
Using equation (19.2.1) to (19.2.3), we get

r Section A-A
I

| sparallel toxy

¥

Figure 19.2.1.
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iy i ky
N; = 0 —sin 3 cos 3
cos ¥, sin ¢, cos B sin ¢, sin 3

= —sin i, + cos . cos Bis + cos ¥, sin Bk, (19.2.4)

The unit surface normal ny is given by the equation

N
nf = —L
INA

Equation (19.2.4) yields
NI = (M3 + N+ N2) 2 =
and
~sin y,

[nd = | cos ¥ cos 8 (19.2.5)

cos ¥, sin 3

Contacting Force F?

The driven gear 2 is loaded with: (1) the resisting moment M,, (2) the contacting force F(12
which is transmitted from gear 1, and (3) the bearing reactions. The contacting force is directed
along the normal n;. To determine the contacting force and its components, we use the following
procedure:

Step 1. —We must represent the surface unit normal in coordinate system S, (fig. 19.2.2) whose
axis z, is the axis of gear rotation. Matrix equation

(1] = [L,AlnA (19.2.6)

represents the transformation of vector projections in transition from Syto S,. Here (fig. 19.2.2)

3l (hi

Figure 19.2.2.



cos vy, 0O siny;

(L, = o 1 0 (19.2.7)

P

—siny; 0 cos vy
where v, is the apex angle of the pitch cone. Equations (19.2.5) to (19.2.7) yield

—cos 7 sin Y, + sin y; cos ¥, sin 8
[np] = cos Y, cos 3 (19.2.8)

sin 7y, sin Y, + cos 7y, cos ¥ sin 3

Step 2. —The contacting force FU? may be represented by

X{gm —c0s v, sin Y. + sin ¥, cos ¥, sin B
[FAIZ)] — Y;u) o F!Sl?-) cos ¢(‘ CcOS B (1929)
erm sin 7y, sin Y, + cos 7y, cos ¥, sin B8

Step 3. —One of the equations of static equilibrium of gear 2 is based on the consideration that
the sum of projections of the torques on the z,-axis is equal to zero. This condition yields

M, + (O,P x F'")]*k, =0 (19.2.10)

Here (fig. 19.2.2)
M,*k, = —M, (19.2.11)

and
i, i k, —Yp“z) ry cot v,
6P_PXF(12) = r 0 r, cot vys = X,Slz) ry cot 'yz—Z[fm r (19212)
XP(IZ) YI§12) ZAIZ) Ypm) r

(O,P x F'¥) ek, = Y, (19.2.13)

The radial components of bearing reactions are perpendicular to axis z, and the axial component
is directed along this axis. Therefore the projection of the moment of bearing reactions on axis
z, s zero.

Equations (19.2.10) to (19.2.13) yield

M,
yi == (19.2.14)
r;

Step 4. —Using equation (19.2.14) and (19.2.9), we obtain

M,

FO =
ry €Os Y. cos 3

(19.2.15)
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X“”—L(— cos . .
b = Y, tan . + sin vy, sin 3) (19.2.16)

ry cos 3
M
Y,,“Z’ _ M
p)
zom = M (sin v, t 5 y2 si 9.2.17
A Y, tan ¥, + cos vy, sin G) (19.2.17)
r; cos 3

Equations (19.2.15) represent the magnitude and components of the contacting force FU2.

Contacting force F©V

Gear 1 is loaded with (1) the driving moment M, (2) the contacting force F?" which is
transmitted from gear 2, and (3) bearing reactions which are transmitted from the frame. The
contacting force F®" is of the same magnitude as F'2, but it has an opposite direction. To derive
the contacting force F*" and its components, we use the following procedure:

Step 1. —We represent the unit normal [n4 in coordinate system S, whose location with respect
to the coordinate system Sris shown in figure 19.2.3. Coordinate transformation from Sto S, is
represented by the matrix (fig. 19.2.3)

cos y; 0 —sin v,
(L4 = 0 1 0 (19.2.18)

siny; 0 cos v,
Using the matrix equation
[y} = [Lydlnd (19.2.19)
where [n] is represented by the column matrix (19.2.5), we obtain
—CO08 7y, Sin Y. — sin vy, cos ¥, sin 3

[n,] = cos Y, cos 3 (19.2.20)

—sin vy, sin ¥, + cos vy, cos Y, sin 8

Xh i
¥
71
h
My ?
(1) On \ 7
w -
00 r--\p . M Ny
f-¥h f \\\\—f
oo
Zh
e
Ve
Yh
Yt-Yh
ial b
Figure 19.2.3.
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Step 2.—We represent the contacting force F*! as follows

X;En) —cos v; sin . — sin y; cos Y. sin G
F@U = _Fhg = | y02 |= —F@) cos Y. cos B (19.2.21)
z(» — sin v, sin ¥, + cos v, cos ¥, sin 3

Step 3.—The sum of projections of the torques on the z,-axis is equal to zero. Thus

[M, + (O,P x FED)] ok, =0 (19.2.22)
Here (fig. 19.2.3)
Mok, = —M, (19.2.23)
O,P = —riy + r| cot y ky (19.2.24)
and
P 1 K
OPxF'D =| —r, 0 rcoty (19.2.25)

X2 yen zen
Equations (19.2.22) to (19.2.25) yield

M
yeh = _ 4
r

(19.2.26)

The negative sign of Y{2" indicates that ¥{*'") is directed parallel to the negative y,-axis.
Step 4. — Using equations (19.2.21) and (19.2.27), we represent the magnitude of the contacting
force F@ and its components as follows:

M
FH = 74 (19.2.27)
ry cos Y. cos B
x(2D = My (cos v, tan ¥, + si in 8 19.2.28
i = ——— (cos  + sin vy, sin ) (19.2.28)
1
M,
Y2 = _2d (19.2.29)
r
72D = M, (sin v, tan ¥, — in 8 19.2.30
A _rCOSBSl v tan ¥, — cos 7, sin 3) (19.2.30)
!

433






Appendix A
Matrices: Properties and Operations

A.1 Introduction

A rectangular array of numbers or functions represented in the form

ap dp a3 -Gy

ay) dyy Ayy....dyy,
(1= | (A.1.D)

Al Am2 A3 oo A

is called a rectangular matrix with m rows and n columns. A matrix may be denoted with a pair
of brackets, [ }, a pair of double bars, | ||, or a pair of parenthesis, ().

Quantities a; (i = 1,2, .., m; j=1,2, ...,n) are known as the elements of matrix A. Here,
subscripts i and j correspond, respectively, to the row number and column number where element
a; is located. For instance, element a,; is located in the second row and the third column of matrix
[A]. It is assumed in this book that all matrix elements are either real numbers or real-valued
functions.

