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Preface

This report contains the extended abstracts of the papers presented at the
Chapman Conference on Progress in the Determination of the Earth's Gravity Field
which was held at the Bahia Mar Hotel, Fort Lauderdale, Florida, September 13-
16, 1988. This meeting was organized and sponsored by the American
Geophysical Union. Chapman Conferences are topical meetings designed to permit
organized and in-depth exploration of specialized subjects in a manner seldom
possible at large meetings. The series of conferences was inaugurated by AGU in
1976 in honor of Sydney Chapman, who was "a trail-breaker in mathematics,
physics, geophysics, astronomy, kinematic theory of gases, lunar effects in
geophysics, and upper atmosphere physics." The meeting was co-sponsored by
the International Association of Geodesy. Financial support for the meeting was
provided by the National Aeronautics and Space Administration and the Air Force
Geophysics Laboratory.

The meeting was divided into five different topic areas. Members of the
program committee organized the sessions on the basis of invited and contributed
papers. Members of the organizing committee were: B. Hager, C. Jekeli, R.
Rapp, C. Reigber, R. Rummel, K.P. Schwarz, D. Smith, and B. Tapley, C. C.
Tscherning, and V. Zlotnicki.

The reproduction and distribution of the report was carried out with funds
supplied by the National Aeronautics and Space Administration (Grant NGR 36-
008-161, OSURF 783210) and the Department of Geodetic Science and Surveying.
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Gravitational Model Improvement at the Goddard Space
Flight Center

J. G. Marsh, F.J. Lerch, B. H. Putney, T. L. Felsentreger, B. V. Sanchez,
and D. E. Smith

Geodynamics Branch, Laboratory for Terrestrial Physics
NASA Goddard Space Flight Center, Greenbelt, Maryland

S. M. Klosko, E. C. Pavlis, J. W. Robbins, R. G. Williamson, O. L. Colombo,
D. D. Rowlands, W. F. Eddy, N. L. Chandler, and K.E. Rachlin

EG&G Washington Analytical Services Center, Inc., Lanham, Maryland

G. B. Patel, S. Bhati, and D. S. Chinn

Science Applications Research, Lanham, Maryland

ABSTRACT

Major new computations of terrestrial gravitational field models have been
performed by the Geodynamics Branch of Goddard Space Flight Center [GSFC].
This development has incorporated the present state of the art results in
satellite geodesy and have relied upon a more consistent set of reference
constants than has heretofore been utilized in GSFC's GEM models. The

solutions are complete in spherical harmonic coefficients out to degree 50 for
the gravity field parameters. These models include adjustment for a subset of
66 ocean tidal coefficients for the long wavelength components of 12 major

ocean tides. This tidal adjustment was made in the presence of 550 other fixed
ocean tidal terms representin_g 32 major and minor ocean tides and the Wahr
frequency dependent solid earth tidal model. In addition 5-day averaged
values for Earth rotation and polar motion were derived for the time period of
1980 onward. Two types of models have been computed. These are "satellite

only" models relying exclusively on tracking data and "combination" models
which have incorporated satellite altimetry and surface gravity data. The
satellite observational data base consists of over 1100 orbital arcs of data on 31

satellites. A large percentage of these observations have been provided by
third generation laser stations [< 5 cm ] . A calibration of the model accuracy
of the GEM-T2 "satellite only" solution indicated that it was a significant
improvement over previous models based solely upon tracking data. The rms
geoid error for this field is 110 cm to degree and order 36. This is a major
advancement over GEM-T1 whose errors were estimated to be 160cm. An error

propagation using the covariances of the GEM-T2 model for the TOPEX radial
orbit component indicates that the rms radial errors are expected to be 12 cm.
The "combination" solution, PGS-3337, is a preliminary effort leading to the
development of GEM-T3. PGS-3337 has incorporated global sets of surface
gravity data and the Seasat altimetry to produce a model complete to [50,50]. A
solution for the dynamic ocean topography to degree and order 10 was
included as part of this adjustment.

INTRODUCTION

High precision ground based tracking of artificial satellites has provided
an observational data set which has formed the basis for long-wavelength

spherical harmonic models of the Earth's gravitational field. These data have
been used at GSFC to calculate improved gravitational field models.
Improvements in modeling the Earth's gravitational field are important for
the calculation of artificial orbit trajectories, for point positioning, for studies
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of the l_arth's rheology, and for ocean circulation studies with satellite

altimetry.
The TOPEX ocean topography satellite, which is planned for launch in 1991,

requires that the contribution of the uncertainty in the geopotential model to
the radial component of the orbital error budget be on the order of 10 cm. The
best previously available "satellite only" model, GEM-L2 [Lerch et al., 1982],
predicted radial errors for TOPEX on the order of 65 cm. Meeting the error
budget for TOPEX is one of the motivating factors behind the current efforts to

improve the overall gravitational field modeling capabilities.
The general philosophy adopted in this computation process has been to

analyze the observational data in stages. Within each step of the process,
individual data sets are separately evaluated and combined in order to extract

optimum subset solutions. The initial emphasis has been placed upon the
computation of "satellite only" models. The first such model, designated GEM-
T1 [Marsh et al., 1988] , was the first preliminary GSFC model computed in this
effort. Recently, a very significant augmentation of the satellite observational
data base has permitted the compution of the GEM-T2 model. In an attempt to
provide additional short wavelength gravitational information over the ocean
areas and to provide an observational basis for the derivation of short
wavelength geoid features, a preliminary model, PGS-3337 has incorporated
the SEASAT altimeter data set along with surface gravimetry. The final model
will be based upon the best combination of optical, laser, altimeter, satellite-to-
satellite tracking, and surface gravity data.

"rECIq QUE
The primary software tools used at GSFC for precision orbit and geodetic

parameter estimation are the GEODYN and SOLVE programs. The GEODYN
program [ Martin et al., 1987] uses fixed-integration-step , high-order Cowell
predictor-corrector numerical integration techniques. The force models used
in the analyses are: gravitation-Earth,luni-solar, and planetary, solar
radiation pressure, atmospheric drag, and solid earth and ocean tides.
Observation modeling included Earth precession and nutation, polar motion
and earth rotation, and solid earth tidal displacements. The normal equations
formed within GEODYN for the force and measurement model parameters are
output to a file for inclusion in large parameter estimations and error
analyses.

The SOLVE program selectively combines and edits the least squares normal

equations to form the solutions for the parameters of interest. These programs
are run on the GSFC Cyber 205 super computer.

TRACKING DATA

Tracking data from 17 and 31 satellites respectively, were used in the GEM-
T1 and GEM-T2 gravitational modeling solutions. The satellite names,
inclinations, data types and number of orbital arcs are summarized in Table 1.

Orbital arc lengths were typically seven days for the optical data, 5 days for
laser/Doppler data arcs with the exception of 30-day arcs used for Lageos.
These solution were primarily based upon high quality laser ranging
observations with single point accuracies now approaching 1 cm. The
inclusion of a carefully selected sets of optical and electronic observations
from a diverse set of spacecraft provided a valuable complement to the limited
inclination coverage provided by the laser data.
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GRAVITATIONAL MODEL AND OCEAN TIDAL SOLUTIONS

The solutions consisled of simultaneous adjustments for the spherical
harmonic invariant geopotential coefficients and a subset of 66 ocean tidal

coefficients for the long-wavelength components of 12 major ocean tides. The
GEM-T/ gravity model is complete to [36,36], while the GEM-T2 model has been

extended to include selected coefficients out to degree 50. A unified coordinate
system was developed for the tracking stations based upon the laser coordinate
system developed at GSFC from LAGEOS tracking [Smith et al., 1985].

CALIBRATION OF THE MODEL ACCURACY

The method for determining reliable error variances for the GSFC gravity
model solutions employs both independent and dependent data subset solutions.

Calibration techniques have been developed which yield a full field
coefficient by coefficient estimate of the model uncertainties. The accuracy of
the new GSFC gravity field models is more than a factor of two better than any
previous models. The details of the data weighting and calibration techniques
are presented in [Lerch et al., 1988]. Figure 1 presents the rms radial error for
the TOPEX satellite predicted from the calibrated covariance matrices. The total
rms error on TOPEX estimated for the GEM-T1 model is 25cm and 12 cm for GEM-
T2.

CONCLUSIONS

The present GSFC gravitational and geodetic parameter solutions have been
the result of a complete re-evaluation of previous solution design. A level of
internal consistency and accuracy higher than that of any previous GSFC
models has been achieved. Error calibration techniques have been developed
which now permit the computation of realistic error estimates for the

accuracy of the field and satellite ephemerides. In subsequent solutions
planned for the next few years additional parameters such as time dependency
in the geopotential and tracking station coordinates will be included. The
inclusion of satellite altimetry from Geos-3, Seasat, and Geosat as well as the

global set of surface gravity data will permit computations complete to [50,50]
and beyond.
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Table 1 GEM-T2 TRACKING DATA

SUMMARY

SAT_ NAME INCLINATION

(DEG)

DATA TYPE

_--ARCS_

GEM-TI GEM-T2

ATS- 61GEOS- 3 0 1115.0 SST - 26
PEOLE I 5.0 L,O 6 6
COURIER- I B 28.3 O I 0 I 0
VANGUARD- 2 32.9 0 10 10

YANGUARD- 2RB 32.9 0 I 0 I 0
DI-D 39.5 L,O 15 15
D I -C 40.0 L,O 1 4 1 4
BEC 41.2 L,O 89 89
TELESTAR- I 44.8 0 30 30

ECHO- IRB 47.2 0 - 32

STARLETTE 49_8 L 46 157

AJISAI 50.0 L - 36

ANNA- IB 50. I 0 30 30

GEOS- I 59.3 L,O 91 I 21

1RANSIT- 4A 66.8 0 - 50

INJUN- 1 66.8 0 - 44

SECOR- 5 69_2 0 - 13

BE-B 79_7 0 20 20
OGO- 2 87.4 0 - 16

OSCAR 8912 D 13 13

OSCAR- 7 89.7 0 - 4

5BN- 2 90.0 0 - 17

NOYA 90_0 D - 16

MIDAS- 4 95.8 0 - 50

LANDSAT- I 98.5 S-BAND - 10
GEOS- 2 105.8 L,O 74 74
SEASAT 108.0 D,L 29 29

GEOSAT 108_0 D - 13

LAGEOS 109.9 L 58 85

GEOS-3 I 14.9 L 36 86

0¥I - 2 144.3 0 - 4

TOTAL I

0

D

S-Band

5ST Satellite-to-Satellite Tracking

l La3er ranging

Optical

Doppler

Unified S- Band average range- rate
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An Improved Model for the Earth's Gravity Field

B. D. TAPLEY, C. K. SHUM, D. N. YUAN, J. C. RIES AND B. E. SCHUTZ

Center for Space Research, The University of Texas at Austin, Austin, Texas

ABSTRACT

An improved model for the Earth's gravity field, TEG-1, has been determined using data sets

from fourteen satellites, spanning the inclination ranges from 15° to 115 °, and global surface gravity

anomaly data. The satellite measurements include laser ranging data, doppler range-rate data, and

satellite-to-ocean radar altimeter data measurements, which include the direct height measurement

and the differenced measurements at ground track crossings (crossover measurements). Also
determined was another gravity field model, TEG-1 S, which included all the data sets in TEG-l with

the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field

solution methodology. The estimated parameters included geopotential coefficients complete to

degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters,

doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error

analysis and calibration of the formal covariance matrix indicate that the gravity field model is a

significant improvement over previous models and can be used for general applications in geodesy.

1. INTRODUCTION

Significant progress has been achieved during the last decade in the determination of the spherical

harmonic coefficients of the Earth's external gravitational potential. A substantial portion of this
progress can be directly attributed to the advent of Earth-orbiting artificial satellites and to the ability

to observe their motion from either ground-based or satellite-originated tracking data. While the

satellite data primarily resolve the long and intermediate wavelengths (> 1500 km), global surface

gravity measurements and the altimeter data are capable of recovering the shorter wavelength

components of the Earth's gravity field. Recent trends in gravity model improvement have been
driven, in part, by requirements for more accurate satellite orbits to achieve the objectives of the

Crustal Dynamics Project and the recently approved NASA/CNES Topex/Poseidon mission. A joint

effort to develop an improved model for the Earth's gravity field has been undertaken to develop a

gravity model to meet the orbit accuracy requirement of the Topex/Poseidon mission. The gravity

field solution will represent the first complete reiteration of the historical tracking data used to define
the NASA Goddard Space Flight Center (GSFC) Earth Model series. The GSFC GEM-T1 [Marsh et

al., 1988] and the University of Texas (UT) TEG-1 fields, described in this paper, are preliminary

versions of the Topex gravity field solution.

2. THEORY AND METHOD

The gravitational potential, U, due to the Earth's nonspherical mass distribution can be expressed
as follows

U- GM Z Z /_'m(sin¢) (Ctm+ACtm)C°sm_+(_m+AStm) sinmk
r /=0 m=0

where GM is the product of the gravitational constant and the total mass of the Earth and the
atmosphere; R e is the mean equatorial radius of the Earth; /Ttm are the normalized Legendre

associated function of degree l and order m; C_,,,, _,,, are the the normalized spherical harmonic

coefficients whose values are functions of the mass distribution within the Earth and the atmosphere;

ACtm, A._t,,, are the time-varying components of C_m and St,,, caused by tides; also are functions of the

tidal coefficients, Ct_ and StY; and r,Op,X are the Earth-fixed spherical coordinate system; r is the
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radial distance, d_ is the geocentric latitude and _. is the longitude measured from the Greenwich
meridian.

The estimation of Cry,St,n, ± ±Clm,Stm and other orbit and geophysical parameters can be

accomplished using a modified least-squares estimation procedure. This estimation procedure, which

provides adjustments to satellite orbit-dependent parameters and other geophysical and geodetic

parameters, is given by Tapley [1973] and modified to include the simultaneous estimation of the

relative weights for the individual satellite information arrays [Yuan et al., 1988]:

= (HTI_-IH)-IHTI_-ly ; l_i = I/ki(Yi-Hi._) -t(yi-Hix)'l

where J is the state parameter;/_ is the weighting matrix; I is the identity matrix; H i is the partial

derivative with respect to x for the ith data set; and ki is the number of observations for ith dataset.

The system of equations given above can be solved iteratively using orthogonal transformation

techniques [Gentleman, 19731. The estimation process has been implemented in the University of

Texas Orbit Processor (UTOPIA) software system [Schutz and Tapley, 1980]. The optimal weighting

algorithm to combine satellite and nonsatellite information equations was installed in the Large

Linear System Solver (LLISS). Vectorized versions of UTOPIA and LLISS are operational on the

University of Texas System Center for High Performance Computing Cray X-MP/24 supercomputer.

Reference orbits for each of these satellites were computed using UTOPIA with the best a priori

gravity model and gravity field information equations were generated for each data set. The

combination solution was performed using LLISS.

3. DATA AND MODELS

Fourteen satellites were selected for the current gravity model solution. Their orbital

characteristics and data types are summarized in Table 1. The inclinations of these satellite orbits

vary from 15° for Peole to 115 ° for Geos-3. The solution includes data at 90 ° for Oscar-14 and

Nova-1. Data types include laser range, one-way range-rate, altimeter, altimeter crossover and

surface gravity data. Detailed descriptions of the gravitational and nongravitational force models, the

Earth orientation and time model, laser, doppler, direct altimeter and surface gravity measurement

models are summarized in Tapley et al. [19871.

4. SOLUTION

The list of parameters which are simultaneously estimated with a relative weighting factor for
each data set include: (1) geopotential complete to degree and order 50, plus selected coefficients; (2)

GM, (3) ocean tides which include long period tides (m = 0, l = 2,3): Ssa, Sa, Mm, and Mf; diurnal

tides (m = 1, l =2,3,4,5): Q1, O1, P1, and K1; semi-diurnal tides (m =2, l =2,3,4,5): N2, M2, $2,

K2 and T2 (1 = 2); (4) quasi-stationary sea surface topography, complete to degree and order 15; (5)

equipotential surface, 1111o,or altimeter biases; (6) correction to significant wave height, Hu3; (7)

doppler and low inclination satellite laser station coordinates; (8) arc parameters for satellite orbits,

which include position and velocity vectors, drag and solar radiation pressure coefficients, density

correction parameters for selected satellites, and pass-dependent frequency biases for doppler

satellites. Kaula's constraint equation [Kaula, 1966], which was inferred from surface gravity
anomaly data, was used as an a priori constraint for degrees 19-50 of the geopotentiai. Two gravity

models, TEG-1 and TEG-1 S, were generated. TEG-1S did not include direct altimeter data.

5. ACCURACY EVALUATION

Efforts to evaluate and calibrate the accuracy of the UT gravity models were performed.

Comparison of orbit fits using different gravity fields for Starlette, Ajisai, Seasat and Geosat were

performed. It is shown that using TEG-1, a Starlette five-day orbit fit is at the -20 cm level, Ajisai

five-day orbit fit is at the -15 cm level, and that a Seasat six-day orbit and a Geosat 17-day orbit have



Table1. SatelliteDatafortheUniversityofTexas
GravityModel,TEG-1

Satellite Launch Data Inclination Eccentricity Altitude
Date (km)

Vanguard-1
Vanguard-2RB
Courier-1B
Geos-1
BE-C
DI-C
DI-D
Oscar-14
Geos-2
Peole
Geos-3
Starlette
Lageos
Seasat

Nova-1
Geosat

1958
1959
1965
1965
1966
1967
1967
1967
1968
1971
1975
1975
1976
1978

1980
1985

1986

Opticalt
Opticalt
Optical?
Laser
Laser
Laser,Opticalt
Laser,Optical?
Doppler
Laser
Laser,Optical?
Laser
Laser
Laser
Laser,Doppler,
Altimeterand
Crossover
Doppler
Doppler,Altimeter
andCrossover
Laser

34°

33 °

28 °
59 °
41 °

40 °

39 °

89 °
106 °

15°

115 °

50 °

110 °
108 °

90 °

108 °
50 °Ajisai

? Optical data currently withheld from gravity field solution

0.190

0.183

0.016
0.072

0.026
0.053

0.085

0.005

0.033
0.015

0.O02

0.020

0.004
0.002

0.002

0.000
0.001

2318

2318

1100
1600

1130
1000

1200

1100

1400
650

830

900

5900
800

1200

800
1500

Surface Gravity Data

1° x 1° terrestrial mean gravity anomaly from

Ohio State University [Rapp, 1986]

crossover residuals at the -25 cm level. Table 2 shows the summary for the Geosat orbit fits. Gravity

field comparison using surface gravity data and a comparison of estimated TEG-I ocean tidal

parameters with solutions derived by other studies were also performed. Covariance matrices for

TEG-1 and TEG-1S were calibrated to obtain estimates of errors associated with the gravity field

using the consider covariance calibration technique [Yuan et al., 1988]. The predicted radial orbit
errors using TEG-1 gravity field covariance matrix for Topex and Geosat are 13 cm and 24 cm,

respectively (Table 3).

6. CONCLUSION

In this investigation, two gravity models, TEG-I and TEG-IS, each complete to degree and order
50 plus resonant coefficients, were generated. Ground-based tracking data collected by 14 satellites,

altimeter crossover and surface gravity data were used to determine the TEG-1S gravity field model.
TEG-I contains Seasat and Geosat direct altimeter data in addition to all the data in TEG-IS. The

gravity field models were derived simultaneously with orbit, ocean tides, quasi-stationary sea surface

topography, and other geophysical parameters as well as the relative weights for each data set. The
fields were evaluated using both data included and data withheld from the solution. Formal

covariance matrices were calibrated to reflect realistic error estimates of the gravity field. Evaluations

based on orbit fits and gravity anomaly residuals indicate that the gravity models have achieved a

significant advancement over previously existing gravity models.
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Table 2. Gravity Field Accuracy Evaluation

Using Geosat Orbit Fits

k-o, Fo, CR, daily Co, density correction parameters adjusted

Epoch TEG-IS TEG-1

17-day orbits (rms) (rms)

86/12/7 Doppler (cm/sec) 0.67 0.62

Crossover (cm)t 25 22

Altimeter (cm)t 180 32

87/01/7 Doppler (cm/sec)

Crossover (cm)t

Altimeter (cm)]

0.62

24

180

0.61

25

32

t Data types used for residual prediction only; altimeter data smoothed to

represent gravity spectrum to (50 × 50)

Table 3. Gravity Field Accuracy Evaluation

Using Covariance Analysis

Model Predicted Topex Radial Predicted Geosat Radial

Orbit Error (cm) Orbit Error (cm)

GEM-T1 25 54

TEG- 1 13 24

Topex orbit: 65 ° inclination, 1354 km altitude

Geosat orbit: 108 ° inclination, 800 km altitude
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Abstract

A natural extension of the recent satellite derived potential coefficient models is the

development of high degree (maximum 180 or 360) expansions. Such expansions are based on
the combination of the satellite derived models with terrestrial gravity data and satellite altimeter
data. Such models are useful for more precise geoid undulation computations, for simulation
studies involving different typed of future missions (e..g. gradiometry), and as reference fields for
different types of gravimetric computations. The attention to the effect of the terrain, ellipsoidal
terms, and weighting. This paper reviews the basic methods used for the high degree solutions.
Various correction terms are described and recent models are discussed and compared.

1. Introduction

Potential coefficient models derived from satellite orbital analysis have been determined up to
various maximum degrees depending on data coverage and data accuracy. Recent models have
been complete to degree 36 and 50. The normal equations from these models can be combined
with surface gravity normal equations to produce a combination of the satellite and terrestrial data.
In some solutions the highest degree will be equal to the highest degree in the satellite model. In
other cases the solution can be carried to a higher degree that is determined by the size of the mean
anomaly cell. Certain types of combination solutions require extensive normal equation formation
and solution. Other methods use orthogonality relationships to merge the satellite and surface

gravity data. Several high degree potential coefficient models have been developed in the past few

years. The model of Wenzel (1985) used the GEML2 potential coefficient model with lOxl ° mean

anomalies to obtain a solution to degree 200. Rapp and Cruz (1986a) used GEML2 with 1° data
and optimal estimation theory to develop fields to degree 250. Using 30' mean anomalies, where
available Rapp and Cruz (1986b) developed a model complete to degree 360. Since 30' mean
anomalies are not available on a global basis the actual frequency content of the model is
geographically dependent.

High degree models can also be tailored to fit existing gravity data in a given geographic
region. The fitting is necessary when inaccurate, or no, terrestrial data was used in the original
development of the model. Such tailored models have been described by Weber and Zomorrodian
(1988).

High degree potential coefficient models have a number of different applications. Some are:
a) the calculation of reference models for gravimetric predictions; calculation of geoid undulations;
model for simulation studies involving future gravity field missions; study of the global spectra of
the Earth's gravity field.
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2. Future Prospects

The next group of high degree potential coefficient models will depend on new satellite alone
solutions, acquisition of new terrestrial data, improved satellite altimeter analysis and improved
theoretical and numerical fom_ulation of the mathematical problem.

In terms of satellite models, the GEMT1 and GEMT2 models have been or will be available

(Marsh et al, this volume). The GEMT2 model will be carried to degree 50 although not all
coefficients will be estimated.

An effort is underway to improve the terrestrial data base collection. Activities are

continually taking place at the Defense Mapping Agency Aerospace Center and the Bureau

Gravimetrique International. At Ohio State the development of updated 30' and 1o mean anomaly
data bases is underway. Major improvements are expected for the anomaly fields in Canada,
United States, Africa, Scandinavian countries, and other regions. We now have for the first time

an identification of geophysical predicted anomalies in the 1° data base is available.

The altimeter analysis now being done at Ohio State will produce a more reliable set of 30'
mean gravity anomalies in the ocean area. The improved analysis will have the following changes:

a) additional bias removal form the altimeter data based on an adjustment in a 4Ox4 o area using a
procedure developed by Knudsen;

b) use of the Levitus sea surface topography to reduce the altimeter values to the geoid;

c) use of much denser data than used in the 1984 solutions;

d) all programs moved to the Cray XMP2/8.

In our next combination solutions we will have the following improvements over the
previous Ohio State models:

a) the surface free-air anomalies will be reduced to the geoid using the gl correction terms
calculated by Wang (1988, this volume);

b) the full error covariance matrix of the GEMTX model will be used in the adjustment process;

c) ellipsoidal harmonics will be used to for the improved treatment of terrestrial gravity data;

d) the actual adjustment will be done with 30' mean gravity anomalies formed from a merger of
terrestrial, altimeter derived, and a prioi (derived from GEMTX) anomalies.

3. Conclusions

High degree potential coefficient models can be estimated form a combination of satellite and
terrestrial gravity information. The new above models, now being developed, can be used with
improved analysis methods and improved data collection. New models should be available to
degree 360 in 1989.
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ABSTRACT

Linear estimation theory, along with a new technique to compute relative data weights, has been

applied to the determination of the Earth's geopotential field and other geophysical model parameters

using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface

gravimetry data. The relative data weights for the inhomogeneous data sets are estimated

simultaneously with the gravity field and other geophysical and orbit parameters in a least squares
approach to produce the University of Texas gravity field models. New techniques to perform

calibration of the formal covariance matrix for the geopotential solution have been developed to

obtain a reliable gravity field error estimate. Different techniques, which include orbit residual

analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider

covariance analysis, have been applied to investigate the reliability of the calibration.

1. INTRODUCTION

Significant progress has been achieved during the last decade used in the determination of

spherical harmonic coefficients in the representation of the Earth's external gravitational potential. A
substantial portion of this progress can be directly attributed to the advent of Earth-orbiting artificial

satellites and to the ability to precisely observe their motion from either ground-based or satellite-

originated tracking data. One of the basic requirements for determination of the Earth's gravity field

model using ground-based tracking of artificial satellites is that observations of the orbital motions of
satellites with various inclinations, as well as different altitudes, be used in the solution. The

development of satellite-to-satellite range or range difference measurements, as well as satellite-to-

ocean-surface radar altimeter measurements have provided new means for the determination of the
Earth's gravity field. The current approach to the gravity field solution uses orbital analysis for

multi-satellites with different inclinations and altitudes to obtain the long wavelength features

(wavelength >1500 km) of the Earth's gravity field and to use radar altimetry and surface gravimetric

data to determine the shorter wavelength components. The combination of satellite, altimetry and

surface gravity data requires efficient data processing and optimal data weighting techniques. An

optimal method for simultaneously estimating the model parameters and the appropriate data weight

is developed in this study. The development of appropriate techniques to calibrate the formal
covariance matrix associated with the estim_ted gravity field to obtain a realistic error estimate is

another goal of this study.

2. METHODOLOGY FOR THE GRAVITY FIELD SOLUTION

The linearized observation equations for each data set can be expressed as follows

Yi = Hi x + _i i = 1..... N (1)

where x is the state vector of dimension n, Yi is the observation residual vector of dimension ki, H i is

the linearized observation-state relationship with dimension k i ×n, k i being the number of
observations for data set i, and ei is the observation error for data set i. If it is assumed that the

observation error, el, is random with zero mean and specified covariance, i.e.,

E [e i] = 0 and E [e, eTl = Ri
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where Ri is ,an a priori diagonal covariance matrix of dimension k i . Then the least squares estimate,
_ and Ri, can be obtained by minimizing the performance index,

N

J = ]_ (Yl -nix) T Ri -1 (Yi -Hix)+(x-x)Teo I (x-x)
i=l

Subjectto Ri = [ (Yi-Hix)T(yi-Hx)]ki " I i=1 .... ,N (2)

where I is the k i × k i identity matrix. In Eq. (2), it is assumed that the a priori estimate for x is zero,
e.g.,x=0.

The solution of Eq. (2) is given as

(Yi - Hi-r) r (Yi - H:_)

ki
• I i=1 ..... N (3)

Ri

Assuming that/_i = -_/, Eq. (3) can be reduced as follows

= _, I(HTRi-IHi +/V_-I ) Z _ i (HTRi-lYi
I

+ Ai eo I

ki
_,i =

(Yi -- Hi;) r Ri -1 (Yi - Hi;) (4)

fi,ii - 1
;; (FgJ );i

where ; and _ i in Eq. (4) can be estimated simultaneously so that the state vector ;, which includes

orbit and geophysical parameters, the relative weighting parameter _, i for each data set, and the scale
factors, "_ii, for the diagonal a priori covariance matrix, ,ffffl, can be estimated in an iterative

solution. The numerical technique to accumulate and solve Eq. (4) is based on a square-root-free
formulation which decomposes information equations using orthogonal transformation [Gentleman,

1973]. The estimation process has been implemented in the University of Texas Orbit Processor
(UTOPIA) [Schutz and Tapley, 1980]. The optimal weighting algorithm to combine satellite and

nonsatellite information equations was installed in the Large Linear System Solver (LLISS). This

algorithm is used to obtain the University of Texas TEG-1 gravity field solution [Tapley et al., 1988].

3. CALIBRATION OF THE GRAVITY FIELD COVARIANCE MATRIX

One advantage of using the least squares technique for the determination of the Earth's gravity

field and geophysical parameters is that the resulting covariance matrix will give an assessment of
error estimates as well as the correlation of the errors between the derived parameters. However, the

calibration of the formal covariance matrix is often necessary to provide a realistic estimate of the

error. Several techniques to calibrate the gravity field covariance matrices are presented in the

following paragraphs. A single calibration scale factor is applied to the covariance matrix in these
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approaches. Some of the techniques can be extended to allow different calibration factors f<,_"low,

intermediate and high frequency content of the gravity field

Surface gravity data technique. This technique is valid only for the calibration of gravity field

models which do not use terrestrial gravity data. in this investigation, the expected global mean

variance of the gravity anomaly error bawd upon estimated errors in the geopotential coefficients, Ct,,

and S_,,, can be computed and compared with the difference of the global mean power of the observed

gravity anomaly and the global mean cross l.x,wer between the observed and the computed anomaly.

[Kaula, 19661.

Secular rate technique for zonal harmomcs calibration. A technique to calibrate zonal harmonics

can be achieved by computing the observed erro|- in secular rates for the lumped zonal harmonics

observed from long, continuous and precisely determined orbits (e.g., Lageos 12-year arc), and

compared with the predicted error in secular rates by the covarianee matrix. Calibration of zonal

harmonics can be perfon_ned by' computing the observed secular rate, and comparing to the predicted

rates.

Subset gravity' solution. Lerch et al. [1987] used this method for the calibration of the GEM-T1

gravity field model IMarsh et al., 1988]. The advantage of this method is that it is possible to

calibrate the gravity field covariance without using independent data, assuming the reference gravity

field is perfectly calibrated.

Consider Covariance Technique. A new technique for calibration of the gravity field covariance

matrix is to use consider covariance analysis which uses the formal covariance corresponding to the

solution as the a priori statistical information of the consider parameters. Statistical assumptions for

the technique are as follows:

_-=c +13 ; ELI31=0 ; Ell3_'rl=rt ; _-=E[e]=0

c - consider global parameters (geopotential, ocean tides, etc.)

- errors in the global parameters

- a priori covariance matrix for the consider parameters

Major assumptions include that the major part of the observation residual of the calibrating data set is

due to error in the global considered parameters, and that no correlation exists between the

observation noise of the calibrating data sets and errors in a priori parameters, or E [13eT ] = 0. The

observation equation can be expressed as follows:

y =Hx x +Hcc +_: ; E[e]=0 ; Eleerl=R

x - deviation of satellite-dependent parameters

H_ - linearized observation-state relation with respect to x

H_ - linearized observation-state relation with respect to c

R -_ - weight matrix

The least squares solution can be expressed as follows:

= (HxrR-1H_)-_ H]'R-ly

S A_al _ _.(n.rRqHx)_ l H_,RqHc
3c
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where S is the sensitivity matrix and y is the observation.

If the observation residual is _Yi =Yi -- Hi -_ = Yi - G O(,Yi), then the predicted residual variance

E[S yi 2] =--Hi l_ii

where 7t= covariance matrix associated with c, H _=H_,S + Hc,.

The calibration of the formal covariance matrix, _, is as follows:

Z_)yi 2 =f ZE[_yi 21 ---f _._(Hi g_i)

where f is the calibration factor for covariance matrix _, and ]_ _yi 2 is the sum of observation

residual square.

4. RESULT

The consider covariance technique was used to calibrate the TEG-1 gravity field model [Tapley et

al., 1988]. The predicted radial orbit errors for Topex and Geosat using the calibrated covariance

matrix are 13cm and 24 cm, respectively.

5. CONCLUSION

New methodologies were developed for the determination of the Earth's gravity field using

satellite, altimetry and terrestrial gravity data. A linear estimation algorithm was developed to allow

for the simultaneous solution of physical parameters, which include geopotential coefficients, tides
and basin scale sea surface topography, and relative data weights associated with homogeneous and

inhomogeneous data types. This algorithm was used to determine the University of Texas gravity
field model, TEG-I [Tapley et al., 1988]. Several techniques were presented to calibrate the formal

covariance associated with the estimated gravity field model and other physical parameters.

Acknowledgments. This research was supported by the NASA/Jet Propulsion Laboratory under
Contract No. 956689. Additional computing resources were provided by the University of Texas

System Center for High Performance Computing.

REFERENCES

Gentleman, W. M., Least square computations by Givens transformation without square roots, J. Inst.

Math. Applic., 12, 1973.
Kaula, W. M., Test and combination of satellite determinations of the gravity field with gravimetry, J.

Geophys. Res., 71(22), 5304-5314, November 1966.
Lerch, F., J. Marsh, S. Klosko, E. Pavlis, G. Patel, D. Chinn and C. Wagner, The GEM-T1

gravitational model: An error assessment using improved calibration methods, GSFC report, 1987.
Marsh, J. G., et al., A new gravitational model for the Earth from satellite tracking data: GEM-T1, J.

Geophys. Res., 93(B6), 6169-6215, June 10, 1988.
Schutz, B. E. and B. D. Tapley, UTOPIA: University of Texas Orbit Processor, IASOM TR-80-1,

Center for Space Research, The University of Texas at Austin, 1980.

Tapley, B. D, Statistical orbit determination theory, Recent Advances in Dynamical Astronomy,

396-425, B. D. Tapley and V. Szebehely, Eds., D. Reidel Publ. Co., Holland, 1973.

Tapley, B. D., C. K. Shum, D. N. Yuan, J. C. Ries and _B. E. Schutz, An Improved Model for the
Earth's Gravity Field, presented at the Chapman Conference for Progress in the Determination of

the Earth's Gravity Field, Ft. Lauderdale, Florida, September 12-16, 1988.

18



A_' IMPROVED ERROR ASSESSMENT FOR THE GEM-T]_

GRAVITATIONAL MODEL

F.J. ketch and J.G. Marsh

NASA/GSFC, Greenbelt, MD

S.M. Klosko and E.C. Pavlis

EG&G WASC, Lanham, MD

G.B. Pate] and D.S. Chinn

STX, Lanham, MD

C.A. Wagner

NGS, Rockville, MD

N90-20518

ABSTRACT

Several tests have been designed to determine the correct error

variances for the GEM-T] gravitational solution which was derived

exclusively from satellite tracking data. The basic method employs both

wholly independent and dependent subset data solutions and produces a full

field coefficient by coefficient estimate of the model uncertainties. The

GEM-T] errors have been further analyzed using a method based upon

eigenvalue-eigenvector analysis which calibrates the entire covariance

matrix. Dependent satellite and independent altimetric and surface gravity

data sets, as well as independent satellite deep resonance information,

confirm essentially the same error assessment.

OVERVIEW

The principal calibration technique (Lerch, 1985) is based upon the

comparison of solutions (independent or dependent) which analyzes the

consistency of the coefficient differences and the error estimates between
the solutions as described in Table I.

Calibrations utilizing each of the major data subsets within the

solution yield very stable calibration factors which vary by approximately

10% over the range of tests employed. Measurements of gravity anomalies

obtained from altimetry were also used directly as observations to show

that GEM-T] is calibrated. Based upon these calibrated error estimates,

GEM-T] is a significantly improved solution which to degree and order 8 is

twice as accurate as earlier satellite derived models. By being complete

to degree and order 36, GEM-T] is much larger than earlier gravitational

solutions calculated from direct satellite tracking and has significantly

reduced aliasing effects that were present in previous models. The

mathematical representation of the covariance error in the presence of

unmodeled systematic error effects in the data is analyzed and an optimum

weighting technique is developed for these conditions. This technique

yields an internal self-calibration of the error model, a process which

GEM-T] is shown to approximate. This geopotential field with calibrated

error estimates, predicts 25 cm (Table 2) for the radial RMS uncertainty of

the TOPEX orbit. The TOPEX Mission has a requirement for 10 cm radial

orbital modeling which is needed to support the oceanographic applications

of a high quality spaceborne altimeter.

RESULTS

Taking full advantage of the "super-computing" environment available

at NASA/Goddard Space Flight Center, many solutions have been compared

providing a completeness of field testing heretofore impossible within

earlier computing environments. The results show a model remarkably

consistent in stability for the callbration of its errors. With the

exception of a few known and understood high order resonance terms (and the

limitations of the high altitude Lageos satellite providing data suitable
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for the calibration of a full 36x36 field), the calibrations show a

stability in error assessment at the IOZ level for each of the major data

subsets employed in this evaluation. The published coefficient

uncertainties for GEM-TI and its error covariance matrix are herein found

to be reasonably well calibrated and reliable. For example, the average

calibration factor (k) for GEM-TI using nine major sets of data in Table 3

(excluding the anomalous result for LAGEOS data) gave k=0.99 (± .08) for

the coefficient calibration and k=0.95 (± .09) for the eigenvector

calibration. This is a gratifying result, particularly, since formal least

squares error formulae based on random variables were employed with

compensating downweighting factors to account for more general formulae

involving error sources with unknown systematic effects. The mathematical

validity of the error estimation techique for the gravity model was studied

extensively and an optimal weighting technique with internal self-

calibration of the error model was developed.
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TABI.E 1

FORMULAE FOR ERROR CALIBRATION

TWO FIELDS F & ff

F " Cl.m, Sf.,_, _ 's ( coeff, errors )

Y : C.., L.m, :',

I

RMS t (AF) = :g '
m=O 2/ + 1

I

0 2 + 0 2 --

[ l (Ct.m) (St_) ] 201 = _
_=o 2l 4 !

el = E( RMS,) 2

= ol + _ when F is independent of T

= o3 - ol when data in F C P

CALIBRATION FACTORS

kl

RMS,

el
for degree 1

kl, m

RMS_.,_

el,m

for individual coeff, pair
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TABLE 2

Radial Orbital Errors (RMS)

for Three Day Arc Lengths
Using Calibrated Covarlance Matrices

Geopotential Radial

Model RMS Error (cm)

GEM-L2 65

GEM-TI 25

GEM-T1 +

Surface Gravimetry + l?

Altimetry

TABLE 3

]SUMMARY OF SOLUTION CALIBRATION FAC'I'ORS
[ FROM GEM-T! FIELD ASSESSMENTS

CDEFFICIENT

CALIBRATION

• (GEM-TI) vs (GEM-TI minus DATA SUBSET)

4-LASERS (GEOS 1,2.3, BE-C)

STARLETTE LASER

OSCAR • SEASAT DOPPLER

OPTICAL (I I SATS)

LAGEOS LASER

ID6

I.I0

109

084

1.45

i GEM-TI vs GEM-TI • SURFACE GRAVITY 095

• GEM-TI vs GEM-TI • SURFACE GRAVITY

SEASAT ALTIMETRY 094

• GEM-TI vS SURFACE GRAVITY • 5EASAT

ALTIM ogg

• GEM-TI mlnus LAGEOS vs. LAGEOS *

SURFACE GRAVITY • SEASAT ALTIMETRY 095

• GEM-T I vs. GEM-T I * Lumped Resonance

Data

1.00

RMS WEIGHTED

PROJECTED

EIGENVECTOR

CAL IBRATION

FACTOR ONTO

GEM-T I

094

099

107

OB9

I 59

092

089

090

OOB

1 06

• GEM-T! with 10 times the Data Weight v;
GEM-TI minus 4-LASERS with

IO times the Data Weight

275 245
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Abstract

We test the ability of three high-order geopotential models - OSU81, GPM2 and OSU86E - to recover the

gravity anomaly field (Ag) in the Australian region. The region was divided into 2° x 2" blocks, and the mean and

rms of the residual gravity (Ag measured "Ag modelled) found to estimate the fit of the model to the point gravity

data. The results showed that OSU81 and GPM2 performed similarly, recovering the Ag with a mean value of
< _+5 reGal in 63% and 70% of the blocks, respectively. However, both these models achieved a fit of worse that
_+13 regal in 6 to 7% of cases. These were in areas either on or near the coast, or in the Central Australian

region, inferring that for a precise geoid slope determination in these regions, a detailed analysis of Ag in region is
needed. On the other hand, OSU86E produced a very good result, having a mean fit of < _+5 mGal in 80% of the
blocks, and worse than +_13 reGal in only 1% of cases. The rms values for this model were also improved over
the other two models, indicating that for applications requiring highest precision, the preferred model is OSU86E.

1. Introduction

The growing interest in recovering orthometric heights from GPS has generated the need for models capable of
recovering geoid features to finer detail. The past decade has seen the development of a series of models of
increasing order, including two models taken to nmax = 180 (OSU79 and OSU81; Rapp, 1981), a model

summed to nmax = 200 (GPM2; Wenzel (1985)), and most recently, two models taken to nmax = 360, OSU86E

and OSU86F (Rapp, 1986). Geodesists have used these models extensively for geoid studies, mainly to
determine the geoidal long to medium wavelength features and to provide the reference model for terrestrially-
derived gravity anomalies used in, e.g., Stokes' integral, to find the short wavelength component of the geoid
signal.

The ability of GPS to determine ellipsoidal height differences (Ah) over lines whose orthometric height differences
(AH) are found by conventional levelling has provided, for the first time in history, high precision geometric
determinations of AN, the geoid height change over the baseline. That is, for small deflections of the vertical

AN= Ah- AH (1)

AN will have a precision equivalent to OAh, providing H is determined to 1st or 2nd order. This precision is

thought to be of the order of 2 to 4 ppm of the line length. Networks in which Ah and AH have been precisely
evaluated, therefore, provide valuable control data against which to compare gravimetric determinations of AN. We
have recently performed a series of such comparisons, and have found that (Kearsley, 1988)
(i) the ability of a geopotential model to recover AN varies significantly, both with location and with nmax,

(ii) the mean fit of AN from the geopotcntial model to the control AN constrains the precision obtainable from a
full gravimetric solution

In the discussion which follows we test the fit of three models (OSU81, GPM2 and OSU86E) to the gravity
anomaly field in the Australian region. Based upon earlier tests, we suggest how this mean fit may be used to
estimate the ability of the model to recover AN in a particular region. Finally we recommend which model is
most suitable for use as a reference in the Australian region.

2. Testing the Geopotential Models.

2.1 Description of Technique for Testing

In earlier tests we have compared the AN derived from OSU81 against control AN, derived from (1), where AH was
found by conventional spirit levelling to 3rd-order or better, and Ah from GPS surveys (Kearsley, 1988, p. 6561).
The comparisons showed that the ability of OSU81 to recover AN varied with both location, and with the upper
limit of summation. The tests also showed that the best agreement does not necessarily occur when the

geopotential model is taken to its maximum degree and order.

To test a model for its "fitness" - its ability to recover AN, in areas where observed AN are either non-existent or

23



sparse, we use the statistics of residual gravity 5g, where

8g = Ag- Ag L (2)

where Ag is the free air gravity anomaly from gravimetric survey and Ag L is the gravity anomaly generated from

the geopotential model.For these tests AgL was generated on 0.1 ° mesh across the Australian region. A value of

AgL was estimated by interpolation at each gravity point in the Australian Gravity Data Base, and 8g obtained by

(2). The data set was then analysed in 2 ° x 2° blocks, this approximating the area used in a spherical cap of

integration in a full gravimetric evaluation. The 8gi were then analysed to obtain the mean (mSg) and root mean

square (rmssg) for the population in the block.

This analysis was repeated for each of three recent geopotential models - OSU81, GPM2 and OSU86E. Each
refers to GRS80 (Moritz, 1980) and their maximum dcgree and order are 180,200 and 360 respectively.

2.2 Inferences to be drawn from statistics

From the few tests in Australia which compared ANGrav against control AN a trend has appeared which relates

mtg to mSN. This trend is shown in Table I, where turiN is the mean fit of AN for GPS lines in the region, in

ppm of the line length, and msg is the mean (bias) of the fig field in reGal, analysed over the 2 ° block containing
the control data.

On the basis of this evidence we have inferred across Australia the likely value of m(5N from the mSg. This is of
particular importance to precise geoid studies because, as we noted above, the geopotential model will constrain
the potential precision of the full gravimetric solution if it is unable to sense the geoidal undulations at, say, the 4
to 6 ppm level or better.

3. Discussion of Results

The mean and rms of the 8g population for the 256 2° x 2°blocks across the Australian continent were calculated
for each of the three models tested.

3.1 Mean fit of Geopotential models to gravity data

The values of msg have been placed into 4 bins, as shown in Table 1. As is seen from this table, the bin limits

were chosen because they appeared to be equivalent to the 5 ppm divisions in mSN.

The results have been summarised in the histograms in Figure 1, allowing a direct comparison between the three
models.

Table 1 : Comparison of msg with mdN

Bin -+ mSg ± m6N

(reGal) (ppm)

1 0-5 0-5
2 5-13 5-10
3 13-21 10-15
4 >21 >15

(a) OSU81 and GPM2

For OSU81,63% of blocks lay in bin 1, 30% in bin 2, 6% in bin 3, with 2% being worse than _+21 mGal in
their mean fit. From this we infer this model can recover AN, on average, to 10 ppm or better in 93%, or nearly
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: i_i AJ,: _ - _ _q!: v,'cs[crll CO;IM, _/Illl i[I {J/_.? ccfUrc Oi Australia. In

' _ !:'L ', :_t!_,r, ii,:? ,_,. ,!_. +,.,_ -p:'_ [ _h< I)t('[ Ill,It Ie*r '}td !y.:,J!;!ll i_'gions, the Ag field used in the model was

.,,i i,,,-a{c,i i,_'_ Scold undt_iat_t_:_ dm :: cd [r¢ml radar air tmetry. This fact may also explain the high correlation
between bin 2 and 3 areas with the coastline. The bin 3 and 4 results in Central Australia are located of the Officer

and Amadeus Basins and the McDonnell P, anges (about 1500 m elcvation), an area noted for the unusually high

signal variations in the Bouger anomaly field These results suggest the 180 degree model insufficiently sensitive

to the gravely signal in this icgion.

The results for GPM2 wc_e slightly imlm_,'ed over tl_ose fi_r OSU81, reflecting the higher {ruler of the former
model.

Figure 1: Distribution of Mean Fit of Potential Model

on 2 _ x 2 ° blocks
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The results of this analysis are impressive. From Figure 1 we see that 79% of the blocks fell into bin I, 20%

into bin 2, with 1% in bin 3. No blocks had a fit worse than _+21 mGal. It appears that, for nearly 80% of

Australia OSU86E is capable of recovering AN to, on average, 5 ppm. In only three cases will the fit to AN be

worse than 10 ppm. It is strange that, in one of these cases OSU81 recovers Ag better than does OSU86E. There

still appears to be some correlation between bin 2 results and coastal regions, but the poor bin 4 results of OSU81

on the south western coast, and in Central Australia, have disappeared. These trouble spots now lie in bin 2.

It is obvious from this analysis that the mean fit, or bias, of this model with respect to terrestrial gravity has

improved greatly over both OSU81 and GPM2. This may be explained by the increased order of the model,

enabling it to capture shorter wavelength features in the gravity field. The numerical analysis adopted in this

solution, which used quadratures with a desmoothing procedure suggested by Colombo (1981) may also be partly

responsible, although the fact that OSU86E summed to 180 replicates almost exactly OSUSI taken to the same
order in the South Australian and West Australian test areas tends to discount this factor.

3.2 Root mean square of residual gravity anomalies

The other statistic of significance in this analysis is the rms, which gives some measure of the fluctuations of the
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5g field from the gcopotcntial model. The results of the computations are summarised in Table 2.

Table 2 Distribution of rms (Population 256)

Rms OSU81 GPM2 OS U86E

Bin Range (reGal)

1 0-10 64 (25%) 62 (24%) 143 (56%)
2 10-20 142 (55%) 151 (59%) 96 (37%)
3 20-30 38 (15%) 32 (13%) 15 (6%)
4 >30 12(5%) I1 (4%) 2(1%)

As is seen from these figures and file summary, OSU81 and GPM2 perform nearly equally well, with 80% and
83% of blocks with rms of less titan 10 reGal. As with the mean fit, the blocks of poorest representation are
generally in the south western corner and in the centre, and along the east coast of Australia. Table 2 also shows
how much the 360 degree model recovers the variations in the gravity field more faithfully. Over half the area is
recovered with an rms of less than 10 reGal, while all but 7% of the blocks have an rms less than 20 reGal. Only

2 blocks modeled by OSU86E have an rms > 30 mGal.

Combining mean and rms for OSU86E

The above results confirm the integrity of OSU86E, already demonstrated in the test on the mean fit, in its ability
to recover the gravity field across Australia. Indeed, when combining the mean and the rms results for OSU86E,
we find that a large portion of the region have both small bias and rms values. Over 40% of the blocks analysed
have a mean and an rms both of which lie in bin 1. Obviously the shorter wavelength features in these areas are
well modeled by OSU86E. From Table I we infer that, in these regions, OSU86E will recover AN to better than
5 ppm, and that there may be little benefit in incorporating the short wavelength signal in &N obtained from the
detailed analysis of surface gravity. Predictably, however, most of these areas lie across the inland, sparsely
developed region of Australia. The areas which contain most development activity, the coastal regions, still
exhibit less favourable recovery by this model and will apparently still require a full gravimetric solution for
highest precision.

4. Conclusions

From these tests we see how the ability of a geopotential model to fit the gravity field across Australia improves
with the increased order of the model lit appears that this improvement is due almost entirely to the higher order of
the model, and not to the different numerical technique used to solve for the potential coefficients. Finally, it
appears that for 40% of the region, OSU86Ewill serve in the recovery of AN for all but the most exacting
purposes. However for the coastal regions where most development activity occurs, a full gravimetric solution
involving a detailed analysis of detailed gravity will be required for most higher-order surveying tasks.
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i. INTRODUCTION

For the determination of geopotential coefficients we can use data from ra-

ther different sources, e.g. satellite tracking, gravimetry or altimetry.

As each data type is particularly sensitive to certain wavelengths of the

spherical harmonic coefficients it is of essential importance how they are

treated in a combination solution. For example the longer wavelengths are

well described by the coefficients of a model derived by satellite tracking,

while other observation types such as gravity anomalies Ag and geoid heights

N from altimetry contain only poor information for these long wavelengths.

Therefore, the lower coefficients of the satellite model should be treated

as being superior in the combination. In our contribution we present a new

method which turns out to be highly suitable for this purpose due to its

great flexibility combined with robustness.

2. METHODS

In B. Middel/B. Schaffrin (1987) we introduced a method based on "robust

collocation", which according to B. Schaffrin (1985,1986) is the Best homo-

geneously Linear (weakly) Unbiased Prediction (hom-BLUP), as a promising

technique for the combination of terrestrial gravity data with spherical har-

monic coefficients from satellite tracking. With this method we obtain the

predicted coefficients, collected in the vector x, by

= (Ps + PT )-I (Ps$s + PT_T a) (2.1)

where _S contains the satellite coefficients and P_ is the corresponding

weight matrix. Vector gT contains coefficients whlch we obtained by a least-
squares adjustment within a Gau_-Markov Model from terrestrial gravity data

and PT is again the corresponding weight matrix. The terrestrial coefficient

set (T.is taken to be inferior with respect to the lower coefficents and by

comparlson with the satellite coefficient set _ we obtain the scalar factor

a to fit _T to _g. When the fitting factor is d_fined as a:=1 we obtain the
weighted mhan of_both data sets being, of course, the "geodetic collocation"

according to H. Moritz (1973), which is the Best inhomogeneously Linear Pre-

diction (inhom-BLIP).

However hom-BLUP turned out to be robust against inconsistencies in $T and

therefore, in this sense, superior to inhom-BLIP as we showed by appl_ing

statistical tests in B. Middel/B. Schaffrin (1988). Nevertheless we can

make this approach more flexible by splitting up the weaker coefficient set

gT into groups of a special character. We allow them specific fitting fac-
t6rs collected in a vector a and name it "Mixed hom-BLUP", thus leading to

the following solution:
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= (Ps + PT )-1 (Ps_s + PTEt i) " (2.2)

In this formulation the vector _6T is modified to a matrix E_T where each col-
umn contains one group of coefficients at the respective places with zero

entries otherwise.

3. NUMERICAL EXAMPLE

After this short description we now present some results of combination so-

lutions up to degree 36 where we merged coefficients _T' derived either from
gravity anomalies or geoid heights or alternatively from a combination of

them both, with GEM-L2 coefficients _ up to degree 20, as described in

F.J. Lerch et al (1982). For each combination we split up the weaker co-

efficient set _t by degree and by order when using the Mixed hom-BLUP tech-

nique. In figures 3.1 to 3.3 we plotted the components of the vector a

with respect to the group (i.e. degree or order) together with their con-

fidence intervals of a significance level of 95%. In addition, the scalar

factors a of inhom-BLIP and hom-BLUP were added.

Figures 3.1 show that we obtained with all methods different fitting factors

a and therefore different results when we merge the GEM-L2 coefficients with

coefficients _T adjusted from gravity anomalies Ag. But it has to be men-

tioned that wh6n using Mixed hom-BLUP and splitting _T up by order most of
the components of ! are not significantly different from the scalar a of

ordinary hom-BLUP since these values lie inside the 95% confidence interval.

The situation changes when we introduce coefficients _T computed with geoid
heights N. This data set is fully compatible with the GEM-L2 coefficients

and therefore all fitting factors are very close to 1 as illustrated in

figures 3.2. In this case we obtained nearly identical solutions with all

the methods.

In figures 3.3 and 3.4 we present results which we obtained by a combination

of GEM-L2 coefficients with coefficients which we adjusted from both data

sets ag and N. Figures 3.3 show that the scalar a is very close to 1 but

with the Mixed hom-BLUP we obtained, in both cases of splitting, a-compo-

nents far away from this value. Therefore, the solution with ordinary hom-

BLUP leads to different results in both cases of splitting up the coeffi-

cients _t" This can be very clearly seen in figure 3.4 where the degree
variances of the different solutions have been plotted.

4. CONCLUSIONS

The use of "Mixed hom-BLUP", which we present in this contribution, leads

to different solutions compared with "geodetic collocation" (inhom-BLIP)

and "robust collocation" (hom-BLUP) if the combined data sets are not com-

patible. Due to the great flexibility and robustness of this method we

expect that it is highly suitable for estimating geopotential coefficients

when combining heterogeneous data sets.
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AI_STIL&( "1

New integral lormulas to determine gcopotcntial coefficients from terrestrial gravity and satellite ahi-

metry data arc given. The formulas arc based on the integration of data over the non-spherical surface of lhc

Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. For-

nmlas for the solution ,Jf the gravimetric boundary value problem arc derived.

1. IN"I'RODU CI'ION

The long-wavelength features of the Earth's gravity field is best determined from dynamic satellite ob-

servations. For short-wavelength information terrcslrial gravity anomalies (Ag) and satellite ahimctry data

play essential roles. A well-known method to deternfine gcopotential coefficients from Ag is the integral met-

hod used by Rapp e. g. (1977). We present this method in section 2 followed by a new integral method in sec-
tion 3.

2. RApP'S IIVFEGRAL FORMULA

The determination of the harmonic coefficients according to Rapp requires that the data (Ag) is distri-

buted continuously all over the surface of the Earth. Also it is assumed that the Earth's (disturbing) potential

(T) can be developed into a harmonic series convergent down to the Earth's surface:

ce n
T:ro_, y. (r°)n+l- Z AnmYnm(qb, h), (2.1)

n=2 r m=-n

where ",/is the mean surface gravity of the Earth, (r,d_,k) are the geocentric, spherical coordinates of the

computation point, Ynm(qb,h) is a fully normalized spherical harmonic and, for r = ro,

1

Amn -- ff T Ymn do', (2.2)
4"rrro y cr

where _r is the unit sphere. Considering the "boundary condition" in spherical approximation (Heiskancn and

Moritz 1967, p 87) one obtains the corresponding expansion for the gravity anomaly (Ag) :

Ag y _ (n-1)(r°) n+2 n: .Z Anm Ynm (_,k), (2.3)
n--2 r m=-n

from which formula the coefficien[s are given for r = ro :

1

Anm -- -- ff Ag Vnm d_. (2.4)
4"try(n-l) o"

In principle ro is arbitrary, but is usually chosen as the equatorial radius of the selected reference cllip-

sold. A practical obstacle in applying the integral formulas (2.2) and (2.4) is the necessity of reducing T and

Ag to the spherc of radius ro. For (2.4) Rapp (1984) used the Taylor series

0Ag 1 _i_g(Ah) 2Agreduced = Aga_bscrved -- Ah - ... , (2.5)
Oh 2

where Ah :- r - ro, and the derivatives wcrc estimated from available series of harmonic coefficients.
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3. TIlE NF.W IN'I'E(;RAI. APPROACIt

Rewriting formula (2.1) on the form

{3O

T rYn_9(R) n+l n= " ._ CnmYnm(qb ,k), (3.1)
m= -n

where R is the radius of the minimum bounding sphere of the Earth, and considering Green's second identity
for the functions T and U ([tciskanen and Moritz, 1967, p. 11):

8T 6U
fff (UAT-TAU)du = ff ( U-- - T--) dS, (3.2)
v S' 8n' 8n'

where v is the volume boundcd by the surface S, which consists of the surface of the Earth (E) and the sur-
face of the bounding sphere of radius R, and n' is the external normal to S with respect to v, and setting U to

R r

U = { (__)n+l + an (__)n } Ynm(d_,h), (3.3)
r R

where an is a non-zero constant with respect to position, the following general integral formula is derived in
Sj6berg (1988):

1 __ 1 fig 8U
Cnm ff [U { Ag T } + T -- ] r 2 do', (3.4)

4_R2y(2n + 1) an E 3' 8r 8r

m

where Ag = Ag - y({ tan 131 + "qtan 132), 131and 132are the terrain inclinations, and _;and "rlare the corre-
sponding deflections of the vertical. The integral is taken over the Earth's surface (E). Choosing r = ro + Ah
and an = (R/to) 2n+l (n- 1)/(n + 2) one obtains (to order Ah/ro):

ELEVATION EFFECT Casel

_.j

.c#

Sj6berg. Fan (1988)

Rapp (1984)

Fig. 1. The percentage terrain elevation effect by degree as computed by formula (3.6) and by Rapp (1984).

32



_ ,_ , ,i ,L _d Ill! ]1 ,I ti] Ji i:",lJ'. \iJ(i-',_\',l)

R
Alln I (_ __)|1 { --___ltIll

ro

where Anm 0 is given by (2.4) and

n _ 2

AAnm ..... ff T Ah Ynm dm (3._0
4_T_,Rr,, l']

The percentage tcrrain corrections by degree dctcrnfined by formula (3.6) are illustrated in fqg. 1. Deta-

ils on the computations arc given in Sj6bcrg and Fan (1988). For comparison the figure includcs also terrain

corrcctions from Rapp (l")S4).

('hoosing an = - (R/r,_) 2_ + t one arrives at formula (3.5), but now with Anm 0 given by (2.2) and

1 R 2"1" Ah

AAnm = -- (--) ff (Ag + -- ) -- Ynm(qb,X) d_'. (3.7)

4-try ro tr R ro

Numerical computations show that this correction is within 2% for n _< 50. Again we refer to Sj6berg

and Fan (1988) for details.

4, SOLLrFIONS I"O BOUNDARY VALUE PROBLEMS

Inserting (3.4) into (3.1) and assuming that summation and integration may change order one arrives at

the following solutions for the height anomaly _p = Te/y :

Case I: an = (R/ro) 2n + 1 (n-1)/(n + 2) :

R

(,P = -- ff [ { S(d?pQ,ro,rp) - A(t_PO,rQ,rp) }Ago + K(_pQ,ro,re) T O ] dcro, (4.1)
4_y o

where

ro m 2n + 1 rO
S(_,po,ro,rp ) : __ y __ (__)n + 1 Pn (cos qWQ)

R n=2 n-1 rp

and

rQ oo n+2
A(_bPO,ro,rp) = -- £ --{1 -

R n-2 n-1

l
K(_PO,rQ,rp) = --

R

(_o)2_+ _ }(ro)o+_v. (_s,pm)
ro rp

_°(n + 2) (rQ) n + 1 { 1 - ( r__O)2n+1 } Pn (cos CpQ)

n = 2 rp ro

Case It: an = - (R/ro) 2n + 1.

1

O' - ff l { e(¢PO,ro,rP)- L(+l,o,rQ,rl,) } TQ + M(t_PO,rQ,rp ) ro Ago ] do D , (4.2)
4-try cr
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where

P(tl,i,o, ro, rl,) = __ (2n + 1) (r--) no + 1Pn (cos 0PO)
n =2 rp

and

L(_t,o,ro,rp)

M(_Jl,o,ro,rP)

= )'(n-l) (r--()-)n+I{I- (r°)2"+I }Pn(cosqJPO)

n = 2 rl' r0

= _ (r-o)n+l{1- (ro)__n+l}pn(cos,Po).
n=2 rI, ro

In the limit ro --" ro the formulas (4.1) and (4.2) approach (the extended) Stoke's formula and the Bruns-
Poisson's formula, respectively.

5. DISCUSSION

As Figure 1 shows the terrain corrections of the new method (3.6) are more significant with increasing

degree than those of Rapp (1984). This discrepancy might be explained by insufficient power in Rapp's deri-
ved derivatives of formula (2.5). The validity of the Earth surface integrals (4.1) and (4.2) should be further
investigated. In any case they should have some interest for the determination of the external gravity field
from surface data.
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INTRODUCTION

An important goal of geodesy is to determine the anomalous potential

and its derivatives outside of the earth. Representing the surface

anomalies by a series of spherical harmonics is useful since it is then

possible to do a term by term solution of Laplace's equation and upward

continuation. This paper addresses the problem of finding such a

spherical harmonic series for anomaly values given on an equiangular

surface grid. (This is a first step toward the more complicated problem

of finding a function such that locally averaged values fit a grid of mean

anomalies.) Three approaches to this fitting problem are d_scussed and

compared: the discrete Fourier technique, the discrete integral

technique, and a new approach by this author. The peculiar nature of the

equiangular grid, with its increasing density of (noisy) data toward the

poles, causes each method to exhibit a different type of difficulty. The

new method is shown to be practical as well as precise since the numerical

conditioning problems which appear can be successfully handled by such

well-known techniques as a (simple) Kalman filter.

DISCRETE FOURIER METHOD

The discrete Fourier method [Dilts, 1985] uses a discrete Fourier

series to represent both the longitude and latitude variation of the

desired function. The data at the (i, j) grid point on a grid of N

latitude and 2N longitude intervals can be uniquely represented by the

double Fourier series,

N N iq_ i im_j
_ A e e

f(ei" _J) = q=-N m=-N qm
(1)

The discrete Fourier method makes its modeling assumption at this point by

choosing the function off the grid points to be given by this same double

Fourier expansion. Comparison of the continuous spherical representation

L N
im_

f(O, _) = _ _ Cnm Pnm(e) e (2)
n=0 m=-N

and expansion of the normalized Legendre polynomials

n

(9) = _ Bnm eiqe (3)
nm q

q=-n
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to the function modeled as in Equation (1) then yields

L A for lq[<N

C Bnm = qm

n= O nm q 0 otherwise.
(4)

A solution exists for the upper limit L, equal to infinity. It can be

expressed as

N

C = _ Znm A

nm q =-N q qm

(5)

where the "inverse" coefficients are obtained from

oo

7I --

Pnm (e) Isin01 = _ Znme -iqe (6)
q_-__ q

for e between zero and 2 _ radians.

The shortcoming of this approach is the need for an infinite number

of terms to solve Equation (4) for arbitrary A (representing the data).
qm

Small amounts of noise in A can lead to the presence of terms in the
qm

double Fourier expansion (Eq. (I)) which are not present in the gravity

field and which have infinite derivatives at the poles. Truncation of the

series is the strategy for coping with this difficulty. After truncation,

the function will no longer match the gridded data, and the degree of

discrepancy is not under the analyst's control.

DISCRETE INTEGRAL METHOD

The discrete integral approach has been widely used (see for example

Colombo [198]J). It approximates the continuous inversion integral for

the spherical coefficients by a discrete, weighted sum.

N 2N-I -im_.

C = _ _ Pnm(0i) e J W i f(_i,_j) (7)
nm i=0 j =0

The weights W. are usually chosen to be the grid block areas. The
1

difficulty with this approach is that the discrete Pnm(Oi) are not

orthogonal on the equiangular grid. As a result, aliasing occurs,

and the resultant spherical expansion does not match the gridded data.

The expansion is truncated at degree N or less, and the amount of the

discrepancy is thus on]v indirectly under the analyst's control.

Comparison with the preceding technique is obtained by using the expansion

of Equation (6) in the above expression (with the weights proportional to

area and the interval extended to 2_):
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N

ZnmC = _ (Z nm + Z nm + + ..)A + pole terms. (8)
nm q q+2N "q-2N " qm

q=-N

Comparison with Equation (5) shows that it corresponds to the leading term

in the above expression. Thus, taking the degree of the discrete integra]

expansion to infinity does not appear to reproduce the gridded data.

NEW METHOD

The third method is newly presented by this author. It uses the

Fourier representation of the data (Equation (i)) but makes its modeling

assumption in the spherical domain. Comparison to the spherical expansion

at the r_sidpo_ints yields

L

C (Bnm+ Bnm + nm
Bq_2N + ...) = Aqm.q+2Nnm q

n=0

(9)

This differs from Equation (4) since it is the result of a discrete

comparison at the grid points (using the periodic nature of the discrete

exponential) and not a comparison of continuous functions. If L is chosen

equal to N+Iml-2 (except L=N for m=0), Equation (9) then becomes an

invertible matrix equation (with E indicating the sum of the B terms):

EC = A and then C = E-1A. (10)

Since the inverse yields a precise fit at the data points, the modeling

assumption is that all the C 's are zero for n greater than N+Iml-2. The
nm

continuous function resulting from using these C's in a spherical

expansion thus reproduces the data and has a finite number of terms.

Since L<2N the elements of tile matrix E are easy to compute: at most two

of the B terms in Equation (9) are non-zero. Even for terms of degree

less than N, this solution is different from the discrete Fourier case,

Equation (5), since (ZE) is not the identity.

The difficulty with this method is that the matrix E becomes

ill-conditioned for large values of the order m. There are, however, many

well-known and trustworthy techniques for dealing with such problems. A

few such techniques are summarized below.

Perform the transformation of E to the identity in a column by

column fashion, stopping when the conditioning becomes a

problem. If this process is stopped at the column for degree N,

the discrete Fourier approximation is obtained. Further steps

toward finding E -I constitute improved approximations.
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Invert the matrix (E+6I) for a sma]l 6 and use it instead of
E-I "

Use a simple Kalmanfilter

A = EC+ V; C = ET(EET + yI)-IA (11)

where the measurementnoise, V, has variance y]l and the prior
uncertainty on C is y2I. Theny = y1/Y2 and ig a small
quantity.

Use a more complicated Kalmanfilter with detailed models for
the noise and for the initial uncertainty.

All of these strategies yield results which are not overly sensitive to
noise. By adjusting the parameters in these methods, the analyst can
control how close the reconstructed function comesto the gridded data
(allowing only for small deviations consistent with the noise model). Use
of the Kalmanfilters also has the advantage of providing uncertainties in
the estimated spherical coefficients.

SUMMARY

The problem of fitting a smooth function to data given on an
equiangular spherical grid has been discussed. Twoexisting approaches
were summarizedan4 a new approach waspresented. Eachapproach was found
to possess an area of difficulty resulting from the properties of the
equiangular grid. Well-known techniques (such as Kalmanfiltering) are
available as practical strategies for dealing with the numerical
conditioning in the newmethod. As a result, the newmethod is practical
and capable of reproducing the gridded data to a precision consistent with
the noise model.
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Traditionally, the global gravity field has been described by representations based

on the spherical harmonic (SH) expansion of the geopotential (Heiskanen and Moritz,

1967). The SH expansion coefficients have been determined by fitting the Earth's gravity

data as measured by many different methods including the use of artificial satellites. As

gravity data has accumulated with increasingly better accuracies, more of the higher order

SH expansion coefficients have been determined (Lerch et al., 1985; Reigber et al., 1985;

Rapp, 1987, references therein; Marsh, 1988). The SH representation is useful for

describing the gravity field exterior to the earth but is theoretically invalid on the Earth's

surface and in the Earth's interior (Heiskanen and Moritz, 1967). Further, the smaller-

scale detailed structure of the mass distribution is not reflected in SH representations.

It is well known that there is not a unique distribution of mass which gives rise to a

given gravitational potential. Because of this nonuniqueness, other geophysical data such

as topographic information and seismic observations must be combined with the gravity

data to constrain the possible solutions to those which are geophysically meaningful.

Since some knowledge of the mass distribution in the interior of the Earth is

emerging from seismic studies (Dziewonski and Anderson, 1981; Dziewonski and

Woodhouse, 1987, references therein) and rather detailed knowledge of the earth's crust

and surface is increasingly available in many places, it is desirable to introduce a new

physical representation of the mass distribution for the entire Earth which can be refined to

accommodate new and more accurate data as it becomes available and which can describe

many different component properties and processes of the entire Earth system on both

global and regional bases. A new global Earth model (NEWGEM) (Kim, 1987 and 1988a)

has been recently proposed to provide a unified description of the Earth's gravity field

inside, on, and outside the Earth's surface using (1) the Earth's mass density profile as

deduced from seismic studies, (2) elevation and bathymetric information, and (3) local and

global gravity data. Using NEWGEM, it is possible to determine the constraints on the

mass distribution of the Earth imposed by gravity, topography, and seismic data.
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As thezeroth-orderapproximationfor NEWGEM,theellipsoidallayer(EL) model

(Kim andKlepacki, 1987; Kim, 1987) is used. In the EL model the Earth is assumed to

consist of n ellipsoidal layers plus a core ellipsoid, with layer densities inferred from the

Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson, 1981). EL

models have previously been investigated in ellipsoidal coordinates (Moritz, 1968; and

references therein) and also in spherical coordinates (Jeffreys, 1976; Moritz, 1973;

references therein). The EL model in NEWGEM utilizes cartesian coordinates since analytic

solutions for the gravitational potential outside and inside an ellipsoidal layer of uniform

density are available in that coordinate system (Kim and Klepacki, 1987; Kim, 1987 and

1988a).

As the fh'st-order correction for NEWGEM, three-dimensional global variations of

the mass density profile for the Earth's crust (oceans and continents) and also mass

irregularities due to isostasy and the Earth's large -scale interior heterogeneity as observed

from seismic data (Dziewonski and Woodhouse, 1987; references therein) are considered.

These global corrections are being implemented by dividing the Earth's interior into many

small spherical shell segments, each with it's own density. The corrections necessitated by

the earth's varying topography are being included using the 5 minute by 5 minute

worldwide elevation and bathymetric data base, ETOPO5, available from the National

Geophysical Data Center. The total contribution to the gravitational acceleration (both

magnitude and direction ) at a location can be computed by summing the contributions of

each cell. These global corrections will be added to the gravity field of the EL model. The

resulting total gravity field will be compared to the International Gravity Standardization

Net (IGSN) 1971 (Morelli et al., 1971) and also to the gravity field deduced form ground-

based tracking of artificial satellites, GEM-T1 (Marsh et al., 1988).

Recently, the first order global corrections for lateral density variations have been

estimated and shown to provide a consistent explanation of signature (attractive or

repulsive) and magnitude of apparent anomalies observed in borehole and seafloor gravity

measurements carded out as precision tests of Newton's gravitational law (Kim, 1988b).

Higher order corrections to NEWGEM can obtained by calculating the local and/or

regional corrections with an additional subdivision of spherical shell segments in the local

and/or regional volumes (limited area and depth) without disturbing the zeroth and first

order description of the entire Earth system exterior to the local and or regional volumes

under consideration. This is one of the advantages of NEWGEM, its capacity to be

improved and upgraded indefinitely on local, regional, or global scales as more accurate

data (local, regional and/or global) becomes available. This allows the investigation of

local and/or regional gravity piecewise but yet as an integral part of the entire Earth system.
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Density distributions in NEWGEM will be fine-tuned by requiring reasonable agreement

between the NEWGEM gravity field and local gravity data such as the absolute gravity data

of the United States (Peter, Moore, and Beruff, 1986). The NEWGEM gravity field will

also be constrained to agree with SH expansion models at high altitudes.

NEWGEM is useful in investigating a variety of geophysical phenomena. It is

currently being utilized to develop a geophysical interpretation of Kaula's rule (Kaula,

1968; Lambeck, 1976; Kaula, 1977; Cook, 1980). In this investigation, the zeroth order

NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients

and simultaneously determine the contribution of each layer in the model to a given

coefficient. The numerically determined SH expansion coefficients are also being used to

test the validity of SH expansions at the surface of the earth by comparing the resulting SH

expansion gravity model with exact calculations of the gravity at the Earth's surface.
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A FRAMEWORK FOR MODELLING KINEMATIC
MEASUREMENTS IN GRAVITY FIELD APPLICATIONS
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ABSTRACT

To assess the resolution of the local gravity field from kinematic measurements, a state
model for motion in the gravity field of the earth is formulated. The resulting set of equations can
accommodate gravity gradients, specific force, acceleration, velocity and position as input data and
can take into account approximation errors as well as sensor errors.

1. PROBLEM STATEMENT

The last few years have seen major advances in kinematic methods of gravimetry.
Shipborne gravimetry, already a reliable tool, will be further enhanced by using accurate position
and velocity information from differential GPS. Airborne gravimetry in either the fixed wing
aircraft or helicopter mode experienced a resurgence over the last few years and is at the point
where it provides gravity information of acceptable accuracy for wavelengths down to 10 or 15
km. Airborne gravity gradiometry has entered the testing stage and holds great potential for short
wavelength resolution. Compared to even fifteen years ago, there is now a variety of sensors on
the market and it appears that a judicious combination will yield information on different parts of
the gravity spectrum. To assess different sensor configurations, a model is needed which allows
the combination of kinematic measurements from gravity gradiometers, dynamic gravity meters,
inertial sensors, differential GPS, laser altimeters, precise pressure altimeters and similar devices.
The model must allow for the interaction of gravitational and inertial measurements and must be
able to take sensor biases and measurement noise into account. The formulation of such a model

using state space techniques is the topic of this extended abstract. A detailed derivation with a
comprehensive list of references will be published in the near future.

2. THE STATE SPACE MODEL OF KINEMATIC GEODESY

Newton's second law for motion in the gravitational field of the Earth, expressed in an
inertial frame of reference (i), will be taken as the starting point

ri =fi + gi (1)

where ri is the position vector from the origin of the inertial frame to the moving object and ri is
the second time derivative of this vector, fi is the specific force vector, and g i is the vector of all

gravitational accelerations acting on the moving object.
The set of nonlinear second-order differential equations (1) can be transformed into a set of

first-order equations of the form

= t . (2)

_'i f. + gi
1

In general, measurements will not be taken in an inertial frame of reference but in an arbitrary body
frame (b). They can, be transformed into an inertial reference frame by

f i = Rib f b (3)

where Rib is a three-dimensional orthogonal matrix transforming f b from the body frame (b) to
the inertial frame (i). Note that the subscripts denote the direction of the rotation, not the element in
the matrix. It is obvious from equation (3) that measurements fb can only be used if Rib is known
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or can be measured. Thus, a set of three first-order differential equations for the rotation rates Rib
has to be added to equation (2). They are of the form

= Rib f2b_' (4)

where 1"2ib is the skew-symmetric matrix of angular velocities.

Similarly, gravitation is usually not given in an inertial frame but in the Conventional
It/

Terrestrial frame, which will be denoted by (e) in the following. We thus have the transformation

g" i= R ic g e • (5)

Since the rotation rate of the Earth can be considered constant for the applications discussed here,
no additional equations for Rie have to be added. Using equations (3) to (5) in (2) leads to the
state equations

xi = _/i =

ib
t vi )ibfb + Riel_ e

Rib _ib b

(6)

describing rigid-body motion in three-dimensional Euclidean space by three rotational and three
translational parameters.

The implicit assumption in equation (6) is that gravi_tation g e is known. In that case, the
measurement of the specific force f b and the rotation rates Rib is sufficient to determine position,
velocity, and attitude as functions of time. If gravitation is not known as a function of time,
additional measurements are necessary. They can be of two types, inertial or gravitational. In the
first case, _'i is determined independently, in the second case g i is obtained. In both cases,
gravitation and inertia can be separated in the second set of equations in (6). Thus, in principle,
position, velocity, attitude and gravitation can be obtained by measuring f b, Rib and either vi or gi
independently. The second case which is that of gravity gradiometry will now be discussed.

To transform equation (6) into a system that also admits gravity gradiometer measurements,
a set of equations describing the change of the gravitational vector with time has to be added. It is
obtained by differentiating equation (5)

gi =Riege +Rie_e =Rie(_iege+_e)
" e

._ie ie _ie r-=Rie(, e _e +Geve) = f2 i gi + Gi(vi- i l) (7)

o1_,.0-e O2Ve
Ge = _ = (8)

where

is the matrix of second-order gradients of the gravitational potential Ve. The state vector which
includes gradient measurements of type (7) is therefore of the form

xi =
Rib

vi

Rib fb + gi

Ri b f_bb

_e_i +Gi{vi - D_eri)

(9)
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3 CHANGE OF COORDINATE FRAME AND LINEARIZATION

In many cases, results are required in an earth-fixed coordinate frame and transformation of
equations (9) into such frames are needed. They obviously involve the representation of the
corresponding states in a rotating frame. The transformations are somewhat tedious and are given
here without proof for the conventional terrestrial frame (e) and for the local-level frame (1).

In the first case, we get

(e)(Xe = .'¢e

Reb

Ye

Reb fb- 2I)iee Ve + ge

Re b f_gb

(Reb Gb Rbe - D_e [_e) v e

(10)

where ge is the gravity vector. The transformation into the local-level frame 1, using curvilinear

(9, _., h)-coordinates, follows along similar lines, and results in the state vector

el

__- _'1

alb

Dv 1

Rlb fb_ (2f_ie + f_l)Vl + g,

Rlb ['2lb

(Rlb Gb Rbl_ [_ie f_ie)Vl" f_el gl

(11)

where

D
1/R 0 0)

= 0 1/(R cos 9) 0
0 0 1

The state equations derived up to this point are all nonlinear. The fu'st step towards the
solution of the differential equation system is usually linearization about a reference trajectory. The
reference trajectory is obtained by introducing a gravity model into equation (9) and by integrating
the gravity corrected measurements. Equation (9) can be written in the general form

= f {r, v, w, g } (12)

where w denotes the angular velocities in the _ib and the _ie matrices. Subscripts have been
omitted for convenience. It can be rewritten as

_O+dx o = f{r o+dr,v °+dv,wo+dw,S °+rig } (13)
where the superscript o denotes the reference trajectory and d the perturbation. By separating the
reference trajectory

_o = f{r o,v o,w o,go} (14)

from equation (12) and considering only first-order perturbations, the following set of equations is
obtained
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dv F21 ...... dv

d_v = F31 ...... dw

d g F41 .... F44 d g

(15)

which is a set of linear homogeneous state equations of the form

._ = Fx . (16)

The matrices Fll to F33 are well known from the literature. F41 to F44 are obtained by developing
the perturbation solution for g. In the local-level frame, we get the reference solution

_o = {(30 (rO)_ _ie(ro ) _ie(ro)} v o + _el(ro ) gO(rO) (17)

and the perturbation solution

d R = {G ° - f2ie£] ie } dv + dG v ° - f2 el dg - d_2elg ° (18)

where
4 o

dG =(G-G ° )+ {3(" _ 0G ° OG °--d--_-ar +--d-_dv + _-ff--dw} (19)

Using equations (18) and (19) in (15) will give the desired solution.

4 SENSOR ERROR MODEL

The linearized model given by equation (16) is the kinematic description of rigid body
motion in the gravity field of the Earth. Except for approximation errors, it is a rigorous model. If
sensors are used to determine the trajectory and the gravity vector, the above model has to be
augmented by a set of error states for each of the sensors used and by system noise. The resulting
equations will be of the general form

F 1 0 1

= +

2 ,. 0 F 2 _x2J

Gu (20)

where xl contains the states in equation (15) and x 2 the error states, and where F 1 and F 2 are the
corresponding dynamics matrices, and Gu describes the system noise. The F2-matrix has a block-
diagonal structure because the error states of the individual sensors are uncorrelated.