The order of a matrix, denoted m X n or (#1,n), indicates that the matrix has m rows and »n columns,
The so-called row, column, and square matrices are matrices of a particular order m X n.

If a matrix has as many rows as it does columns (i.e., m = n) it is known as a square matrix.
Elements a,;, d3;, G33, -, Gy, Of & square matrix are located on its main diagonal, whereas
elements ay,,, @y, - 1)» d3(n — 2)» - Gni fOrm its secondary diagonal. The main and secondary
diagonals of a 4 X 4 square matrix are illustrated as follows:
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a; ap a3 ay

\ /-
dzl\azz a23/a24 Secondary diagonal

N/

ay axf a3 ay Main diagonal

// N\

N\
dal Q42 Q43 Ay
A column matrix is a rectangular matrix of order n x 1 (n rows and 1 column). For instance,

coordinates of a point M in three-dimensional space (fig. A.1.1) may be represented by a column
matrix of order 3 x 1

ay X
R= 1| an | = | y, (A.1.2)
as) Zm
Here [R,] is the matrix of radius-vector
R=x,i+y,j+z,k (A.1.3)

where i, j, and k are unit vectors of the coordinate axes.
A matrix of order 1 X n (1 row and n columns) is called a row matrix. It may be represented as

[Bl = [by b3 ... by,) (A.1.4)
The identity or unitary matrix is a square matrix such that elements ay, ay , .....a,, (located

on the main diagonal) are equal to one, and all other elements equal to zero. The unitary matrix
is denoted as

(100..0
010..0
[11=
| 000..1
X
'
M
R
0 » 7

L

Figure A.1.1.




A symmetric matrix is a square matrix in which all elements are related by the equation

aj; = a; (A.1.6)

To determine a symmetric matrix it is sufficient to be given the elements located on its main
diagonal, and a definite number of the other elements. For instance, a symmetric matrix of order
4 X 4 is determined if, from its 16 elements, only a certain 10 elements are given

a, ap 4a;3 4y
" dy 43 dyg
noowo d3y Oy

" " " a44

A skew-symmetric matrix is a square matrix such that all its elements are related by

a; = —aj (A.1.7)
It results from equation (A.1.7) that the elements which lie on the main diagonal of a skew-symmetric

matrix are equal to zero. For these elements i = j and the equality
a; = — @
can be satisfied only if a; is equal to zero.

A skew-symmetric matrix is determined if a definite number N of its elements a; (i # j) is given
(N depends on the order of matrix). For a skew-symmetric matrix of order 3 X3 N=13:

0 ay an
n 0 axs
" " 0

One application of skew-symmetric matrices is in the determination of a vector product in matrix
representation. (See sec. A.8.)

A.2 Equality of Matrices

Two matrices [4] and [B] are equal, that is,
4] = [B] (A.2.1)
if they are of the same order and if their respective elements are related as follows:
ay = by (A.2.2)

for all &, £.
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A.3 Addition and Subtraction of Matrices

To be conformable for addition (subtraction), the considered matrices must be of the same order.
Suppose that matrices [4] and [B], both of order m X n, are given

ay aAyy ... Ay, bll blZ""bln

dy| Az ...4y, b2l bzz vaee b2n
(4= (B] =

Qml Q2 oo Oy bml me bmn

Matrix [C], the sum of matrices [4] and [B], also has the order m X n and is determined as follows:

Clp €13 .. Cyp

€1 €2 e Oy
[Cl=[4]+[B] =

L Cml Cm2 soee O

r a +b]] a]2+b|2....(11" +b1,,
(253 + b21 [25%) + b22 s oy + bz,,
= (A.3.1)
L Ami + bml a,n + bm2 e Gy + bmn
The addition (subtraction) of matrices is commutative
[4] + [B] = [B] + (4]
and is associative
(14] + [B]) + [C] = [4) + ([B] + [CT) (A3.2)
A.4 Multiplication of Matrices
The matrix equation
(C] = [A][B] (A.4.1)

means that the matrices [4] and [B] are to be multiplied and constitute a product matrix [C]. Elements
of matrix [C] are expressed in terms of elements of [4] and [B].

To be conformable for matrix product (A.4.1) (with the mentioned order of factors) the number
of columns in [4] must be equal to the number of rows in [B]. For instance, if the order of [4]
ism X n, and the order of [B] is n X g, matrices [4] and [B] are conformable for the product [A][B].
This conformity does not depend on m and ¢, but the same matrices are not conformable for the
product [B][A4], because by changing the order of factors, the number of columns in [B] is not
equal to the number of rows in [A4], that is ¢ # m.



Let [A] be an m X n matrix, and [B} an n X g matrix. The element c;; in the ith row and jth
column of the product matrix [C] is determined by multiplying corresponding elements of the ith
row of [4] and the jth column of [B], and then adding the products. Consequently,

¢y = ailb,j + aizsz + ...+ ambnj = E aikbkj (l =1,... ,m,‘j =1, .. ,q) (A42)
k=1
Equation (A.4.2) yields that if [4] is an m X n matrix and [B] is an n X ¢ matrix, the product

[C] is an m X g matrix.

Sample problem A.4.1 The following matrices are given

r 1
a ap 4a;3 dig

-
bll:_blzlbl3
ayy daxp a4y dy
F———— bl by by
[A] = | a3 axn ax aul [B] = | (A43)
L —— b3y | b3z | b33
ay) Ayy Q43 Qs b Ib 'b
41 Dazy D43
L as) Qsy ds3 dsg | L

These matrices are conformable for multiplication since the number of columns in [A] is the same
as the number of rows in [B]. The product [C] is a matrix of order 3 X 5 and may be represented as

Ci1 €12 €13

Gy Cp €23
M

[Cl=1 caenlcn
[E|

Cq1 €12 Ca3

Cs) Cs2 Cs3
Element c, is found by multiplying the corresponding elements of the 3rd row of [4] and the 2nd
column of [B], and then by adding these products
33 = aybiy + anbyn + anby + auba
The product of an n X n square matrix [4] and an n X n identity matrix [/] yields a product
(A1) = [/1i4] = [4] (A4.4)
The multiplication of several matrices, for instance, [A], [B], and [C], is conformable if their orders
are as follows: m X n, n X g, and g X p.
The multiplication of matrices is associative
(L4[B1)(C] = 1AI(1BI(C]) (A.4.5)
Matrix operation

[D] = (A]([B] + [C1) (A.4.6)
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is conformable if [B] and [C] have the same order and the number of columns in [A] is equal to
the number of rows in [B] (or [C ]).
Matrix multiplication is distributive with respect to addition, thus
(D = [A)([B] + [C]) = [A][B] + [4](C] (A.4.7)