The error states are modeled in a stochastic manner by random biases, random walk
models, or simple Gauss-Markov processes. Some judgement is required to decide whether a
specific error source is modeled into x2 or into Gu. If real-time estimation is performed with the
model (20), a small state vector is often desirable.
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Initial airborne and surface testing shows that the.earth's gravity gradients can be usefully measured both from an

aircraft and an automotive vehicle.

1. BACKGROUND

The Gravity Gradiometer Survey System (GGSS) is a mobile unit that measures the five independent gradients of

Earth's gravity vector. The system includes three gradiometer instruments and ancillary inertial hardware mounted on a

local-level stabilized platform, a navigation system, and electronic support equipment. The entire apparatus is housed in

a van that has the capability of surveying along roadways or of operating while being carded in a C- 130 cargo airplane.

Data processing includes an initial stage of demodulation, filtering, self-gradient corrections, acceleration sensitivity

compensations and accounting for other environmental influences. Secondary postprocessing to obtain gravity com-

ponent estimates includes bias estimation (using cross-over constraints and tie-point data), followed by along-track inte-

gration and downward continuation (for the airborne case) performed as an optimal, minimum variance estimation

process. The tests to assess the survey accuracy of the GGSS were conducted primarily in the Texas-Oklahoma Panhan-

dle area where the terrain is very smooth while the gravity signature is moderately pronounced. About 120 tracks were

flown at nearly constant altitude (about 1000 m above ground) in a regular grid of north-south, east-west tracks. Each

track is 315 km long with a nominal spacing of 5 km between tracks. In addition, surface testing was conducted which

included two traverses performed on the same highway route.

2. AIRBORNE TEST DATA RESULTS

From the airborne GGSS test data collected in spring of 1987, a total of 56 distinct tracks were considered by the

gradiometer operator to be appropriate for further analysis. Upon examination, the need to edit the data for erratic flight

trajectory, loss of signal, and excessive noise was apparent and resulted in the elimination of 21 tracks from further

processing. The resulting "edited" 35 tracks show sporadic occurrences of mostly-isolated spikes in the measured gradi-

ents. The spikes were removed by detection with a matched filter and deconvolving with the impulse response of the

demodulator filter.

Based on their length and orientation with respect to the other edited tracks, 20 of the 35 tracks were selected for

estimating gravity disturbances. The gradient data along these tracks were resolved into an appropriate local-level refer-

ence frame. Five-minute by five-minute gravity disturbances along each track were then estimated using a Kalman
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smoothing algorithm. The smoother included error models for the GGSS white noise floor [as identified from Power

Spectral Densities (PSDs)], the gradient bias uncertainty (based on track length and PSD), and the uncertainty associated

with each tiepoint (rms uncorrelated error of 2.0 regal). Single-track spectral analysis indicated that the GGSS contrib-

uted noise power ranging from 350 to 1700 E2/Hz (double-sided PSD). Gravity disturbance estimates were compared

with corresponding quantities derived from an available five-minute by five-minute mean gravity disturbance truth

dataset. The truth values were interpolated along each GGSS track using a four-point bilinear smoother. Along the best

tracks, the vertical component of the gravity disturbance vector could be recovered with an rms error of about 5 mgal for

tiepoints over 200 km apart. The rms accuracy improved to 2 to 4 regal when the tiepoint spacing was reduced to about

90 km.

Thirteen of the foregoing 20 tracks were situated in sufficiently close proximity (Figure 1) to permit investigation

of the increased accuracy obtainable for multi-track analysis. The TASC template algorithm (Refs. 1, 2) was used to

perform gravity disturbance estimation within the areas bounded by the intersections of the 13 tracks. The template

algorithm was used with the Clinton-Sherman Attenuated White Noise Statistical Gravity Model (Ref. 3), data-derived

error models for the GGSS measurements, and the rms uncertainty of the tiepoint values. A summary comparison of

these multi-track estimates with corresponding surface truth values is presented in Table 1. The two distinct cases

considered were 1) tiepoints at the ends of each track, and 2) tiepoints only at the centers of the boundary tracks. For

each case, the actual rms error agreed well with the predicted rms errors provided by the template algorithm covariance

equations CRef. 4).
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Figure 1. Tracks and area selected for multi-track analysis.
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CASE

Tiepoiats at Ends of
Each Track

Tiepoints at Centers
of Boundary Tracks

Table 1.

RMS ERROR:
ALL POINTS (regal)

PREDICTED ACTUAL "

1.93 1.64

4.34 3.27

Summary of multi-track comparisons.
i i i

RMS ERROR:
NON-TIE POINTS (regal)

PREDICTED

2.33

4.53

ACTUAL

2.16

3.44

WORST CASE
ACTUAL ERROR

(mgal)

3.72

8.77

Deflections of the vertical were estimated along several of the tracks using line integration at altitude. In Figure 2,

GGSS estimates for two selected tracks are compared with surface truth data derived using Vening-Meinesz integration.

Source data consisted of a two-degree "square" inner zone containing l'xl' mean anomalies, a middle zone having a

six-degree by eight-degree outer perimeter with 5'x5' mean anomalies and an outer zone consisting of 30'x30' mean

anomalies over the rest of the earth. The data was provided by DMA.
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Horizontal gravity disturbance components at the surface.

3. SURFACE TEST DATA RESULTS

Surface GGSS testing was performed along a 53 km section of paved road near the Clinton-Sherman airfield. Two

tracks of repeat traverse data (one taken on 6 June 1987 the other on 9 June) were processed by the gradiometer operator.

The data quantities of interest available for each track were: time, fifth-wheel aided inertial latitude and longitude, alti-

tude, heading, and the inline and cross gradients for each of the instruments in the triad. As with the airborne data,

isolated spikes were present in the gravity gradients.

In addition to spike removal, navigation system performance was analyzed to assure that position misregistra-

tion errors of the relatively high frequency surface gradient field were not mistaken as GGSS noise (Ref. 5). Kalman-

Smoothed estimates of all three components of the gravity disturbance vector were performed. The vertical and
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along-track components are presented in Figure 3. For the repeatability analysis shown in Figure 3, the tiepoint spacing

for the deflection of the vertical data was 46 km and the rms accuracy was 0.5 arcseconds. Vertical disturbance tiepoints,

spaced at 52.8 km, were assigned an rms accuracy of 2.0 mgal.
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Kalman-smoothed gravity disturbance estimation for individual surface tracks.

4. CONCLUSIONS

Although the amount of data yielded by the tests was modest, it was sufficient to demonstrate that the full gravity

gradient tensor had been successfully measured from moving platforms both in the air and on the surface. The measure-

ments were effectively continuous with spatial along-track resolution limited only by choice of integration lengths taken

to reduce noise. The airbome data were less noisy (800 E2/Hz typical) than were GGSS measurements taken at the

2 ..... tsurface (5000 E ]I-Iz typical). Single tracks of surface grawty disturbances recovered from airborne da a were accurate

to 3 to 4 regal in each component of gravity when compared to 5'x5' mean gravity anomalies over a 90 km track. Multi-

track processing yielded 2 to 3 regal when compared to 5'x5' mean anomalies. Deflection of the vertical recovery over a

distance of 150 km was about one arcsecond.
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Introduction

Marine gravity surveying in polar regions has typically been difficult and costly, requiring expensive
long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions

where it is unfeasible to survey with a surface vessel. Unfortunetly, the data collected by the first global
altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality the

gravity field for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality

airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite

altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed us to recover a free air
gravity field for most of the Weddell Sea. This paper will briefly review the derivation of the gravity field

from both aircraft and satellite measurements before presenting along track comparisons and shaded relief

maps of the Weddell Sea gravity field based on these two data sets.

Airborne Collection and Reduction

The airborne gravity was collected using the Naval Research laboratory's Airborne Gravity Surveying

System. This system includes a Lacoste-Romberg air-sea gravimeter, a short pulse radar altimeter, a pressure

altimeter and two GPS sets, a TI 4100, a P-code receiver and a Magnovox T-set, a CA-code receiver. To

extract the geologically interesting free air anomaly (Awo0 from the total accelerations recorded by the gra-

vimeter (AM) the position of the aircraft in three components must be well determined. The relationship

between the total measured acceleration field (AM) and the free air anomaly (AFAA) is described by the equa-
tion:

AM = AFAA + h_ft -I- A_tov, + AT_o + AFAC

where Aak,,craf t is the acceleration associated with the vertical motion of the aircraft, A_o is the gravity on

the ellipsoid, AEotovs iS the correction necessary for all gravity measurements made from a platform moving

across a rotating earth and AF^c is the free air correction necessary to reduce the airborne measurement to

the geoid. In contrast, to marine surveys where the maximum correction is 75 mgal, the amplitudes of these
corrections far exceed the amplitudes of the gravity anomalies associated with such large features as

seamounts, fracture zones and sedimentary basins (Figure 1).

.A..A..A.A.

A FAA A Aircraft AE.otvos AThoo AFAC

+/- 400 regal +/- 600 regal +/- 1500 mgal -980000 mgal -150 mgal

Figure 1. Schematic illustrating the components of the total acceleration field A M measured by a gravimeter
mounted aboard an aircrzfft and the tx_ssiblc amplitude range of each component.
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TheGPSreceiversareusedtomonitorthehorizontalvelocitiesandtheaircrafthorizontalpositionnecessary
forA_,tov,andATh_o while the radar and pressure altimeters are used to monitor the aircraft's vertical posi-

tion. The vertical positions measured by the altimeters were used to calculate the vertical acceleration field
of the system (Aaircaft) and the free air correction (AFAc.). For the 12000 km of data collected in the 1987

field season, the pre-adjustment crossover errors were 4.59 mgal for 84 crossings and improved to 2.25 mgal
after along track adjusunent.

Satellite Data Collection and Reduction

Extracting the gravity field from the Geosat data involves first editing the individual sea surface height

profiles, adjusting profiles to minimize crossover errors, gridding the data to produce a geoid and finally cal-
culating the gravity field. Each track was edited to remove the data crossing land and regions where the on

for 7 points exceeds 10 cm, a criterea which removes most of the noisy data across multi-year ice. After the
tracks are edited, the repeat orbits are averaged to produce a mean profile. The crossover errors for these

adjusted mean profiles are reduced to a minimum using an iterative least squares approach. Finally, gravity

anomalies are calculated from the gridded altimetric geoid using Fourier transform methods.

The strength of the satellite data in the Weddell Sea is that it provides the very dense data coverage
and the regular track spacing. In the central Weddell 3 to 4 orbits are averaged to produce the mean profile.

However close to the limit of the satellite coverage, notably across the ice covered margin of the westem

Weddell, often only one orbit was available, resulting in a deterioration of the gravity field recovery.

Merging the Airborne and Satellite Gravity Fields

The two gravity data sets are quite complimentary as the airborne survey fills in a large hole in the

satellite coverage where the altimetry was quite Ix)or while the Geosat data provides the only ground truth
available for the airborne gravity survey (Figure 2). No major offset exists between the two data sets. The

two were merged so that in the extreme western and southern sections of the WeddeU Sea the airborne grav-

ity was used as in this region generally only one satellite pass was available to calculate the mean profile and

the number of crossing tracks was small. In the central and northern Weddell Sea the satellite data was used
in preference to the airborne data as in this region the satellite tracks are much denser than the airborne

tracks. Figure 3 shows shaded relief maps of the gridded Geosat gravity field and the combined satellite and

aircraft gravity field. The prominent features are the north-south trending continental margin edge effect and
the regularly spaced fracture zone lineations trending northeast-southwest in the southern Weddell and

northwest-southeast in the northern Weddeli. An important result of this work is the dramatic relocation of

this north-south trending continetal margin. Earlier bathymetric maps, based on sparse data, placed the shelf
edge over 100 km to the east of the location now required by the prominent edge effect in the airborne grav-

ity field. The strongly lineated gravity anomalies mapped in the satellite field are suggestive of major reor-
ganization in the Weddell Sea spreading system at approximately 80 my (Haxt)y, 1988).

Xirborrle (;vavitv Ttar.k_
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Figure 2. Track spacing the for 1987 airborne gravity survey (left) and for the Geosat mission (right). The

limits of the map are 62°W to 23°W and 75°S to 58°S.
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Figure 3. Shaded relief maps of the gravity field derived from the Geosat gridded geoid (upper) and the sa-
tellite data set merged with the gridded airborne gravity (lower). The illumination is from the east and the

limits of the map are 62°W to 23°W and 75°S to 58°S. The lines on the merged image are the profiles

presented in Figure 4.

In addition to revealing important structural features in the Weddell Sea, the merging of the two data

sets has permitted us to document the validity of these two techniques in a region where no other gravity
data exist. A series of along track comparisons are shown in Figure 4 where the solid line is the airborne

data and the double line is the Geosat data resampled along the airborne flight lines. The agreement between

the two data sets is remarkably good particularly along line A-B. Along this line the RMS difference

between the two is 7.26 regal for 723 points. Both systems recover the relatively long wavelength shelf edge

anomaly and the short wavelength features (- 15 km) just south of the Orkney Plateau at the northern end of
the line. Line C°D also illustrates the agreement between these two methods across the 20 mgal step asso-

ciated with an age discontinuity in the oceanic crust. The difficulty in using the satellite altimeter in regions
of thick ice is clear in line E°F where the Geosat solution diverges from the airborne solution at the base of

the shelf, a region where the ice is known to the thick.
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Figure 4. Along mack comparisonsof airbornegravity(solidline)and Geosat derivedgravity(doubleline).

The locationof each profileisplottedon the accompanying image inFigure3. The gridlinespacingis100

km on thehorizontalaxisand and I0 mgal on theverticalaxis.

In conclusion,the gravityfieldof the WexldellSea has been mapped using both the NRL airborne

gravitysystem and Geosat aldmelricgravity.The resultantmap clearlydelineatesthe westernand southern

margins of the Weddcll Sea, well definedinthe a_bome resultsand largefracturezones signaturesin the

centralWcddcll, recordedby the altimetricgravityanomalies. These two datasetswere compared inareas

of overlapwhere gravityanomaliescomputed from griddcdGcosat sea surfaceheightwere rcsampledalong

the airbornetracks.The RMS differencebetween the two datasetsfor 5483 pointswas 13.05 mgal with a

mean of 1.60mgal. Along trackcomparisonsrevealthatthesetwo datasetsresolvevery similarwavelength

features.Fracturezone signatureswith widthsof 15 km and amplitudesof20 mgal arcdetectedby both sys-

tems. The airbornesystem has the advantageof being able tocollectdata inregionsof multi-yeariceand

focuson regionsof interestwhile theGcosat dataprovidesa very regular,regionalcoverage of the icefree

region.
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At the turn of the century, only pendulum apparatuses and torsion balances were avail-

able for general exploration work. Both these early techniques were cumbersome and time-con-
suming. Although portable, torsion balances weighed up to 72 kg (160 lbs) (Steiner, 1926)and

required an observing hut for protection from sun and wind. They were extremely sensitive to
close-by terrain effects which had to be measured with painstaking detail to a radius of 100 m

(30 ft) around the instrument (Heiland, 1933). Often the terrain had to be physically smoothed

to a distance of 10 m (3 ft). Accuracy of pendulum measurements suffered because time stand-
ards of the day were pendulums themselves. The period of the roving pendulum could only be

compared with that of another pendulum at a fixed site, or with a spring chronometer calibrated

against a pendulum at a fixed site. This requirement was one factor that gave rise to the need
for broadcast time signals and partlyaccounts for the early association between astronomy, time

standards and geophysics. Vening Meinesz (1929) developed the technique of making ship-
board observations with pendulums.

It was no wonder that the development of the gravity meter was welcomed with a univer-
sal sigh of relief. By 1935 potential field measurements with gravity meters supplanted gradient

measurements with torsion balances. The invention of the so-called zero-length spring

mechanism by Dr. Lucien LaCoste (1934) has been the basis for gravity meter (and long period

seismometer) design for more than fifty years. Gravity meters of this type were erroneously
labeled "astatic" because they were capable of achieving infinite sensitivity. Astatic gravity

meters soon replaced "static" gravity meters and were developed through the years for a wide
variety of applications, including: measurements on land, in bore-holes, under water, on the

sea-surface and in the air. Measurements from a moving platform were made possible with the
discovery by LaCoste (1967) that an overdamped, infinitely sensitive gravity meter could

provide an instantaneous response and large dynamic range. With the help of modern
electronics "static" gravity meters were also developed (Jacoby, 1970) for less precise dynamic

applications and within the past five years (Hugill, 1984) for precise stationary observations.

Potential field measurements are generally characterized by three types:

1) Absolute; Measurements are made in fundamental units, traceable to national stand-

ards of length and time at each observation site.

2) Relative with absolute scale: Differences in gravity are measured in fundamental units

traceable to national standards of length and time.

3) Relative: Differences in gravity are measured with arbitrary scale.

The free-fall apparatus is an example of the first type. Pendulums offer an example of both types

1 and 2, depending on how they are used. If the length of the pendulum is determined, the
measurement is absolute; if the length of the pendulum is assumed to be constant, the measure-

ment is relative with absolute scale. The gravity meter is an example of type 3. As gravity meters
require a known gravity difference for calibration, various relative (type 2) pendulum ap-

paratuses, capable of precisions up to 20 ppm, were employed until around 1970. The longevity
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of pendulums was made possible with the development of broadcast time signals and later
with portable precise crystal clocks. Measurements performed on the North American and

European Gravity Standardization networks with the Gulf Pendulums (Gay, 1940), USA,
Cambridge Pendulums (Jackson, 1961), UK, and the Canadian Pendulums (Valliant, 1971),

amongst others, continue to contribute to the adjusted values of these gravity networks.

Absolute gravity measurements were originally performed as laboratory experiments at
fixed sites. Sakuma (1963) in France, Preston-Thomas (1960) in Canada, Cook (1967) in the UK

and Tate (1966) in the USA were among the early contributors in this field. A major breakthrough

came when Failer and Hammond (1974) developed a portable free-fall apparatus in the early
70's. This apparatus not only improved upon the accuracy achieved with pendulums, but also

provided absolute observations. The free-fall apparatus soon superceded pendulums for estab-
fishing gravity standards.

Improvements in the design of gravity meters since their introduction has led to a sig-
nificant reduction in size and greatly increased precision. Weight decreased from 34 kg (75 lbs)
in 1939 to about 3.6 kg (8 lbs) in modern instruments. As the precision increased from about 100
_tGals to a few _Gals, applications expanded to include the measurement of crustal motion, the

search for non-newtonian forces, archeology, and civil engineering. The development of

peripheral devices (Valliant et al, 1986) to automatically null the gravity meter contributed to
this increased precision. Apart from enhancements to the "astatic" gravity meter, few develop-

ments in hardware were achieved. One of these was the vibrating string gravity meter (Gilbert,
1949) which was developed in the 1950"s and was employed briefly for marine and borehole
applications. Another is the cryogenic gravity meter (Goodkind et al, 1968) which utilizes the

stability of superconducting current to achieve a relative (type 3) instrument with extremely

low drift suitable for tidal and secular gravity measurements. An advance in performing
measurements from a moving platform was achieved with the development of the straight-line
gravity meter (LaCoste, 1983). In this invention, the proof-mass of the gravity meter is con-
strained to move in a vertical sb_ght line, thereby eliminating the cross-coupling of horizontal

accelerations into the vertical; a problem inherent in beam type gravity meters. The latter part

of the century also saw the rebirth of gradient measurements which offers advantages for ob-
servations from a moving platform. Definitive testing of the Bell gradiomenter was recently
reported (Jekeli, 1988).
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ABSTRACT

The RGSS is a system employing a high-accuracy gimbaled inertial platform, It provides a

cost-effective capability for accurate direct measurement of the change in position, elevation,

gravity intensity and deflection of the vertical from an initial point. The RGSS is an adaptation

of the production version of the U.S. Army Position and Azimuth Determining System (PADS).
Several hardware and software enhancements to improve the performance of the system, primar-

ily for gravity vector survey, have occurred over the last few years. The basic principles for the
control of error in the survey measurements due to noise and systematic error are discussed

below. Actual acceptance test results for the RGSS which indicate an inherent capability of the

system to measure change in the deflection of the vertical to a few-tenths of an arcsecond over

survey periods of one to two hours using careful survey techniques are also presented. Finally a

simple method to extend the capability of the system for longer duration surveys is indicated.

1. Introduction

The RGSS depicted in Figure 1 is based upon the Litton high-accuracy gimbaled LN-15

platform which employs 2 two-degree-of-freedom low drift rate G300-G2 gas spin bearing gyros
and 3 low-noise A-1000 accelerometers. The full system includes a digital computer, control

and display unit, power supply and tape recording unit. In a typical single traverse survey the

system is aligned at the initial point, a process which brings the instrument coordinate system

into coincidence with the local east, north and vertical geodetic coordinates, and is also provided

with initial values of position, elevation and if available, the gravity disturbance vector. The

system is then moved by land vehicle or helicopter to a new point where it is stopped to allow

the real-time survey measurements to be recorded and system corrections to be made. It is

well-known[ 11 that these corrections using the observable error in system computed velocity at

the stops (called "ZUPTS"), effectively counteract the error effects of system noise sources

during the travel periods, including the dominant source which is the change in the gravity dis-

turbance vector. Additionally when the survey vehicle encounters the final point of the traverse,

misclosures in the real-time position and elevation are used in a post-survey adjustment to re-

move the effects of accelerometer scale factor error and misalignment which are not observable

with the velocity error observations at vehicle stops.

The manner in which the change in deflection of the vertical is measured with the RGSS is

depicted schematically in Figure 2. At the initial point, the level accelerometers are aligned parallel

to the reference ellipsoid. The Schuler-tuned inertial platform then maintains the parallel orientation

of the level accelerometers with respect to this ellipsoid as it is moved across the surface of the

earth. Consequently when the survey vehicle is stopped and there is no acceleration, any change to

the deflection of the geoid from the ellipsoid can be observed with the level accelerometers.

2. Theory for Control of Error in a Vertical Deflection Survey

Any source of erroneous change in tilt of the level accelerometers will cause an error in

measuring the change in the deflection of the vertical. Acceleration measurement error during

the travel periods cause identical error in survey position and platform tilt. However, it has been

well-documentedl21 that the zero velocity updates and post-survey adjustment can control posi-

tion error and consequently tilt, to the 10-cm (0.003 arcsec) level for short surveys. Hence it

turns out that the principal source of erroneous til," occurs due to the gyro drift rate integrated

over the duration of the survey. Accelerometer noise and vehicle vibration are an additional
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direct source of deflection measurement error at vehicle stops but can be substantially reduced

by averaging over the stopping period. When the terminal point of the survey is encountered,

the reference deflection change over the survey derived from astronomic points can be used to

remove a substantial amount (depending on the ratio of total survey time to drift rate correlation

time) of the integrated drift rate which causes real-time deflection measurement error at the

intermediate survey points.Ill For example, a drift rate of 0.0005 arcsec/sec (lff) with correla-
tion time of 2 hours causes an accumulated tilt of 1.35 arcsec (lo) for a 1 hour survey. After

adjustment, the peak residual error occurs at the mid-point (0.5 hour) of the survey and is only

0.23 arcsec (1_).

3. System Test Results

Acceptance tests for the RGSS TM were conducted in August of 1986. Two types of test

courses were employed. The first course was a straight north-south traverse performed in a land

vehicle which took approximately 1.2 hours to traverse with travel periods of 1 to 1.25 minutes

and stop periods of 2 minutes. The repeatability of the results for four traverses for the two

deflection components are shown in Figures 3 and 4. The real-time measurements have been

linearly-smoothed using astronomic reference points accurate to approximately 0.2 arcsec.

Reference deflection values of similar accuracy are shown at three points along the traverse.

The second traverse is "L-shaped" lying north-south and east-west. Repeatability of the

linearly-smoothed results and their relationship to astronomic reference values are shown in

Figures 5 and 6. The total traverse times were 1.5 and 1.9 hours with vehicle travel times of

3 minutes and stop periods of 2 minutes.

In collection of these survey measurements extreme care was taken in the installation of the

equipment in the land vehicle to minimize vibration disturbances to the inertial instruments

which can induce bias shifts. Also for the "L-shaped" traverse, an outer gimbal was employed to

maintain the outer case of the inertial system fixed with respect to the instrument cluster despite

vehicle heading changes. This procedure minimizes any changes in environmental influences
which can also induce instrument bias shifts.

4. Performance Improvement

There is interest in enhancing the capability of the RGSS so that it can accurately measure

the deflection change over longer duration traverses. Figure 7 depicts the stability of the inertial

platform tilt for a static 3-hour laboratory test run. Clearly if measurements of the slopes of the

tilt histories were periodically available, it would be possible to obtain improved estimates of

the tilt over the full duration of the test. This is easy to do in the course of an actual survey by

extending the stop periods slightly so as to observe the tilt change.

Figure 8 illustrates the significant theoretical performance improvement obtainable by such a

procedure relative to the single point smoothing procedure. An exponentially-correlated drift of
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0.0005 arcsec/sec (lc) with a 2-hour correlation time has been assumed for these results along
with the assumption that an independent measurement of drift rate to an accuracy of

0.0005 arcsec/sec (lc) is available every 6 minutes during the survey traverse.
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References

. Huddle, J.R. "Theory and Performance for Position and Gravity Survey with an Inertial

System," AIAA Journal of Guidance and Control, Vol. 1, No. 3, May-June, 1978,

Pp. 183-188.

. Proceedings of International Symposia on Inertial Technology for Surveying and Geodesy,
First at Ottawa, Canada in October, 1977; Second at Banff, Canada, June 1981; Third at

Banff, Canada in September, 1985.

3. Roof, E.F., A number of private correspondences in 1987 and 1988.

63



ooo 0 5 9
With the Latest JILA Absolute Gravimeter

G. Peter, R.E. Moose, and C.W. Wessells

National Geodetic Survey, Charting and Geodetic Services

NOS, NOAA, Rockville, Maryland 20852

Abstract

One of the six absolute gravity instruments developed and built

by the Joint Institute for Laboratory Astrophysics (JILA) between

1982 and 1985 has been tested under a variety of environmental

conditions between May 1987 and 1988. Of the 30 sites visited

during this period, i0 were occupied more than once. These

reobservations indicate repeatability between i and 4 microgals.

i. Introduction

The National Geodetic Survey (NGS), in cooperation with the

Defense Mapping Agency, Hydrographic and Topographic Center

(DMAHTC), has been _esting the field performance of one of the

latest JILA absolute gravimeters, JILAG#4. Absolute gravity has

been observed in eight east coast states; California; on the

Hawaiian islands of Kauai, Maui, and Oahu; on Bermuda; and at

Gatineau, near Ottawa, Canada. Rather than seeking rapid station

occupations and sites with marginal environmental stability, the

emphasis was placed on getting the best repeatability. Based on

the laboratory performance of these instruments [Niebauer 1987

and Niebauer et al., 1986], it was expected that under ideal

conditions repeatability of better than ±3 microgal could be

obtained. To achieve such repeatability, a set of procedures for

site selection, data collection, quality control, and corrections

for the effects of environmental changes has been developed.

2. Site Selection

In addition to broad geological considerations, site selection

was guided by three principal criteria. To provide a solid

foundation for the instrument and to avoid the problem of

groundwater table changes on gravity, we looked for buildings set

on nonporous bedrock. In addition, buildings were selected in

which vibrations introduced by human activity were Judged to be

relatively low. The instrument was set up in a room at or below

ground level, where temperature fluctuations were also expected
to be minimal.

It was found that few of these desired environmental conditions

could be adequately prejudged. A good, after the fact, measure

of the vibrations was the scatter of the individual drops from

the mean in the given drop-sets. At the quietest sites, the

standard deviation of the drop-sets was in the 5-10 microgal

range, at the noisiest sites in the 50-70 microgal range (given

250 drops for a set). The most common range was 15-30 microgal.
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However, even at the noisiest sites, the mean of the successive
drop sets stayed in the 5-10 microgal range. The principal
problematic vibration sources were air conditioning equipment,
and at our island sites, the oceanic microseisms.

Inadequate temperature stability was the most likely cause for
the up to 15 microgal differences among the means of successive
drop sets at some of the seismically quietest sites. Large
temperature variations, particularly when the temperatures
climbed to 27 C ° - 29 C °, could have affected the laser lock mode

frequencies and the initial position of the dropped object. In

addition, cooling down at night several times caused the

bottoming of the mass of the superspring, causing unacceptable

drop-to-drop scatter.

Changes of the groundwater table can be a major source of error

in repeat gravity observations. Presently at three of our sites

where the influence of groundwater table variation is a concern,

the water table is monitored and corrections are applied to

compensate for the consequent mass variations. The majority of
the remaining sites are free from this effect. The few sites at

which the groundwater table cannot be monitored will not be used

for the investigation of the temporal changes of gravity.

3. Field Observations and Quality Control

The current field observations consist of the collection of

drop sets (containing 250 drops) at 2 hour intervals for 2 days.

The histograms of these drop sets approach Gaussian, and the drop

set means are well defined. To minimize the change of the

frequencies of the laser lock modes due to environmental effects,

the laser lock mode is switched after every drop set.

Environmental corrections are added either to each drop, the drop

set means, or to the mean of all drop sets. The 2-day-long
observations at a station minimize the errors left in the data

after the application of the corrections.

To eliminate outliers caused by high random noise events, each

drop set first is screened, and all drops exceeding three

standard deviations from the mean are rejected. Although rarely

more than three drops are rejected, the mean of the drop sets

often changes by 3 microgals due to this process. After this

quality control process, the corrections are added and the

weighted mean of all drop sets is computed (using the variance of

the drop-sets as weight) to obtain the gravity value of a
station.

4. Corrections

The largest environmental correction is for the solid Earth

tide, which is computed by the gravimeter controller using

Longman's [1959] formulation. In post processing, this

correction is replaced by the more accurate formulation of Tamura

[1982], which eliminates the 3 to 4 microgal errors of the
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previous program. The atmospheric attraction and loading are

corrected for by using the approach of VanDam and Wahr [1987],

the U.S. Standard Atmosphere [Boedecker et al., 1979], and

regional pressure [Rabbel and Zschau, 1985] for absolute station

pressure reference. This correction can amount to as much as 5

microgals. To correct for the effect of ocean loading,

unpublished programs of T. Sato and H. Hanada and of D. Agnew

have been adapted. At some coastal sites, the computed

amplitudes had to be reduced to match the observed signal. While

this correction to the individual drop sets had varied between 2

to i0 microgals, the actual change to the computed gravity value

was usually a few tenths of microgals at the interior and 2-3

microgals at the coastal sites. Because, by coincidence, the

repeat observations were made in the same season, the water table

changes to date have resulted in only about 2 microgal

corrections. The effect of the seasonal peak-to-peak change at

the Herndon site would have been 13 microgals. We also corrected

the observed gravity values for the changes of the Earth's

rotational axis by converting the gravity value to the mean pole

position. The magnitude of this correction for the half Chandler

period is about ±9 microgals.

Instrumental corrections involved laser aging and laser

temperature effects, and conversion to the same measurement

height in case of repeat observations. While laser frequency

drift due to aging is well defined, imprecise temperature

corrections could contribute 2 microgals to the overall error

budget, which in the majority of cases was under 6 microgals.

This uncertainty estimate includes the 0.03 microgal/cm vertical

gradient determination error.

5. Instrumental Problems

So far, the JILAG#4 gravimeter has undergone a major checkup

twice a year. The instrument was taken apart, and repairs,

replacements, readjustments and calibrations were made. Field

problems included: i) partial vacuum loss due to failure in the

portable power supply; 2) electronic component failures, short

circuits, and readjustments involving the dropping chamber and

super spring controllers and the dropped object wiring harness;

3) data and time loss due to bottoming of the mass of the super

spring and due to drift of the reference level (carriage lock

position), both caused by excessive temperature changes (larger

than ±3 C').

6. Results

Site description and absolute gravity values may be obtained

from NGS by writing to the authors. Details on the absolute

gravity program and on the first year's results are available in

Peter et al. [1988] and in Peter et al. [in press]. The National

Geodetic Survey now uses absolute gravity observations in

conjunction with GPS and VLBI observations to monitor vertical
crustal motion.
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ABSTRACT

A balloon-borne experiment, flown at 30 Km altitude over New Mexico,

was used to test dynamic differential GPS tracking in support of gravimetry

at high-altitudes. The experiment package contained a gravimeter (Vibrating

String Accelerometer), a full complement of inertial instruments, a TI-4100

GPS receiver and a radar transponder. The flight was supported by two GPS
receivers on the ground near the flight path. From the 8 hour flight, about

a forty minute period was selected for analysis. Differential GPS phase

measurements were used to estimate changes in position over the sample time

interval, or average velocity. In addition to average velocity,

differential positions and numerical averages of acceleration were obtained
in three components. Gravitational acceleration was estimated by correcting

for accelerations due to translational motion, ignoring all rotational
effects.

INTRODUCTION

The primary objective of this flight (named DUCKY II, flown in October

1985) was to test the differential GPS tracking system; the secondary

objective was to improve on the gravity field measurement shown to be
feasible with the previous flight (named DUCKY Ia, flown in October 1983).

As with DUCKY Ia, a great deal of data were collected, organized, inspected

and analyzed by several different groups. Overall, the flight, data
collection and analysis went very well, but a few problems did complicate

the data analysis sufficiently that the full promise of this experiment was

not fulfilled. Nevertheless, we did succeed in demonstrating GPS tracking

and improving the quality of the gravity measurements from DUCKY Ia.

TEST DESCRIPTION

The principal limitation in high-altitude gravimetry, as concluded from

the flight of DUCKY Ia, is high accuracy tracking. Since all accelerometers

measure only acceleration and cannot distinguish between gravitational
acceleration and kinematic acceleration, it is critical to add sensors to

aid in separating the two. There are only two known ways in which this can

be done: 1) External tracking to directly determine kinematic acceleration;

or 2) Gravity gradiometry to directly detect gravitational acceleration.
External tracking works by measuring position, velocity and acceleration

relative to the tracking device, which is fixed, usually in a non-inertial
frame. We chose external tracking via GPS because it is a lot simpler, and

it has the potential to resolve a few mGal accelerations with available

technology. DUCKY II did have inertial sensors, and when properly combined

with GPS, highly accurate tracking data is possible.

GPS tracking for DUCKY II was accomplished using three DMA versions of

the TI 4100 receivers. One in flight and two on the ground. The two ground
stations were picked to minimize distance between ground receiver and

balloon. For the flight, one ground station was placed at AFGL Det. I, near

the launch site; and the other was placed on the roof of the Post Office in

Lovington, NM, near the expected landing area. The data from the flight
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receiver was telemetered and analyzed in real-time, just as the ground
stations; only the hard line was replaced with a radio llnk.

At the time of flight, GPS was a pilot program, with only six
satellites in orbit. GPS will not be a mature service until at least the
late 1980's or early 1990's. When GPS is fully operational, this experiment
could be repeated, with good satellite coverage and geometry, from launch to
landing. As GPS time was limited, we intended to put the best coverage at
altitude; future flights will cover the ascent - a time of high interest.
The ascent time covers 25 to 30 Km of vertical distance, and gravitational
acceleration and gradient data would be most interesting. Currently, we
have demonstrated that this system works.

GPS DATA PROCESSING

The data processing is shown diagrammatically in Figure I. First, a
rough estimate of absolute position was obtained using a Kalman Filter with
pseudorange measurements. Next, the combined LI and L2 frequency
pseudorange measurements and change in range from phase measurements were
combined to obtain an average estimate of the pseudorange at the first data
time. Here, change in range Doppler measurements were subtracted from
succeeding pseudoranges for the entire satellite pass and averaged to obtain
a more accurate estimate of the pseudorange at the initial start GPS
solution time. Next, the pseudorange values were used to obtain the initial
number of wavelengths between double differenced phase measurements. The
double-differenced phase measurements were obtained by first differencing
between the two receivers. Then, the phase measurements were differenced
between two satellites, where for this set of data PRN 11 was the reference
satellite. Using data from four satellites (PRNs 6, g, II and 12), the
relative position of the balloon was obtained at each 6 second time mark.
This relative positioning procedure corrects the absolute positioning
estimates, discussed above.

The average velocity was determined next using only the very accurate
LI change in phase measurements. The standard Doppler procedure was used to
obtain change in range values. Using the relative positioning values
obtained above for the correction partials, average position changes were
estimated over each data interval. Finally, the accelerations, most
importantly the vertical accelerations, were obtained using a basic
numerical difference between successive average velocity values divided by
the time interval. These accelerations represent the acceleration due to
all forces and are represented in the geodetic coordinate frame.

TEST RESULTS

GPS estimates of vertical acceleration were first obtained between the
two static receivers at Holloman and Lovington sites. Here, the Doppler
procedure for obtaining average velocity over a 6 sec interval was used and
numerically differentiated to obtain vertical acceleration. Here, the
estimates had a numerical standard deviation of 39.3 mGals. When averaged
over the 15 minute interval of data available to the two sites (and the
balloon) an error of only 0.087 mGals was obtained. Even though the
receivers were in a low noise static mode rather than a slightly higher
noise low dynamic mode, this Is still a very good indication that GPS is
sufficiently precise to obtain accurate gravity estimates.

The GPS data was then processed for the balloon with respect to both

static sites. However, since Holloman had such a small amount of

simultaneous data with the balloon, only the results of the balloon with
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respect to Lovington are presented. The data was processed as described
above. The relative vertical position as a function of time is presented in
Figure 2. During this time period, the balloon movedwith average
velocities of about 9 m/s in the North direction and about 17.5 m/s in the
East direction. The cyclic vertical motion wasdue to gas in the balloon
expanding and contracting as the balloon changed altitude and
correspondingly temperature. Doppler estimates of vertical velocity were
obtained and numerically differentiated to produce the vertical acceleration
given in Figure 3. This can be comparedwith the Vibrating String
Accelerometer (VSA)measurementsgiven in Figure 4.

In order to obtain a gravity value, the 30 kmaltitude of the balloon
trajectory, modeled gravity as a function of height was obtained and removed
from the GPSaccelerations. Also, Eotvos and Earth rotation corrections
were made. A constant value was found for the difference between the
corrected GPSaccelerations and the raw accelerometer measurements. The
value obtained was 90 mGal. This value, if all computations were done
correctly, should theoretically be due to the difference between the modeled
gravity and actual gravity at a 30 km altitude. However, there appears to
be a bias that has not been accounted for.

SUMMARY

The two flights completed in this program have demonstrated that
gravimetry is possible at 30 Kmaltitudes. Although the original goal of 1
mGalaccuracy has not been reached, muchhas been learned from the test.
The key is GPSdifferential tracking, which has been demonstrated with this
flight. The results of the static GPSacceleration estimates indicate that
GPShas sufficient accuracy to obtain satisfactory acceleration estimates.
However, the results of the dynamic high altitude portion of the test
indicate that a bias is in the data. With the information available from
the test, it has been difficult to isolate this bias. That is, the bias
could be in the gravimeter, the gravity model, or computational corrections.
It is recommendedthat further testing be performed in a controlled manner
close or on the Earth's surface to further validate the accuracy of the
GPS/gravimeter procedure. As the GPSconstellation increases in number,
this work will becomemucheasier in planning and scheduling flights. If
and whenthe next flight occurs, we should have good tracking throughout the
ascent and flight; certainly that dataset would be unique as the only
vertical profile over 30 Km.
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Critique of the Vertical Gradient of Gravity

Sigmund Hammer NgO m 2053 1
Department of Geology and Geophysics _"

University of Wisconsin-Madison

Growing interest by Geodesists and Theoretical Physicists in high

precision studies of the earth's gravitational field warrant a critical

review of precision requirements to yield useful results. Several

problems are now under consideration. All of these problems involve, more

or less, the precise value of the vertical gradient of gravity.

Elevation corrections for gravity mapping.

The major present use of the so-called Free-Air Vertical Gravity

Gradient is to calculate elevation corrections of gravity station data for

gravity maps. It is standard practice to use the "normal" gradient value

0.3086 mgls/meter (0.09406 mgls/ft). This ignores the fact that published

data demonstrate that the value of the earth's vertical gravity gradient

varies at least plus or minus five percent (± 5%). In high topography

(say 4000 meters - 12,000 feet) this produces sea-level anomaly values

that may be in error more than fifty milligals (50 mgls).

Errors of this magnitude on official published gravity maps are not

tolerable. The often-heard argument that this is not an error but a real

part of the anomaly, is not valid. It produces inconsistent anomaly

values for stations observed at different elevations such as ground and

airborne.

Vertical gradient measurement

The measurement of the vertical gradient of gravity (V) is expressed

by the equation

V + ev = (_g + eg)/(_H - eH)

where ev, eg and eH represent errors in the data. The fractional errors

in these factors are

ev/V = (] + eg/Ag)/(l -- eH/AH) -- 1
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A plot of this equation is shownin Fig. I.
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(Discussed below)

The precision requirements versus elevation range of observation from

Figure i are tabulated below

Table 1 Precision required to measure the vertical gradient to 0.i_

eg (#gal) e H (cms)

Method &H Meters (a) (b) (c) (d)

TRIPOD 3 0.9 0.46 0.15 0.3

TOWER I00 31 15 5 i0

AIRBORNE i000 309 154 50 i00

(a): Zero error in &H

Eg EH
(b) & (c): Equal errors-- and __

_g AH

(d): Zero error in &g

It is apparent that present instrumentation cannot achieve the necessary

precision on a portable tripod with elevation range of, say, three meters
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(i0 feet). Tall buildings and towers, with elevation ranges up to several

hundred meters can achieve the necessary precision but are seldom

available where needed. Upward continuation of ground based gravity

survey data are difficult to evaluate. An example of an airborne vertical

gradient measurement, which achieves the desired accuracy, is shown in

Fig. 2 above.

The data in Fig. 2 were observed at six elevations, up to 5500 feet,

(1600+ meters) which provided fifteen (15) internal gradient values. Most

of these data were in excellent agreement (open circles in the left hand

section). Five discordant points (blackened circles) all involve data at

a single level. A smoothing correction of +1.6 mgls to that value

eliminates the scatter _s shown in the right hand section. The RMS error

of the smoothed gradient data is 0.i_ (±3 E°).

Borehole gravity

Many borehole gravity surveys in oil and gas wells have been

published. The borehole data which penetrated the Greenland ice sheet are

of great interest. The possibility of deep ocean profiles also has been

proposed. An active new purpose of these data is to improve the accepted

value of the gravitational constant, usually designated as G or V which is

the least accurate of all fundamental physical constants. For this

purpose the density of the formation penetrated, as well as the gravity

gradient, and various corrections require accuracies of better than 0.I_.

This needs to be reported in detail for each case.

The actual value of the vertical gradient at the borehole site is

also involved. The observed gravity variation in a borehole is

_g = (V - 4_ G a)_H (TC I - TC2)

where TC is the calculated correction for surface topography and non-
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uniform subsurface formation layering at the two end points for the

gravity measurement, Ag. Solving for G we have

A&_HH _TCG - IV -- + _ ]/4Ha

The use of the "normal" value 0.3086 mgls/m (0.09406 mgls/ft) for the

free-air gradient value (V) at the site may involve very large errors in

the "observed" value of G.

CONCLUSION

The principal conclusion from this review is that the essential

absence of Free Air Vertical Gravity Gradient control and actual values of

gravimeter calibrations require serious attention. Large errors in high

topography on official published gravity maps also cannot be ignored.

Post Script

Since oral delivery of this paper at the recent Chapman Gravity

Conference in Fort Lauderdale, Florida, I have had access to a manuscript

report on a related topic (Romaides et al 1988). This is a detailed

report on gravity observations in a 600 meter television tower and

procedures to calculate the comparative vertical gravity profile by upward

continuation of ground based gravity survey data which were especially

designed for the purpose. Precision of data and analysis is a major

feature of the paper. Calibration of the LaCosts-Romberg gravimeter,

which was used for the study, is also detailed. If and when published

this report will provide a significant up-date for the present paper.
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Methods for Local Gravity Field Approximation

R.V. SAILOR, K.S. TAIT, AND A.R. LESCHACK

The Analytic Sciences Corporation, Reading, Massachusetts

ABSTRACT

The most widely known modem method for estimating gravity field values from observed data is least-

squares collocation. Its advantages are that it can make estimates at arbitrary locations based on irregularly

spaced observations, and that it makes use of statistical information about errors in the input data while pro-
viding corresponding information about the quality of the output estimates. Disadvantages of collocation in-

clude the necessity of inverting square matrices of dimension equal to the number of data values and the need

to assume covariance models for the gravity field and the data errors. Fourier methods are an important alter-

native to collocation. They have the advantage of greater computational efficiency, but require data estimates
to be on a regular grid and do not use or provide statistical accuracy information.

The GEOFAST algorithm is an implementation of collocation that achieves high computational effi-

ciency by transforming the estimation equations into the frequency domain where an accurate approximation
may be made to reduce the workload. The forward and inverse Fast Fourier Transforms (FFI') are utilized.

We have demonstrated the accuracy and computational efficiency of the GEOFAST algorithm using two sets

of synthetic gravity data: marine gravity for an ocean trench region including wavelengths longer than

200 km; and local land gravity containing wavelengths as short as 5 km. We discuss these results along with

issues such as the advantages of first removing reference field models before carrying out the estimation algo-
rithm.

1. INTRODUCTION

Algorithms for estimating gravity field quantities should be theoretically sound, accurate, and computa-

tionally efficient. In characterizing and describing such algorithms, the issues we consider include the specific

geodetic quantity or quantities to be computed or estimated, the general approach (deterministic or statisti-
cal), the type or types of measurement data to be used, the geographic distribution of points at which geodetic

quantities are observed and are to be computed, and the approximations (if any) made in the computation

algorithm. The class of least-squares collocation methods is statistical in nature; general in terms of the quan-

tities to be estimated, the measured data to be used, and the geographical distribution of data and computation
points; and, in principle, exact if assumed covariance models are reasonable.

GEOFAST is an approach to implementing collocation with high efficiency by carrying out computa-

tions in the spatial frequency domain. It assumes the availability of two-dimensional gridded data; it uses

stationary statistical gravity field models; it computes minimum-variance estimates of gravity field quanti-

ties; and it achieves high computational efficiency of the order of N log N operations, where N is the number

of measurement points. This efficiency depends on the use of a critical approximation which, in practice,

introduces little loss of accuracy. Furthermore, the user has control of the tradeoff between accuracy and
computational efficiency.

2. THE GEOFAST ALGORITHM

The GEOFAST algorithm provides an efficient computational solution to the minimum-variance estima-
tion equations of collocation:

x = Cxz (Czz)-lz (1)
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where z is a data vector of dimension N, Czz (of dimension N by N) is the sum of its autocovariance plus

measurement noise, x is a vector of estimates (of dimension M), and Cxz is the cross-covariance matrix (of

dimension M by N) between the estimated and measured quantities. Direct solution of equation (1) involves

on the order of N 3 + MN operations, limiting the feasible applications of collocation methods where data sets

of thousands of measurements are involved.

This workload can be reduced to the order of N log N, if the following assumptions are valid: measured

values are given, and estimates are required, at the same points on a rectangular grid, and covariances are a

function of relative position only (shift invariance). In practice, shift invariance is equivalent to the assump-

tion of stationary statistics. These assumptions impose a special structure on the matrices appearing in equa-

tion (1): they are block Toeplitz. The special properties of block Toeplitz matrices are essential to the

GEOFAST algorithm.
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Figure 1. Outline of the GEOFAST algorithm.

Transformation of equation (1) to the spatial frequency domain is carried out efficiently through the use

of the Fast Fourier Transform (FFF), leading to an equivalent estimation equation in the transformed vari-

ables _x' and z'.

x' = C'×z (C'zz) -_ z' (2)

In practice, the first step of the GEOFAST algorithm, as illustrated in the left-hand column of Figure 1, is the

transformation of the data vector z and the matrices Czz and Cxz into the frequency domain. The transforma-

tions, however, are not exact; approximations essential to the computational economy of the GEOFAST algo-

rithm are incorporated. In effect, the Czz' and Cxz' matrices that would be the exact transforms are replaced by

banded approximations, and a compensating data windowing is applied in the computation of z'. The second

stage of the GEOFAST algorithm, shown in the central box of Figure 1, is the approximate solution of the

banded version of equation (2) through the use of an iterative technique. In effect, this is equivalent to the
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computation of x'. The final step (right-hand column of Figure 1) is the inverse FFF from x', the frequency-

domain solution, to x, the spatial domain solution, incorporating the inverse of the windowing operation that

was pan of the transformation from z to z'.

User control of tradeoffs between accuracy and computing time in the GEOFAST algorithm involves the

selection of parameters governing the bandwidth retained in the approximations to the matrices Czz" and Cxz',

and the number of iterations carried out in the iterative solution of the approximate frequency-domain equa-

tions. In actual applications, reasonable parameter choices result in an accurate and highly efficient algorithm.

3. FIRST TEST DATASET MARINE GRAVITY

For the first set of tests, gridded values of gravity anomaly and deflection of the vertical were generated

for a 36 deg by 36 deg area in the western Pacific that includes a significant ocean trench, using the Rapp

(1981) worldwide spherical harmonic expansion to degree and order 180. The GEOFAST algorithm is used

to compute components of the deflection from the gravity anomaly data; comparison with the deflection com-

ponents computed originally from the spherical harmonic model (regarded as truth data) provides a measure

of algorithm performance. To quantify the effects of using high-order reference fields, the same spherical

harmonic model can be used to generate a set of anomalies and deflections, but for degrees 91 through 180

only. Using GEOFAST with this high-frequency field is equivalent to removing a degree-and-order-90 refer-

ence field from the data prior to processing. Other parameters explored in the testing include data extent, grid

spacing, GEOFAST bandwidth, choice of covariance models, and measurement noise level.
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o ..,
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Figure 2. Input data and results for GEOFAST test. Input gravity anomalies are shown at the

left; synthetic deflection truth data are shown in the center; errors in the estimated deflection

appear on the fight.

/
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A typical test is illustrated in Figure 2. The gravity anomaly data (in this case with the degree-90 reference

field removed) at 0.5 deg grid spacing are shown on the left; these are used as input to GEOFAST. Deflection

data computed by GEOFAST for the same grid, assuming an attenuated white noise covariance model (with

correlation distance of 0.5 deg), will be compared to the synthetic "truth data" shown in the middle. The re-

sulting deflection error field appears on the fight. Some test results are summarized in Table 1, which shows

the effects of the bandwidth parameter, mB, and the grid spacing (0.25 or 0.50 deg) on accuracy and comput-

hag time. Table 2 summarizes the effects of measurement noise on estimation accuracy. To a first approxima-

tion, measurement noise (in this case, white noise) contributes additively to estimation error variance. The
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Table I.

Resolution

Grid (deg)

0.25

0.25

0.50

Points

3600

3600

9O0

Summary of GEOFAST Test Results.

Bandwidth Error (aresec)

MB Time* (min)

0 4

4 30

0 1

Mean

0.001

0.003

0.003

Sigma
0.15

0.09

0.17

Maximum

0.70

0.31

0.59

Table 2.

Grid (deg)

0.25

0.50

Effects of Measurement Error on GEOFAST Performance.

Measurement Error

rms (mgal)
0
1
2
5

Noise-lnduced Error
rms (arcsec)

0.00
0.03
0.07
0.16

0.00
0.04
0.08
0.20

Total Estimation Error
rms (arcsec)

0.15
0.15
0.17
0.22

0.17
0.17
0.19
0.26

effects of removing a reference field from the measured data were explored in another set of tests. A typical

result is that the error standard deviation is reduced by a factor of more than five by removing the reference
field.

4. SECOND TEST DATASET -- LAND GRAVITY

The second set of tests was designed to investigate the performance of GEOFAST on local data sets

containing high-frequency information. Synthetic data were generated, using a mass dipole model originally

formulated for the gravity gradiometer testing program. The statistical properties of the data are consistent

with those for an actual test area in north Texas. As in the marine gravity tests, synthetic truth data were

generated in the form of gravity anomalies and deflections of the vertical, for each point of a 5 km grid cover-

ing a square 500 km on a side. GEOFAST is used to estimate the east component of the deflection from the

anomaly data; comparison with the directly generated deflection values provides a measure of the algorithm's

performance. These tests use a covariance model with a correlation distance of 10 kin. Estimation regions

ranging from 40 to 150 km on a side are selected from the interior of a 150 km square located centrally within

the original 500 km area, with resulting error standard deviations between 0.4 and 1.9 arcsec. The estimation

accuracy would be improved by using a finer grid spacing.

5. SUMMARY

The GEOFAST algorithm, described briefly above, is used to estimate deflection of the vertical from

gravity anomaly to an rms accuracy of better than 0.2 arcsec with modest computer cost. Conventional imple-

mentations of collocation require considerably more computing effort. GEOFAST provides a user tradeoff

between computing cost and estimation accuracy. In a typical application reducing the accuracy requirement

from 0.1 to 0.2 arcsec reduces computing time by a factor of eight. Other test results confirm the importance

of removing a high-order reference field from the data before applying the algorithm. For example, removing

a degree-90 reference field from the synthetic marine gravity data reduces estimation errors by a factor of
five.

The GEOFAST algorithm can be applied to current real-world problems involving the reduction of grad-

iometer or altimeter data. Potential application areas include the production of accurate maps for marine crus-

tal and lithospheric studies.
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ABSTRACT

The aim of this paper is to develop, test and, to some extent, compare

different types of gravity prediction methods for local and regional gra-

vity evaluation. Four different test areas have particularly been selected

in view of different prediction requirements. Also different parts of the

spectrum of the gravity field were considered.

i. INTRODUCTION

From modern seismic tomography and other results it is known that

lateral density variations have been underestimated in the past. Conse-

quently, gravity variations at the surface of the earth are difficult to

predict. On the other hand, modern photogrammetric and altimetric measure-

ments give way to very detailed models of the terrain for estimating

gravity in continental areas. Four different areas were selected in order

to test various aspects of regional and local gravity modeling. Different

mathematical tools have been used in order to test their ability to predict

gravity under various conditions.

2. DESCRIPTION OF PREDICTION TESTS

Test area one comprises a 500 by 300 km area in Northern Argentina,

Southern Bolivia and Northern Chile in the high Andes. Based on a recent

terrestrial gravity survey (Goetze et al., 1988) which could be assumed to

be free of errors in that comparison a study of the accuracy of Rapp's

(1981, 1986) global gravity models was possible in a zone where very scarce

surface gravity data was available to the global models. The area is a

typical subduction zone and was recently studied in detail by Isacks

(1988). This is one of the few areas where the geophysical structure is

relatively well known from seismic results even though details of the

gravity field are not well known. Nevertheless, the comparison was based on

a regular Airy-Heiskanen model using a compensation depth of 40 and 50 km,

respectively. The investigation in terms of isostatic anomalies was done in

order to reduce the effect of erroneous elevation data and local effects.

The two data sets could be assumed to be independent of each other.

Basically, wave lengths up to degree n = 180 were considered. The compari-

son was made in terms of free air, Bouguer and isostatic gravity. The com-

parison indicates a surprisingly good agreement of large scale phenomena

whereas smaller phenomena of the gravity field reveal discrepancies of the

order of ±i0 mgal, as expected.

A second test area is characterized by alpine overthrust, leading to

strongly varying anomalous regression of free air gravity with elevation.

Therefore, Nettleton type prediction does not lead to good free air or Bou-

guer gravity estimates as in the case of homogeneous parts of the Northern

Alps. The area was chosen in order to demonstrate the difficulties asso-

ciated with overthrust and similar density variations in mountain areas

81



GROTENETAL.' THEUSEOFHIGH-RESOLUTIONTERRAINDATA...

which can makelocal gravity prediction quite erroneous unless precise geo-
logical information is available. But there are few areas where detailed
density information is available where gravity is unsurveyed. In the area
under consideration the density values determined by the Nettleton method
differ about 0.i to 0.2 gr/cm3 from that determined by geological means.
For details see (Kling et al., 1987).

The overwhelming part of the investigation is related to the third
area in the Odenwaldclose to the Rhinegraben where extremely dense (from
ten to fifty meter grid spacing) terrain data were available. The area is
dominated by paleocoic mountains and deep (4 km) sediments, in the graben
zone, and magmatic rocks of different kind leading to quite discontinuous
and significant density variations. Fig. I showsa small part of the third
test area on the eastern Rhinegraben shoulder (Odenwald)where the majority
of the prediction tests were carried out. In order to get a meaningful
illustration a grid distance of i00 mwas chosen instead of i0 to 50 m as
was used in the computations themselves. The figure should illustrate the
type of topography for which gravity prediction, based on various mathe-
matical techniques, was carried out using high-resolution terrain, sparse
density and a few gravity data. As meangravity values for blocks of a few
kilometer side length are of primary interest to geodesy the smoothing or
"smearing" effects inherent in least-squares adjustment of terrain models
with respect to relatively few gravity data is not too perturbing.

The fourth test area is located off central Italy close to Sardinia
island in the Tyrrhennian Seawhich is characterized by extremely thin (I0
km) lithosphere. Various types of gravity data including altimetric results
were available. Mainly terrain, regional density and gravity data were used
for prediction based on various types of spectral analysis.

As a relatively dense gravity net was available the application of
various mathematical procedures could be tested. Flat twodimensional
Fourier methods (FFT) were used to represent local digital terrain models.
Freeden's (1982) well knownspherical spline techniques were modified in
order to solve strictly local prediction and transformation (conversion of
gravity into potential etc.) problems. Pellinen's (1964) classical methods
by which he solved Molodensky's linear integral equation approach using
terrain data was adapted to regionally varying coefficients for the linear
regression of free air gravity with elevation. As a great variety of geo-
physical parameters such as (I) thickness and density variations in the
crust, (2) various types of Mohodepths, (3) thickness and density variati-
ons in the lithosphere, (4) thickness of sediment layers etc. have been
derived for Western Europe from seismic and gravity data this information
(which is usually not available for gravity prediction in unsurveyed areas)
could be fully exploited for our test areas (2) to (4). These parameters
clearly reveal variations of totally different wave lengths s downto s <
30 km. Consequently, by fully exploiting moderndigital terrain models
errors of > 5 mgal in smoothhill areas occur which do not average out over
distances of I0 to 20 km unless geophysical detail information is
available. Deviations from standard isostatic and similar models are of
non-isotropic and non-randomcharacter so that stochastic or similar re-
gression techniques can only be used reliably if trends can be well estima-
ted from existing (scarce) gravity or similar information.
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3. CONCLUSIONS

This study which focuses on four primary aspects of modern prediction

of gravity in unsurveyed or weakly determined areas reveals the efficiency

and limitations of gravity prediction using high-resolution terrain models.

It also shows the accuracy of global gravity models in (almost) "unsur-

veyed" areas characterized by strongly varying irregular gravity fields. It

demonstrates the consequences of lateral density variations in the crust

and lithosphere. By comparing these results with prediction results earlier

derived by others or by us it becomes clear that quite favorable prediction

results obtained e.g. in the Northern Alps where homogeneous density pre-

vails should be generalized with great care or should better not be genera-

lized at all. The necessity to supplement global gravity models to be dedu-

ced from satellite gradiometry for degrees n _ 180 by other measurements

was shown. In spite of the fact that static models prevail in modeling

local and regional gravity for harmonics of degrees 180 _ n ! 1800 the use

of strong correlation of free air gravity with terrain is perturbed by a

great variety of significant local and regional effects.

Typical digital terrain model in third test area
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Abstract: Masses associated with the topography, bathymetry, and its isostatic
compensation are a dominant source of gravity field variations, especially at
shorter wavelengths. On global scales the topographic/isostatic effects are also
significant,except for the lowest harmonics. In practice, though, global effects
need not be taken into account as such effects are included in the coefficients

of the geopotential reference fields. On local scales, the short-wavelength gravi-
ty variations due to the topography may, in rugged terrain, be an order of mag-
nitude larger than other effects. In such cases, explicit or implicit terrain reduc-
tion procedures are mandatory in order to obtain good prediction results. Such
effects may be computed by space-domain integration or by FF'[" methods.

Numerical examples are given in the paper for areas of the Canadian Rockies.

In principle, good knowledge of the topographic densities is required to pro-
duce the smoothest residual field. Densities may be determined from sample mea-
surements or by gravimetric means, but both are somewhat troublesome methods
in practice. The use of a standard density, e.g., 2.67 g/cm', may often yield
satisfactory results and may be put within a consistent theoretical framework.

The independence of density assumptions is the key point of the classical
Molodensky approach to the geodetic boundary value problem. The Molodensky
solutions take irito account that land gravity field observations are done on a
non-level surface. Molodensky's problem may be solved by integral expansions or
more effective FFT methods, but the solution should not be intermixed with the
use of terrain reductions. The methods are actually complimentary and may both
be required in order to obtain the smoothest possible signal, least prone to alias-
ing and other effects coming from sparse data coverage, typical of rugged topo-
g raphy.

Introduction

The two aspects of the role of the topography, namely the direct attraction
of masses of the terrain and the uneven surface on which terrestrial measure-

ments are made, are from a theoretical point of view completely different
problems. The first assumes a density model, while the second - the Molodensky
theory - in principle is free of any density assumptions. Using terrain reductions
a computational smoothing of the gravity field is attempted, making interpolation
and prediction from scattered data points more precise. Molodensky's theory
makes the classical geodetic boundary value problem solutions "correct" on the
uneven topographic surface; applying the Molodensky correction terms to gravity
implies no smoothing at al.. The methods are therefore complimentary and should
be used together whenever feasible.

Terrain reductions

The terrain reductions may be classified under global or local models. On
global scales, topographic-isostatic reductions must be used according to some
idealized isostatic models. The simple model coming closest to geophysical rea-

lity is the Vening Meinesz model, which is a modified Airy model taking into ac-
count the elasticity of the crust, permitting short-wavelength loads to remain un-
compensated. Some areas of the earth are, however, notably deviating from the
simple models, as for example trench areas and midoceanic ridges. For a review
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of computation of global topographic-isostatic effects, which may be done effici-
ently by fast spherical harmonic expansions,see Rummel et al. (1988).

The global topographic-isostatic reductions have only limited use in geodetic
gravity field modelling, but are very useful for identifying anomalouslycompensa-
ted areas. The real impact of terrain reductions come on the local scale, where
they strongly diminish aliasing from undersamplingof the rapidly varying, height-
correlated gravity anomalies in rugged topography.

On a local scale, isostatic effects need not be considered. Instead, a residual
terrain model reduction (RTM), where only the topographic deviations from a smooth
mean topography are considered, may be used with advantage. The smooth mean

height surface h r may be obtained from the topographic heights h by a moving
average filter over suitable caps, say 1° in size. In this case, RTM-reduced gra-
vity anomalies will resemble isostatic anomalies (Forsberg, 1984). Removing the
complete effect of topography relative to a constant mean elevation level for a
given area, as often done in practice, may be considered a special case of the
RTM reduction. The total computational removal of all topography down to the
geoid, i.e. the complete Bouguer reduction, is not useful in geodetic gravity field
modelling because of very large indirect effects on the geoid.

The general form of a terrain effect on any gravimetric quantity expressable
as a linear functional L(T) of the anomalous potential T is of the general form

h

Lp(T m) = GfffLp({)dxdydz, £= ,/(X-Xp)i+(y-yp)2+(z-hp) 2 (1)

Eh
r

where E is the infinite x-y plane (planar approximation). Integrals like (1) may
in practice be evaluated by prism integration or by expansions in convolutions,
permitting use of FFT techniques. For details see Forsberg (1984, 1985) or Side-
ris (1985). Formally T m is the potential generated by the selected terrain mass
model. When computations are done consistently in a remove-restore technique,
i.e. modelling the reduced potential

T c = T - T (2)
m

by subtracting terrain effects from input data, and restoring terrain effects in
predictions, then in principle density p need not be known. However, meaningful
results are only obtained when p is close to the real word values.

The question of density

Estimation of good insitu densities is often quite difficult. Only the surface
of topography is available for sampling, and measurements of bulk densities on
rock samples tend to show high variability even within the same geological for-
mation. For sedimentary rocks, questions of porosity, water saturation, and com-
paction present special problems. Typical density values encountered in practice
range from below 2.0g/cm 3 in moraine hills up to 3.3 g/cm' in(rare) gabbroic
intrusive areas. However, the standard density 2.67 g/cm _ represents a surprising
good value in many cases (granities, gneisses, old sediments), and its use have
been justified by many empirical investigations (Dobrin, 1976). Where significant-
ly lower density values need to be used (e.g., young sediments), topographic re-
lief is usually also lower and good density values are therefore less critical.

For local applications a good alternative to density measurements is the estima-
tion of 9 through studies of correlation of gravity with topographic heights ("the
Nettleton method"). This method may be put within a consistent framework in
least-squares collocation, estimating one or more density parameters alongside the
gravity field modelling itself. WFor details, see S/inkel (1981).
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Molodensky'sproblem

The first order Molodensky solution to the geodetic boundary value problem
consists of a series expansion of the form

with

gn(Q)
g(p)= _ 1 ff

n=0 2_y ./J d XQd yQ
E [ (XQ-Xp) 2+(yQ-YP )2]½

(3)

g0!Q) = Ag(Q) (4)

/sg (x,y) - Ag(xQl._

gl(Q) =-(hQ-hp) _-_-1IJE [(xTx)--2+-TY-Q-Y)2"]_J2 dxdy (5)

For a review, see Moritz (1980) or Sideris (1987). Depending on the terrain roughness,
higher-order terms may be quite significant. Their computation requires repeated
applications of the harmonic continuation integral (5), which may be formulated
as a sequence of convolutions and evaluated efficiently by FFT methods. For
examples see Sideris (1987).

When used on free-air anomalies, formula (5) is known to be closely related
to the classical terrain correction c (Moritz, 1980). The relationship comes from
noting that in rugged topography free-air anomalies show a correlation with

terrain height of the form ag = Agn+2_Goh where Agn is the simple Bouguer
anomaly. Unfortunately the use of c ( reqmrmg density reformation) rather than

.gl (independent of 0) have been the source of much confusion, and the practice
is not recommended. It is thus preferable to evaluate (5) with terrain-reduced

c will begravity data agc. The corresponding "reduced" Molodensky terms gn
smaller, and the convergence of (3) improved. If terrain reductions are not used
then, on the one hand, gravity data must be given densely enough to sufficiently
sample even the shortest topographic-induced wavelengths, and, on the other
hand, higher-order Molodensky series terms should be considered. Dense gravity data
are hardly ever available in practice.

An example: Kananaskis area, Canadian Rocky Mountains

The Kananaskis area west of Calgary is a mountainous area with topography
ranging from 1400 m to 3400 m. A number of astronomic deflections of the verti-
cal and GPS-derived geoid undulations are available along the main valley area,
in addition to gravity data space every 5 to 10 km in the surrounding region,
and a dense digital terrain model. Results for a FFT gravity field modelling
example are given below; for more results on terrain corrections for gravity and
_:radiometrv in the same area, see Tziavos et al. (1988).

For the terrain reduction of the available data, a 100 m x 100 m and 1 km
x 1 km DTM was used. A smooth height surface with resolution of 70 km was

generated by averaging. The statistics of the data, removing topographic effects
relative to the mean height surface, is shown below. Predictions were not at-
tempted without terrain reductions, as individual gravity anomaly values could chan-
ge up to 100mgal close to the prediction points, depending on whether the obser-
ration happened to be made on top of a mountain or at the bottom of a valley. In
other words, the observed zXg-field is seriously undersampled without some kind
of terrain reduction.
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Kananaskis: Effect of the topograpl W on observed gravity field data

Data type

No. of

)oints

Statistics

Observed values I

Terrain effects

Reduced data

(_al)

473

mean std.dev.

20.5 57.2

-14.9 47.2

35.4 29.8

q

(arcsec) (arcsec)

15

mean std.dev, mean std.dev.

1.37 3.37 .95 6.28

.86 2.97 -.22 5.74

.51 1.60 1.16 2.15

C;(nt, relative to
nor thernmost

GPS-point)

l0

mean std.dev

1.15 .46

.27 .21

.88 .25

For the FFT prediction, gravity anomalies were gridded on a 1.5'x2.5 ' grid
in a 2.50X3 ° region. A similar 1.5'x2.5' height grid was obtained by gridding
gravity station heights for representing the uneven surface to which observations

refer, in order to be able to use FFT techniques for computing the first-order
Molodensky corrections gl" The procedure of gridding station heights rather than
averaging the detailed DTM is preferable, because the height distribution of gra-
vity stations does not necessarily follow the averaged topography; gravity stations
tend to be located in valleys rather than mountaintops.

The results of predictions, with and Without a spherical harmonic reference
field (OSU86F to degree 180), and with and without the Molodensky terms,

are shown below. Considering the rough topography, results are very satisfactory.

The influence of the Molodensky term seems to be completely masked by other
error sources, illustrating the high degree of smoothness locally provided by the
terrain reductions.

Kananaskis: Prediction results (observed minus predicted) for various solution types

Solution with

180x 180 Molodensky g 1
reference field [ terms

No No

No Yes

Yes No

(arcsec)
mean std.dev.

.92 .65

.91 .69

1.92 .66

rl

(arcsec)

mean std.dev.

.31 .57

.33 .60

-1.57 .48

t; relative

(m)

mean KM5

.09 .24

.09 .25

.09 .17
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THE INVERSE GRAVIMETRIC PROBLEM IN GRAVITY MODELLING

F. Sans6*, C.C. Tscherning Ngo" _0 58 5

Istituto di Topografia Fotogrammetria e Geofisica, Politecnico Milano, Italy

I.

One of the main purposes of geodesy is to determine the gravity field of the

earth in the space outside its physical surface [13]. This purpose can be

pursued without any particular knowledge of the internal density even if we

don't know the exact shape of the physical surface of the earth, though this

seems to entangle the two domains, as it was in the old Stoke's theory
before the appearance of Molodensky's approach [i0].

Nevertheless even when large, dense and homogeneous data sets are available,

it has always been recognized that subtracting from the gravity field the

effect of the outer layer of the masses (topographic effect) yields a much
smoother field, which allows for computations with a much lower

approximation error [16].

This is obviously more important when we have a sparse data set, so that any

smoothing of the gravity field helps in interpolating between the data
without raising the modelling error [3]: this approach is nowadays generally

followed also because it has become very cheap in terms of computing times

since the appearance of spectral techniques [14].

.

As we know the mathematical description of the IGP is dominated mainly by

two principles, which in loose terms can be formulated as follows:

1) the knowledge of the external gravity field determines mainly the

"lateral" variations of the density;
2) the deeper is the density anomaly giving rise to a gravity anomaly, the

more improperly posed is the problem of recovering the former from the
latter.

For a sphere, of radius normalized to i, the relation between harmonic

coefficients of the external gravity field u(P) = x u Ynm(O_) and of the

internal density p(Q) = z Pnm(rQ)Ynm(OQ) is described nm _y the formula

1 C 1 n+2

- J Pnm(r) r dr (i)Unm 2n+1 o

Several applications of (i) derived from fixing the radial variations of p:

e.g. the single layer case is considered as well as harmonic or quasi-

harmonic densities, which correspond to suitable variational problems.

.

The statistical relation between p and n (and its inverse) is also

investigated in its general form, proving that degree cross-covariances have
to be introduced to describe the behaviour of p, i.e.

o n(rl r2 ) _ ip, ' 2n+i z Pnm(rl) Pnm(r2)
m

the general relation between such functions

the potential

89

(2)

and the usual degree variances of



02 1 U2
u,n = _ Zn nm '

is

o2 1 Ill- drI dr2 o (rl, .r2)n+2 (3)
n,m 2n+1 0 p,n r2) (rl

The meaning of Kaula's rule is investigated in this framework proving that
it demonstrates, within a layered model, the presence of a white noise in

the lateral variations of the outermost layer; this is interpreted as the

effect mainly of the rough signal due to topographic masses and their

compensation.

9

Furtheron the problem of the simultaneous estimate of a spherical anomalous

potential and of the external, topographic masses is addressed criticizing

the choice of the mixed collocation approach, as presented in [12]. This

approach in fact fixes the relation between internal covariance of p and n
in such a way that it has been proved to be wrong in practical cases [5].

A reasonable improvement is found when the modelling of the density is

constant on a scheme of overlapping blocks, since this allows the

construction of suitable crosscovariance models. This approach is now

undergoing a practical investigation.

The paper will be published in full length by the Danish Geodetic Institute

in the book in honour of the 60th birthday of Torben Krarup.
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FFT--Local Gravimetric Geoid Computation

Dezs5 Nagy, Geophysics Division, Geological Survey of Canada, Ottawa, Canada
and

Rudolf J Fury, National Geodetic Survey, NOS/NOAA, Rockville, Md. USA

Abstract

Model computations show that changes of sampling interval introduce only 0.3 cm changes,
whereas zero padding provides an improvement of more than 5 cm in the FFT generated geoid.

For the GPS survey of Franklin County, Ohio, the parameters selected as a result of model

computations, allow large reduction in local data requirements while still retaining the cm

accuracy when tapering and padding isapplied. The resultsare shown in tables.

Introduction

The following is a brief description of computational modeling carried out in order to obtain optimal

results from the use of the Fast Fourier Transform (FFT} technique for local geoid computation. These

experiments were designed to find the most favorable parameters for local geoid computation using gravity

data only. The availability of analytical expressions for the model, both the potential and the gravity,

permits us to evaluate the effect of changing any of the parameters introduced when using FFT. It is

recognized, that some of the parameters depend very much on the model. Thus these computational

experiments are model related and can not be applied blindly for all practical work. Still, the model used

in these studies provides the opportunity to test some interesting aspects of the FFT technique.

Model Description

A three-dimensional model of a granitic intrusion (Gibb and van Boeckel,1970), which consists of 64

prisms and covers an area of 80x75 km 2, with a change of about 60 mgal and 75 cm in gravity and

geoidal height respectively, was used in these model computations. For details see Nagy(1988). The

analytical expressions for the potential, U, and the gravity, Ag, for a single prism are given below

(Nagy,1980) :

v = kp[=yln(z+ r) + _z ln(x+ d + __ln(y+ r)

1
__ _ xy]

yz 1 2 arctan zx lz2 arctan
-2 x2 arctan xr 2Y yr 2 _r

IAg = kp xlnCy + r) + yln(x q- r) - zarctan

where r = X/x _ -{- y2 + z 2.

The negative of the potential divided by the normal gravity, "7, gives the geoidal height for a prism.

Summing up the required quantities for all prisms of the model provide the ezact reference values, with

which the result of the various numerical computations can be compared. The difference is clearly the

error of the numerical procedure. In this case, the error generated by the FFT method.

Geological Survey of Canada Contribution No. 34788

92



NAGY AND FURY : FFT--Local Gravimetric Geoid Computation

Effect of Sampling Interval

As the transfer function, i.e. the function used to weigh the gravity anomalies to produce the geoidal

height, is relatively flat as compared, for example, with the functions used in calculating the deflections

of the vertical, or the vertical derivatives, one expects no large changes associated with the changes in

the sampling interval. This has been confirmed with model computations. Different sampling intervals

between 1 and 15 km covering the same area produced only 0.3 cm change in geoidal height. For this

reason, the sampling interval does not seem to be of major concern in local geoid determinations.

Effect of Padding

The Fourier method assumes periodicity, i.e. the field given in a two-dimensional array is repeated in the

frequency domain around the central part in both dimensions and introduces the so called leakage into

the computations, causing unwanted errors. To partially compensate for this error, the technique known

as padding is used. Padding consists of putting zeros around the values of the input matrix, practically

doubling the dimensions. For the model using 5 km sampling interval and a 26×26 grid, the gravity was

practically zero at all boundries. The model geoid over this grid has a span {difference between maximum

and minimum) of 74.9 cm. The use of FFT on the corresponding gravity anomaly produced a geoid with

the span of 67.3 cm i.e. an error of 7.6 cm. Carrying out the zero padding to generate a matrix of 50x50

resulted in a different geoid with a span of 73 cm. This means that doing only zero padding, the error

was reduced from 7.6 cm to 1.9 era. This is a far greater change then produced by varying the sampling

interval. Here the great importance of modeling is stressed. The results of computations without and

with padding are different. However without the knowledge of the exact model values, one would not be

able to draw any conclusions. In the case of modeling, the comparison with the exact values makes it

obvious which computation gives the better result.

Effect of Tapering

Normally the gravity anomalies at the boundaries are not zero. In order to have a smoother transition, the

techique known tapering is used. The purpose of tapering is to bring down the non-zero gravity values at

the boundary smoothly to zero. There are various ways of achieving this, but model computations show

that the particular method used for tapering is not critical. Table 1 summarizes some numerical results

with various combinations of tapering with zero padding. The input matrix was generated at a 1 km inter-

val, consisting of an array of 62x62 {used as reference), covering the central part of the anomaly field, with

reasonably large non-zero values at the boundaries. All geoidal height related quantities are given in crn.

Table 1

Array

Size

62

7O

90

90

110

110

130

110

130

Tapering

%

22

Padding

%

Geoidal Heights

min

0 -24.55

0 -22.31

16 -15.98

0 21.22

16 -17.38

0 -21.71

17 -17.13

32 -12.22

33 -13.17

max

23.89

26.74

35.17

34.68

42.7622

38 42.34

38 49.69

6 41.78

22 48.99

Residual Errors

Span RMS

40.73 7.43

27.30 4.87

22.51 2.96

11.98 2.54

8.54 1.77

16.63 2.96

10.97 2.16

20.97 2.66

7.76 1.64
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NAGY AND FURY : FFT -Local Gravimetric Geoid Con_l,.tation

Numerical Errors

It is well known that the computed values toward the border of the area become erroneous. Modeling

provides again a unique opportunity to study this question by comparing the analytical and the FFT-

derived values and, based upon the residuals, draw some conclusions. On the model used, there is a sharp
drop in residual errors after reducing the array size by about 10%, thereafter no significant reduction in

errors occur. Obviously, the results are again model dependent.

Practical Application

Based upon the results of model computations, the FFT method has been used to calculate relative

geoidal heights for the Franklin County GPS survey. The calculation was done in two steps :

• the regional component was calculated from the OSU86F truncated to n = 36,

• the local component was derived by applying the FFT technique to the residual gravity field, which

was gridded at 5 t intervals resulting in an array of 192x 192 providing the desired coverage for the
area of interest.

The geoidal height difference is the sum of the global geoid and column [1]. This value will be used later
in the comparisons listed in Table 3.

The results of some of the computations are shown in Table 2. Column [1] is the direct application of
FFT; all other solutions are the changes with respect to this solution. The dramatic reduction of errors

by the combined effect of tapering and padding (for example, solution [8] vs. solution [4]) is readily

recognizable from Table 2.

Table 2

Base line
Global

geoid

Rhodes ---* Clark -8

18-83 ---* Clark -7

18-83 ---* Rhodes 1

Britton --* 18-83 10

Hoover --*Clark 3

18-83 ---*Shannahan -17

Jackson ---*Britton -20

Smith --4Jackson -8

Smith _ Hoover -28

FFT ResidualFFT Geoids

[1] [2] [31 141 [5 ] [61 [71 [81

3.3 -.3 .5 2.4 1.1 .4 .6 -.4

-9.2 -.4 -.1 1.6 .9 .3 .2 -.5

-12.5 -.1 -.6 -.8 -.2 -.1 -.4 -.1

-30.9 -.1 -.8 -2.9 -1.0 -.1 -.7 .7

9.0 .5 .1 -.8 -1.1 -1.1 -.3 -.5

4.1 -.6 1.1 5.0 2.7 .5 .8 -1.3

18.3 -.3 1.9 7.2 2.9 1.1 2.2 -.7

59.0 .4 .9 2.4 .5 -.5 .4 -1.2

28.2 -.9 1.8 9.1 4.4 1.9 2.4 -1.2

Legend : No. Array Remarks

[1] 192 8.0 ° border around baselines

[2] 144 5.5 ° border around baselines

[3] 72 3.0 ° border around baselines

[4] 52 20 rows and columns removed at south and
east {simulating lack of data at shore lines)

[5] 72 zero padding for removed data

[6] 144 50% zero padding on [5] all around
[71 72 20% tapering on [4] all around

[8] 144 50% zero padding on {7]
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NAGY AND FURY : FFT--LocaJ Gravimetric Geoid Computation

The relative geoidal height computations were repeated next by truncating the OSU86F global model

to n = 180 and both results (i.e. the n = 36 and n = 180) were then compared to values derived from

GPS surveys and levering (Table 3). The GPS survey used in these comparisons was reported earlier

by Engelis et al. (1984) and Kearsley (1985), and are listed as OSU and AUS respectively in Table 3.

Relative geoid heights (GPS) were derived at the National Geodetic Survey of USA (Fury,1985); the old

values were given in the above cited references.