Problem A.4.2 Find the product [C] = [A][B] where

3 2 21 1 30 -1
4 =302 -1 01 2
[4] = [B] =
5 0 53 2 52 3
0 6 74 3 04 1
Answer.
8 19 10 8
13 12 5 -8
[C]=
24 40 22 13
20 35 36 37

Problem A.4.3 Find the product [C] = [A][B] where

1 301 4
-1 012 6
Al = 8] =
2 523
3 044 8
Answer.
30
19
[C]=
76
72

A.5 Transpose Matrix

Let [A] be an m X n matrix. The transpose matrix {A]” of order n X m may be obtained by
interchanging the corresponding rows and columns of matrix [A]. For instance, the transpose of



ay ap axn

ap ap a3
{4l = { } (A5.1)

T T
apn ap an a4y
T T
M7= | aly al |= | ap an (A.5.2)
T T
as axn azy dxs
Assuming that [A] is an m X n matrix, we get that
(A.5.3)

al=a; (i=12, oy j=12, ..m),

where a ﬁ and a;; are elements of matrices [A]7 and [A4], respectively.
Equations (A.1.6) and (A.5.3) yield that if [A] is a symmetric matrix, the transpose matrix a7

is equal to [A]. For instance, let [A] be given as a symmetric matrix

ap ap a3 ap ap ap
[Al= | ay ap ap |= | anp an a3 (A.5.4)
azy axy dx a3 a3 am
The interchanging of rows and columns in the symmetric matrix
ay ap a3
{A]l = | an axn ax (A.5.5)
ap ax axn
does not change the matrix and [4]7 = [A].
In three-dimensional space, a vector R may be represented by the 3 X 1 matrix
(A.5.6)

R,
[Rl= | R,
R,

where R,, R,, and R, are the projections of vector R. The transpose of [R], matrix [R] T is the

1x3 matrix

[R1” = [R.R,R] (A.5.7)
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It can be proven that equation (1.5.3) yields the following relations:

(a7 =14 (A.5.8)

(ofA])T = afa]” (A.5.9)

(141 + (B))T = (41" + [B]” (A.5.10)
(141B) ™ = [B][4]” (A5.11)

([AIA] (4D = (4T A, ]7 s [40]7 (4] (A.5.12)

A.6 Inverse Matrix

Inverse matrices (designated by [4] ~!) find many applications in mathematics and mechanics.
In this publication, the problem of determining the inverse of a given matrix occurs by coordinate
transformation. (See ch. 1.) A unique inverse matrix [4] = exists if the given matrix {A] is square
and its determinant, det A # 0. A matrix [4] such that det A = 0 is known as a nonsingular matrix;
[A] 1s singular if det A = 0.

To find the inverse matrix [4] 77, it is necessary (1) to determine the cofactors By of elements
a; in det A and (2) to determine the so-called adjoint matrix

[B] = [B;]” (A.6.1)

Once this is done the inverse matrix may be obtained as

1B
[A4] ot A (A.6.2)

Let det A, of order n, be given as

a ap ap e gy

ayy 4y Az ....dy,
det 4 = ] (A6.3)

any Ay Ap3 .. Gy,

According to the definition known from linear algebra, the cofactor By, of a;in det 4, is (—1)"*/
times the determinant of order n—1 obtained from det A upon erasing the ith row and jth column.

For instance, the cofactor B, is obtained from det 4 upon erasing the second row and the third
column

ay ap ayz...ap,

By =(~1) (A.6.4)




The adjoint matrix is

By, By Biz..By, | 7T By, By By ... By

le B22 323 eese an Blz B22 B32 seee B"2
[B] = =

Bnl BnZ Bn3 ""Bnn Bln B2n B3n""Bnn

(A.6.5)

The inverse matrix [4] "' is represented by equation (A.6.2), where det A may be represented
in terms of the elements and cofactors of any one row or column. For instance, corresponding
to elements and cofactors of the st row, we get

Sample problem A.6.1

det A = a”B” + a12B12 + e+ al,,Bl,l

Let [A] be a 3 X 3 matrix as follows

The cofactors are

B, = (-

B13 —_ (_1)(1+3)

By = (—1)**Y

B3l — (_1)(3+1)

(A]

a

as

an

asy

ap

as,

ap

an

Bsy; = (=1 (3+3)

ax

ass

ar

as

a3

ass

a3

ass

ay a;p ap 135
ay ap apn |[=| 246
ay) az; az; 3 7 8

=—10 Bp= (-1

=12 By = (—1)®*"

=-17 By = (—1)@*Y

=-2 By = (-1)P*?
ap dyp

ayy

as

ay

as;

a

as

ap

az)

an

ass

ags

a3y

ap

asp

as

ax

(A.6.6)
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The adjoint matrix is

B, B, B3 |7 By, By; By -10 11 -2
[Bl = | By, By By = | By By By | = 2 -7 4
By) By, By B3 By; By 2 2 =2

The det A4 is
det A = a”B” + (1123)2 + (113313 =6

The inverse matrix is

-10 11 -2~
B 1
=B,y
detA 6
2 2 -2
It is easy to verify that
1 35 -10 11 -2 100
1
[Ml4] '= 2 4 6 2 -7 4 ;=lono
378 2 2 =2 001

There is a class of nonsingular matrices [A] such that the inverse matrix [4] ! coincides with
the transpose [4]7. A matrix [A] with this property is known as an orthogonal matrix. Equations

(4] =[A]7; [A)[A4]7 = [A)[4] ' = (1] (A.6.7)
yield that
det ([A][A]7) = det Avdet AT = (det A)2 = + det [ = + 1 (A.6.8)
Orthogonal matrices find an application by coordinate transformations for cartesian coordinate
systems with a common origin. (See ch.1.)
An inverse matrix of a product
[C] = [4](B] (A.6.9)
may be represented by the equation

[C]17' =[B] (4] ! (A.6.10)

This statement can be proven as follows: Multiplying both parts of equation (A.6.9) by the product
[B] '[A] !, we get

[B] 41 7'[C] = [B]'[4] ~"141B] (A.6.11)

The product [4] ~'[4](B] yields that ([A] _I[A])[B] = [/}[B] = |B] and



(B)~'([4] ~'(41(B]) = [B] "'[B] = /] (A.6.12)

Equations (A.6.11) and (A.6.12) yield that
(B]~'1417'[€C) = U] (A.6.13)
and that [B] 417! = [C} ~! Thus, statement (A.6.10) has been proven.
By analogy with equations (A.6.9) and (A.6.10), we get that the inverse matrix [C1™
product
[C] = [41][42] .. [A4,]

is

(€17 = [4,] AL i) ! e (42 AT (A.6.14)