Table 3

Base line Length

Rhodes --* Clark 10

18-83 --* Clark 11

18-83 ---* Rhodes 4

Britton ---* 18-83 13

Hoover --* Clark 10

18-83 --* Shannahan 22

Jackson --* Britton 24

Smith ---* Jackson 14

Smith --* Hoover 35

Relative Geoid Heights

GPS old OSU AUS 36 180

-5 (-7) -3 -6 -5 -3
-18 (-19) -14 -19 -16 -14
-13 (-13) -11 -13 -12 -12

-21 (-19) -21 -19 -21 -22

19 (19) 12 15 12 12

-18 (-25) -11 -19 -13 -10

-4 (I) o -5 -2 o
58 (32) so 63 51 52

4 (-13) 3 5 0 4

Conclusions

The numerical experiments presented here confirm the effectiveness of the FFT method for local gravi-

metric computation and show some of the results which can be obtained from model computations for

use as guidelines in practical applications to obtain the best result from the FFT technique.
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Abstract

Gravimetric geoids have been computed for the central Medi-

terranean Sea between latitude 32 o and 36 o and longitude 18 ° and

22 o using FFT and collocation. A comparison with cross-over ad-

justed SEASAT and GEOSAT data in the area showed for both gravi-

metric geoids the standard deviation of the differences to be

0.20 m and 0.15 m, respectively. The mean and standard deviation

of the difference between the FFT and the collocation geoid

heights were -0.82 and 0.20 m, respectively. This quite large

difference may be due to the different data sampling and noise

weighting used by the two methods, but is not yet fully explain-

ed.

i. Introduction

In the early 1990'ties the ERS-I and the Topex/Poseidon sa-

tellites will be launched, both equipped with a radar altimeter.

The usefulness of the altimeter data for oceanographic purposes

will be greatly improved, if we are able to compute a precise

height reference surface for an area being investigated, i.e. a

regional, relative, geoid. By this we mean that height differen-

ces are precisely known, but that all the values may be affected

by a common bias. (Clearly, it would be better, if we could com-

pute an absolute geoid, but this will require that e.g. a global

gradiometric satellite mission is carried through).

At the Geodetic Institute there has been developed a softwa-

re package for gravity field modelling "GRAVSOFT", which may be,

and have been, used for geoid determination (Tscherning and

Forsberg, 1986). The package includes programs for gravity mo-

delling using collocation, (GEOCOL), and FFT (GEOFOUR), as well

as programs for the estimation of statistical parameters for the

gravity field (EMPCOV, COVFIT).

It is our intension to use GRAVSOFT for geoid determination

as a part of our participation in the ESA ERS-I project. There-

fore we wanted to test the programs in a kind of worst-case si-

tuation, namely where the geoid variation was large. On the ot-

her hand, the distribution of the gravity data should be good,

and nearly no oceanographic phenomena should influence the sa-

tellite altimeter data, which we wanted to use in our evalua-

tion. Such a situation is found in the central Mediterranean

Sea, see Fig. i.

In the following we will describe the data and the result of

the evaluation.
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2. Available Data

Gravity data were made available to us by D. Arabelos, Uni-

versity of Thessaloniki, in the form of d,lta in a 0.1250 grid

digitized from the maps published by Morelli et ai.(1975). Data

in the sea area shown in Fig. 1 was used.

Since the use of the FFT requires data to be available in a

regular grid all the missing values were predicted using a fast

collocation procedure implemented in the program module GEOGRID.

On the other hand does collocation not permit the use of all the

4194 values, since a full system of equations with this dimen-

sion must be solved. Therefore, when using collocation for geoid

computation, only the 0.250 grid points were used outside the 40

x40 inner area, where the geoid was computed.

Cross-over adjusted SEASAT-data (Cruz and Rapp, 1982) were

made available to us by R.H. Rapp. A local cross-over adjust-

ment, using the data in the 4°x4 ° area, made the standard devia-

tion of the cross-over values of the six used tracks decrease

from 0.05 cm to 0.02 cm. Raw GEOSAT data were also adjusted, and

cross errors (mainly due to data over land, see Fig. i) were re-

moved. The data covered a 1/2 year period, and contained there-

fore up to 10 repeat tracks. Originally the dataset consisted of

3096 points, which before the removal of gross errors had a

standard deviation of 5.53, and with 97 values removed had a

standard deviation of 2.87 m. The result of a cross-over adjust-

ment with only bias gave a standard deviation of the cross-over

differences of 0.05 m compared to 5.29 m before the adjustment.

3. Gravimetric Geoid Computations

First the contribution of the spherical harmonic expansion

GPM2 was subtracted. Using these "reduced" values, empirical

auto- and cross -covariance functions were estimated by EMPCOV,

using the gravity and the GEOSAT data, regarded as geoid

heights. An analytic expression for the covariance function was

then determined using COVFIT (Knudsen,1987),

N " A(i-l) R B 2i+4

C(@) : a- Z e P (cos_) + _ (_---) P (cos_).
I i (i-2)(i+4) L, 1

i:o i:N+l

Here _ is the spherical distance between two gravity anomaly va-

lues (at the sea surface), e i the error degree-variances of

GPM2, a, A scale factors and R B the radius of the so-called

Bjerhammar sphere. R is the mean radius of the Earth, and Pi are

the Legendre polynomials. Values of N:I20, a:0.88, A=444 and R-

RB:3.75 km was found to give a nearly perfect agreement between

the analytic expression and the empirical auto- and cross

covariances.

The gravity data were then used to compute geoid heights for

the 4°x4 ° area. The use of collocation look more than i0 times

as long time as the use of FFT. A comparison with the altimeter

measurements were then made, and the results are given in Table

i. In Fig. 2 are shown the FFT, collocation and GEOSAT heights

along Lhe longest track in the open sea.
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Table i. Comparison of FFT and collocation gravimetrlc geoids

with SEASAT and GEOSAT adjusted altimeter heights.

Mean Standard Dev.

m m

GEOSAT-data with GPM2 subtracted

Difference GEOSAT-FFT geoid

Difference GEOSAT-Collocation geoid

Difference SEASAT-FFT geoid

Difference FFT-Collocation geoid

-1.24 0.62

-2.18 0.15

-1.37 0.15

-0.54 0.20

-0.82 0.20

The difference between the FFT and collocation geoid heights

are shown in Fig. 3. The large mean difference and standard de-

viation may be caused by the way the two methods accounts for

the long-wavelength information. Also the standard deviation of

the differences is surprisingly large, considering that both

methods agree so well with the GEOSAT data.

A detailed analysis of the differences between the GEOSAT

heights and the gravimetric geoid heights along the individual

tracks, see Fig. 4, showed that altimeter data close to the

coast (<50 km distance) have a larger variation than points at

the open sea. This indicates a possible coastal current, the

existence of which must be verified.

4. Conclusion

The result of the investigation shows (as expected) that the

GEOSAT data in this area are slightly superior to the SEASAT da-

ta. Also, considering the error in the altimeter data, we have

demonstrated that it is possible to compute a regional, relative

geoid, at the decimeter level, using the GRAVSOFT programs. It

is obvious, that FFT should be used if the data configuration

and quality permits it. Otherwise collocation should be used,

since it puts few requirements on the data configuration, and

also makes it possible to include the adjusted altimeter data as

observations. The quite large differences between FFT and col]o-

cation must be further studied.

Acknowledgement: This report is a contribution to a project

supported by European Community contract no. St2J-39-DK(EDB).
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_rfornm of FIT met/_ in local gravity field _llit_

N90- 2053 7
Geod_tisk Institut, Gamlehave Alle 22, Charlottenlund, Denmark

Dag Solheim

Statens Kartverk, H_nefoss, Norway (on leave at Geod_tisk Institut)

Abstract and introduction

Fast Fourier transform methods provide a fast and efficient means of pro-

cessing large amounts of gravity or geoid data in local gravity field model-

ling. The FFT methods, however, has a n_mlber of theoretical and practical

limitations, especially the use of flat-earth approximation, and the requi-

rements for gridded data. In spite of this the method often yields excellent

results in practice when con_pared to other more rigorous (and computational-

ly expensive) methods, such as least-squares collocation.

The good performance of the FFT methods illustrate that the theoretical

approximations are offset by the capability of taking into account more data

in larger areas, especially important for geoid predictions. For best

results good data gridding algorithms are essential. In practice "truncated"

collocation approaches may be used. For large areas at high latitudes the

gridding must be done using suitable map projections such as UTM, to avoid

trivial errors caused by the meridian converge_;e.

In the paper the FFT met[K)ds are coe_pared to "ground thruth" data in New

Mexico (_,n from Ag), Scandinavia (N from Ag, the geoid fits to 15 cm over

2000 km), and areas of the Atlantic (Ag from satellite altimetry using Wie-

ner filtering). In all cases the FFT methods yields results comparable or

superior to other methods.

Gravity field modellinq by FFT methods

The Fourier transformation methods have beceme practical tools in geodesy

after the advent of high-degree (180x180) spherical harmonic expansions of

the geopotential. Using such a geopotential reference model, the residual

field may with good approximation be treated within the flat-earth approxi-

mation of the Fourier methods.

For the (residual) anomalous potential T, two-dimensional Fourier trans-

formation

yields the familiar sin_ple frequency domain relationships

-kz

- upward continuation: T(kx, ky, z) = T(kx,__k) e

~ i 1Ag (2)
- geoid prediction: N : _

<>-- deflections: i i k Ag
n = _ k k x

Y

where _ is normal gravity and k = (kx2 + _ 2)1/2 the radial wavenumber. The

above equations may be evaluated by the Fas_ Fourier Transform algoritm, and

the final results obtained by an inverse transform. The use of FFT requires

gridded data, and introduces errors due to periodicity assumptions and alia-

sing. For details see, e.g., Kearsley et al. (1985).

The "inverse Stokes" transformation N to 6g is a high pass filtering ope-

ration, often seriously affected by noise when dat_ is from satellite alti-

metry. In this case Wiener filtering may be used. Assuming Kaula's rule to
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be valid, the PSDof the
1984). In the presence
will be

_NN
_g = k

_NN÷ _ww

geoid heights 0NN will decay like k-4 (Forsberg,

of white noise w in data, the optimu_ Ag-estimate

1

1 + ck 4

The constant c depends on data noise and local variability of the gravity

field. It may be specified indirectly through the wanted resolution of the

solution, the resolution here defined as the wavelength corresponding to the

wavenumber kR with e(k R) = 0.5. Resolutions around 20 km give good results.

The FFT prediction examples in the sequel have been done using the GI

progragnme modules GEOGRID (fast gridding using truncated collocation with a

second-order Markov model), GEOFOUR (FFT manipulation), and TCIP (interpola-

tion from result grids with local splines).

Examples of gravity field modellinq by FFT

I. Ag to (_,n) - _,ite Sands are_, New Mexioo.

Gravity data was gridded in a 4° x 3° area on a 2' x 2' grid using ter-

rain reduced data. The FFT prediction results were compared to 384 deflec-

tion pairs from astrogeodetic observations, yielding

6" n"

R.m.s. observed deflections 2.69 6.16

Difference FFT minus observed 0.73 0.85

For a comparison r.m.s, prediction accuracies in the range 0.9-1.0" for

and 1.1-1.8" for _ were reported in Kearsley et al (1985), using the same

data with four different prediction methods (ring integration, collocation,

collocation/integration, and FFT on 5' mean data)

2. Ag to N for a large area - Scandinavia.

The geoid was computed for the region 54°-71°N, 4°-32°E by two FFT solu-

tions gridding the available gravity data on either a 6' x 12' geographical

grid, or a I0 km x i0 km UTM grid (zone 33). The FFT results are ccm13ared to

an earlier comprehensive blocked collocation prediction consisting of 26 3°x

6° solution blocks (Tscherning and Forsberg, 1986), and all solutions are

compared to 41 GPS derived geoid undulations (fig. i) observed by the Insti-

tut fur Erdmessung, Hannover (Denker, pets.comm.).

The FFT solutions were both based on GPM2 and a thinned out gravity data

set (6' x 12' pixels), as for the collocation solution, with some new data

added in northern Germany and off northern Norway. A total of some 20000

gravity stations were gridded onto a 210x180 (geographic) or 256x256 point

grid (UTM). The comparison of the predicted geoids to the GPS results are

shown below and in fig. 2.

Geoid comparison at 41 GPS stations (m): mean std.dev.

Difference FET (geographic) minus GPS 0.07 0.17

- FFT (UTM zone 33) - GPS -0.09 0.15

- collocation - GPS -1.31 0.54

Difference FFT (geographic) - FFT (UTM) 0.16 0.04

The FFT solutions are clearly superior to the collocation solution, illu-

strating the benefit of being able to take more data into account. The UTM
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EFT solution provided best results as expected (GRS80 bias uncertain), with

the difference between the two EFT solutions being quite large: On 1044

0.5°xl ° grid points the difference had a mean value of 15 cm, std.dev, of 12

cm, and a maximal discrepancy of 45 cm, unacceptable for a precision geoid.

Fig. I. FFT geoid

68" of Scandinavia in

GRSS0, contour in-

terval 1.0 m. GPS

66° stations shown

with dots.

62°

}\ \\

56° 56 °

T
200 400 600

Fig. 2. Comparison of

computed geoids versus

CuPS results along the

2000 km profile from

south to north.
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3. N to Ag - satellite a|t_metry off Norway and Puerto Rico trench.

In this example Wiener filtering with resolution kR -I at 20-30 km is

used. With the simple FP7 approach useful Ag values were not obtained. In

both cases the satellite altlmetry data was submitted to a local bias cross-

over adjustment prior to gridding and FF'F.

The test area S of Lofoten, Norway, is a shelf area. Available SEASAT da-

ta within a 5°x 8° were gridded at 3'x 6' using GPM2 as reference field. The

adjusted orbits had r.m.s, cross-overs at 8 cm. The computed gravity anoma-

lies are co[s_red to recent SK gravimetry in a 2.5°x 4° area (fig. 3). For

cor_oarison a collocation solution (GEOC_L) was also done.

In the Puerto Rico area combined SF_ASAT/GEOS3 data were compared to all

ship gravimetry in a 3°x 3° area over the trench. The r.m.s, crossovers af-

ter adjustment was 31 cm. The FET solution was done by a 6'x 6' grid in a

8°x 8° area (without reference field). Results are shown below, together

with OSU collocation results (Kadir, Knudsen and Rapp, pers.comm).

Ag observed FFT difference Collocation diff.

Area mean std. dev. mean std. dev. mean stddev.

Norway 12.2 33.8 -i.0 10.9 1.2 12.8

Puerto Rico -125.8 130.5 -12.7 15.3 -10.5 15.9

67 = 67 °
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65 °

_10= 12 ° 14 °

Conclusions

The FFT methods work, theoretical approximations

66. Fig. 3. Gravity ano-

malies computed by

FFT from SEASAT al-

timetry south of Lo-

foten, Norway. 5

mgal contour inter-

val. Conlpari son

6s° gravimetry tracks

shown with crosses.

are offset by the abi-

lity to handle more data. For large blocks proper map projections must be

used.
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FOURIER TRANSFORM METHODS IN LOCAL GRAVITY MODEUNG

N90-20538
J. C. Harrison and M. Dickinson
Geodynamics Corporation
5520 Ekwill Street, Suite A
Santa Barbara, CA 93111

Abstract

New algorithms have been derived for computing terrain corrections, all components of the
attraction of the topography at the topographic surface and the gradients of these attractions.
These algorithms utilize fast Fourier transforms, but, in contrast to methods currently in use,
all divergences of the integrals are removed during the analysis. Sequential methods employing
a smooth intermediate reference surface have been developed to avoid the very large transforms
necessary when making computations at high resolution over a wide area.

A new method for the numerical solution of Molodensky's problem has been developed to mitigate
the convergence difficulties that occur at short wavelengths with methods based on a Taylor
series expansion. A trial field on a level surface is continued analytically to the topographic
surface, and compared with that predicted from gravity observations. The difference is used to
compute a correction to the trial field and the process iterated. Special techniques are employed
to speed convergence and prevent oscillations.

Three different spectral methods for fitting a point-mass set to a gravity field given on a
regular grid at constant elevation are described. Two of the methods differ in the way that the
spectrum of the point-mass set, which extends to infinite wave number, is matched to that of
the gravity field which is band-limited. The third method is essentially a space-domain
technique in which Fourier methods are used to solve a set of simultaneous equations.

This paper has been submitted to the Bulletin Geodesique for publication; conference preprints
are available from the authors.
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AB ST RACT

Thin-plate spline functions - known for their flexibilty and fidelity

in representing experimental data - are especially well-suited for the

numerical integration of geodetic integrals in the area where the

integration is most sensitive to the data, i.e. in the immediate

vicinity of the evaluation point. Spline quadrature rules are derived

for the contribution of a circular innermost zone to Stokes's formula,

to the formulae of Venlng Meinesz, and to the recursively evaluated

operator L n in the analytical continuation solution of Molodensky's

problem. These rules are exact for interpolating thin-plate splines.

In cases where the integration data are distributed irregularly, a

system of linear equations needs to be solved for the quadrature

coefficients. Formulae are given for the terms appearing in these

equations. In case the data are regularly distributed, the coefficients

may be determined once-and-for-all. Examples are given of some fixed-

point rules. With such rules successive evaluation, within a circular

disk, of the terms in Molodensky's series becomes relatively easy.

The spline quadrature technique presented here complements other

techniques such as ring integration for intermediate integration

zones.

Quadrature rules are sought approximating the contribution of a

circular innermost zone to the evaluation of Stokes's formula, the

formulae of Vening Meinesz, and the L 1 gradient operator in the series

analytical continuation solution of Molodensky's problem. The rules

are to be of the form

r0 N

=_ _ (_i)"
_I (x) 70 i=l aiAg ,

( )_I (x) 1 N=- Z (bli) Ag(cti);
" hi(x)" YO i=l b21

N

! Z c {f(_i)-f(x)].
Ll'If(x) = ¥0 i=l i

I05



where x = (xi,x2), y= (yl,Y2) are plane co-ordinates (with the 1-axis

north and 2-axis east), r 0 is the radius of the innermost zone, and

the subscript I indicates innermost zone contribution. {rOll}, i=l,..,N,

are distinct points in the innermost zone (not all on a single straight

line) where the data are given. The coefficients in each instance

are chosen to make the integration exact for thin-plate splines with

nodes at the _., and exact for constant and linear functions in the
I

nullspace of these splines. The thin-plate spline kernel function

associated with function evaluation at _'z is lY-_iI21°geiY-_i I-•

The quadrature weights for Stokes's formula are obtained from the

solution of the linear equations

N

Y a [c_j 21Oge +b0+bl(_lj+b2c_2j =d (x) j =i,.. ,N"i=l i -_i I I_j-_i I j ' ' '

N N N

a =e0(x); _ =el(x); v =e2(x ).
i= 1 i i=laiali i=laia2i '

where

1 ff[dj (x) = 2--_ x-y i<i

lY-CXji21°gelY-_jl

Ix-yl

1 4
dm(y) =-_+_[x-ctj[3;

1 1

eO(x) = 27r--/flx-yl_<_l Ix - yl

dm(y) = 1;

Yl _ X_

e I (x) 2_j" ]= dm(y) = 0;

Ix-Y] <1 Ix Yl

-i  ff < Y2 - x2
e 2(x) = ]x-y]=l Ix-y[

--dm(y) = 0.

Similar looking systems of equations give the quadrature weights for

the spline approximation of Vening Meinesz'z formula and the L 1 operator.

In the last case non-zero constant functions are not admissable, and

the thin-plate spline kernel function needs some modification.

Numerical examples show that thin-plate spline quadrature can be very

effective in eva1_mting the three integrals of Stokes, Vening Meinesz

and the L 1 gradient operator.
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THE REDUCTION CORRECTION IN NORTH AMERICA

P. D. Martzen and J. C. Harrison
Geodynamics Corporation
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Santa Barbara, CA 93111

Abstract

An inverse Poisson integral technique has been used to determine a gravity field on the geoid
which, when continued by analytic free space methods to the topographic surface, agrees with
the observed field. The computation is performed in three stages, each stage refining the
previous solution using data at progressively increasing resolution (1° x 1° , 5' x 5°,
5/8°x 5/8') from a decreasing area of integration. Reduction corrections are computed at
5/8'x 5/8' granularity by differencing the geoidal and surface values, smoothed by low-pass
filtering and sub-sampled at 5' intervals. This paper discusses l°x 1° averages of the
reduction corrections thus obtained for 172 1° x 1° squares in western North America.

The l°x 1° mean reduction corrections are predominantly positive, varying from -3 to +15
mgal, with values in excess of 5 mgal for 26 squares. Their mean and rms values are +2.4 and
3.6 mgal respectively and they correlate well with the mean terrain corrections. The mean and
rms contributions from the three stages of computation are; 1° x 1° stage +0.15 and 0.7 mgal;
5' x 5' stage +1.0 and 1.6 mgal; and 5/8' x 5/8' stage +1.3 and 1.8 mgal. These results reflect
a tendency for the contributions to become larger and more systematically positive as the
wavelengths involved become shorter. The results are discussed in terms of two mechanisms;
the first is a tendency for the absolute values of both positive and negative anomalies to become
larger when continued downwards and, the second, a non-linear rectification, due to the
correlation between gravity anomaly and topographic height, which results in the values
continued to a level surface being systematically more positive than those on the topography.

This paper has been submitted to the Bulletin Geodesique for publication; conference preprints
are available from the authors.
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Downward Continuation of the Free-Air Gravitlyl

Anomalies to the Ellipsoid Using the Gradient
Solution and Terrain Correction - An Attempt

of Global Numerical Computations

Y. M. Wang
Department of Geodetic Science and Surveying

The Ohio State University

90-20541

Abstract

The formulas for the determination of the coefficients of the spherical harmonic expansion of
the disturbing potential of the earth are defined for data given on a sphere. In order to determine
the spherical harmonic coefficients, the gravity anomalies have to be analytically downward
continued from the earth's surface to a sphere - at least to the ellipsoid. The goal of this paper is to
continue the gravity anomalies from the earth's surface downward to the ellipsoid using recent
elevation models. The basic method for the downward continuation is the gradient solution (the gl
term). The terrain correction has also been computed because of the role it can play as a correction
term when calculating harmonic coefficients from surface gravity data.

The fast Fourier transformation has been applied to the computations.

1. Introduction

The formulas for the determination of the coefficients of the spherical harmonics of the earth's
gravitational potential require the free-air anomalies to be given on a sphere, at least at a simple
surface, e.g., ellipsoid or sea level. Thus we have to continue the free-air gravity anomalies
downward to a sphere or an ellipsoid.

The validity of the analytically downward continuation of the free-air gravity anomalies inside
the earth is guaranteed by Runge's theorem (Moritz, 1980, p. 67). Of course these gravity
anomalies are not the original gravity anomalies inside the earth. The downward continuation

gives a fictitious gravity anomaly on the ellipsoid that generates a disturbing potential T on and
outside the earth.

Moritz (1980) suggested that the free-air anomalies be continued to the point level. We can
take also the ellipsoid as the reference surface and use this method to continue the gravity
anomalies down to the ellipsoid.

Pellinen (1966) studied the methods for the determination of the coefficients of the spherical
harmonics of the earth's gravitational potential and he added a term, which can be easily
transformed into terrain correction, to the free-air anomalies.

In this paper we carried out some numerical investigation with the above mentioned methods.
The terrain correction and the gradient solution were computed on a global basis.

2. Mathematical formulation

We continue the free-air anomalies downward to the ellipsoid by using the "gradient solution
(Moritz, 1966, p. 68):
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* OAg
Ag =Ag+gl=Ag-h--

Oh (t)

where Ag*, Ag are the gravity anomalies on the ellipsoid and on the earth's surface, respectively.

The gradient of the gravity anomaly Ag is given by

OAg_ R2 ff° Ag-Agp d_
_h 2_ j_ 30 (2)

where _ 0 = 2R sin _/2, V is the angular distance between the current point and the computation

point p, o is the unit sphere, and R is the mean radius of the earth.

Pellinen (1966, p. 70) suggested that

Ag* = Ag + G' (3)

where

G=' R__ffo [h-hpJ{Ag-Agp)_3
0

d(J

(4)

The relationship between the gravity anomaly Ag and the elevation h is assumed as

Ag = a+ bh, b = 2nkp = 0.11 mgal/meter (5)

a is a constant.

Taking the plane approximation and using the assumption (5) we get

h-hp dxdy
gl=-hpkpff

(6)

G = C = _-kp
{h-hr'2 dxdy

o (7)

with ,_0 = [(X-Xp) 2 + (y_yp)2] 1/2, where x is the two-dimensional plane.
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3. Computations of the Terrain Correction and the Gradient Solution on a global Basis

The elevation data in 5' x 5" mean block values are available from the National Geophysical
Data Center, Boulder, Colorado as ETOPO5. This elevation data was used for the computation of

the gl term and the terrain correction on a global basis.

The integration region is taken as 15° in latitude extent and 30 ° in longitude. The boundary
(or overlap) of the integration is taken 50 km. This satisfies the accuracy for most situations (NoE,
1980). But the boundary is not large enough for the Himalaya Mountains. In the computations we
took a 250 km boundary for the high mountain areas and a 50 km boundary for the flat areas.

The gl term and the terrain correction are computed in 5' mean block values by using the FFT
(fast Fourier transformation) technique. All computations are completed at the Instruction and
Research Computer Center at Ohio State University. The CPU time required was about 10 -3
second for each point on the IBM 3081 at OSU.

The statistics of the gt term and the terrain correction are exhibited in Tables 1 and 2.

Table 1. Statistics of the gl Term in 5' and 30' Mean Block Values

Unit: mgal

Block Size Mean Value Standard Dev. Max. Value Min. Value

5" 0.27 +2.56 442.14 -78.88
30' 0.27 +1.54 45.08 -10.47

1° 0.27 +1.24 25.52 5.16

Table 2. Statistics of the Terrain Correction in 5' and 30" Mean Block Values

Unit: mgal

Block Size Mean Value Standard Dev. Max. Value Min. Value

5' 0.23 +1.01 183.57 0.0
30' 0.23 +0.82 25.24 0.0

1° 0.23 +0.74 17.77 0.0

It shows that the mean values of the gl term and of the terrain correction are almost the same.
Of course, the gl term is larger and rougher (larger standard deviation, larger maximum values).

After the computations of the gl term and terrain correction in 5' mean block values on a

global basis, gl and the terrain correction were expanded in the spherical harmonics up to 180 th
order. The RMS (root mean square) values of the degree variances of the gl term and the terrain
correction are about 2 percent of the RMS values of the degree variance of the OSU86E gravity
model.

The total contributions of the gl term and the terrain correction on the geoid and the deflections
of the vertical are shown in Table 4.
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Table 4. RMS values of the corrections of the geoid undulation and the deflections of the
vertical due to the gl and TC

correction RMS of _iN

0.7071 mgl
TC 0.7065 m

RMS of 50

0.1129 secs

0.0880 secs

4. Conclusion

The gl term and the terrain correction were computed in 5' mean block values on a global

basis. The maximum of the gl term is 442 mgal located in the Himalaya Mountains. The
maximum of the terrain correction is 184 mgal. The influence of the gl term and the terrain
correction on the geoid undulation has been considered. It takes the order of 1 meter (RMS of
correction of the geoid undulation). For the deflectons of the vertical the RMS of the corrections
of the gl term and the terrain correction is on the order 0.1 ".
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THE GEOID IN KENYA

Alphonse S. Lwangasi N90-20542
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ABSTRACT

The definition of geoidal undulations is given and after summarising the

methods of determination of the geoid, computed geoidal undulations by some of

the methods for several points in Kenya are compared to the results obtained by

the satellite gravimetric solutions.

Results from astrogeodetic levelling and satellite attimetry show some

reasonable agreement with the satellite-gravimetric geoids while results by

Doppler sstellite positioning indicate that good agreement can be obtained if

the orthometric heights for the points are adjusted to a uniform system.

INTRODUCTION

This paper gives the geoidal undulations in Kenya computed for the whole

country using gravimetric and satellite derived solutions. The gravimetric

solution is that of Gachari and Olliver, 1986; and the satellite solution

is based on the GEM I0C earth model. Geoidal undulations have been computed

at discrete points using results of Doppler satellite positioning and spirit

levelling. Geoidal undulations differences have also been computed by

astrogeodetic levelling at a few points. A comparison of the results for the

discrete points is made with the values estimated from the geoidal maps of the

gravimetric and satellite solutions. Comparison is also made for the satellite

altimetry results for a few points on the coast.

THEORETICAL CONSIDERATIONS

Definition: The geoid is the equipotential surface of the earth's attraction

and rotation that best approximates the mean sea-level over the whole earth.

The term was introduced by K.F. GAUSS in 1884 as the mathematical figure of the

earth and as such it is a key figure in Geodesy, playing a fundamental role in

positioning.

Approximations of the geoid

(i) Up to an accuracy of a few metres (±2m) the geoid is represented by th_

mean sea-level.

(ii) Up to an accuracy of some tens of metres the geoid is re_resented by a

biaxial geocentric ellipsoid whose minor axis coincides with the earth's

principal polar axis of inertia. The biaxial ellipsoid is an analytically

defined 'normal body of the earth' that best fits the geoid and is often

referred to as the 'reference ellipsoid'

Geoidal height - This is the undulation of the geoid obtained as the separation

between the geoid and the reference ellipsoid.

Causes of geoidal undulations:

Geoidal undulations are generally caused by the inaccurate approximation of

the geoid by the reference ellipsoid because:

I. From the definition, geoidal undulations are brought about by the differences

between the normal gravity field and the actual gravity field of the earth.

2. Where there are irregularities in the mass distribution, the geoidal

undulations will be more pronounced even if the best fitting ellipsoid were

adopted.
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3° With a reterence ellipsoid of dimensions (a,f) adopted, its

positioning with respect to the geoid will also give rise to geoidal

undulations if the positioning is not accurately done.

METIIODS OF DETERMINATION OF GEOIDAL UNDULATIONS

The commonly used methods are:

i. Astronomical Levelling: This is suited for a local or regional area. The

data required are the astrogeodetic deflections of the vertical. The

method will give an accuracy of about ±4m. However the accuracy is not

homogeneous and can be very much affected in rough topography.

2. Gravimetric determinations: Geoidal undulations at discrete points can

be obtained by use of Stoke's integral. This method is suited for the

whole earth but practically suited for limited areas of about

1000kmxl000km. It requires a dense gravity coverage and can give an

accuracy of about ±Im.

3. Satellite fixes, e.g. Doppler Positioning - Geoidal undulations at

discrete point at which the orthometric heights (H) are known can be

determined from N=h-H, with h obtained as the geodetic height from the

Doppler positioning. The same principle used on oceans, (in Satellite

Altimetry) will give the difference between sea-level height and

sea-surface height.

4. Potential coefficients - Potential coefficients together with dynamic

form factor uniquely specify the normal gravity field. The coefficients

are obtained from the analysis of perturbations of the orbits of several

satellites. With the potential coefficients known, other parameters of

the gravity field can be determined and hence the disturbing potential

and finally by Bruns' formula, the geoidal undulations can be obtained.

The accuracy by this method is about Jim. It gives a globally

homogeneous solution, but somewhat not detailed enough.

5. Other methods - Other methods used in geoidal determination are

combinations of various data, usually done so as to take advantage of the

effectiveness of the various methods as far as homgenuity, accuracy and

detail coverage are concerned.

(i)

(ii)

(iii)

COMPUTED GEOIDAL UNDULATIONS

Gravimetric and satellite geoids: Fig. 1 shows a gravimetric geoid

of Kenya computed on the GRS80 ellipsoid computed (by Gachari &

Olliver, 1986) using a combination of GEMIOB satellite derived

potential coefficients and terrestrial gravity data. Fig. 2 shows

the satellite derived geoid computed on the WGS72 ellipsoid, using

potential coefficients based on GEMIOC.

Geoidal undulations from Doppler positioning - Geoidal undulations

have been computed at some stations that are fixed by Doppler

positioning. Most of the stations are part of the African Doppler

Survey (ADOS) program and all are part of the Kenya geodetic

network. With the heights of these points from the vertical control,

the geoidal undulations on WGS72 ellipsoid are computed at these

stations and shown in Fig. 1 and 2.

Geoidal undulations from Astrogeodetic levelling - Astronomical

levelling was computed at a few astrodeflection points shown in Fig I

and 2 as A,B,C,..I. The differences in geoidal undulations,ANAL,

computed on the Clarke 1880 ellipsoid and converted to WGS72

ellipsoid are shown in the table below, alongside the estimated
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differences in geoidal undulations from the geoidal maps for the

gravimetric (ANG) and satellite ( ANSD) geoids.

Line ANAL AN G A NSD Line ANAL _G

A-B O.91m -9.6m 0._ E-F O.53m -0.5 - .

B-C -1.13 -0.4 -0.7 F-G -0.?9 -O.1 0.5

C-D 0.28 -0.6 0.0 G-H 0.73 -0.4 0.5
L

D-E 0.05 -0.8 -0.3 H-I 0.91 0.8 0.7

Table i: undulations differences by various methods.

(iv) Geoidal undulations from satellite altimetry - For the four points on

the coast line, W,X,Y,Z, the values on GRS80 ellipsoid estimated from

Rapp, 1982 are shown in Figs. i and 2.

COMPARISON OF RESULTS

The gravimetric and satellite derived geoids are similar in shape,

particularly for the south-eastern and north-eastern parts of Kenya. However,

the two differ in shape and detail as we go from the central part to the

west and north-western. The differences in detail show upslncesatellite geoid

is more generalised than the gravimetric geoid, while the similarity in shape

is expected since the gravimetric geoid was computed incorporating potential

coefficients. The differences in values could be due to the different

ellipsoids and the gravity anomalies that were not corrected for terrain,

indirect effect and atmospheric effects.

The Doppler derived undulations, for the points considered, differ from

both the gravimetric and satellite derived geoids by mean values of about

-12.7m and -8.8m respectively. These differences arise mostly due to errors

in the orthometric heights. It is regrettable that the orthometric heights

used to derive the Doppler geoidal undulations are not accurately computed as

the vertical network was poorly observed and computed piecemeal.

The altimeter geoidal undulations estimated for the coastal shore points

differ by about -8.3m and -10.1m from the estimated undulations of the

gravimetric and satellite derived geoids respectively.

The comparison with astronomical levelling is relative as none of the

points used has a fixed (known) geoidal undulation determined astrogeodetic-

ally. However, with mean differences of 0.Sm and 6.2m for the relative

geoidal height differences when compared with the gravimetric and satellite

derived geoids respectively, it shows good agreement for the astronomical

levelling method.

CONCLUSION

The gravimetric geoid has good agreement with the satellite derived

geoid for the most parts of the country except for most of the western

half of the country. This is likely to be due to the topography in the

western half - it is mostly rugged and mountainous and in some parts rising

to over 4000m above sea-level.

The Doppler derived undulations show some consistency with either the

gravimetric or satellite derived geoid. If the orthometric heights can be

accurately determined, these can improve on the undulations by Doppler

positioning.
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Astrogeodetic levelling can also be used to give more information for
the geoidal undulations.
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Abstract

Using Stokes' formula, a gravimetric geoid ha8 been calculated for Cana£1a. The input data

are a_ follows : 151 x 151 block averages were used for Canada and the USA and 1° × 1 °

block averages and satellite model (GEM-T1) provided values for the remaining part of the

Earth. The geoid was calculated at 6 398 points covering the area within the pointm p;(to,, A;),

(A is + west) :

p,(40,125);p2(75,184);p,(Ts,10);andp,(40,60)
The computed geoid refers to the GRSI980 and reaches a local minimum of -47.3 metres

around the western part of Hudson Bay. A contour map of the geoid is shown.

Introduction

There is a renewed interest in geoid determination in connection with the use of the Global Positioning

System (GPS) for geodetic purposes. The demand in this case is for geoidal height differences over rela-

tively short distances (measured in kilometres), with an error of a few parts per million relative accuracy.

If the differences in one region are to be connected to those in another region, the need for absolute geoid

height will demand a similar accuracy to enable one to join the piece-wise information. Gravity coverage

over the entire surface of the Earth has been assembled for the computation. Computation points over

continental Canada have been selected at a nearly equidistant interval. The subject of this short note is to

report on the geoid computation and show the results in the form of a contour map. Further information

is available in Nagy(1988).

where N
R

Ag
s(¢)

and da

Stokes' function is defined as :

Theory

The geoid was calculated from the formula derived by Stokes(1849) :

N = --n [/,gS{¢)
J

is the geoidal height,

is the mean radius of the earth,

is the mean gravity,

is the gravity anomaly, corresponding to da,

is the Stokes function,

is the surface element of the unit sphere.

S(_b) = cosec_¢-k 1 6sin 1 1¢- _ ¢ - 5 cos _b - 3 cos ¢ In (sin ½¢ + sin 2 _ )

Thus to calculate the geoidal height, N, the gravity anomaly, Ag, (representative for the surface

element), is multiplied by the Stokes function and the area of the surface element, dcr. This product is

then summed up over the entire surface of the Earth. This process requires gravity everywhere. In the

following, the input data used in the computations will be described briefly.
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Input data

For the computations, the following data-sets were assembled :

CANUS15 : 15_x 15 _block surface gravity averages for Canada and the continental

United States,

WORLD1 : 1° x 1° block surface gravity averages outside the CANUS15 data-set,

MISSING : 1° × 1° block satellite gravity model values calculated at the centre

of each block where terrestrial gravity coverage is missing.

Each of these data-sets will be discussed briefly and some values associated with each particular data-

set will be given in Table 1. Data-sets not originally on the GEODETIC REFERENCE SYSTEM 1980
{Geodesist's Handbook 1980), were transferred to this reference surface during the computations.

CANUS15

This 15 t data-set consists of two files :

CAN15 : 15_ × 15_ block surface gravity averages for Canada,

USA15 : 15_ × 15' block surfm:e gravity averages for the continental
United Status.

The CAN15 was calculated from 602577 point values, available at the begining of 1988 from our

National Gravity Data Base. The USA15 block averages were obtained from the National Geodetic

Survey of Rockville, Md. Computed from 1256 119 point values, 44029 blocks were made available.
Parts of this data-set covering Canada were screened out. Also omitted were some offshore values and

data over Hawaii. After this data editing, 21510 blocks were included to represent gravity over the United

States. The combination of these files resulted in 65 539 15S blocks and provides the best possible surface
gravity coverage for North America at this resolution.

WORLD1

This 1 ° x 1° mean world-wide surface gravity data-set was obtained from The Ohio State University

and is described in detail in Despotakis(1986). It contains 48 955 values of which 44 203 were used {over
North America, the more detailed CANUS15 data-set, described earlier, was used}.

MISSING

After assembling the two previously described files, there were still 15,608 1° × 1° blocks over the Earth's

surface with no surface gravity values. For these missing blocks the most recent GEM-T1 satellite

gravity model values were used. The spherical harmonic coefficients were obtained from the Goddard

Space Flight Center (Marsh et al. 1987} and were evaluated at the center of each block.

This completed the preparation of the input, consisting of three files, and provided the required gravity
coverage over the entire surface of the Earth.

To conclude this section, Table 1 summarizes some statistics about the input files.

Table 1 : INPUT FILE STATISTICS

rnin

m_x

N

CAN15 t USA15 CANUS15 CAN1P CAN1R WORLD1 MISSING

-135.7 -223.3 -223.3 -112.0 -112.0 -270.0 -40.49

239.4 219.7 239.4 98.3 111.8 340.0 46.34

44 029 22 444 65 539 3 446 3 446 44 203 15 608
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In Table 1, rain and maz give respectively, the minimum and maximum value of gravity, for the particular
file and N designates the number of blocks in these files. CANIP and CANIR refer to 1° x 1° files

calculated for Canada : CAN1P was obtained simply by averaging the point values within each 1° x 1°
block, CANIR is the result of averaging all of the available 15 t x 15_ mean values within each 1° x 1°

block with unit weight (up to 16 blocks}. This latter value may be more of a regional representation for
the block than the average of all values in the block.

Computation

Early estimates of computing time for the CYBER 730 indicated that 100 CPU hours may be needed to
compute the geoid at 1000 points. For a few thousand points, the use of the CYBER was not feasible.

In the meantime, the Cray 1-S supercomputer became available for use and all the required programs
were transported to this computer. Further program developments with optimization were then carried

out in this new environment. For final comparison, the program as used on the Cray was transported
back to the CYBER and run for performance comparisons. The test computations indicated a 34-fold
speed increase on the Cray.