A.7 Matrix Differentiation

Matrix elements may be functions of a variable (for example, 7). The derivative of an m X n
matrix [A] is

day, dayp day,
dA oo
[_} | ar dr T dr A7)
dt dt T dr
The derivative of a matrix product
[C] = [4]IB] (A.7.2)
is determined as follows:
dC dB dA
= [A] + [B] (A.7.3)
dt dt

A.8 Matrix Representation of Vector Formulas

Henceforth, it will be assumed that a vector A is represented by its projections ay, da, a; on
the axes of orthogonal coordinate system as follows:

A=(11i+azj +a3k (Agl)

where i, j, and k are the unit vectors of the axes. The matrix representation of vector A is

ay
(Al = | a; (A.8.2)

as
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or

[A]7 = [a,a,a;]

(A.8.3)

where [A]7 is the transpose of matrix [4]. The matrix representation of vector addition

D=A+B+..+C

d] [ a) b[ (&}
dz = ay + bz + + (40}
dy L 43 by 3

The scalar product of vectors
A*B=ab, +ab, + asb; = C
may be represented in the matrix form as follows:
b

C=[A)"|B] = [ayasa3]) | b, | = aib; + ab, + azby
b;

or

a
C=(Bl'[A] = [bbyby] | a, | = aiby + ayb; + asbs

a3
We use the order of factors in the matrix products as follows:

C = [A])7[B) = [B]"[4]

The 1 X 3 and 3 X 1 matrices are conformable for multiplication.
A vector product of two vectors is represented by the equation

(A.8.4)

(A.8.5)

(A.8.6)

(A.8.7)

(A.8.8)

(A.8.9)
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a, az
AxXB= a a, az | = il
by bs
b, by by
a, az ap a;
- i + iz (A.8.10)
by bs by b,
The matrix representation of vector product A X B is
0 —ay ap b] —-a3b2 + a2b3
[C]l=[A1*Bl=]| a 0 -—a b, |= | ab —ab; (A.8.11)
—a, a 0 b3 —a2b1 + a1b2

The scalar triple product is represented by the equation

d=A+B xC)=[4BC] = [BCA] = [CAB] = - [BAC] = — [CBA] = — [ACB]

a, a; as
b, bs by bs b, b,
= bl bz b3 =a — a + a3 (A812)
Cy €3 c| G c &
¢ € 3
The matrix representation of the scalar triple product is
d = [A]"[BI**[C] = [BI"[C}*[4] = [C17[A]*[B]
= — [BIIA)*(C] = ~ [C)T[BI*[4] = — [4]'[C1*(B] (A.8.13)

The superscript sk denotes a skew-symmetric matrix. Each matrix triple product in equation (A.8.13)
yields the same scalar d. For instance, the multiplication of matrices in equation (A.8.13) yield

d = [A)"[B}*[C)

0 —b3 bz C)
=laaa) | b3 0 —b €
—bz bl 0 Ca

= al(—b3c2 + b2C3) + az(b3C] - b]C}) + 03( —bz(f] + b1C2) (A814)






Appendix B
Theorem of Implicit Function System Existence

A system of j equations in n unknowns
fi(xy, X2, ey X,) =0 fieC' (X1, X2, woers Xp) &G
(i=1,2 cnj=n—1 (B1)
is considered. This equation system is satisfied at the point
X = (x? ,xg, veees x,?) (B2)

The theorem of implicit function system existence states that in the neighborhood of point X° the
solution of equation system (B1) may be represented by functions

IXZ (xl)v X}(X]), woney X"(Xl)} € Cl (BB)

if the following Jacobian differs from zero:

o U 9]
aXZ aX3 aX,,
DU Joo = Ji) # 0 (B4)
D, oy k) |
o % .Y
L 6x2 8x3 ax,,

Here x, is the independent variable of functions (B3).
The solution of equation system (B1) may be represented by functions of another variable, for
instance, x,, if the following Jacobian differs from zero:
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o o o
dx, dxy  dx,
QU fo o ) =0 (BS)
D(xy, Xy e x,) | e e e
% o .9
dx;  dx, ax”

Considering the particular case when n = 2, J =1 and the equation
flax) =0 feC! (x1,%) €G (B6)

is discussed, we get that the solution of equation (B6) may be represented as

9
xy(x;) € Clif L #0 (B7)
6x2
or as
x;(xy) € Clif KA # 0 (B8)
ax,

d d
Neither function (B7) or (B8) exist if a—f =0 and a—f = 0, simultaneously.
X1 X2

Considering the case when j = n — 2, we find that the solution of equation system (B1) may be
represented by functions of two variables, for instance, Xy, X if the following Jacobian differs
from zero:

D(fi, for s f)

D(x3, x4, e, X,)

=0 (B9)

For a better understanding of the essence of this theorem, let us consider again the case when
j=n-—1

Differentiation of equations (B1) yields the following system of j = n linear equations in n
unknowns

%dx2+%dx3+....+a—fldx,,=—%dxl

6X2 3x3 6f,, aX)
............................ (B10)
af; af; af; af;
—fld’cz-f-—f'ldx3+....+—jzdx,,=——fldxl

3x2 6x3 af;, ax,

With a given value of dx; and known partial derivatives this system possesses a unique solution
for dx,, ..., dx, if and only if the Jacobian (B4) differs from zero.



Appendix C

Linear Vector Function. Principal Curvatures
and Directions of a Surface

Usually, the determination of the principal curvatures and directions of a surface is based on
Dupin’s indicatrix. Another approach, proposed by Rashevsky, 1956, is based on the properties
of linear vector functions and we employ his proposal in this section.

C.1. Linear Vector Function

Consider two planar vectors a and b. We assume that there is a rule which determines vector
b if a is given. Such a rule may be represented by a function A (a). Thus

b = A(a) (C.1.1)

Such a vector function may be represented by a matrix equation with which we express the
components of vector b in terms of the components of vector a. The type of such a matrix depends
on the type of the vector function A(a). (See the following examples.)

Figure C.1.1 corresponds to the case when vector b is obtained from a as follows: vector a is
rotated about point O, through an angle ¢ and then extended corresponding to the ratio

|—b—| =\ (C.1.2)
al

We set up two coordinate systems S,, and S, rigidly connected to vectors a and b, respectively.

Figure C.1.1(a) and figure C.1.1(b) show the coordinate systems S, before and after the rotation

through the angle ¢, respectively. The direction of vector a will coincide with the direction of

b after the rotation through the angle ¢ (fig. C.1.1(b)). Then by the extension of the length of

vector a, the two vectors will become equal. We describe the correspondence between vectors
b and a by the following matrix equation:
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Figure C.1.1.
bim al™ cos ¢ —sin ¢ aim™
= \[L;) =X\
bz(") 7 ai™ sin ¢ cos ¢ az(""
Acos¢ —Asin¢ Cal™
= (C.1.3)
Asing Acos o
Taking into account that
al("') a
az( & a
we get
b Acos ¢ —A\sin ¢ a; a,
- = [L} (C.1.4)
b, Asing Ncos ¢ a, a,
Equation (C.1.4) is an example of matrix representation of vector equation (C.1.1).
Another example of a correspondence between vectors a and b may be represented as follows.
Consider that vector b is obtained by extension or compression of components of vector a. Thus

bl = )\]dl b2 = )\202 (CIS)

The matrix representation of (C.1.5) is

NN



On the basis of the two examples discussed, we could see that vector equation (C.1.1) may be
represented in the matrix form by

ap ap
ip] = [Lla] = li } {a] (C.1.7)

dz) ax
Here, [L] is the matrix with which we may express the components of vector b through the
components of vector a (fig. C.1.2(a)). Thus

by = aypa, + anpm

(C.1.8)

by, = ana;, + apa;
Knowing matrix [L] (the matrix representation of function A), we may determine for any given
vector c its corresponding vector d (fig. C.1 .2(b)). Henceforth we will assume that A(a) is a linear
function. For such a function the following equations must be observed:

(1) The first equation is

m=A(a+c¢c)=A(a) + A(c) (C.1.9)

This equation expresses that vector m—the function of the sum of any pair of vectors, a and ¢,—is
equal to the sum of functions of each item. The matrix representation of equation (C.1.9) is

e [ e [ ]
= [L] = [L] + [L] (C.1.10)
nt, az+C2 a, Cy

(2) The second equation is
= A(Na) = NA(a) (C.1.11)

where factor \ is a constant. Vector equations (C.1.11) may be represented in matrix form as follows:

e e [
= (L] = \[L] :| (C.1.12)
b Ay a;

y n
n
A 4
- a- T
b T
d
2
C-
A b }
‘ C
ay 2
¥ -
L * > X
[e—Cp —
-« d) —
r-—— by — -— ] —
{al ib!
Figure C.1.2.
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(3) We also assume that the linear vector function is symmetric. This means that the following
equation is to be observed for any pair of vectors:

deA(a)=as+A(d) (C.1.13)
The matrix representation of equation (C.1.13) is
[d]7 [L]la] = [a] " [L]Id} (C.1.14)
Here, the superscript T designates the transposed matrix. (See app. A.)
Equation (C.1.14) is observed if and only if matrix [L] is symmetric. We may prove this as follows.
Using the designation
[c] = [Llla] (C.1.15)
we represent the scalar product of vectors d and ¢ by (see app. A)
(17 [e] = [c]7 4] (C.1.16)
Equations (C.1.15) and (C.1.16) yield
(1" 1c] = [d1"[L][a]
[ = (LI@) = [a)7 (L)
[]7[d] = [al"[L]7[d] = [a]" [LI[d]
(assuming that [L] is a symmetric matrix and therefore [L]T_= [L]).
Tmsmemwmewmm[ﬂﬁq=mﬁmyM@[ﬂHMthﬂﬁuw]mdmmmn
(C.1.14) is proven.

Matrix [L] may be determined if a pair of noncollinear vectors ¢ and b and their corresponding
vectors

p=A(c) q=A(b) (C.1.17)

are given.
Using matrix equations

(C.1.18)
L] {011 alZ:l rbl}
| 4 | ay ap | | b
we get a system of four linear equations in four unknowns: a,,, a,,, a;|, ap,
aay + ca; = p
Qay + Caxn = p;
(C.1.19)

biay; + bya; = q,

biay + byay, = ¢



Here, due to the symmetry of matrix [L], a;» = ay;. Thus equation system (C.1.19) is a system
of four equations in three unknowns. Such a system possesses a unique solution if and only if the
system matrix and the augmented matrix are of equal rank r = 3. The system matrix is

c) € 0
0 ¢ o
(C.1.20)
b, b, O
0 b by
and its rank r = 3.
The augmented matrix is of rank r = 3 if
a0 p
0 ¢ &2 p
= (e,b) — c1by) (a1q1 + 22 — piby — paby) = 0 (C.1.21)
b b, 0 q
0 b by qn

Equation (C.1.21) relates the four vectors— ¢, b, p = A(c), and q = A(b)—which must be given
for the determination of the symmetric matrix [L]. Equation (C.1.21) may be represented in the
following vector form

[bckl(gec—peb)=0 (C.1.21(a))

where k is the unit vector which is perpendicular to the plane in which vectors c, b, p, and q

are located. The scalar triple product [b ¢ k] cannot be equal to zero because the vectors do not
belong to the same plane and no two vectors of b, ¢, and k are collinear. Thus

gec—peb=A(b)sc—A(c)*b=0 (C.1.22)

Now, considering as given the four vectors— ¢, b,p=A(c),andq =4 (b)—which are related

by the equation (C.1.22), we may determine the symmetric matrix [L]. For the solution we have

to apply a subsystem of three linear equations which is chosen from equation system (C.1.19).
For instance, the following subsystem may be chosen:

cap + a1 = py
c1ap + Cax = Py (C123)
ba;, + bap = q

The solution for the unknowns ay;, a;;, and ay, is given by

b, — ~-pib — pab
_piby — g a'2=a2]=c_1q_‘___p" @y, = 192 ~ P20 (C.1.24)

ap b 22 b b
ciby — &by c1by — a0y €107 — Gy

The expression for ax, has been simplified with the aid of relation (C.1.22).
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Equations (C.1.24) determine the matrix [L] of the vector function A considering vectors ¢ and
b and their corresponding vectors p = A(c¢), q = A(b) as given. Here, A4 is the vector function
whose matrix representation is given by [L].

We can now obtain more easily the correspondence between any given vector d represented by
and the corresponding vector € given by

f=A(d) (C.1.26)

It is easy to prove that the sought-for vector { may be expressed in terms of vectors p and q by
the equation

f=XNp+ Mg (C.1.27)
The proof is based on the following considerations: Considering matrix [L] as known, we get
[Pl = [L][c] [q] = [L]16] (€1 = [L]l4] (C.1.28)

Equations (C.1.25) and (C.1.28) yield
[F = LIN[e] + Malb]) = N[L)[e] + M[LI[b] = N [p] + Nslg) (C.1.29)

This equation is the same as equation (C.1.27).