The computations were always carried out in such a manner that, for each computation point the
contribution of each of the three data-sets was also available separately. This allowed each effect to be

seen separately when plotted as a partial contribution to the geoidal height. The computation points
were selected first at 1° intervals along the meridian and at the same distance along the parallels. For a

denser net of computing points, this 9rid was shifted in both directions. Additional points were inserted
where better definition of the geoid was required. Finally about 1000 points were added to trace out

the geoid locally in greater detail. This resulted in a total of 6 398 computation points, from which the

present geoid map was prepared. In addition to a colour APPLICON map, a contour map was also
prepared, and shown in Figure 1. As mentioned earlier the geoid refers to the GRS1980. It reaches a

local minimum of-47.3 m at _o -- 59.76 ° and A -- 92.34°W in Hudson Bay.

The total computation time on the Cray was 8.07 CPU hours, which corresponds to over 275 hours
on the CYBER.
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Regional Quasigeoid Determination in Northern Germany

And Comparison With GPS

Heiner Denker, Institut f_r Erdmessung (IFE), Universit/it Hannover, Federal Republic of Germany

1. Abstract and Introduction

For the northern part of the Federal Republic of Germany, new quasigeoid solutions have been computed

by least squares collocation and FFT techniques using point and mean gravity data, a digital terrain

model, and a global geopotential model. As severe accuracy limitations for precise regional quasigeoid
determination come from global model uncertainties, different geopotential models have been investigated

by combining them with gravintetric data and comparing tile quasigeoid heights with GPS and leveling.
Optimum results have been obtained by a global model tailored to gravity data in Europe. Collocation

and FFT results based on this lnodel agree well. The comparison with GPS and leveling yields r.m.s.

discrepancies of ±2 cm over approx. 400 km range.

2. Computation Method

Height anomalies have been determined for the northern part of the Federal Republic of Germany using
least squares collocation and FFT techniques. The predicted height anomalies are obtained by

( = G + (5 + (3, (1)

where (1 is the influence of the spherical harmonic model, _2 is the contribution from a residual terrain
model (RTM), and (3 is the contribution from terrestrial gravity field observations. The spherical har-

monic model is used as a reference field and yields the major part of the quasigeoid, the terms (_ and (3

being typically less than 0.5... 1.0 m.

After subtracting the effect of a global geopotential model and a residual terrain model from all

observations, the contribution of terrestrial gravity field observations ((a) has been computed by least

squares collocation and integral formulas. The main drawback of collocation, being the solution of a
normal equation system with as many unknowns as the number of observations, may be overcome to a

certain extent with modern vector computers (see Denker and Wenzel 1987). On the other hand, the use
of integral formulas evaluated by FFT with gridded data is also possible on a mini computer, and thus

making this technique very attractive from the computational point of view. The spectral computation of

the disturbing potential and its functionals by FFT is based on flat-earth approximations. Thus, Stokes'

integral formula may be written as a two-dimensional convolution in the form

<a = 1-- s * _g', s = (_ + y_)- _, (2)
2x7

where Ag' are the reduced gravity anomalies. The convolution of the kernel function s with the data

Ag _ is most easily done in the frequency domain. Using the analytical transform of s, formula (4) can be
written as

(3:21r--"_1 F_l{2r_g,(u,v)},w w:Y/_u_+v_- (3)

where F -1 denotes the inverse Fourier transform, (u,v) are the frequencies and A9 _ is the Fourier

transform of Af.

3. Data Collection and Evaluation

For the determination of the long wavelength part of the earth's gravity field, the geopotential models

GPM2 complete to degree and order 200 (Wenze11985), OSU86F complete to degree and order 360 (Rapp

and Cruz 1986), and IFE87E2 complete to degree and order 360 (Baiid 1988) have been considered. The

third model IFE87E2 is based on GPM2 and has been tailored to available 12' × 20' mean gravity anomalies

in Europe (Baiid 1988). The computation procedure consists of a spherical harmonic analysis of the

non-global distributed differences between start model and terrestrial data, and the obtained potential
difference coefficients are then added to the original coefficients resulting in an improved geopotential

model fitted to the regional gravity field data.

121



gigure 1: Distribution of Point Gravity Data
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Figure 2: Distribution of GPS Stations

For the computation of terrain reductions, 30" x 50" mean elevations are available for the area of the

Federal Republic of Germany.

Point gravity data have been extracted from the standard data base PFA, existing at IFE. Since the

collected point values are located mainly in the Federal Republic of Germany (see fig. 1), additionally

6' x 10' and 12' x 20' mean gravity anomalies have been extracted from the IFE gravity data base for the
evaluation of the outer zone.

All data sets have been checked carefully for gross errors by applying different procedures, for details

see Denker and Wenzel (1987) and Denker (1988).

In addition, GPS results from three different campaigns (HANNAC, NIENAC, TRVNAC) observed

with TI 4100 dual frequency receivers are available for northern Germany (see fig. 2). The internal error

estimates for ellipsoidal height differences from GPS do not exceed 3 cm. The GPS coordinates are

refering to the WGS84 reference system, which can be assumed to coincide with the gravimetric reference

frame. The GPS stations have been connected to the national leveling network by spirit leveling to a

nearby benchmark for the TRVNAC campaign and partly by the trigonometric method for the other

campaigns.

4. Practical Results

In order to study the impact of different geopotential fields on gravimetric quasigeoid determinations,

the three models GPM2, OSU86F and IFE87E2 have been tested by comparing the quasigeoid heights

derived front GPS and leveling with values computed front these three models as well as from combination

solutions with gravimetric and topographic data. For this task, the FFT method was used because of the

high speed of this algorithm and the generally good agreement with corresponding collocation solutions.

For the FFT computations, the RTM-reduced gravity data were gridded in a 1'.0 × 1'.5 grid for the

area 47.°5 - 57.05 N and 30 - 150 E using point data and 6' x 10' mean values in areas with no point data

available. The gravimetric solutions were performed iu oae step for the whole area of North Germany

yielding a 576 x 480 grid for FFT. Due to periodicity effects of FFT, a cosine tapered window was used

for the outer 10 grid points.

The topography was taken into account by a residual terrain model (RTM) reduction using a 6' x 10'

moving average filter for the construction of the reference topography, for details see Denker and Wenzel

(1987).The maximunt values of the obtained RTM-effects are approx. 30 regal for gravity anomalies, 3"

for vertical deflections resp. 8 cm for height anomalies.

Fig. 3 shows a comparison of quasigeoid heights derived from GPS and leveling for stations of the
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Figure 3: Comparison of GPS and Leveling With Quasigeoid

Heights From Geopotential Models and From Gravimetric Cmu-
binatlon Solutions for Stations of the GPS Traverse {TRVNAC)

Station (

No. [Name (Coll.)

1 SPR 44.228

2 WEN 43.323

3 BRO 46.031

4 tlHB 41.414

5 BRM 41.202

6 HBG 40.729

7 PIL 40.971

8 BTM 44,224

9 KTB 45,767

R.M.S,

Differences

(Bias Fit)

CoIL I FFT
-0.062 -0.052

0.001 -0.010

--0.205 -0,156

0.046 0.038

0.103 0.098

0.036 0.036

0.157 0.138

0.059 0.043

-0.132 -0.134

+0.108 4-0.093

Differences

(Bias And Tilt Fit)
Coll. FFT

-0.004 -0.001

0.074 0.054

-0.052 -0.023

0.033 0.021

0.028 0.032

-0.047 -0.041

-0.028 -0.021

0.027 0.022

-0.030 -0.043

+0.040 4-0.032

Table 3: Comparison of Gravimetric Height Anomalies With GPS

and Leveling for the NIENAC Campaign (Units are m)

123

Station

No, ] Name

1 FLE

2 BRK

3 RAI

4 STK

5 TAL

6 MLB

7 ESD

8 SEll

9 BOD

10 BEV

11 TWI

12 MEC

13 TBR

14 BKI[

15 STA

( Differencm

(Bias Fit)

(Con.) cou. I FFT
40.827 0.063 0.085

40.428 0,082 0,086

40.236 0,058 0.073

40.154 0.045 0.033

40.594 0.025 0.026

41.126 0.035 0.023

42.235 0.089 0.084

43.518 0.065 0.058

45.152 0.062 0.054

46.246 0.036 0.033

46.753 -0.043 -0.036

47.738 -0.136 -0.126

48.324 -0.149 -0.146

47.652 -0.134 -0.139

47.182 -0.098 -0.109

4-0.084 4-0.084

4-0.020 -t-0.024

• Only Stations FLE-BEV

Table 1: Comparison of Gzavimetric Height

Anomalies With GPS and Leveling for the

TRVNAC Campaign (Units ate m)

ORIGINAL PAGE IS

Of POOR QUALITY

Station ( Differencm

(Bias Fit)

No. ] Name (Coll.) Coil. FFT

1 MSD 43.403 -0.003 -0.004

2 LIN 43.489 0,008 0.008

3 VEL 43.464 0.031 0.031

4 BEN 43.559 -0.006 -0.013

5 RON 43.657 -0.030 -0.042

6 MHL 43.589 -0.015 -0.018

7 LVA 43.444 0.002 0.005

8 GEtt 43.833 -0.041 -0.044

9 SP R 4,1.228 0.014 0.028

10 ALT 43.384 -0.010 -0.023

II MEY 43.281 0.026 0.031

12 LHG 43.135 0.007 0.014

13 SLG 42.992 0.031 0.039

14 BAN 43.824 -0.030 -0.031

15 SEH 43.518 0.018 0.018

16 HAS 44.033 -0.005 -0.002

17 WIT 44.386 0.007 0.005

18 SOR 44.214 -0.005 -0.002

R.M.S. +0,020 +0.024

Table 2: Comparison of Gravimetric lleight

Anomalies With GPS and Leveling for the

HANNAC Campaign (Uaits are m)



GPS traverse (TRVNAC) with values computed from three different geopotential models (upper part) as

well as values computed by FFT on the basis of these models, gravity data and RTM-contributions (lower

part). As expected, the solutions based on model IFE87E2 tailored to gravity data in Europe yields the

best agreement with GPS and leveling. Using this model, the contribution of terrestrial gravity data

takes a maxinlum value of about 50 cm. The other two models have larger long to medium wavelength

errors, which are essentially presurved in the combination solutions. This problem might be overcome

with a larger data collection area, but then the advantages of high-degree geopotential models are lost.

However, the computation of tailored models in connection with a small cap size of local gravity field

data will in many cases be less expensive than the use of existing geopotential models with a large cap

size.

In addition, collocation solutions were computed using the tailored model IFE87E2. Due to the large

anlounts of data, the computations were blocked in 1° x 20 areas using a larger data collection area

(see Denker 1988). Altogether, 11 blocks were computed to provide coverage of northern Germany. As

compared to the FFT method, the computation time necessary for all 11 collocation blocks is approx.

two orders of magnitude larger. The covariance functions required for the computations were assumed

the same for all blocks; the model covariance function selected on the basis of empirical data has a gravity

anomaly variance of 100 regal 2 and a correlation length of about 20 kin. One unsolved problem in this

context is to fit different partial solutions together. In practical tests it was found, that discrepancies

between adjacent blocks are mainly dependent on the size of the data collection area, on the quality

of the used geopotential model and on the degree variances contained in the covariance model for the

low degrees. However, if the used covariance function contains long wavelength components, collocation

performs an estimate of corresponding field structures for each block being one of the main reasons for

the occuring discrepancies at the block boundaries. In order to keep the discrepancies between adjacent

blocks below 1 cm, it was finally decided to assume the reference field to be errorless up to degree

72. Through this assumption, changes in the predicted height anomalies are of.long wavelength nature

resulting in biases up to 2 cm and tilts < 2 cm/100 kin. Formal error estimates from collocation (without

the assumption of an errorless reference field up to a certain degree) are in the order of 1 ClU/50 km and

2 cm/100 km for height anomalies.

The FFT and the collocation solution have been evaluated by comparing the predicted height anolna-

lies with GPS and leveling front different campaigns, the discrepancies found are listed in tables 1-3 (after

subtraction of a common bias for each campaign). As can be seen, the collocation and the FFT results

agree well within a few cm. For the TRVNAC campaign, both solutions show jumps of approx. 10 cm

between stations BEV/TWI and TWI/MEC (see fig. 3). There are indications that these discrepancies

are caused by the GPS data processing, but this remains to be clarified in the future. If only the northern

part of the traverse with a length of approx. 400 km is considered, the r.m.s, discrepancy amounts to

+2.0 cm.

For the HANNAC campaign with maximum interstation distances of about 50 kin, the r.m.s, discre-

pancies are approx. +2.0 cm for the FFT and the collocation solution.

The third GPS data set available in North Germany is the NIENAC calnpaigu with nlaximum inter-

station distances of 300 km. Tile r.m.s, difference is about ±10 cm, but a detailed analysis shows a slope

about an axis with an azimuth of approx. 45 ° , which is probably due to the GPS solution as a similar

behaviour is not visible for tile GPS traverse (TRVNAC). After taking additional tilts in northern and

eastern direction into account, the r.m.s, discrepancy reduces to about :k4 cm.
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Abstract

The European north-south GPS-traverse proposed by IAG SSG 3.88, should control and

improve the European geoid. This traverse follows first order leveling lines, included in

the United European Leveling Network. From May to August 1986 and in July 1987,

the central and northern part of this traverse (approx. 3000 km) has been observed using

up to four TI 4100 receivers, covering Austria, Federal Republic of Germany, Denmark,

Sweden and Norway. Both traverse parts contain 71 stations with distances of about 50

km. In addition, 8 stations have been occupied for overlapping connections, and traverse

links were established for connecting the fundamental stations Wettzell (VLBI and SLR)

and Onsala (VLBI). Final results show a GPS observation precision of a few cm for loops
of some 100 km circumference.

After transformation of tile GPS results to geoid heights using the leveled heights,

comparisons with different existing gravimetric geoid determinations including geopoten-

tial models have been performed. In addition, new geopotential models complete to degree

and order 36O tailored to gravity data in Europe, and gravimetric geoid solutions using

6'x 10' mean gravity anomalies have been investigated. The comparison with GPS and

leveling yields r.m.s, discrepancies of _0.1 ... 0.2 m over 1000 km traverse sections for the

best solutions, but a strong slope is existing in Sweden and southern Norway in almost all

solutions, which is probably caused by systematic errors in the available gravity data for

Scandinavia. This is confirmed by a new geoid computation at the Danish Geodetic Insti-

tute (see Forsberg and Solheim, these proceed.), where the slope has disappeared. If this
new solution is taken for the northern traverse section and our best solution for the cen-

tral part, the r.m.s, discrepancy reduces to approx. _-0.2 m over 3000 kin. Thus, a ±10 .7

relative height accuracy seems to be achievable over long distances with the GPS/leveling

and the gravimetric geoid calculation techniques, applied in this experiment.
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Abstract and Introduction

Integrated geodesy is a method in which a wide variety of surveying

measurements are modeled in terms of geometric positions and the earth's

geopotential. Using heterogeneous data, both geometric and gravimetric

quantities are simultaneously estimated by a least-squares procedure.

Heretofore, geodetic leveling differences have been reduced into pseudo-

observables using assumed values of gravity prior to their inclusion into

integrated geodesy least-squares adjustments. This study compares the

errors in estimates of geometric and gravlmetric quantities obtained from

integrated geodesy adjustments of geodetic leveling difference, potential

differences and Helmert height differences.

Model

If one corrects for atmospheric and instrumental effects, then the

lines of sight of a rotatable level describe a plane in space which is

normal to the direction of the local gravity vector. This plane can be

considered to pass through a point midway along a chord between the bases

of the level rods. The level rods are aligned along their own local

verticals. These local verticals need not be parallel or possess any

special relationships to the local vertical at the level instrument. (In

practice, the verticals will be nearly parallel). One may compute a

directed distance between the base of a given level rod and the point of

intersection of that level rod with the level instrument normal plane. The

geodetic level difference is modeled as the difference between the directed

distances at the two level rods (BD AC in Figure I). A detailed

derivation of the geodetic level difference model can be found in Milbert

[1988].
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Figure i. Side View of Leve] Rods and Mean Normal Plane Relationships.
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Computational Procedure

To evaluate the geodetic level difference model, and to compare its

behavior to that of potential differences and Helmert height differences, a

simulation approach is chosen. An analytic model (a Molodensky mountain)

provides prior values of geometric and gravimetric quantities, including

gravity, GPS ellipsoidal heights, and level measurements. The geometric

part of the model is a conical mountain, one kilometer (km) high, with a

base of about 40 km radius, resting on a spherical earth of 6369.4 km. The

gravimetric part of the model is composed of a single disturbing point mass

imbedded 4 km beneath the spherical earth and the OSU86F geopotential.

This combination provides a non-isotropic gravity field that is more

realistic than those found in other analytic models. Through the analytic

model, 400 geodetic level differences (corresponding to a 40 km level route

from the peak of the mountain to the base), 144 gravity measurements

arranged in a 1 ° x 1 ° grid, and 31 gravity measurements along the level

route are obtained. With the exception of one benchmark at the peak of the

mountain, the locations of the gravity measurements are not coincident with

the benchmarks. In addition to the gravity measurements discussed above,

derived data, which correspond to the pseudo-observables, are formed in a

process consistent with that found in practice. Derived gravity values are

predicted at benchmarks by collocation. Potential differences and Helmert

height differences are then derived from the geodetic level differences and

gravity interpolated from those values predicted at the benchmarks.

Results

As a baseline example, an integrated geodesy least-squares adjustment

was computed using the 175 gravity measurements and the 40 derived

potential differences. The ellipsoidal heights of the gravity stations

were held fixed at the analytic model values. The ellipsoidal height of

the benchmark at the peak of the mountain was fixed to eliminate a datum

defect. The integrated geodesy adjustment estimates geometric position and

the geopotential field and its derivatives. Figure 2 displays the error in

the estimates of ellipsoidal height at the benchmarks using the model data

near Denver, Colorado, potential difference pseudo-observables, and the

OSU86F model in a "remove/restore" process. The errors are in the sense of

estimate minus analytic model. Estimation error is induced by the

disturbing point mass, which is not parameterized by the observation

equations or the remove/restore process.

The integrated adjustments were repeated using either potential

difference, AW, Helmert height difference, AH, or geodetic level difference

data, An. In the case of the geodetic level differences, the measurements

were fed directly into the adjustment, without any need for reduction in a

pre-adjustment computation. The results of these adjustments are virtually

identical to those of Figure 2. To illustrate the slight changes, Figure 3

displays differences formed when the adjustment errors of the geodetic

level difference model are subtracted from the adjustment errors of the

remaining models. Discrepancies due to choice of model are seen to be

smaller than the measurement noise of leveling. The upper curve

demonstrates that the geodetic level difference model is as effective as

the potential difference model.
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These results were seen to hold throughout a variety of scenarios.

Integrated adjustments were computed using GRS80 in place of OSU86F for

linearization of the models. The influence of ellipsoidal height

difference data, such as obtained from GPS signals, was examined. The

analytic model was varied with regard to choice of region and magnitude of

the disturbing point mass. Tests were performed to observe the influence

of the gravity grid data set. And, the effects of various computational

approximations to the observation equations were explored. Greater detail

on these tests can be found in Milbert [1988].

Covariance Models

Since a least-squares collocation method was selected to solve the

integrated geodesy observation equations, it was necessary to develop a

model for the covariances and cross-covariances of components of the

disturbing potential. One component of the gravimetric part of the

analytic model was a high degree spherical harmonic expansion, OSU86F,

complete to degree and order 360. The associated covariance model is based

on those potential degree variances. The other component of the

gravimetric part of the analytic model was a disturbing point mass.

However, the spectrum of the potential degree variances from a point mass

generates covariance functions which do not lend themselves to evaluation

by the closed forms of Tscherning and Rapp [1974]. A new family of

covariance functions (one member of which contains the point mass spectrum)

is defined. It is shown that the covariance and cross-covariance functions

for a point mass can be expressed in closed formulas by means of incomplete

elliptic integrals of the first and second kind. Highly efficient

algorithms exist for the evaluation of the elliptic integral functions,

allowing rapid computation of the point mass covariance functions.

Conclusions

It has been found possible to model geodetic level differences in an

integrated geodesy approach. By means of this model, it is not necessary

to reduce geodetic level differences into potential differences or Helmert

height differences in a preliminary computation.
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ABSTRACT

In the present paper the fitting and proper regression coefficients have been made of
117 10'x10' blocks with observed gravity data and corresponding elevation in the Taiwan

Island. To compare five different predicted models, and the proper one for the mean
gravity anomalies were determined. The predicted gravity anomalies of the non-observed
gravity blocks were decided when the coefficients obtained through the model with the
weighted mean method. It was suggested that the mean gravity anomalies of 10'x10'
blocks should be made when comprehensive the observed and predicted data.

1. INTRODUCTION

The purposes of the paper is to understand the relationship of gravity anomaliy with
the topography and the area, doing further research, comparing the good and bad points
from the most common used mean computing models. Analysising which model is more
suitable for Taiwan Island and meatime computing the accuracy of mean gravity anomaly.
This paper is mainly stressed on Taiwan area, surrounded by the longitude from 120 ° E
to 122 ° E, the latitude from 21.5 ° N to 25.5 ° N.

2. COMPUTATION MODELS

There are five formulas of the mean gravity anomaly will be discussed [Uotila,
1967a&b ; Kassim, 1980;SUnkel, 1983 ]:

(1) A"g = a + b_,

(2) z_ = 1/n YAgi,

(3) _ = 1/n Y_,[Ag i - b (hi-]_)] ,

(4) _ = _, (Ag i/si3.5)/T,(1/si3.5),

(5) _ = {T. [(Ag i-bhi)/si3.5]/E(1/si3.5)} + b_

(1)
(2)

(3)

(4)

(5)

which _ is the mean gravity anomaly of square block; Ag i is the ith gravity anomaly in

square block; h is the mean height of square block; h i is the ith height in square block; a,

b are the regression coefficients; si is the distance between number the ith point and the

centre of the square block; 3.5 is the weighted exponent.

In these five computing models, the needed parameters as Ag i, h i , h, si, a, b. And Ag i,

h i are obtained from the observation values, si is the distance betwen the observation

point and the centre point in block, 5 is obtained from digital terrain model. Therefore,
the regression coefficients a, b are obtained from the first order of the stochastic
functions of the gravity anomaly and height. In this paper, they come from two main
resources: (1) using more than two points data in every individual block to calculate its

130



a, b value in block, (2) using all observedgravity r_at_rals, setting differentgroups
accordingIo the height of topographythen c;!culale the a, b value in three different
topographyin Taiwanarea (Table1).

Table1.Thethreegroupsof regressioncoefficientvalueof heights

HEIGHT(m) a (mGal) b(mGal/m)
h <_100 1.8585 0.1091

100 < h <1000 13.7330 0.0281
h > 1000 -63.8362 0.1195

Therefore, as long as using mean height in each block, the selected a, b coefficient can be

determined, a, b are calculated with data from all over Taiwan, so the stability is very
strong. When the height is between 100 metre and 1,000 metre, the value of b is
regarding 0.0281 to 0.119, somewhate different in theory but it is due to the effect of
topography and area.

3. THE RESULT AND ANALYSIS

Having 117 blocks in observed gravity data, it makes difficult to show them all. We
picked 12 block results at random to discuss as a base line. We select different
topography - plain, hill, mountain besides chosing each block in different location from

the east to west and the south to the north. In keeping with comparing and analysing the
effect from five different computing models, the results of above selected 12 blocks is

showed in Table 2, and among the five numbered gravity are corresponding with the
sequence of computing data.

As following, we point out and explain some results, we compared and analysed: (1)

Clearly, the computed result from five models may be devided into three categories: ZT_l

as a independent, A-g2, Eg4 as category, A-_3 , A--_5is another one. Ag 2 , Ag--4 as deficit

result of height and gravity anomaly which the relationship between them has not been
considered. And E_3, z&--_5as a group result from the effect of height was considered.

Then why the result is differentin z&_l with the effect of height? The reason in A-g1 =

a+bh within, we set a as fixed value. In the contrary, by using a value for section area to

compute z&_l, the result is unified in mathematical meaning and 7g3. (2) The different

between the group ( A-_2, E_4 ) and z_3 _ 5) is explained by location of height. The

difference in these two depend on if there is affecting existance from height to gravity
anomaly. Thus inter-relation may very well became greater by increasing the height. In
the contrast, the deficit is greater comparing mountain with hill, the hill somewhate

larger than the plain. Therefore the relationship between height and gravity anomaly
have to be stressed on particularty the mountains areas. Providing standardizesd data in
mean gravity anomaly in any topography, we must disregard height in predicted model.
Then the group of E_3 and A"_4 is abandoned. (3) Finally, in group E'_3 and 2k'_5, the

reason, the deficit existed is if the locations of points can represent the mean position as a
whole in any blocks, z&'-_3is computed from any point position, &"g5 is using the position

of the centre point in the block to compute mean value. The closer the points to the

centre are, the closer result of 2k"_3 and _-g5 are. Again if the points in block are

situated uniformly, the A--g3 value will be the most accurate. In E'_5, it is no way to

prove if the mean gravity in centre position can represent mean value according to the
result obtained from Table 2, there are a small discrepancy and A-g3 computing model is
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simplerand the more idealisticpositionsare, the more reasonableresultare. Therefore,
the presentpaperdecidedto use A-_3as computingmethodfor mean gravityanomaly
model.

Table2.Theresultsof fivecomputationmodels

OF _GRAVITY
BLOCK"_ANOMALY

179
183
63

260
165
185
53

250
177
162
113
237

E'_I

-1.86
6.87
3.60
3.60

36.78
24.97
29.19
28.49
95.10

121.39
68.81
82.55

E_2

-31.30

-25.36
-14.39

2.69
50.64

-37.84
65.98

9.76
39.10

-17.88
19.47
38.59

E-'gg3

-58.66
-17.81
- 9.79
- 4.55
69.65

-29.51
77.14
20.25

166.73
122.08
96.11

122.84

_4

-31.3
-24.67
-14.03
13.04
38.83

-41.60
66.6
17.89
34.68

-17188
18.12
36.02

E05

-58.66
-16.76
-9.43

4.77
58.17
-34.O8

77.23

25.56
159.05
122.08

95.41
117.97

4. THE ACCURACY OF THE MEAN GRAVITY ANOMALY

Because of being unable to observe the exact mean gravity anomaly in each block, we
have no way to discuss the experimental accuracy of the block, we can use the law of
propagation of errors to estimate the accuracy of the block. The present paper decided to
use the mean gravity anomaly computing model, that

&-g = 1/n ,Y__,[Ag i - b (hi-h)] '

we can predict mean gravity anomaly in block in Taiwan Island with observed data (Table
3).

Table 3 Categorlized by topography to determine the
accuracy of the mean anomaly in the block

'_-__.._OGRAPHY PLAIN HILL MOUNTAIN
ACCURACY -_-_-_-___

o" z_g (reGal) 4.8 3.5 16.1
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5. CONCLUSION

Beingthe 2/3 of TaiwanIslandis mountain,situatedon earthquakezone, the gravity
anomalyis greatlydifferentby year. At present,TaiwanIslandwe havejust completed
the levelling stations to promote gravity observations. Along with doing dense in
mountainarea,we stronglybelieverwe can obtainmoreaccuratemeangravityanomaly
in this area.
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VERY ACCURATE UPWARD CONTINUATION TO LOW HEIGHTS

IN A TEST OF NON-NEWTONIAN THEORY
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Abstract

Recently, gravity measurements were made on a tall, very stable televsion
transmitting tower in order to detect a non-Newtonian gravitational force.
This experiment required the upward continuation of gravity from the Earth's
surface to points as high as only 600 m above ground. The upward
continuation was based on a set of gravity anomalies in the vicinity of the
tower whose data distribution exhibits essential circular symmetry and
appropriate radial attenuation. Two methods were applied to perform the
upward continuation - least-squares solution of a local harmonic expansion
and least-squares collocation. Both methods yield comparable results, and
have estimated accuracies on the order of 50 #Gal or better (1 #Gal = 10 -8
m/s2). This order of accuracy is commensurate with the tower gravity
measurements (which have an estimated accuracy of 20 MGal), and enabled a
definitive detection of non-Newtonian gravity. As expected, such precise
upward continuations require very dense data near the tower. Less expected
was the requirement of data (though sparse) up to 220 km away from the tower
(in the case that only an ellipsoidal reference gravity is applied).

1. INTRODUCTION

The upward continuation may be summarized as follows. A set of surface
gravity anomalies, circularly symmetric about the tower, serves as the set
of boundary values. The upward continuation is based on Newtonian theory
either through a local harmonic series expansion of the potential or through
the use of least-squares collocation. At altitude, the (upward continued)
GRS67 normal gravity and attraction of the atmospheric layer are added to
the upward continued gravity anomaly. The result is the total gravity as
would be observed in a strictly Newtonian world. A comparison with the
gravity directly observed using a gravimeter offers a test of the underlying
theory.

2. THE MATHEMATICS OF UPWARD CONTINUATION

If V denotes the earth's gravitational potential, then under Newtonian
potential theory, V satisfies Laplace's differential equation in free space:

V2V = 0. (I)

One solution to Laplace's equation (I) is a Fourier-Bessel series
expansion in cylindrical coordinates, which is appropriate for a local
representation of the potential. Thus, since in the planar approximation
the gravity anomaly is also a harmonic function (it satisfies Laplace's
equation in free space), it may be expressed as the following series (Morse
and Feshbach, 1953, pp. 1259-1262):

i ® -kz-inOdk, (2)Ag(p,8,z) = Z Cn(k ) Jn(kP) e
n=-_ 0

where p is radial distance in the horizontal plane, 8 is azimuth, and z is
altitude. Jn is the Bessel function of the first kind and n-th order, k is
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the wavenumberin the radial direction, and the Cn are coefficient functions
to be determined from gravity anomaly data. Since the final evaluation of
(2), once the Cn are known, is along the vertical, p=O, this problem is

simplified by defining an azimuthal average:

- --'sT STo<k'Ag(n,z) _-_ (p,(_,z) d(_ : Jo(k#) e-kz dk . (3)

This average coincides with the unaveraged Ag along the vertical:

f]Co kz
A--g(O,z) = Ag(O,8,z) -- (k) e- dk . (4)

The second equality in (4) follows by noting that at #:0 all Jn's in (2) are
zero except Jo which is one. It remains, therefore, to determine only the
function CO from azimuthally averaged gravity anomaly data. One can
determine at best a finite set of values of CO from a discrete and finite
data set. The integral (3), therefore, is truncated to some finite limit
and discretized. The truncation is optimized if the discretization is in
the form of a Fourier-Bessel expansion. After making the appropriate
substitutions in replacing the integral (3) with the discrete summation (see
Romaides et al., 1988), the least-squares solution is obtained by the
following:

,[ M_ fp - _-_ A
p=l m=l m

Jo((p_m) expI-_m-Rm(Zp-Zo))] --> min., (5)

where P is the number of points, M is the number of zeros, _m are the zeros
of Jo, fD = Ag(_DR,SD,ZD) - A-g(R,z), _D = #/R, R is the maximum radius of
surface data, zo_ ZD _re the elevatlons of the tower base and surface
points, and Am are the solution coefficients.

The Fourier-Bessel upward continuation then proceeds in three steps. An

initial expansion is done using 23 zeros and approximately 1800 anomalies

out to 220 km from the tower. This expansion allows the resolution of

half-wavelengths down to about 5 km. A second expansion is then done on

only the residuals inside of 5 km (from the tower) allowing resolution of

half-wavelengths down to about 100 m. And finally a third expansion is done
on the second set of residuals inside of 50 m from the tower resolving half-

wavelengths down to about 20 m. Table I shows the results of the three

steps, and Figure I is a contour map of the final set of residuals.

The other upward continuation method used is least-squares collocation
which is an optimal estimation method based on the validity of Laplace's
equation. All important in LSC estimation is a good representation of the
covariance function of Earth's anomalous gravity field. The covariance
model employed for the tower experiment consists of the actual degree
variances of the Rapp-1981 field up to degree 30 (1300 km wavelengths) plus
a sum of 9 reciprocal distance models (see Jekeli, 1984) each covering a
specific band of wavelengths shorter than 1300 km. These models are fitted
to a sequence of periodograms based on the gravity anomaly data. Figure 2
shows these periodograms along with the power spectral density of the final
model. The model psd at wavelengths shorter than 300 m represents a rough
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extrapolation. Figure 3 shows a plot of the collocation weights that are
applied to ~270 data points; note the increase in the last two sets of
weights which could be an artifact of oversampling.

3. CONCLUSION

The upward continuation of the surface gravity anomalies was done using
two independent computation methods. The two methods are in excellent
agreement (see Table 2) with both results clearly showing a departure from
the inverse-square law. The conclusion is that there is a dominantly
attractive non-Newtonian component to gravity. Previous experiments had
indicated a repulsive component to gravity. This inconsistency can be
overcome by postulating the existence of two additional forces, one
attractive and one repulsive. Our data do not contain adequate resolution
to distinguish between the one force (scalar) and two force (scalar-vector)
models but are consistent with both. Figures 4 and 5 show plots of the two
models along with our data. The error bars used are those of the first
method.
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Table 1. Table 2.

FOURIER-BESSEL UPWARD CONTINUATION OBSERVED MINUS PREDICTED (#Gal)

ELEVATION STEP I STEP 2 STEP 3

0.69 .422 .266 .009
7.58 .256 .116 .002
9.38 .233 .098 .008

23.07 .094 -.013 -.013
45.93 -.054 .121 -.098
68.76 -.159 -.196 .176
93.92 -.187 .199 .184

192.17 -.341 -.306 -.301
283.58 -.455 -.414 -.412
379.54 -.534 -.499 -.498
473.24 -.567 -.541 -.540
562.27 -.566 -.548 -.547

ELEVATION METH I ERROR METH 2 ERROR

0.69 9 59 35 9
7.58 2 59 -2 13
9.38 8 59 0 16

23.07 -13 58 -27 36
45.93 -98 57 -I00 61
68.76 -176 56 -171 80
93.92 -184 54 -179 95

]92.17 -301 48 -304 117
283.58 -412 44 -413 120
379,54 -498 38 -493 120
473.24 -540 37 -528 121
562.27 -547 36 -526 121
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Geodynamics and Temporal Variations in the Gravity Field
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NOS, NOA,4, Rockville, Maryland 20852

ABSTRACT

Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now
that precise geodesy is yielding observations of these deformations it is important that concomitant,

temporal changes in the gravity field be monitored. Although these temporal changes are minute they
are observable: changes in the J2 component of the gravity field have been inferred from satellite
(LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by
Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission.
Satellite gradiometers have also been proposed for high-precision gravity field mapping. Using simple
models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction

zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity
gradients at spacecraft altitudes. We find that these proposed gravity gradient satellite missions should
have sensitivities equal to or better than 10"4 E in order to reliably detect these changes. We also find
that satellite altimetry yields little promise of useful detection of time variations in gravity.

1. INTRODUCTION

Because the solid Earth is dynamic, its internal density structure evolves with time. This evolution in
density structure produces temporal changes in the gravity field. And, although these changes in gravity
are quite small (dg/g < 10 "6, local) over time spans of years or decades, they could tell us much about
dynamics of the Earth's interior. Observations of these time variations will be particularly useful when
combined with precise observations of surface deformation.

This paper examines the prospects for detecting these time variations from satellites. Changes in the
second zonal harmonic, J2, of the geopotential have been detected [Yoder et al., 1983; Rubincam, 1984]
using 6 years of LAGEOS tracking data. These changes have been attributed to ongoing viscous
rcbound of the Earth's crust and mantle [Wu and Peltier, 1983]. Other high altitude satellites such as
Starlette, LAGEOS, II, III, and Stella will help refine estimates of temporal changes in the long-
wavelength (,\>4000 km) components of the gravity field. A proposed system of two, low-altitude
satellites, the GRM [Taylor et al., 1983] would, were it flown successfully, have very likely detected

other temporal changes in the gravity field such as those in the nonzonal and intermediate-wavelength
components [Wagner and McAdoo, 1986, hereafter WM]. Gradiometer missions which have been
proposed [Paik, 1981; Balmino, 1986] for mapping the gravity field could make useful observations of
these time variations if these missions are sufficiently high in sensitivity and low in altitude.

2. GEOPHYSICAL RATIONALE

Gravity fields derived from satellite data possess an ever increasing accuracy at longer spatial

wavclengths. The importance of this accuracy to geophysicists is not obvious. For most geophysical
applications, high spatial resolution (inherently lacking in satellite gravity fields) is more important than
accuracy at lower resolution. However, one application does require this very high accuracy: the
geodynamical study of active regional deformation in the crust and mantle. Mass motion in these

deformation zones produces slow, subtle changes in the gravity field. If we can detect these changes,
we can place significant constraints on models of deformation. Figure 1 shows a simple example of how
observations of changes in gravity might discriminate between two possible modes of compressional,
crustal deformation: swelling and folding, modes which might well be indistinguishable in observations
of surface strain.
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Figure 1. Folding and swelling: a similar vertical motion signal but folding produces greater changes
in gravity.
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3a. DIP-SLIP EARTHQUAKES

The most energetic earthquakes are the great, thrust faulting events which occur at subduction zones.
These, among all earthquakes, should produce the largest changes in the gravity field at satellite
elevations. Assume that a gradiometer satellite is operating in a repeating orbit when such an
earthquake occurs, and that this orbit lies directly above the epicenter and is orthogonal to the strike
of the subduction zone. Characteristics of the great dip-slip event are taken to be identical to those
of the 1964 Prince William Sound, Alaska event (M o = 8 x 10 z9 dyn era). Resultant coseismic changes
in the gravity gradient field at the spacecraft (Fig. 2) as well as geoid changes are computed using an
extension [WM] of a model due to Walsh and Rice, [1979]. This model represents the earthquake as
dislocations in a uniform elastic half-space and predicts that the surface free-air gravity anomalies
produced by dip-slip events are proportional to the coseismic surface height changes [WM]. We have
upward-continued and transformed predicted surface gravity to obtain the horizontal (xz) component

of the gradient (z is vertical and x is along-track). The corresponding coseismic geoid change has an
amplitude of <2 cm which would be difficult to detect with a satellite altimeter due to omnipresent
oceanographic 'noise'. Note also that gradient signals at a spacecraft altitude of 160 km are about 4
x 10 .9 Eotvos units or E in amplitude. The 1964 Alaska earthquake was, however, extraordinarily large,

perhaps the second largest in seismological history. A more typical great earthquake is the 1985
Michoacan, Mexico event [M o = 0.2 x 10 dyn cm; Eissler et al., 1986] which was also a thrusting event

but was of smaller spatial extent. Predicted changes in horizontal gravity gradients aloft are shown in
Figure 3. Note diminished signal at 160 km as well as the more pronounced attenuation at 230 km
altitude. Detection of this event requires that a gradiometer with a sensitivity at least 10 -4 E be flown
at the lowest possible altitude.
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3b. POSTGLACIAL REBOUND

The Earth's mantle and crust continues to rebound today in response to the last global deglaciation
which began 18000 years ago and largely ceased 6000 years ago. Detailed models [Wu and Peltier, 1983]
of this process have been developed and extended [Yoder et al., 1983; Rubincam, 1984] to compute
concomitant dynamic changes in the gravity field. For this study, we use a simpler model of [WM],
which takes the Earth to be a uniform, Maxwell viscoelastic sphere and the ice masses (Laurentide,
Fennoscandian and Antarctica) to be circular, spherical caps. This simple model predicts vertical
velocities of the solid Earth's surface (Fig. 4) which agree rather well with both observations and

predictions of more complex models. Using Hotine (1969) we compute, from geopotentiai changes, the
change in the XZ gradient component (Figure 5: Z is polar and X is equatorial) which will accrue in

one year's time at an elevation of 230 km. Note that the amplitude of this change is about 10 .2 E. So,
to detect the long wavelength gravitational effects of postglaciai rebound with a satellite gradiometer,
one must have an instrument (assumed lifetime of one year) with a sensitivity of 10_ E. Satellite

gradiometry (measuring second derivatives of potential) is better suited to detecting shorter wavelength
signals.

. (

Figure 4. Present-day vertical velocity (cm/yr) of
solid Earth's surface from simplified model of
postglacial rebound. [WM]

Figure 5. Predicted annual change (laE) in xz
component of gravity gradient due to postglacial
rebound.