C.2. Characteristic Roots and Vectors

Consider that the linear and symmetric vector function A (c) must determine a corresponding vector
p=A(c) (C.2.1
which has to be collinear with the given vector ¢. Thus
A(c) = A (C.2.2)
The matrix representation of equation (C.2.1) is

[L]lc] = Nc] (C.2.3)

ap ap o] o
= (C.249
{an azz} {QJ [C:J

Matrix equation (C.2.4) represents a system of two linear equations

which yields

ap + ajpcy = )\Cl
(C.2.5)

ac) + anc; = A
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From equations (C.2.5), we get
(@) — Ney +ape; =0
(C.2.6)

apcy + (ap — N =0

Equation system (C.2.6) contains two homogeneous linear equations in two unknowns ¢, and
¢,. The nontrivial solution for ¢, and ¢, (it differs from ¢; = 0 and ¢; = 0) exists if and only if

an—hA ap

1
<

(C.2.7)

ap ap—A\

Thus, we may determine two solutions for the ratio c,/¢;, which represent two directions of the
characteristic vector ¢. The characteristic values (roots) and characteristic vectors are also called
“‘cigen values’’ and ‘‘eigen vectors’’, respectively.

Henceforth, we will assume that A, # ;. Equation (C.2.7) yields that

ay +a an + an\?

)‘l — Lz_z_z + )\/(ﬁ”——z_n) — a;1an + a%l
ayy + an ap an 2

)\2 = ————2 — ‘J( +2 ) — a;ax + a%z

Directions of the characteristic vectors ¢’ and ¢® are determined by (see eq. (C.2.6))

(C.2.8)

1) (2)
- _ 92 - _ __ %2 (C.2.9)

- =
ayg — M Cz( ) an — N

\.'_L

-~

!

Equations (C.2.8) and (C.2.9) yield that the characteristic vectors ¢" and ¢® are perpendicular.
We may prove it as follows:
(1) Using the equation

cDee@ =M + cVefP =0 (C.2.10)
we get
5‘Z—:))+9§=— @ _ah_, (C.2.11)
(o) Cy apn — N ap
Thus
a —an(\ + A+ AN +af =0 (C.2.12)

(2) Substituting for A; and A, in equation (C.2.12) the expressions (C.2.8), we see that equation
(C.2.12) is indeed observed and the characteristic vectors are perpendicular. Knowing the
characteristic direction, we may simplify the matrix [L] by using a new coordinate system.

Consider that the initial coordinate system is determined by unit vectors i; and i, (fig. C.2.1).
Having the pair of noncollinear vectors ¢ and b and the corresponding vectors p = A(c) and
q = A(b), we may determine the elements of matrix [L]. (See eq. (C.1.24).) We may then find
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St

e

Figure C.2.1.

the characteristic values A, and A, (eq. (C.2.8)) and the directions of the characteristic vectors
e; and ey (fig. C.2.1). The angle g, of the characteristic vector e is represented by the equation
(see eq. (C.2.9))

ap

tan p; = (C.2.13)
1~ an
The positive angle u, is measured from vector e to ey
We may now represent the given vector ¢ (fig. C.2.1) by
c=¢tep= cre; + cpep (C214)

Because vectors ¢; and ¢y are characteristic vectors, we may represent the linear vector function
as

P=A(c)=A(ci+ep) =A(e) +A(e) =N ¢+ Ny ¢ (C.2.15)

The matrix representation of A (¢p) and A(cy) is:
1 ) my my < my €y
Al = [A] =
0 0 my my 0 0y
0 0 my, mp, 0 mycy
A\ = [A] = (C.2.16)
n n Mz My an Mmooy

Here, the symmetric matrix [A] with elements myy, My, and my, is the matrix representation
of the linear vector function 4(c).
Matrix equations (C.2.15) and (C.2.16) yield

myp=N mp=0 my=\



and

N O
[A] = (C.2.17)
0N

We determine the sought-for vector p by its projections
p=MNa pu=XNc (C.2.18)

Thus, the vector function 4 (c) may be interpreted as a corresponding extension (or compression)
of projections of the given vector ¢ in the characteristic directions.

C.3. Surface Principal Directions and Curvatures
Consider a regular surface represented in parametric form by
r(u, 6)€C? 1, Xry#0 (4, 6)€A (C.3.1)

The tangent plane, the surface normal N, and the unit normal n are determined at the surface point
M (ug, 6p). The tangent plane is drawn through vectors r, and ry; the surface normal N and the
unit normal n are represented as follows:

N=r,xrg=N(u, b (C.3.2)
a (u, ) (C.3.3)
n=— =n(u 3.
NI
The partial derivatives
ar ar an dn
r,=— frp=- Dn,=— MN=_
du a0 du a0

are taken at the point M(ug, 6g).
The surface normal curvature is determined by the equation (see sec. 10.5)

dr®dn v, *n,

== =T (C.3.4)
Here

dr = r,du + rydd (C.3.5)
dn = ndu + nedf (C.3.6)
v, = ru% + rgcjg (C.3.7
n, = nu% + n,,(g (C.3.8)
ds® = dr? (C.3.9)
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[XPRE}

where ¢ represents time. The subscript *‘r’’ means that the relative motion of a point (relative with
respect to the surface) is considered. In other words, we consider that the above vectors are
determined for the motion of a point over the surface.

Vectors dr and v, belong to the tangent plane P. Vectors dn and n, belong to the same plane
P, which results from the following considerations

nen = | (C.3.10)
Thus
2nedn =90 (C.3.11)

This yields that vector dn (consequently, vector n,) is perpendicular to the surface unit normal
n and belongs to the tangent plane P.

Assume that the surface is given and that we take partial derivatives r,, ry, n,, and n, at a definite
point M. Choosing the ratio

du
A (C.3.11)
db
dt
we may determine the direction of vector v, and of the corresponding vector n, (fig. C.3.1). If,
in addition to the ratio (C.3.11), one of the derivatives (du/dt, d/dr) is chosen, then vector v,
and the corresponding vector n, are determined. We can see that by fixing one of the derivatives

(du/dt, df/dr) and by changing the ratio (C.3.11), new pairs of related planar vectors v, and n,
can be determined. In other words, there is a definite linear vector function

f, = A(v,) (C.3.12)

at any regular point M of the surface which relates vectors n, and v,. The matrix representation
of (C.3.12) is given by

(7] = [L]v,] (C.3.13)

Using equations (C.3.13), (C.3.7), and (C.3.8), we get

Figure C.3.1.



du do du dae du db
[n.] 7 + [r4] g (L1 [[rul P + [re Jt} = [L][r.] o + [L1lrs] I (C.3.14)

Thus
[n,) = [L]lr.] [ng] = [L]lre] (C.3.19)

We have seen in section C.2, that there is only a single matrix [L] if equations (C.3.15) are to
be observed. In addition, this matrix is symmetric if the above four vectors are related by the equation.

n,*r; =Nger, (C.3.16)

This equation is indeed observed (see eqs. (10.1.17) and (10.1.18)). Thus, we may determine
the single symmetric matrix [L] which transforms [v,] into [2,], [r,] into [n,], and [rg] into [ng].