3c. SEASONAL GLACIAL MASS FLUX

Secular and season glacial mass flux is large enough to produce a potentially detectable temporal
variation in the gravity field. Meier [1984] suggests that the secular component of mass ablation from
smaller glaciers (i.e., Greenland and Antarctica excluded) is the dominant contributor to the nonsteric

rise in global sea level. He also estimates season mass flux for each of 25 smaller glacier systems. By
far, the largest among these estimates is the 225 km 3 (water equivalent) amplitude annual flux from the
Gulf of Alaska Coastal Mountains. This flux occurs as annual accumulation and ablation over 88,400

km 2 with an areal mean amplitude of 2.54 m. The seasonal drop in the geoid (2 cm) produced by this
winter-to-summer ablation is estimated (Fig. 6a) by assuming a source body which is a rectangular
prism (100 x 884 km x 5.1 m) of density -1.0 x 103 kg/m 3. We searched the GEOSAT altimeter data

from the Gulf of Alaska for such a geoid change. By averaging in space (over a swath of several
groundtracks) and time (over five 17-day repeat cycles), we obtained an ascending and a descending sea
surface profile to represent the Gulf in both the summer and winter of 1987. We subtracted the winter

results from the summer to estimate seasonal change in the sea surface topography. We found this
change (14cm) too large to be geoidal. More likely, it is a steric sea level change. This demonstrates

the obstacle which oceanographic variability presents to detection of time variations in gravity from
satellite altimeters.
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Figure 6. (a) Predicted geoid change (summer minus winter) due to seasonal mass ablation from
southern Alaska glaciers. (b) Associated change in xz component of gravity gradient at elevation, h.

We also estimate (Fig. 6b) the change in the horizontal gravity gradients (xz) at satellite elevation for
this seasonal glacial mass flux along coastal Alaska. At 160 km elevation, this signal has an amplitude
of 10 .3 E. A gradiometer with a sensitivity, again, of about 104 E is needed to reliably detect it.
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ABSTRACT

If the geoid and the satellite position are known accurately, satellite altimetry can be used to
determine the geostrophic velocity of the surface ocean currents. The purpose of this
investigation is to simultaneously estimate the sea surface topography, (, the model for the
gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used;
along with Seasat and Geosat altimeter data as well as surface g_'.avity data for the solution. The
estimated model of (compares well at long wavelengths with the hydrographic model of (.
Covariance studies show that the geoid is separable from (up to degree 9, at which point geoid
error becomes comparable to the signal of (.

1. INTRODUCTION

The determination of the general ocean circulation is one of the more important applications
future satellite altimeter missions will provide. If the height of the ocean surface relalave to the
geoid can be measured, the absolute geostrophic surface current velocity at a given location can
be inferred. The Seasat and Geosat altimeter missions measured the height of the ocean to a
precision suitable for this purpose [Tapley et al., 1982; McConathy and Kilgus, 1987]. Errors
m the gravity field have limited previous determinations of ( for two reasons: 1. (is measured
with respect to the geoid, an equipotential surface defined by the gravity field model, and 2.
gravity tleld errors are the primary limitation in the accuracy of the satellite orbit computation.

The radar altimeter carried by Earth orbiting satellites measures the range between the radar
antenna and the instantaneous ocean surface. If the geocentric position of the satellite is known,

the altimeter measurement can be differenced from the computed satellite height to yield _e
ocean surface height at the sub-satellite point. If there were no forces acting except the Earth s
gravity and centrifugal force, the ocean surface would coincide with an equipotential surface
referred to as the geoid, N. However, a number of effects cause the height of the ocean surface
to deviate from the geoid height. Among these, ocean currents cause deviations with maximum
amplitudes of about one meter. If an accurate estimate of N is available, the measured height of
the ocean surface (corrected for tides and other effects [Tapley et al., 1982]) and the geoid
height may be differenced to provide an estimate of (.

Previous maps of ( with wavelengths comparable to a degree and order 6 spherical
harmonic model (6000 kin) have been determined using Seasat altimeter data [Tai and Wunsch,
1984; Engelis, 1986] Each of these a0proaches adopted a mean sea surface computed usin
Seasat altimeter data which was then differenced with a low degree and order geoicl to give ag
estimate of the long wavelength components of (. The error in the gravity field model has been
a limiting factor in the accuracy achieved in these investigations.

.The results described here were derived as an adjunct to a concentrated effort to determine
an improved gravity field model for the Topex/Poseidon altimeter mission [Tapley et al., 1987].
The use of altimeter data in a gravity field solution, without correcting for (, can allow the
oceanographic signal due to (to be aliased into the gravity field. The potential for
simultaneously improving the geoid and (using satellite altimetry, surface gravity observations,
and hydrography has been discussed by Wunsch and Gaposchkin [ 1980]. Since the influence
of the gravity field on the geoid and the orbit, and the effect of (, are both present in the
altimeter measurement, a more rigorous treatment of the problem would involve estimating the
parameters which define both models simultaneously. This investigation demonstrates a joint
solution for (, the gravity field, and the satellite orbit using satellite altimeter and tracking data.

2. METHODS

Seasat and Geosat tracking data and altimeter data along with tracking data from twelve
additional satellites and surface gravity data wereprocessed m a simultaneous solution using a
modified least squares estimator [Tapley et al., 1987]. The estimated parameters included a set
of spherical harmonic geopotential coefficients, complete to degree and order 50 with selected
higher order terms, the spherical harmonic coefficients of (, complete to degree and order 15,
and ocean tide parameters. Solar radiation pressure, atmospheric drag, and doppler tracking
station coordinates were adjusted as individual satellite parafiaeters. Altimeter b{ases and scale
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factors for the significant wave height correction were estimated for Seasat and Geosat also. In
addition to Seasat and Geosat altimeter data, the different types of satellite tracking data included
laser range data, doppler data, optical data, and altimeter crossover data.

The stationary ocean surface is composed of the sum of N and 5. The Earth's gravitational
potential can be expressed in spherical harmonic form as:

U=_T[ 1+_ _ {_-_tm(sin_)[_-lracOsmA +_rn_ ff/msinm&]l (1)

where _m, firm are the normalized spherical harmonic coefficients of degree I and order m, _ is
the.product of the gravitational constant and the total mass of the earth, re is the mean equatorial
radius of the earth, r,_,2 are the radial distance, geocentric latitude and longitude measured from
the zero meridian, Plmfsincb) is the normalized associated Legendre function (m_-0) or the
normalized Legendre pblyfiomial of degree l (m---0), and t,,_ is the truncation degree of the
geopotential. The position vector (x,y,z) of the sub-satellite point, which defines the geoid
height, is computedby iteratively solving [Shum, 1983]:

W(x,y,z) = Wo and VW / I VW l= uh (2)

where W(x,y,z) = U + T, the total potential at the sub-satellite point, T is the rotational
potential, W0 is value of the total potential corresponding to mean sea level, and _h is a unit
vector normal to the geoid and passing through the satellite. Thus the set of constant
parameters, --.Ctmand Stra, in Equauon (1) are common to both the satellite dynamics and the
geoid definition (2). A spherical harmonic model was employed to represent the height of _ as:

l=lm=0

where CI, _ , Stm are the surface spherical harmonic coefficients of the mode! for (. In this
investigauon, (is constrained to be zero over land areas and in polar regions (I _ I> 703. While
the altimeter data with the land constraints do not form an equally spaced data set, the estimate
for the coefficients retains the general characteristics of a fully orthogonal parameter set.

Portions of the Seasat and Geosat altimeter data sets were selected to correspond to the time
periods when the best ground tracking data was available. Using the Preliminary Topex
Gravity Field (PTGF2) [Tapley et al., 1987], reference orbits were computed using tracking
data and altimeter crossover data. In all, 30 days of Seasat altimeter data (7/28-8/15, 9/15-9/27,
1978) and 54 days of Geosat altimeter data (11/17/86-12/4/86, 12/21/86-1/24/87) were

rocessed. The altimeter data were edited including the removal of data if the water depth was
ss than 2000 m (to remove data with large tidal uncertainties) or if the data was over an ocean

trench or seamount. The data were corrected for the unmodeled short wavelength features of
the geoid (> degree 50) and compressed to form altimeter measurements 10 seconds apart.

There was no a priori variance on the coefficients of 5. The a oriori variance of the
geopotential coefficients, v2, were computed using Kaula s rule [Kau[a, 1966] which can be
stated as v2=tx 10 -1° l "4, where a is a scale factor equal to 0.04.

3. RESULTS

To evaluate the satellite altimeter solution for (, a spherical harmonic model of ( was
constructed from hydrographic data. The Levitus ocean surface referenced to 2250 db.ars.is

adopted for this purpose [Levitus, 1982]. Grid points on land and in the polar regions (I _ I>
70 ) were set to zero and a degree and order 15 spherical harmonic model was fit to the data
using a minimum variance esumator. Using the estimated values for the spherical harmonic
coefficients, ( can be computed as a function of latitude and longitude using Equation (3).
Figure 1 depicts maps of (computed from both the altimeter and Levitus derived spherical
harmonic coefficients complete to degree and order 6. The major gyres of the ocean circulation
are depicted in both solutions. Up to degree and order 6, the altimeter and hydrographic models
of (compare well. The agreement between the hydro_aphic and altimetric results is better than
in previous altimeter solutions for (, suggesting a sigmficant improvement has been achieved by
simultaneously solving for the gravity field, the satellite orbit, and 5. Further details of the
solution procedure and the results are given by Tapley et al., [1988].

The _mprovement in the geoid solution may be evaluated by computing new reference orbits
(using the estimated models) and analyzing the residuals from the compressed altimeter data. It
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was found that the altimeter residuals improved from 225 cm (for a _ravity field without
altimeter data) to 30 cm, indicating the geoid model has been substantially nnproved.

. . _ • °

!o

To' _-2 _-_ _ _ _0_ T_;-,_, •2Jo ' ,_o 2_o 2_, •_ _'O T_o
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Figure la. The estimated model of _ to degree and order 6
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Figurelb. TheLevitusmodelof to degreeandorder6
4. COVARIANCE ANALYSIS

One benefit of simultaneously estimating both the geopotential coefficients and the
coefficients of _ is that the resulting covariance matrix will describe not only the individual
errors in N and _, but also the correlation of these errors. Considerable effort was expended to
dete_aine the relative weights of the data and the scaling of the covariance matrix.

t_.y examining the degree variance of the _and the degree error variance of N (Table 1) it is
seen tnatbeyond degree 9, geoid error is larger than the signal of _. The covariance matrix for
the coemcients of _"and the geopotential can also be used to compute the standard deviation of
the error in N and _. The error in N is largest over the land areas (where there is no altimeter
data) and in equatorial regions. For terms up to degree 6, the geoid height is accurate to about 8
cm (Table 1). The error in _"mimics the geoid error, the largest error occurs near the equator
and increases with degree. The magnitude of the error in _ is about 10 cm for terms up to
degree 6 (Table 1). In addition to their individual errors, the correlation coefficient for the error
in N and ffcan be analyzed to determine if the two quantities are separable. Figure 2 shows the
geographical variation of the correlation coefficient for terms in the covariance matrix up to
degree 6 in both N and ft. This figure verifies that the solution for N and _"are separable, at this
degree, since the correlation coefficients are less than 0.6 globally.
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Table 1. The degree variance of { and the degree error variance of N and

De_ee 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Siffnalof¢(cm) 10 20 11 13 14 17 11 '10 12 12 16 12 14 11 7

ErrorinN(cm ) <1 1 2 4 4 6 8 10 11 14 13 13 16 14 16
Error in¢(cm) 5 3 4 4 5 5 7 8 9 9 11 11 11 9 9

so

2o
0 i

]o

-2O

-8O

O 20 40 _ 80 1 140 160

Contour Interval ffi 0.05 Lt-Jcxgitttde

Figure 2. The correlation coefficient of the errors in ¢"and N

5. CONCLUSIONS

It has been shown that a global estimate of C'can be obtained from a joint solution for _and
the gravity field using multiple satellite tracking data and altimeter data. The simultaneous
solution for the ¢', the gravity field, the satellite orbit, and other geophysical parameters provides
a substantially improved estimate for the gravity field and the long-wavelength signal of the
general ocean circulation. This estimate of ¢"compares favorably at long wavelengths with
hydrographic determinations of _'. The accuracy of the solution decreases as shorter wavelength
features are examined, primarily due to the influence of geoid error.
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ABSTRACT

The dominant error source in estimating the orbital position of a satellite from ground based tracking

data is the modeling of tile Earth's gravity field. The resulting orbit error due to gravity field model errors

are predominantly long wavelength in nature. This results in an orbit error signature that is strongly

correlated over distances on the size of ocean basins. Anderle and Hoskin 119771 have shown that tile

orbit error along a given ground track also is correlated to some degree with the orbit error along adjacent

ground tracks. This cross track correlation is verified here and is found to be significant out to nearly

1000 kilometers in the case of TOP,X/POSEIDON when using the GEM-T1 gravity model. Finally,

it is has been determined that even the orbit error at points where ascending and descending ground

traces cross is somewhat correlated. The implication of these various correlations is that the orbit error

due to gravity error is geographically correlated. Such correlations have direct implications when using

altimetry to recover oceanographic signals.

1. INTRODUCTION

In order to fully exploit the scientific value of satellite altimetry measurements it is necessary

to have accurate independent knowledge of the orbital position of the satellite. To date, it

has not been possible to determine the position of altimetric satellites to a level of accuracy

commensurate with the altimeter measurement accuracy. Thus the determinations of sea surface

height above some reference surface are primarily corrupted by the errors in the estimate of the

satellite altitude. In turn, these errors in the satellite altitude are primarily caused by errors in

the modeling of the Earth's gravity field. Thus, the error spectrum of the sea surface heights

is driven by the error spectrum of the satellite orbit altitude errors. This spectrum can be

evaluated under some limiting assumptions and if the error spectrum of the Earth's gravity

model is known. Evaluation of the spectrum will aid in determining to what extent the sea

surface height data can be used in the detection of oceanographic signals.

This paper will principally address the geographic characteristics of the orbit error spectrum.

That is, how large is the error in any given geographic region and how much is the orbit error in

any one location correlated with the orbit error at another location. This question was originally

addressed by Anderle and Hoskin [1977] who found a large correlation of the error along the

direction of satellite motion and a much smaller though significant correlation of the error

for adjacent ground traces. Their results were obtained through a simulation of the SEASAT

orbit error based on the difference between two contemporary gravity models. The approach

used here is analytic in nature and will be applied to the proposed TOPEX/POSEIDON orbit.

Additionally, the gravity model error will be specified by the gravity error covariance of the

recent GEM-T1 model [Marsh, et. al., 1988].

2. ANALYTICAL DEVELOPMENT

The objective is to obtain the variance and covariance of sea surface height errors (derived from

satellite altimetry) as a function of geographic location. In this development it will be assumed

that these errors are solely a result of satellite altitude error due to gravity model error. Thus,

the variance and covariance of the sea surface height errors will be equivalently represented by

the variance and covariance of the orbit altitude errors. Also, it is assumed that the satellite

geodetic altitude error can be accurately approximated by the satellite radial orbit error.
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To obtain the variance and covariance of the radial orbit error due to gravity model error

requires a relationship between the radial error and the error in the gravity model parameters.

Such a relationship can be obtained through application of Kaula's solution [Kaula, 1966] which

gives the orbit element perturbations based on a spherical harmonic development of the gravity

field. 'Fhe general result for the corresponding radial orbit perturbation is given in Rosborough

and Tapley [1987]. This result, which gives the radial orbit error as a function of time, also

can be expressed as a function of the satellites geographic location if the orbit is assumed to

be nearly circular (as in the case of altimetry satellites) [Rosborough, 1986; Engelis, 1987]. The

functional form of this geographic representation of the radial orbit error, 8r, due to gravity

model error is,

oo I

6r = cos,  + sin i si. + cos
1=2 rn=0

where _Ctm and _Slm are the errors in the gravity coefficients of degree i and order m, and

¢1,_ and _,n are functions of the satellites body-fixed latitude, ¢, and mean orbital elements,

and A is the satellites body-fixed longitude. The choice in signs is determined by the satellites

directional motion. If the satellite is on an ascending track then the sign is positive, if the

satellite is on a descending track then the sign is negative.

This relationship shows the radial orbit error to be stationary along the ascending and

descending tracks. That is, the orbit error repeats exactly along any given ground track. This

is not the case for actua[ orbits which have been determined from ground based tracking. To

emulate the real case requires this equation to be augmented with additional terms that account

for the effect of errors in the initial conditions [Colombo, 1984]. These errors will differ for

each determination of the initial conditions depending on the distribution of the tracking data.

More importantly the resulting radial error due to initial condition error will in general not be

stationary in the geographic frame. This effect will certainly augment the results of the next

section which are based on the above equation alone. Future studies will attempt to introduce

the initial condition error effect.

Given the above linear relationship between the gravity coefficient errors and the radial or-

bit error it is possible to determine the radial error variance and covariance if the gravity error

covariance is known. In this context, the variance of the radial orbit error is the uncertainty

in the radial component at any given geographic location, and the covariance is the correla-

tion between the radial error at two different locations. Such variances and covariances have

been evaluated using the GEM-T1 gravity error covariance and the mean orbital elements of

TOPEX/POSEIDON. These results are given in the following section.

3. RESULTS

The standard deviation of the radial orbit error for TOPEX/POSEIDON due solely to the

errors in the GEM-T1 gravity model are given in Figures 1 and 2. These figures show the

standard deviation of the error along the ascending and descending tracks respectively. Again

it should be emphasized that these results only account for the gravity error. In an actual orbit

determination problem the resulting error will differ depending on the accuracy and distribution

of tracking data and how much of the gravity induced orbit error can be absorbed through an

adjustment of the initial conditions. Nonetheless, these figures illustrate how gravity error, in an

ideal case (no initial condition error), is mapped into the radial component of the orbit. There

is an obvious strong along track correlation of the error (which will be directly evaluated) and

an obvious geographic correlation of the error.

The geographic correlation appears to be a consequence of the non-global distribution of

tracking data that was used to construct the GEM-T1 model. Since GEM-T1 was based solely

on satellite tracking data this non-global distribution is inevitable. Models which include surface
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Figure 1: Standard deviation of the TOPEX/POSI_IDON radial orbit error along the ascending ground

tracks, using the GEM-T1 gravity error covariance. The contour interval is 2 cm.
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Figure 2: Standard deviation of the TOPEX/POSEIDON radial orbit error along the descending ground

tracks, using the GEM-T1 gravity error covariance. The contour interval is 2 cm.

gravity data and altimeter data can be expected to have much better global characteristics and

the resulting orbit error would not be expected to be as non-uniform as the case for this satellite
only model.

To demonstrate the spatial correlation of the radial orbit error an example is presented that

shows how the error at one geographic location is correlated with the errors in the neighboring

geographic region. The reference point is located at 200 ° East longitude on the equator and

and corresponds to the radial error along an ascending track passing over that point. The

correlation of this error with the errors on all other ascending tracks through the region is given
in Figure 3. The correlation value of 1.0 locates the reference orbit error with which all the

other errors are correlated against• This plot clearly shows the strong along track correlation

and it also shows the significant cross track correlation. That is, the errors on adjacent ascending

tracks have significant correlation even when separated by distances of up to a 1000 km. The

correlation distances evident in Figure 3 compare with those found by Anderle and Hoskin

[1977] although the cross track correlation appears stronger here due to the higher altitude of

TOPEX/POSEIDON as compared to SEASAT (thus, TOPEX/POSEIDON is not as sensitive

to the higher degree coefficient errors which would decorrelate the orbit error at shorter scales).

The spatial correlation of the radial errors at crossover points has also been investigated. In

this case, at a given crossover location (where an ascending track crosses a descending track) the

correlation between the error on each track is computed. Overall the correlations were found

to vary between :f.3 for the case of TOPEX/POSEIDON and using the GEM-T1 gravity error

covariance. This is very significant for those applications that attempt to use crossover data to

remove the remaining orbit error in an altimetric satellite ephemerides. Due to the correlations

of the error along the two tracks (even though widely separated in time) the crossovers do not
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Figure _: Correlation between the TOPEX/POSEIDON radial orbit error along ascending

tracks with the ascending error located at 200 ° East longitude on the equator. The contour

interval is 0.368.

provide an absolute measure of the radial orbit error. In general there is some component of the

orbit error (usually referred to as the geographically correlated component) that is unobservable

in the crossovers.

4. CONCLUSIONS

Orbit error due to gravity model error is very systematic when examined geographically. This

strong geographic dependence is a hindrance in the utilization of satellite altimeter data to

measure oceanographic signals. The results presented here are based on some simplifying as-

sumptions (near circular orbit) and do not account for other possible mode] error sources or the

effect of fitting the orbit to a set of tracking data. However, it should be expected that the effects

presented here will be manifested into the actual orbital ephemerides at some level. Elimination

of these correlations can only be accomplished through the elimination of the gravity model

error. Thus, it can be expected that ephemerides for altimetric satellites have errors which are

strongly correlated and which can in turn be a]iased into the oceanographic signals trying to be

recovered from the altimetric data.
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Spectral Analyses of Satellite Geopotential Missions

N90" 20552
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Abstract

A new, geometrical, first order, nonresonant, frozen orbit theory has

been developed based on Orlov's uniformly rotating plane of constant

inclination. Perturbation spectra generated from a 90th order subset of

OSU86F are shown for the ill-fated 1984 JHU/APL SAGE proposal for a pair of
TRANSIT satellites at 400km altitude with a 93?5 inclination.

Introduction

To perform the integration for a geodetic satellite a new

been developed for the geopotential on an orbit as

form has

V GM _ fk _ _ ei(pu + qO)[_(k) + ^T(k)_

= --a k=0 p=-_ q=-_ " P'q _ p'qj '

where the symbols are defined in [Melvin, 1988a] and

derived for the generation of the complex coefficients

harmonic geopotential model.

an algorithm is

from a spherical

The geopotential variation

a _ _ R(0)ei(pu+qO)

p=-_ q=-_ P,q

(I)

is the distance of an equipotential surface from sphere of radiusfo_a. The
spectrum in Fig. i is a log-log bar graph of the amplitudes 2air _ _I where

the frequency is Ipn + q_l. The along-track deflection evaluatedP'qon the

nominal circular orbit is

oo

Iav GM i_(0) ei (pu+q@)
a 3u = a-_f_. _ _ p,q

p=-_ q=-_

(2)

and its spectrum is plotted in Fig. 2.

Position Perturbations

The real forms of the series are used for the integration in [Melvin

1988a], but it is apparent from [Melvin, 1988b] that the formulas are much

simpler with complex coefficients. In fact the orbit perturbations are of

the same form as the disturbing potential

co oo

_ i (pu+qO) i (pu+qO)

_o = _ _ _,qe , _/ = _ _ e ,
p=-oo q=-oo r p=-oo q=-oo'TP,q

= q ei(pu+qO) , X = _ _ i(pu+qO)
p=-_ q p=-_ q=__Xp,q e
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where the coefficients are computed from the algorithm

n_T(O_, n2oPR_

_p,q = - (pn+q_) 2 _ N 2 , (3), NP'q v(pn+q_)

i) + 2v2N p _pn_R_,q 'q (5) = -iv ,q - 2_p,q

fp,q (pn+q_)2 _ N 2 , , Xp,q pn + q@

(7)

After multiplication by 2a, the amplitudes of the coefficients of (3), (5)

and (7) are plotted in Figs. 3, 5, and 7 from which it is seen that

position perturbations accentuate the low and near orbital frequencies and

attenuate the high frequencies. Expressions for the cross-track (3),

radial (5), and along-track (7) position perturbations from the Kaula-Allan

theory are found in [Rosborough and Tapley, 1987].

Velocity Perturbations

By use of coordinates at the nominal satellite position,

track, radial, and along-track velocity components are

the cross-

V _ (pn+q_) _p, qe i (pu+qO)= a(_ - _sin_cosu) = a[ _ i - _sin_cosu], (4)

p=-_ q=-_

v r = a_ = a _ _ i(pn + q_)fp,qe i(pu+q@) , (6)

p=-_ q=-_

o0 oo

- )e i (pu+q@) ] (8)
v u - av + a(X + vf) = a_[l + _ _ (_p fp

p=-_ q=-_ ,q ,q

The amplitudes of the coefficients of (4), (6) and (8) are plotted in Figs.

4, 6, and 8. By comparison of the high frequency fall-off in the position

and velocity spectra, it is clear why more geopotential information is

obtained from Doppler beacon satellites than from skin tracking even if it

is by laser reflectors.

Intersatellite Measurements

For a close satellite pair in same orbit, the intersatellite range is

oo
p = rAu = aSu(l + f + _u ) = aSu[l + _ (fp,q

p=-_ q=-_

q)ei(pu+q _)+ ipXp, ], (9)

A time derivative yields the intersatellite range rate as

aEu _ _ i(pn + q_)(fp,q q= + ipXp, )e i(pu+qO) (i0)

p=-_ q=-_

For a nominal separation of a_u=lO0km the spectra of (9) and (I0) are

plotted in Figs. 9 and I0. A comparison of the high frequency portions of

Figs. 2 and i0 and the foregoing formulas show

a6u aV_ a-_nF_ '

from which the result of [Comfort, 1973] is modified to state that at high

frequencies for a pair of satellites flying in formation the intersatellite
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l:_,_,_,_._t.__limic:_ the. along track deflection. The paucity
Lintels_ear twice per orbit in Fig. i0 indicates that complete
recovery is not possible with only intersatellite range rate.

of spectral
geopotential

Gravity Gradient

Equally simple formulas for the gravity gradient tensor along
nominal circular orbit in Orlov's plane are found in [Melvin, 1988b] as

a

rr r =2n_ _ R(2)ei(pu+qO!(ll) F =in _ _ p p,q-Rp,q)e
, P=-_ q=-_ p,q ' r,u Op___ q=-_ (12i

=n 2 T (I) T (0) e i(pu+qO) F =n 2 _ " 2R(0)+R(1)'ei(pu+qO!
, i-P p,q p,qJrr,_ Op=__ q=_ ( p,q- p,q) (13) u,u Op=._ q=-_ (14)

F u _ in_ _ _T(O)ei(pu+qO) F = -r - F (16)= v p,q ' _,_ r r u u
' p=-_ q=-_ (15) ' '

The gravity gradient spectra computed from (ii) through (16) are shown in

Figs. II through 16.

Geopotential Recovery

Although it is subjective and dependent on the sensitivity of the

measuring devices, it became apparent in the generation of the spectrum in

Fig. i0 that the claim of 100th order recovery from SAGE, [Pisacane, et

al., 1984], could not be substantiated. From intersatellite range rate,

about 70th order recovery is more realistic at an altitude of 400km. The

abrupt, high frequency cutoff in Figs. ii, 12, and 14 indicates there is

information beyond 90th order in the gravity gradient components.
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1. INTRODUCTION

The NASA Ocean Topography Experiment satellite Topex will carry a microwave altimeter

accurate to a few centimeters for the measurement of ocean height. The capability can be fully

exploited only if Topex altitude can be independently determined to 15 cm or better [Born, et al.

1985]. This in turn requires an accurate gravity model. The gravity will be tuned with selected nine

10-day arcs of laser ranging, which will be the baseline tracking data type, collected in the first six

months of Topex flight. Topex will also carry onboard an experimental GPS flight receiver capable

of simultaneously observing six GPS satellites above its horizon to demonstrate the capability of

GPS carrier phase and P-code pseudorange for precise determination of the Topex orbit. It has been

found that sub-decimeter orbit accuracy can be achieved with a mere two-hour arc of GPS tracking

data, provided that simultaneous measurements are also made at six or more ground tracking sites

[Yunck, et aI. 1986]. The precision GPS data from Topex are also valuable for refining the gravity

model• This paper presents an efficient technique for gravity tuning using GPS measurements.

Unlike conventional global gravity tuning, this technique solves for far fewer gravity parameters

in each filter run. These gravity parameters yield local gravity anomalies which can later be

combined with the solutions over other parts of the earth to generate a global gravity map. No

supercomputing power will be needed for such combining• The following describes the approaches

used in this study and presents preliminary results of a covariance analysis.

2. GRAVITY ANOMALY INFORMATION CONTENT IN TOPEX GPS MEASUREMENTS

In this section a theoretical formulation is derived for the information content of GPS

measurements, in particular carrier phase, from Topex for the recovery of gravity anomalies. The
acceleration (force) on Topex in a rotating local h-c-f coordinate (Fig. 1), where h is the radial, c
the cross-track and f the down-track directions, can be written as

= PEX

h at (rt_+h) ' f " ' k f

ac

c = A-'t"' ._::::::::::i_iiiiiii
....._:ii_t_i_il

and ............i:_i!EARTH':'ii!ii!iii!i!iiii!!ii!iiii

•' af hi

f =_+ (rE+h)
Fig. 1. Rotating fi-c-f coordinate

where single and double dots denote first and second time derivatives, respectively, and r E is

earth's mean radius• For given uncertainties in Topex velocity and its change over a time increment

At, the corresponding uncertainty in the determination of the force is

oaa 2Loi Lob
C_h < _- + (rE + h-'--'-_ ' = -_- and (_f < _ + (rE + h--'--"--'Y
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Previous analyses have indicated that Topex orbit determination with GPS measurements

yields

13A, (1i, (3Ah, o_, _ < 0.5mm/sec

Hence, with an altitude h = 1,334 km and nominal velocity £ = 7.2 km/sec for Topex, and for a

sampling time of At = 2 minutes, local gravity anomaly along a Topex flight path can be determined

to an accuracy of better than 0.6 mgal in the radial component and better than 0.5 mgal in the other

two components.

3. SIMULATION ANALYSIS

Next, a simulation analysis was performed to numerically estimate the accuracy with which a

given, but assumed unknown, gravity anomaly can be determined by solving for the coefficients of a

number of spherical harmonics. In this analysis, a network of six globally distributed tracking sites

is used. These include th.v lhree NASA Deep Space Tracking (DSN) Sites at Goldstone, California;

Madrid, Spain and Canberra, Australia; and three other sites at Japan, Brazil and South Africa.
The "truth" model for the gravity anomaly is assumed to consist of a sum of eleven zonal harmonics

Jis, J16..... J2s, each with a normalized magnitude of 10 -6. In the filtering process different subsets of

these terms are estimated and the lumped effects of the selected terms are computed and compared

with the truth model to assess the accuracy with which the local gravity anomaly can be

recovered. Other assumptions used in the analysis are included in Table 1.

Data Type:

Data Span:
Data Intervals:

Gravity Anomaly:
Station Coordinates:

Clock Bias:

Carrier Phase Bias:

GPS Epoch States:

Topex Epoch States:

Zenith Troposphere:

0.5-cm GPS Carrier Phase

2 hrs

2 minutes

hs, J_ ..... J25 (10-6 each, normalized)

DSN Sites: 3 cm each component (fixed)

other: 10 cm each component (adjusted)

3 I.tsec (adjusted as white noise)

10 km (adjusted)

3 m; 0.3 mm/sec (adjusted)

10 m; 1 cm/sec (adjusted)
2cm

Table 1. Simulation Analysis Model

Fig. 2 shows the results when four different subsets of gravity terms are estimated. Note that

good agreement with the truth can be achieved when proper model is used in the estimation (Fig.

2a and 2b). On the other hand, a larger discrepancy occurs if the model is not flexible enough to

represent the truth (Fig. 2c and 2d). This leads us to the use of a piecewise constant model for its

high flexibility, provided that the step size is fine enough to follow the variation in the truth

model. The solution using a piecewise constant model with a 2-minute step size is shown in Fig. 3.

Note that the RMS discrepancy between the solution and the truth model (0.54 regal) is consistent
with the theoretical prediction.

4. THE GRAVITY BIN TECHNIQUE

Following the above encouraging findings, a more general and efficient technique was

investigated. This technique solves for "gravity bins", which are 3-D positional deviations on

Topex, with three parameters at each measurement time point over a period of a few hours. The
epoch state of Topex and other pertinent parameters are also simultaneously adjusted. These are

related to Topex current state by the following linearized equation.
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Or Or
r(t)= "_7"ro+ vo + _(t)

DVooro

where fit) is the current position of Topex, r0 and v0 are position and velocity at epoch, and 8(0 is

the gravity bin parameter at time t. Since (5 remains the same for orbits over repeat ground tracks,

which will occur every 10 days for Topex, information from repeat orbits can be combined to increase

the estimation accuracy. Gravity bins 8 for orbits over different ground tracks are independent from

one another and can be determined separately. Hence only moderate number of parameters are
estimated in each filter process. Local gravity anomaly Ag can be computed from the solutions of

gravity bin parameters 8 by

ag(t) = a(t) - _8(t)

where g is the nominal gravity field. The global gravity anomaly expressed in terms of spherical

harmonics can be constructed from the local gravity anomaly by a process similar to the Fourier
transformation.

Fig. 4 shows the result of a

covariance analysis using a 2.5- __
minute bin size over a 2-hour data

span which is nearly the Topex orbit
rv

period. Note that local gravity
anomaly can be determined to an rr
accuracy of 0.2 mgal under most "'
circumstances with GPS measure- -_

>
ments over one Topex orbit, This

accuracy will improve monotonically O
by combining multiple data arcs over <

repeat Topex ground tracks [Wu and _<
Yunck, 19881. It is anticipated that rr

gravity anomalies of medium wave-

lengths (1,500 to 3,000 km) can be

greatly refined with GPS measure-

ments onboard Topex.
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Fig. 4. Performance of gravity bin technique

The computation involved in the transformation of global gravity anomaly from a collection of

gravity bins over the entire globe is well known and can be done without the need for a

supercomputer. Hence, the gravity bin technique is efficient for global gravity recovery. Note that

gravity bins solution can be directly applied as a calibration for the effects of gravity mismodeling

on Topex orbit determination. Currently under investigation is the application of the gravity bin

technique to Topex with the baseline (laser ranging) tracking data type, where large data gaps
exist.
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ABSTRACT

The GRAVITY PROBE-B Mission will carry the Stanford gyroscope relativity experiment into orbit in the
r_lid I990's, as well as a GPS receiver whose tracking data will be used to study the earth gravity field. This
paper presents estimates of the the likely quality of a gravity field model to be derived from the GPS data,
and discusses the significance of this experiment to geodesy and geophysics.

1. INTRODUCTION

By 1995, the GRAVITY PROBE-B (GP-B) spacecraft will carry the Stanford gyroscope relativity

experiment, to test the theory of general relativity by measuring two effects predicted by this theory. Both
should manifest themselves as very slow precessions of the axis of a spinning body (gyroscope) respect to a
frame determined by distant stars, when this body moves relative to a massive object, like the earth. They
are illustrated in Figure 1: the geodetic precession occurs because the gyroscope is moving in orbit through
curved space-time, around the earth; the motiona] (or frame-dragging) precession, because the earth is

spinning about its own axis. Both effects increase as height decreases, so they are easier to measure from
lower orbits. Bright stars like RigeI, to which sensors inside the spacecraft will point, will provide the fixed
external reference frame. The gyroscopes themselves (four in number) will be made of fused quartz ground
into almost perfect spheres, with a coating of niobium. These will spin while electrostatically suspended
_nside spherical cavities rigidly attached to a solid block of quartz. The whole assembly will be cooled with

liquid helium, so the niobium coating is superconducting. A spinning superconductor developes a magnetic
field. For each sphere, this field will point in the direction of the spin axis. Once this field is detected with
magnetic sensors, the instantaneous direction of the gyroscope's axis in the frame of the stars can be
established. The spacecraft will be nearly axially symmetric, spinning about its axis, to maintain a stable
attitude in space and to average out effects due to asymmetries in mass distribution.

_0 GYRO_EFFECT_PREDI_TEI_B_.q_I_IF__

A8 = 6.6 s"e'_/yr

(GEODE TIC )

RIGEL

A0 = .042 s_/yr

{MOTION,_L)

Figure 1. Principle of the Stanford gyroscope experiment. The small spinning sphere is one of the

gyroscopes that will orbit the earth on board GP-B.

The spacecraft will also carry a Global Positioning System (GPS) receiver to provide tracking data for
studying the earth gravity field and for orbit determination, as well as corner-cube reflectors for geodetic
experiments combining GPS and Satellite Laser Ranging (SLR). Also, the spacecraft will have active drag
con,pensation in all three dimensions, to reduce disturbing accelerations on the gyroscopes. To simplify the

separation between the relativistic effects, the orbit will be polar. A polar orbit, from the point of view
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..... _, '__, ¢,_ '_ _ta_',<_g data, provides a complete globa[ coverage, assuming that the full GPS
_._,_,[[,_t_o_ o: up to 2_ Block [[ spacecraft is operating. A low, near circular orbit increases the

_a_tational s]gna_ at shorter spatial wavelengths, thus allowing higher resolution in the resulting field
r_odel. The drag compensation (which also compensates all the other surface forces_ such as solar radiation

pressure) will give an orbit shaped purely by gravitation, and thus much "cleaner" from the point of view of
geodesy, than those of ordinary, uncompensated, low-orbit satellites.

In coming years, worldwide terrestrial nets of GPS stations are likely to be established for the purpose
of providing a framework for geodynamics studies (crustal motion, tides, earth rotation), and for computing

very precise GPS ephemerides and satellite clock corrections using tracking data from around the world. The
tracking from those stations, or the ephemerides and clock corrections obtained from that tracking, will be
needed to analyse the GPS data from the receiver on board GP-B. Conversely, data from a receiver in a
relatively low spacecraft like GP-F3, obtained simultaneously with that from the ground stations, can be used

to il_lprove the geometry of the network by adding to it a moving station high above the ground (Yunk et al.,
1985). Therefore, the GPS experiment on GP-B and the operations of the terrestrial network will benefit from

each other. Finally, the possibility of tracking GP-B from SLR stations will help to connect and unify the
referet_ce frames of the laser and the GPS geodetic networks. At the same time, GP-B wilt be carrying out its
main experiment in relativity. In this way, a single space mission may advance three separate scientific
undertakings: one in fundamental physics, and two in geodynamics.

The GP-B mission will follow that of the oceanographic satellite TOPEX, wich will carry a radar
altimeter as its main experiment, and will have also a GPS receiver. This receiver will be the first of its kind

to operate in space for a prolongued period of time (up to two years). For some studies that can be carried out
from the higher orbit of TOPEX as well as from the lower one of GP-B (connection of reference frames, long-
wavelength mapping of the gravity field, tidal studies, etc.), the two missions will provide continuity over a

period of several years (GP-B is scheduled to begin at about the time when TOPEX is likely to be reaching the
end of its useful life).

2. CONCEPT OF A GP-B/GPS GEOPOTENTIAL MAPPING EXPERIMENT

For the purposes of this study, the following assumptions were made:

--- The GP-B spacecraft is drag-free; its orbit is polar, circular, 600 km in altitude, and repeats
monthly.

--- The mission lasts for two years, during which an average of 7 GPS satellites from the full
constellation o[ 24 are tracked simultaneously, at all times, from GP-B. The sampling rate is once per second,
and there are four simultaneous measurements per GPS satellite: a pseudorange and a carrier phase, in the L I
and also in the L2 bands. The measurements are stored in the spacecraft computer memory and dumped via
the TDRSS relay satellites to ground stations, together with telemetry and the relativity experiment data.

Mean values of the differences between simultaneous pseudorange and carrier phase measurements,
averaged over some tens of minutes (up to a maximum of half a revolution of GP-B, or 40 minutes) are used

to estimate the biases in the LI and L2 carrier phases. The biases are fixed to the integer numbers of
wavelengths closest to those averages. If the uncertainty for a given average is much less than one
wavelength, the corresponding bias is likely to be resolved. If the uncertainty is large, it is probable that a
residual bias remains, which is constant over one averaging interval, but changes value randomly from one
interval to the next.

--- The estin_ated biases are added to the corresponding carrier phase ranges, resulting in full L1 and
L2 ranges, which are then combined to correct the effect of ionospheric refraction. The corrected ranges
have larger uncertainties than the original LI and L2 measurements. Next, these corrected ranges are
substractd from ranges to the same GPS satellites measured simultaneously from ground receivers. This
differencing eliminates the GPS spacecraft clock errors. The resulting single differences are substracted from
each other to form double differences, to suppress both the clock errors of the ground receivers and of the
receiver on GP-B. At the same time, this double-differencing increases the noise further. FinalJy, double
differences involving four or more GPS satellites altogether, could be combined to estimate geometrically the
instantaneous position of GP-B. The uncertainty of the ranges9 propagated into those of the x, y, z

coordinates (here aligned with the across, along, and radial orbital coordinates), is approximately the
uncertainty of the corrected ranges multiplied by the Geometric Dispersion of Precision (GDOP) per
coordinate. This quantity depends on the GPS/GP-B geometry at measurement time. The set of measurements
can then be compressed, to save work, by estimating from the noisy coordinates of several consecutive points
tl_ose of a u_iddle (or "normal") point. These normal points then may be used (with their formal accuracies) as
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actual data for the orbits/gravity field parametersestimation. Alternatively, the double differences
themselvescanbe usedasdata (after beingcompressedinto "normal"data points).In either case,errors in
the final data (double differences or coordinates)will be affected by the original measurementerrors
(unresolvedbiases,noise),andalsoby the errors in the ephemerides of GPS.