Because matrix [L] is symmetric, we may determine two perpendicular characteristic directions
on the tangent plane with characteristic values of A; and A(A; # A;). These two directions may
be determined from the collinearity of vectors v, and n, as follows:

LG L 5 (C.3.17)

or

(n i)fiﬁ+(n i)d—e (n ')@+(n _)d_G
U 7 dr Y oV g

(r i)‘ﬂ+(r i)d—o (r ')‘E+(r ,)d_@
U dr N ar P oV

du df
(nu'k);; + (ng+k) o
_ -« (C.3.18)

du de
r,ok)— + (rg°k) -
(r,+k) o (rp o
where i, j, and k are the unit vectors of the coordinate axes.
Equations (C.3.18) provide a quadratic equation in du/dt and db/dt. Two solutions of this equation
for du/dr and d6/dt correspond to two characteristic directions on the tangent plane. These two
characteristic directions are the so-called principal directions of the surface at its point M. Curvatures

of the surface determined on the principal directions are called the principal curvatures. We may
use equation (C.3.4) to determine the principal curvatures taking into account that

v, =1, (C.3.19)
because of the collinearity of these vectors. Equations (C.3.19) and (C.3.4) yield
Kp= — & (C320)

where & jp are the two principal curvatures of the surface in the two principal directions. We may
represent the principal curvatures of the surface by the equation
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KLn¥e = — 1, (C.3.21)

which is known as the Rodrigues’ equation,

Now, consider that a coordiate system with unit vectors e; and ey is rigidly connected to the
tangent plane. The origin of the coordinate system coincides with the surface point M, and €; and
€y represent the principal directions of the surface at M. Equation (C.3.20) yields

Ny = = Ky A = = KV (C.3.22)
The linear vector function given by

0, = A(v,)

may be represented in matrix form as follows:
"1,1 —K] 0 Vi
) = (C.3.23)
Ny 0 —xy Vrlt

Let us express the normal curvature of the surface K, in terms of the principal curvatures Xy,
«i1> and the angle ¢ (fig. C.3.2) which is formed between vectors v, and e;. Using equations (C.3.4)
and (C.3.23), we get

, - r 'r '+ 'r 7! 7] 2 + 7] :
o = - Yoo _n IV; n 11V12| _ xav 1)2 k(v 121) (C.3.22)
(v)°* v + (V) V)™ + (vq)
It is evident from figure C.3.2 that
cosg=Mo M gV (C.3.25)
Vil VT + va)* Vi(v)® + ()’
Equations (C.3.24) and (C.3.25) yield
Ky = K1 €08° g + Ky sin? g (C.3.26)

en
/

L) |

<—hrl—->

e ey

Figure C.3.2.



This equation is known as Euler’s equation. From equation (C.3.26), we may obtain two important
results:
(1) The principal curvatures are the extreme values of the function

k. (q) O0<g=<27 (C.3.27)

represented by equation (C.3.26). The extreme values of function (C.3.27) occur at those values
of g for which

dk,, .
= (ky — k) SIn 2g=0 (C.3.28)
dq

Considering the case when xy # &, We can se¢ that the extreme values of the function k,(q) occur
atg=0"and g = 90°. Thus, the extreme values of the normal curvature are simultaneously the
principal curvatures.

(2) The sum of two normal curvatures taken for two perpendicular normal sections, x,(,” and
x2, is equal to the sum of principal curvatures ; and k. We may get this result from equation
(C.3.26), taking into account that |g; — q| =90°. Thus

k) = K, cos? gy + Ky sin gy (C.3.29)
k2 = k; cos? g + Ky sin? gy = &1 sin® g + Ky cos? g, (C.3.30)

Thus
k) + kP =+ (C.3.31)
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INDEX

Acceleration, of contact points, 257,258
relative, 220
of surface unit normal, 259
Angle, crossing, 299
lead, 302,303
Apex angle, of the pitch cone, 431
Axes, crossed, 35
paraliel, 35
intersecting, 35
screw, 36
Axes of meshing, 319,324
crossed axes of gear rotation, 319
second, 326
Axis, of relative rotation, instantaneous, 30
of rotation, instantaneous, 21,30,350
Axodes, 397

Backlash, of spur gears, 415
Bearing contact, 377
compensation of, location of, 405
of gear tooth surfaces, 288
reactions, 427
Bevel gears, generation of, 341
Beveloid gearing, 339
Body axode, 31

Camus’ theorem, 132,133
Center distance, sensitivity to change of,
395
Center of rotation instantaneous, 21,22,27
Centrodes, 23-28,296
link, 22
movable, fixed, 14
radius of gear, 103
Centrode and shape curvatures, relations
between, 112
Characteristic roots and vectors, 454
Compensation, of location of bearing

contact, 405

Computation, process, 90,244
Cone, parameters, 307,308

surface of, 220,230,235
Conjugate, action, 63

gear tooth surfaces, 336
Conjugate shapes, 63,83

generation of, 128

principles of generation of, 130

relations between curvatures, 97
Conjugate surfaces, general theorem, 195

working equations, 200
Contact, ellipse, 293,377,384

lines, 170,214,395

normal limiting, 313
Contacting force, 430,432

stresses, 405
Coordinates curvilinear, 149,150

homogenous, 8,172,194,242
Coordinate transformation,

1,4,5,8,9,11,12,14,15

Curvature, cam, 108

center of, 56,106

equations of, 60

Gaussian, 233

geodetic, 237,238,275

Normal, 227-231

Normal, relative, 286

of a plane curve, 56

principle, 232,233,268,276

radius of, 56

of a spatial curve, 221,222,225,226

of a surface normal, 228-230
Curvatures, principle, 232,291,379,380
Curve, elementary arc of, 223

generation of, 14

parametric form, 42

plane, 16, 42
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regular, 43,68,71

regular point of, 50
Cycloid, 133
Cyclo-Palloid gearing, 353

system, 350,352
Cylinder, surface, 240

Deformation, area of, 29?2
elastic, 288

Direction, cosine, 4
principle, 377

Dupin’s indicatrix, 233,234 449

Eccentricity, of involute spur gears, 409
of spiral bevel gears, 412
Ellipse, contacting, 288,293-295
Envelope, concept of, 68
of contact lines, 196,202,208,214
determination of, 193
existence theorem, 69,75
of a family of contact lines, 196
of a family of surfaces, 168,193
necessary conditions of existence,
168,181,197
of planar curve locus, 79
representation of, 200
sufficient conditions of existence,
76,169,182,197,
tangent, 137,199
Epicycloid, 14,54,133
extended, 54
ordinary, 55,62
Equations of meshing by cutting,
358,398,399
Errors of manufacturing, 401,405
Euler, theorem of, 233
Euler-Savary equation, 112,115
Euler’s, equation, 291,461
formula, 286
Evolute, 136-144

Family of surfaces, 167
Fillet, of the gear, 109
Flender’s worms, 327
Force, contacting
transmission, 422
Forms, fundamental, 215,217 -220
Function, explicit, 42
gradient of, 153
implicit, 42,46

Gear geometry, introduction to, 350
Gearing analysis, method of, 241
Gearing standard, 296

Gear tooth surface, 208

tangency of, 241,242
Generating gear, spiral bevel, 351
Generation, of beveloid gearing, 339
of helical gears, 344
methods, 336,337,341
Gleason’s, gearing, 408
spiral bevel gears, 341,352

Head cutter, 341
Helical gear, 271
with circular arc teeth, 395
conjugate surfaces for, 344
with crossed axes, 298,300
standard and nonstandard, 300
Helicoid, 16,17,158,207,320,332
ruled surface, 160
general equations of, 159
Helix, 180,202,298
Hob, 128
single thread, 128
Hyperboloid, surfaces of revolution, 40,41
Hyploid gears, center distance of, 308
operating pitch surfaces, 304
Hypocycloid, 133

Implicit function system existence,
theorem of, 89,148,243 447,
Interference, 127
Involute, curve 45,72.175
extended, 43
locus of curves, 73
nonstandard, gears, 296
screw surface, 237

Kinematic, method of envelope
determination, 193
precision of gear trains, 390
relations, 93-95,405
representation of curvature, 59
Kinematical errors, 87,141,389.407
Kinematic errors, 39,405-407
function of, 246,410
types of, 408
Klingelnberg, cyclo-palloid system, 352
Knots of meshing, 331

Line, of action, 38,244
geodesic, 239
working, 244
Linear vector function, 449
Locus, of planar curves, 63,68,74
of regular curves, 65

Machine tool settings, basic, 369
corrections, 371



special, 364
Mapping. 42
Main contact point, 362
Matrix, addition and subtraction, 437
column, 435
differentiation, 444
equality of, 436
identity, 435
inverse, 4,441
multiplication, 437
nonsingular, 441
order of, 434
orthogonal, 443
representation of vector formulas, 444
row, 435
skew symmetric, 277,436,446
symmetric, 436
transpose, 277,439
Meshing, analysis of, 89
equations of, 79,83,174,200,207,
210,261
of gears with errors, 392
Meusnier theorem, 225,227,228
Moment, 33
driving and resisting, 422
Motion instantaneous relative, 29
screw, 16,319,339
transformation, 22,26

Newton algorithm, 91
Noncircular gears, 419
Nonundercutting, conditions of tooth,
120,124,126,213

of the generated surface, 201
Normal, to a plane curve, 50

to a plane curve, unit, 53

surface, 151

surface unit, 225,226

unit, 151

Oerlikon's Cyclo-Palloid Systems,
350,352

Osculating plane, 221,237

Outer cone distance, 354

Paraboloids, 276

of the generating surface, 201
Pitch, circles, 296

cones, 304,350

plane, 309,407

point, location of, 83

surfaces, 296

surfaces, operating, 297,298
Plane gearing, analysis of, 87

general theorem, 82

Point, flat, 233
locus of contact, 244
pseudosingular, 156,157
regular, 50,151
singular, 50,151,152,156
Point path, 275,281,285
Point of surface, elliptic, 234
hyperbolic, 234
parabolic, 235
Pressure angle, 313,423,429
Principle curvatures, of mating surfaces,
260,262,367-370
of a surface, 449,459

Rack cutter, 105,109,124,126,128,
143,395

Rack parameter, 176

Rack surface, equations of, 172

Rays, limiting, 150,151

Regression point, 52

Regrinding, 405

Rodriques formula, 263,460

Roots blower, 86

Rotation, instantancous center of, 20,
83,119

intersected axes of, 29

Scalar, product, 79
triple product, 70
Screw, generation, by a circular arc, 349
motion, 37
parameter, 302,303,324,339
Shaper, 130
Simulation of meshing, 401
Singular points, determination of, 196
existence of, 121
of generated surface, 187,190
Spatial gearing, analysis, 241,243
analysis of meshing, 243
kinematic relations of, 253,259
Spiral bevel gearing, 352
force transmission for, 429
Surface of action, 171,177,201,208,
211,214
Archimedes screw, 162,165
cone, 154,157,158
coordinate line on, 150
curvatures, 267
examples of, 154
family of generating, 174
generating, 202,208,214,355,357,358,
361,362,364
generated, 201,212,213
point, 151-154,157,158
principal directions and curvatures,

469
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457,459

problem of conjugate, 166

of revolution, 17,154,324,325

ruled, 153,154,158,160,161

screw, 18

screw involute, 162

simple, 147

spherical, 18,155-157

unit normal, 226,227
Symmetric augmented matrix, 264
Synthesis, of gears, 87

local, 354,362

Taylor’s formula, 219
Tangency, external and internal, 114
of gear tooth shapes, 87,88
of gear tooth surfaces, 242
point of, 250
Tangent, of a plane curve, 50,52
Tooth, contact analysis (TCA), 246,385
cutting, 128
element proportions, 353
longitudinal shape, 309-311
Transformation, coordinate, 1,4,5.8,9,
11,12,14,15
inverse coordinate, 9
matrix, 4,12,13
of motion, 22,26,103

reverse, 4

of translation to rotation, 103

of vector components, 11
Trihedron, 56,57,93

Frenet’s, 56

right handed, 262

Undercutting, 124,127,177,192

Vector, sliding, 33
unit tangent, 52
Velocity, angular, 83
of contact point, 253
linear, 79,253
relative, 20,32,80,82,255
of sliding, 273,300,313
transfer, 95,254,255

Worm, cylindrical, 301
gear, 209
gear drives, 298,301,302,303,315,322,
327,422
generation of, 337
thread surface, 202
Worms, milling of, 324
Worm surface, 332
equations of, 328,330,332
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