--- The compressed data set is used to estimate corrections to the orbits of both GP-B and of all GPS
satellites involved, simultaneously with the potential coefficients of the gravity field up to a high degree and
order. This is done by a least squares technique, using a mathematical description of the compressed data
tinearized about the a priori values of the orbit and gravity field parameters.

3. MISSION ERROR ANALYSIS

The expected accuracies of estimates of potential coefficients obtained from instantaneous x, y, z data,

derived from GPS ranges as indicated in the previous section, have been calculated by setting up and inverting
the normal matrix of the adjustment of those parameters. An approximate analytical theory described in
Colombo (1986, Ch. I), based on the linearized dynamics of a circular orbit, has been used to derive a
mathematical model for the gravitational perturbations of the coordinates of GP-B. The theory is based on

Lhe trigonometric expansions of the gravitational potential and accelerations, when these are given as
functions of time. These expansions become true Fourier series when the orbit repeats precisely, their
fundamental frequency being that of this repeat, and the orbital perturbations in x, y, and z are also Fourier
series with the same frequencies. As explained in the extended abstract on the analysis of satellite
gradiometry (Colombo, this issue), use of this model leads to a normal matrix that is very sparse. Moreover,
the non-zero elements can be computed analytically, and with a proper arrangement of the unknowns, the
matrix becomes block-diagonal. All this permits the very efficient calculation of the inverse, and thus of the
variances and covariances of the estimated coefficients. In practice, the more conventional techniques

current today in space geodesy are likely to be used to analyze the GPS data, because of their greater
flexibility and accuracy. However, those methods would have to be implemented in a supercomputer, given
the unusually large size of the adjustment, and work to this end is underway at GSFC. The approach adopted
here is good enough for guessing the uncertainties in the potential coefficients obtained by those methods,
and requires little effort and modest computer resources.

Measurement errors have been treated as consisting of 1 cm rms white noise in the carrier phase, after

correcting for the ionosphere; residual biases have been treated as l0 cm process noise (before double
differencing and making the ionospheric correction), with a triangular covariance function and a 1.5 minutes'
correlation length. This error has been propagated into those of the instantaneous x, y, z coordinates,

considering the effect of the ionospheric correction, double differencing, and the geometric dispersion of
precision. The GDOP per coordinate was assumed to be, on average, 1.7, based on a study by Martin and
McCarthy (1987) for a GPS/space shuttle mission. The GPS antenna on GP-B is suppossed to be "looking up"
(i.e., not tracking any satellites below the local horizontal plane of the receiver).

A worst and a best case have been studied, too pesimistic and too optimistic, respectively, providing
upper and lower bounds for the errors in the coefficients. The worst case assumes the loss of all information
with the same frequency content as that of the orbit errors (multiples of once per revolution of GP-B
plus/minus multiples of one cycle per twelve hours, which is the orbital frequency of GPS, spread out further
over plus/minus one cycle per day, supposing that one-day orbits are estimated). It also assumes residual 10
cm standard deviation for the 13 minutes' residual range biases. The best case assumes that all biases have
been resolved and there are no GPS orbit errors. The main reason for obtaining an upper and a lower bound

was the difficult}, of dealing with the orbit errors of GPS while using the approximate, analytical method
adopted here. Figure 2 shows the mean of the expected errors in the normalized potential coefficients, per
degree ([degree varianee/(2n+l)]l/2), as a function of the spherical harmonic degree n. The curves for the
best and worst cases are very close to each other, narrowly bracketing the actual error, except at very low
degrees. Clearly, unresolved biases and orbit errors (both low frequency effects) are the main reason for the
lo_'-degree departures. There is a gradual raise followed by a quick exponential one (appearing in the log-

linear plot as a straight line), mostly due to attenuation of the signal with height. Where this line intercepts
the spectrum of the full gravitational signal (top), the error is 100% of the signal, and the correponding
degree n indicates the maximum resolution possible with the data. In this case this degre is close to n = 6.5, so
the size of the smallest detail of the gravity field that can be resolved on the earth's surface is about 300 kin,

when using GPS data from GP-B. Figure 2 also shows the accuracy spectra of the gravity model GEM-TI, and
of those models likely to result from the combination of conventional tracking with altimetry in the early
1990's (dotted line). GP-B/GPS models are likely to be more than two orders of magnitude better through
degree and order 20, and substantially better beyond that. The improvement at low degrees looks particularly

impressive.
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Figure 2. Mean accuracies per degree of normalized potential coefficients estimated with GP-B/GPS data,
best and worst cases (as explained in text).

The coefficient errors, translated into rms cumulative geoid errors, are shown in Figure 3. The geoid
error grows by about one order of magnitude every ten degrees, reaching 10 cm at about degree 40.
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Figure 3. Cumulative geoidal undulation errors per degree, corresponding to the potential
coefficient accuracies shown in Figure 1.
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The accuracies of the spectral powers of various signals of geophysical interest are compared to the
accuracies of the potential coefficients in Figure 4. At the top is the spectrum of the mean sea surface

topography, associated with the average global circulation (obtained from the charts of Levitus). The
spectrum of the gravitational effects of the M2 tide (according to Schwiderski's model), and of two years of
post-glacial rebound are shown as well. [n all three cases, the accuracy of the geopotential coefficients is
considerably smaller than the variance of the signal, suggesting that a good separation of these geophysical

signals is possible. The results are, if anything, pesimistic for the tides; even from the much Iess powerful
conventional tracking data used for GEM-TI, a good deal of low-degree information on M2 and other major
ocean tidal components has been extracted, mostly from spacecraft in much higher orbits than GP-B. This is

possible because there are orbital resonances associated with the tides, and not considered here, that can

produce large perturbations in the motions of spacecraft.
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Figure 4. Accuracies of potential coefficients from GP-B/GPS data compared to those of
conventional models and to the spectra of various geophysical phenomena.
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ABSTRACT

The idea of satellite-to-satellite tracking in the high-low mode has

received renewed attention in light of the uncertain future of NASA's pro-
posed low-low mission, Geopotential Research Mission (GRM). The principal
disadvantage with a high-low system is the increased time interval required

to obtain global coverage since the intersatellite visibility is often
obscured by Earth. The U.S. Air Force has begun to investigate high-low
satellite-to-satellite tracking between the Global Positioning System (GPS)

of satellites (high component) and NASA's Space Transportation System
(STS), the shuttle (low component). Because the GPS satellites form, or

will form, a constellation enabling continuous three-dimensional tracking
of a low-altitude orbiter, there will be no data gaps due to lack of inter-
visibility. Furthermore, all three components of the gravitation vector

are estimable at altitude, a given grid of which gives a stronger estimate
of gravity on Earth's surface than a similar grid of line-of-sight gravita-
tion components. The proposed Air Force mission is STAGE (Shuttle-GPS
Tracking for Anomalous Gravitation Estimation) and is designed for local
gravity field-determinations since -the shuttle will likely not achieve

polar orbits. The motivation for STAGE was the feasibility to obtain
reasonable accuracies with absolutely minimal cost. Instead of simulating
drag-free orbits, STAGE uses direct measurements of the nongravitational

forces obtained by an inertial package onboard the shuttle. This paper
analyzes the sort of accuracies that would be achievable from STAGE vis-a-
vis other satellite tracking missions such as GRM and European Space
Agency's POPSAT-GRM.

1. ASSUMPTIONS AND PARAMETERS

The observable in STAGE is the phase of the GPS carrier signal. It is
differentiated twice to obtain the line-of-sight (LOS) acceleration of STS

with respect to the GPS satellite. For the purpose of the analysis, it is
assumed that this is the observed quantity and that it is a component of
the difference between the gravity disturbance vectors at the two satellite
locations. The actual difference between the LOS acceleration and a

component of gravitation is insignificant on the average (see, e.g., Rummel
1980) and is therefore neglected here.

The error analysis is accomplished using the method of least-squares

collocation which requires a covariance model for Earth's gravitational
field (the Tscherning/Rapp model (Tscherning and Rapp, 1974) is used), the
spatial coordinates of the data (sampled from Keplerian orbits), and a
model for the noise of the data (assumed to be an uncorrelated process).

Errors in the position of the satellites, though important, are not consi-
dered in this analysis.
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Table 1 lists the adopted Keplerian elements of the satellites entering
the analysis. The numberingof the GPSsatellites is arbitrary. The two
GRMsatellites follow each other 300 km apart in the sameorbit. Table 2
lists various (potentia| or fictitious) SST missions which possess the
range of parameters to be considered in the analysis. Theassumedacceler-
ation accuracy of GRMa-GRMb(0.03 mgal) corresponds (according to an algor-
ithm developed bY Rummel(1980)) to the actual range-rate observational
accuracy of I0-b m/s (Keating et al., 1986); whereasGRM-POPSAT'sassumed
0.7 mgal acceleration accuracy corresponds to 25xi0-6 m/s (Reigber et al.,
1987). All GPStracking missions have an assumedaccuracy in acceleration
of 1 mgal for a 75 s integration time. The difference betweenSTS-GPS#1
and STS-GPS#6is the zenith angle of the LOS;with GPS#1(#6) it is gener-
ally greater (less) than 45°. The designation nGPS means that the full
18-satellite configuration of GPS is used, but only three satellites track

the low orbiter at a time. The three chosen satellites have the greatest
degree of mutual orthogonality of the LOS vectors. In order to obtain
somewhat comparable data distributions, a sampling interval of 75 s was
chosen for each mission.

Table 1: SST satellites and their Keplerian elements (e=O, w=O).

Keplerian Elements STS POPSAT GPS#1 GPS#6 GRMa GRMb

Altitude [km]

Inclination [deg.]
R.A. of Asc. Node [deg.]
Time of Perigee Pass. [s]

300. 7000. 20189. 20189. 160. 160.
28.5 98. 55. 55. 90. 90.
45. 270. O. 60. 90. 90.

O. Oo O. -33505. O. -38.4

Table 2: SST missions and parameters defining resolution at altitude.

Parameters GRMa-GRMb GRM-POPSAT STS-GPS#1STS-GPS#6 STS-nGPS GRM-nGPS

Int. Time [s] 4 10 75 75 75 75

Accur. [mgal] 0.03 0.7 1. 1. 1. 1.

The data points are limited to a square region symmetric about the
equator and zero meridian. Only those points are included where the zenith

angle to the high satellite is less than 100°. The estimated quantity is
the 2°-mean gravity disturbance on Earth's surface. The error is estimated
for a total of nine such quantities at coordinates in latitude and

longitude: (±2°,±2°), (±2°,0°), (0°,±2°), (0°,0°). The error curves shown
in the next section represent the root-mean-square (RMS) of these nine
error estimates.

2. RESULTS

Figure 1 shows the RMS estimated error in 2°-mean gravity disturbances
as a function of data density for the missions of Table 2. The data area
is a I0°x10° square (hence a data density of I means that it contains 100

points more or less randomly distributed). Since the vertical component of
the gravity disturbance is more highly correlated with itself than with the
horizontal components, the error with STS-GPS#6 is much less than with STS-
GPS#1; and a low-low mission is quite poor in comparison. For similar

reasons, there is some, but not an overwhelming improvement in observing
all three components of the gravity disturbance vector at altitude (STS-
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nGPS). Major improvement
comes by reducing the
altitude (GRM-nGPS). The
low errors of GRM-POPSAT
arise from a combination
of favorable factors: low
altitude, short integra-
tion time, low data noise,
and complementary orbital
parameters.

In Figure 2, the RMS
error is a function of
data extent. For the
high-low STS missions,
little is gained by ex-
tending the data area be-
yond a certain size. Be-
cause of the longer corre-
lation length of the hor-
izontal gravity distur-
bance, a wider area is
required for the low-low
mission.
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The instability of the

GPS clock frequency domi-
nates the data noise for

the GPS tracking missions.
It is assumed that all

errors in the error budget
not associated with this

instability have a com-
bined standard deviation

of 0.5 mgal. The clock
instability is character-
ized by the Allan variance
which is often modelled as

inversely proportional to
the integration time. It
is assumed here that the
acceleration noise due to

this instability is pro-
portional to the Allan
standard deviation divided

by the integration time

(Upadhyay et at., 1988).
By monitoring the short-
term fluctuations of these

clocks at ground tracking

stations having more sta-
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ble clocks, Upadhyay et al. (1988) estimate that a hundred-fold improvement

in the Allan variance can potentially be achieved. Figure 3 shows the RMS
error of estimation as a function of integration time for the two multiple-
high-single-low SST missions. Increasing the integration time decreases
the data noise, but more of the shorter wavelengths of the gravity field

are obliterated. Conversely, as the integration time decreases, the ob-
servations are more sensitive to the short-term fluctuations in the gravity
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field, but the signal-to-
noise ratio is smaller.
Therefore, there is a
definite optimumintegra- 12
tion time for a given
A]lan variance. An im-
provementby a factor of 10
10 in the Allan variance
gives a total data noise 8
of 1 mgal at 75 s integra- <
tion time. A 90-fold

6
improvement implies a
total data noise of I mgal

with a 37 s integration 4
time. The optimal integra-

tion time also depends on 2
the altitude of the low

orbiter.
0

Figure 3

142 ° Mean Gravity Disturbance Errors
I I 1 I I i I

ReducHon

Factor. f

I o. _/
STS-nCPS

10. _ _ _"

_ CRIvl -nCPS
/

90. /

• App(fed to Oblen, ed CPS Clock Attan v_ldo_¢l

Data _ensity = 1 Point per Square Degree

Data _xlent = 10" Square

I I J I I I I

20 40 60 80 1 O0 120 1 40 160

Integration Time (sec.)

3. CONCLUSION

Although not as accurate as proposed dedicated gravity mapping mis-
sions, satellite-to-satellite tracking using the GPS can contribute to an

improvement of present models of Earth's gravity. Even STAGE, to be viewed
as a demonstration of the concept, would improve the model locally over
land areas, such as parts of Asia, Africa, and South America.
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Introduction

The satellite-to-satellite (STS) tracking concept for estimating

gravitational parameters offers an attractive means to improve on

regional and global gravity models in areas where data availability is

limited. The extent to which the STS tracking measurements can be

effectively utilized in global field models depends primarily on the

satellite's altitude, number of satellites, and their orbit

constellation. The estimation accuracy of the gravity field recovery

also depends on the measurement accuracy of the sensors employed in the

STS tracking concept. A comparison of the obtainable accuracies in the

gravity field recovery using various ETS tracking concepts (e.g., high-

low; low-low) was presented by Jekeli [i].

This paper summarizes the results of a feasibility study for a specific

realization of the STS high-low tracking concept. In this realization,

the high altitude satellites are the GPS satellites (altitude

approximately 20,200 km), and the low orbit satellite is the space

shuttle (orbiter). The GPS satellite constellation consists of 18

satellites in 6 orbital planes inclined at 55 ° (Kruh, et al [2]), The

shuttle orbit is at approximately 300 km, with an inclination of 30 ° .

This specific configuration of high-low satellites for measuring

perturbations in the gravity field is named the Air Force STAGE

(Shuttle-GPS Tracking for Anomalous Gravitation Estimation) mission.

The STAGE mission objective is to es[imate the perturbations in gravity

vector at the shuttle altitude to an accuracy of 1 mgal or better.

Recent simulation studies (Jekeli [I], Upadhyay and Priovolos [3]) have

confirmed that the 1 mgal accuracy objective is near optimum for the

STAGE mission.

Measurement System Concept

The STAGE measurement system concept involves the measurement of total

forces acting on the shuttle using precision GPS carrier phase

measurements from four or more GPS satellites and the measurement of

non-gravitation forces using a precision IME accelerometer package.

This research is sponsored by the Air Force Systems Command,

Air Force Geophysics Laboratory, llanscom Air Force Base,

under Contract No. F]g628-96-C-0136
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From these GPS and IMU measurements we estimate the perturbations in

gravity vector at the shuttle orbit. There are several advantages of

the STAGE mission which makes it attractive, among other STS concepts,

for gravity field estimation. These advantages are: (I) the

continuous visibility of the low satellite (the shuttle) from the high

satellite (GPS satellites); (2) measurement of the estimated line-of-

sight accelerations to three or more GPS satellites results in

determination of the gravity vector instead of 1 component recovery; (3)

low cost of the mission because the major cost items associated with the

satellites, i.e., GPS and the shuttle, are already funded. In addition

to these advantages of the STAGE mission for gravity estimation, another

important benefit of this Air Force mission is that the STAGE data will

support other DoD and NASA objectives of precision space navigation and

precision pointing and tracking in space, e.g., SDI and Space Station.

The STAGE payload for a shuttle flight consists of : (I) a multi-

channel GPS receiver utilizing existing upper and lower fuselage

installed antennas on the orbiter; (2) an experimental IMU consisting

of strapdown RI_ (ring laser gyro) and accelerometer assembly; (3) an

electronic processing assembly to control the experiment hardware and to

integrate the orbit timing buffer; and (4) a flight recorder with ground

support equipment provisions.

Results

We have made a preliminary selection of the payload hardware {i.e., GPS

receiver, I_, recorder) to carryout the STAGE mission. A payload

integration study for the STAGE mission was carried out by Rockwell

International, Space Transportation Systems Division, which has lead to

the recommended installation configuration, as shown in Figure i. In

this installation configuration the GPS receiver, the processor and the

recorder will be installed in the crew compartment (area L-10), and the

I_ will be installed near the C.G. of the shuttle, as shown. The GPS

receiver will utilize the existing upper and lower GPS antennae.

The feasibility study for the STAGE mission involved a detailed error

analysis to determine whether or not the 1 mgal measurement accuracy can

be achieved. The analysis (with support from EG&G Washington Analytical

Services Center) considered all the major error sources and their affect

on the measurement accuracy. In particular, we considered the GPS

receiver measurement noise, phase bias, satellite clock error, GPS orbit

errors caused by uncertainty in the geopotential field, solar radiation

pressure, tracking station location error, etc., and the IMU errors

caused by gyro and accelerometer bias, scale factor errors and

misalignment. The results of this analysis, supported by simulation

results, indicated that the STAGE mission objective of 1 mgal accuracy

at the shuttle orbit can be realized (for a 75 second averaging)

provided that certain measures are taken to mitigate the effect of the

primary error sources. The primary errors identified in this study are:

GPS satellite clock errors, IMU accelerometer bias error, and the IMP

misalignment error. Techniques to mitigate the effect of these primary

errors are under investigation. An IMP transfer alignment (between the

shuttle IMU and the STAGE IMU) technique which employs the shuttle
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rotation maneuvers has been developed and is being evaluated. We

believe that the on-orbit transfer alignment accuracy goal of 1 mrad for

the STAGE mission can be achieved. Bias and scale factor errors in the

accelerometers are controlled similarly by special on-orbit calibration

techniques. These techniques are proven, and we anticipate an accuracy

of 0.13 mgal. The largest source of error is the instability of the GPS

clock frequency as described by its Allan variance. By monitoring the

short-term fluctuations of the GPS clocks at ground stations possessing

more stable clocks, it is possible to model corrections to the observed

phase and reduce the effective clock error by one to two orders of

magnitude. This is an essential component of data processing to brin 9

the gravitational acceleration error below 1 mgal.

i_hile processing techniques to further improve the measurement accuracy

for the STAGE mission are in development, we feel very confident in

reporting that a payload hardware configuration has been developed and

the baseline STAGE configuration is compatible with shuttle mission.

The STATE, mission can be flown on future shuttle flights on a non-

interfering basis.
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Various space concepts have been discussed during tile past 20 years

for a global improvement of our knowledge of the Earth's gravity field.

They reach from high-low and low-low satellite-to-satellite tracking via

tethered satellite gradiometers to sophisticated super-conducting

gradiometers, currently under discussion. The purpose of this article is

to show that starting from one basic equation three criteria are

sufficient to typify the various concepts and define the underlying

observation model. Furthermore the different error sources, in particular

the time varying part of self-gravitation, and the expected signal size

of all six gravity gradient

components shall be discussed.

Assume two proof masses

A and B in free fall are

observed from a moving ortho-

normal triad, see Figure I.

Then the relative accele-

ration dx., between A and B
1

relative to their distance

dx. Icomponents i and j =
J

1,2,3) obey the following

conservation law:

P
0

k

Ore _V / -

Figure 1.

dx.1 dXk

+ 2 Qki
dx. dx.

J J

-- + _ij + nik _kj - vij -

f.(A)-f.(B)
1 1

dx.

J

= 0 (1)
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dxk
In eq.(1) it is 2_ki ' _ij' and _ik_kj the Coriolis, inertialdx.

J
rotation, and centrifugal term, respectively, with _ ik the angular

a 2V
velocities; V.. - are the gravitational gradients, and f.(A) and

IJ ax. Ox. i
i j

f.(B) non-gravitational accelerations acting on A and B. If the above
1

experiment is carried out at satellite altitude and if the purpose is to

determine V.., we speak of spaceborne gradiometry.
1j

In order to derive V.. as accurate as possible obviously the
1j

measurement precision has to be as high (lO -2 to lO -4 E) and the

satellite altitude as low as possible (preferably below 200 km). However,

three criteria are sufficient to identify the various configurations.

These are (i) the orientation of the instrument frame or triad, being

either space stable or Earth pointing, (2) the motion of the proof

masses, either free drifting or constrained to linear or rotational

movement and (3) the shielding against non-gravitational forces, either

by an active drag-free system, or by enclosing the proof masses in the

satellite but the measurement triad rigidly fixed to its skin, or with no

shielding at all. The choices on these three criteria decide about the

form eq. (i) takes and what interpretation its terms acquire. Take two

examples: In case the instrument frame is maintained space stable the

three terms containing _ and _ disappear. Or, for an active drag-free

system and the proof masses constrained linearly to the triad e.g. by an

electric spring, dx and dx become zero and f(A) and f(B) the measured

specific forces.

These choices decide as well what the observable accelerometer

signal along the three axes will be from which the gradiometer components

are derived. Take for example an Earth pointing gradiometer with no

active drag-free control, with the x-axis along track, the y-axis cross

track, and the z-axis radial and with the proof masses of the orthogonal

set of accelerometers constrained to the axes. The dimension of the

gradiometer is assumed to be i m and its center close to the center of

mass of the spacecraft. Then the average accelerations (DC-part) listed

in Table 1 shall be typically measured along the three axes. The

i
variations in signal (AC-part) are less than io---_of these values.
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TABLE 1 : Acceleration Signal (units lO-Sms -2)

x (along)

y (across)

z (radial)

gravitational

0.15

0.15

0.31

centrifugal

0.15

0

0.15

drag

We observe that the along track component is heavily affected by the

drag, whereas the cross-track component remains largely free from non-

gravitational perturbations. This is one of the main reasons, why for the

ARISTOTELES mission a plane (y-z)-two dimensional gradiometer' is

considered.

Once a decision is made about a specific gradiometer design, it is

important to develop a realistic error model. In order to get some

structure into the various error sources, we divide them into (i)

instrument errors, (2) satellite related errors and (3) geodetic gravity

recovery model errors. The instrument errors depend largely on the chosen

design. Adequate models can only be developed in cooperation with the

instrument designer. At this point we refer to (Relnhardt et ai.,1982),

(Balmlno et al., 1985), (Paik & Richard, 1986), or (Sepers, 1986).

Satellite related errors are e.g. thermal, electro-magnetic oF

vibrational effects, deviations from common mode rejection of drag

effects due to non-linearlties (Barlier & Berger, 1988), self-

gravitation, or attitude related errors. We studied the time-varying

self-gravitation effect due to fuel consumption. Assuming 1000 kg fuel

consumed over half a year the main effect is - depending on the

symmetry of the tank configuration - a drift of about 50E per half

year. Additional sloshing effects could reach 2-5 E and are to be

avoided. Error sources related to the gravity field recovery model

reach from the proper modelling of the sampled signal, via the

effects of induced symmetries in the adjustment models to stability

and convergency problems of downward continuation. Their" study

requires more attention in the forthcoming years.

In order to get an impression of the size of the gravitational

signal, all six gradient components were generated on a global l°x Io
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grid, with the 0SU-180 field (Rapp, 1986) at an altitude of 200 km. Then

a spherical harmonic analysis was carried out on each of the components

separately and the degree variances c and degree-order variances c
n nm

were computed. The degree-order variance Is defined as c = c /(2n+l)
nm n

with n degree and m order and represents the square of the expected

average size of an indlvidual spherical harmonic coefficient. The result

up to degree 180 is given in terms of the r.m.s, values of c in Figure
nm

2. As expected, the (zz)-component is roughly half an order of magnitude

greater than the (xx), (yy), (xz), and (yz) component, which are in turn

half an order of magnitude greater than (xy). This implies among

others that most emphasis should be put on a precise recovery of the (zz)

component ....... , , , , r r---, F ,- ,- -_- _..... ,---:-_ -,- -

'./,4,.

0 3,O 60 90 _0 _50 l_O

degree

Figure 2.
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Abstract

The goal of using an orbital gradiometer mission to provide an accurate (1-2 regal), high

resolution (1 ° by 1°), global map of the earth's geopotemial is currently being investigated. This

investigation involves the simulation of the satellite ephemeris and the corresponding

gradiometer measurements which can be used in the study of various techniques and

methodologies that have been proposed to recover the parameters used in modeling the

geopotential. Also, the effects on the mission of various time varying forces acting on the

spacecraft have been included in the studies.

Introduction

The goat of these studies is to create an accurate ephemeris and set of 'perfect' gradiometer

measurements to study various techniques to recover the parameters of the geopotential model

and to study the effects of various force model, ephemeris, and measurement uncertainties on the

recovery of the geopotential parameters. This research effort began by assuming a Geopotential

Research Mission (GRM) scenario involving a dual satellite configuration in which the principal

measurements are the relative range-rates between the satellites. In the initial simulations, a

geopotential model complete through degree and order 180 was used (Schutz et al., 1987). The

GRM simulation was extended to include a geopotential model complete through degree and

order 360 (Schutz et al., 1988). The satellites in the GRM scenario were assumed to be in

'frozen', polar orbits with a mean altitude of 160 km and a repeat ground track period of 32

sidereal days. For these simulations the earth was assumed to ha_e a constant angular velocity

and a static geopotential.

To create as accurate an ephemeris as resources would permit, the equations of motion

were solved numerically using Encke's formulation and a class It, fixed mesh muitistep algorithm

of order 10. The simulations were carried out on the CRAY X-MP/24 computer at the University

of Texas using single precision arithmetic which represents floating point numbers using a 48 bit

mantissa and a 16 bit exponent. The first simulation ($8705) was carried out using an integration

stepsize of five seconds and required 5.6 hours of CPU time. The second simulation ($8703) was

carried out using an integration stepsize of four seconds and required 19.2 hours of CPU time.

The nearly four fold increase in CPU time reflects the increase in the size of the geopotential

model from degree and order 180 to 360. In both simulations the ground track closed to within

two kilometers after 32 sidereal days (White, 1987).

In addition to creating these simulations, special studies were carried out on the effects of

solid and ocean tides, luni-solar and planetary gravitational forces, and the mass distributions

caused by ocean eddies (McNamee, 1986) on the relative range-rate measurements. A study of

the disturbance compensation system (DISCOS) was also carried out to verify the proposed

control law and estimates of fuel consumption (Antreasian, 1988).
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Simulation of a Gradiometer Mission

The products of the GRM simulation have been used to simulate the orbital gradiometer

mission. The orbit for the gradiometer mission is assumed to have the same characteristics as

GRM, i.e, a polar, frozen orbit with a mean altitude of 160 km and a repeat ground track period of

32 sidereal days. The ephemeris computed for the lead satellite of simulation $8703 is taken to

be the true ephemeris for the gradiometer mission. The true gradiometer measurements are

simulated by the gravity gradient tensor which is computed using the true ephemeris and a

geopotential complete to degree and order 360. The measurement interval is taken to be the same

as the ephemeris interval, i.e., four seconds.

Analysis of a Si mulated Gradiometer Mission

The simulated true ephemeris and gradiometer measurements can be used to study the orbit

determination requirements of the mission, i.e., the effects of orbit uncertainties on the solution

for the geopotential parameters, and to study various techniques for recovering the geopotential

parameters using gradiometer measurements. The simulation also provides a common data set

for the evaluation of results from different researchers and a basis for comparison of gravity

gradient computations.

Various tracking systems may be considered for this mission including GPS, satellite laser

ranging, PRARE, DORIS, or other suitable systems. Since some form of global tracking will be

required for the mission, GPS will probably be part of the overall tracking system (Yunck et al.,

1986). Whichever tracking system is used, there are two possible approaches that can be used to

determine the orbit of the satellite and recover the geopotential parameters. The first, or

gradiometer, approach uses only the tracking system information to establish a nominal orbit for

the mission and, once the nominal orbit is computed, uses the gradiometer measurements to

recover the geopotential parameters. The second, or dynamical, approach involves using the

tracking data along with the gradiomeler measurements to determine the orbit and recover the

geopotential coefficients simultaneously. The fundamental difference between these two

approaches is that the first approach is similar to creating a gravity surface by adjusting the

geopotential parameters while the second approach is dependent on the orbit perturbation

frequency spectrum including the amplilied effects due to resonance.

To illustrate the gradiometer approach, a simulation was carried out in which the

observations were the gradiometer measurements computed along the true orbit using only the

geopotential coefficients from degree and order 10 through degree and order 15. The gradiometer

measurements were used with a least squares algorithm in attempt to recover the geopotential

coefficients for arc lengths of up to 60 hours. To represent the effect of orbit uncertainties on the

solution, the partial derivatives of the observations with respect to the coefficients were evaluated

along a nominal orbit which is randomly perturbed in the radial direction from the true orbit. The

accuracy of the solution for the coeflicients is evaluated by computing the absolute value of the

normalized differences between the estimated coefficients and the true coefficients, i.e.,

_5C=
CTP, UE -- CESTIMATE D

CTRUE

Figure 1 shows the results for the solution of Ci4,12 which is typical of all the solutions. The
effects of radial orbit uncertainties (lc0 of 0 cm, 5 cm, 30 cm, and 50 cm are represented in
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Figure1. Forthecaseof no orbit error, nine to ten significant figures of C14,12 are recovered. For

the case of 50 cm radial uncertainty, six to seven significant digits are recovered. This is a very

limited example since the solution involved a relatively small number of coefficients and a

relatively low degree and order coefficient.

To illustrate the dynamical approach, nominal orbits were determined using the entire 32

day, true ephemeris ($8703) as simulated tracking data and the Goddard Earth Model 10B

(GEM-10B) as the a priori gravity model while solving for selected resonance coefficients. The

selected resonance coefficients were the first two pairs (Cnm and Snm) of orders 33, 49, and 82.

The results of these solutions are given in Table 1. The results indicate that the resonance terms

will have amplified effects in the dynamical solution for the gravity field.

Future Research

Future research of the orbital gradiometer mission includes studies of the gradiometer or

dynamical approaches to determine the orbit of the satellite and recover the geopotential

parameters, studies of the effects of various error sources on the solutions including tidal errors,

nontidal ocean phenomena, and spacecraft attitude errors, and to investigate the adequacy of a six
month mission.
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RMS (meters)

radial

transverse

normal

Table 1

Resonant Effects on the Orbit Residuals

with order 82 ° with orders 33,82 ° with orders 33,49,82"

64.9 60.4 58.1

619.5 180.3 148.6

31.8 21.7 33.8

* after small adjustments in position vector
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Figure 1

Normalized errors in the solution for C14j2 as a function

of radial orbit uncertainty and orbital arc length

179

ORIGINAL PAGE IS

OF POOR QUALITY



ARISTOTELES -

N90-20559
A EUROPEAN APPROACH FOR AN EARTH GRAVITY FIELD RECOVERY MISSION

R. Benz, H. Faulks, M. Langemann

Dornier-System GmbH, 799C; Friedrichshafen, FRG

Abstract

Under contract of the European Space Agency a

system study for a spaceborne gravity field

recovery mission has been perfornw_d, covering as a

secondary mission objective geodetic point

positioning in the cm range as well. It was

demonstrated that under the given programmatic

COnstraints including dual launch and a very tight

development schedule, a six months gravity field

mission in a 200 km near polar, dawn-dusk orbit is

adequate to determine gravity anomalies to better

than 5 mgal with a spatial resolution of

100 x I00 km half wavelength. This will enab)e

scientists to determine improved spherical

harmonic coefficients of the Earth gravity field

equation to the order and degree of 180 or better.

on the type of payload accommodation. The payload

is a gradiometer comprising up to 8 ultrasensitive
electrostatic accelerometers, here named GRADIO.

As an optional mission part it is intended to

raise the orbit after completion of the gravity

mission to about 700 km altitude in order to

perform point positioning for another 3 years•

The ARISTOTELES satellite is Earth oriented,

3-axis stabilized and shall be launched by an

ARIANE 44 as lower passenger within SPELDA lO

together with ERS-2 (ESA Remote Sensing Satellite)

or another Earth observation satellite. The

nominal launch date is 1994. Kiruna ground station

will be used for telemetry and telecommand on a

time sharing basis with ERS-2. The gravity field

requires an orbit restitution of better than ]0 m

in the radial direction.

Introduction

A detailed knowledge of the Earth gravity field is

of great interest in geophysical sciences and

their applications. In addition orbit

determination of satellites will benefit

significantly from an improved gravity field

model. Although a large amount of Iota] data are

available, on a global scale a large part of the

Earth has not so far been covered, because of

obvious natural, political and cost constraints. A

spaceborne system can overcome these constraints

and can provide consistent and precise data on a

global scale. A comprehensive outline of the

benefits _f such a mission was given by the SESAME

workshop (Solid Earth Science & Application

Mission for Europe). -

In the framework of the Earth Observation

Preparatory Programme (EOPP) of the European Space

Agency a system study has been performed to

demonstrate the feasibility of such a programme

under special constraints including dual launch, a

tight development schedule and a limited financial

budget. The name of the mission ARISTOTELES stands

for 'Application and Research Involving Space

Techniques Observing The Earth fFe]d from a Low

Tarth Orbit-Satellite _ an_ is a reminder of the

great philosopher Aristotle who was the first to

speak of gravity forces.

Scientific Evaluation

Within the present study a gravity field recovery

analysis has been performed in order to establish

the system requirements based on the inter-

relations between the instrument accuracy, the

orbit altitude, the operational gravity mission

duration, the tensor components to be measured and

the gravity field accuracy to be met. The results
indicate that on the one hand a maximum orbit

altitude of 200 km is allowed, assuming a two

dimensional instrument accuracy of IO -z E.U. and

half a year operational life time (see Figure I).

On the other hand this altitude is the lower limit

for a fixed GRADIO accommodation on the

non-drag-free satellite because of the maximum

allowed acceleration tolerance requirement of
5 • lO -_ m/s 2 for the accelerometers. A better

performance of between 3 and 4 mgal can be

expected in a lower altitude of about 180 km or

less if a suspended GRADIO accommodation on a

drag-free satellite were selected. For this option

only a 3 months gravity field mission is required.

However, Figure 1 shows that even with the

measurement of the two tensor components across

track and radial Tyy and Tzz respectively, the

scientific requirement can be just met from a

200 km orbit. Figure 2 underlines the importance

of the instrument accuracy.

System Requirements

The principal scientific objective of the mission

is a global gravity field determination to an

accuracy better than 5 n_jal in terms of gravity

anomalies with a spatial resolution of 100 km half

wavelength, where ] t_al is equivalent to

lO -s m/s 2. The operational mission duration for

gravity measurements is between 3 and 6 months.

The orbit shall be quasi-circular, near polar with

a mean altitude between 160 and 240 km, dependent

Mission Analysis

Using the dual launch with ERS-2, ARISTOTELES will

be brought into an 780 km sun synchronous orbit

with 10.30 h descending node local time. Within a

drift period of about 9 months completed by final

descent to 200 km the satellite moves into the

operational orbit of the gravity mission. The
drift period can also be used for point

positioning measurements and is needed to

calibrate the GRADIO instrument in space• Because
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of the Earth's gravity the GRADIO instrument

cannot be fully tested on ground, therefore a

relatively long period with low drag forces is

very attractive to calibrate the instrument under

low disturbance conditions.

Because of the large fuel consumption for the

transfer and operational phase the originally

required polar orbit must be shifted to a near

polar, dawn-dusk orbit, advantageous for

spacecraft design, but not covering a 600 km

circle around the poles.

The optional point positioning mission for another

3 years or more is only possible when flying

during the gravity mission above 200 km and using

bipropellant fuel without driving the cross

section area of the satellite to an unacceptable

size and consequently to a higher fuel consumption

during the gravity mission phase. A full mission

scenario sketch is given by Fig. 3.

by the air drag must be compensated by nearly

continuous thrusts with considerable amounts of

fuel. Bipropellant fuel is then mandatory, because

of the lack of qualified thrusters for hydrazine

in this operational mode.

The alternative instrument accommodation option is

the so-called non-drag-free version, with the

GRADIO mounted isostatically on the satellite

structure. Consequently, the maximum acceleration

of the satellite has to be below 5,10 "S m/s z

demanding an orbit altitude above 200 km. ]n

addition via cross coupling effects the air drag

variations now impair the measurement and must be

compensated by aerodynamic flaps. The proposed

design requires that drag variations within the

measurement bandwidth are damped out by a factor

of one hundred.

Both instrument accommodation options have strong

system impacts, and therefore a comprehensive

system level trade-off had to be conducted.

Instrument Design

The primary instrument of ARISTOTELES is a

gradiometer formed by a set of up to B

uItrasensitive aceelerometers and a calibration

device. These accelerometers with a maximum

resolution in the pico-g range and sensitive

either in 2 or 3 axes, have to be grouped as

symmetrically as possible in a 2O or 3D framework,

Each accelerometer itself consists of a proof mass

and a caging with 6 pairs of electrodes, Figure 4

shows a laboratory model of a 2D electrostatic

accelerometer. The theoretical resolution limit of

the proposed device is

lO-'E.U./V_z

and the required bandwidth (5.10 "_ Hz to 0.25).

The maximum allowed acceleration to avoid

saturation of the accelerometers is 5.10 -5 m/s 2,

In principle, two different ways of GRADIO

accommodation have been studied: A drag-free

accommodation, avoiding to the maximum extent the

impact of surface forces on the GRADIO. The

instrument is then magnetically Suspended within

the satellite, affected only by gravity forces,

while the satellite flies around the instrument,

accurately contro}led by the attitude control

system. In particular this accommodation option

avoids air drag forces acting on the

accelerometers and therefore allows flight below

200 km. However, the deceleration of the satellite

Major System Options

The dominant system options are related to the

GRADIO instrument:

Drag-free or non-drag-free

GRADIO accommodation,

BD or 3D GRADIO,

2D or 3D accelerometers.

A trade-off dealing with more than 20 different

GRADIO designs has resulted in two preferred

solutions: Four 2D accelerometers located at the

corners of a plate (planar solution) or either 6

or 8 3D accelerometers located at the corners of

an octahedron or a cube. While the first solution

is associated with a fixed GRADIO accommodation on

the satellite, the second should be accommodated

suspended to enable achievement of the high

theoretical performance of this instrument. Based

on the scientific evaluation mentioned above and

the very tight schedule, the planar gradiometer

was selected as baseline (see Figure 6). For

clarification it must be said that the 2D

accelerometers measure in all 3 axis, but with

degraded sensitivity in flight direction which is

then of no use for gravity gradient measurements.

However, this signal can support the attitude

control system.
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Orbit Determination

The restitution of the gravity gradient data

requires an accurate knowledge of the orbit

position. The 'a posteriori' orbit determination

requirement is therefore

IO m in radial direction and

1.5 km across and along track.

This requirement cannot be met by normal S-band

tracking, but requires special equipment. For

ARISTOTELES a Precise Range and Range Rate

Microwave Tracking Equipment named MTS/PRARE

similar to the PRARE system to be flown on ERS-I

will be used. Optionally the use of the Global

Positioning System (GPS) is under discussion.

When using MTS/PRARE for orbit determination, with

the same on-board equipment, geodetic point

positioning can be performed by scientists,

requiring only additional dedicated PRARE ground

stations, to be operated independently by the

scientists themselves.

Satellite Configuration

The GRADIO instrument has dictated all of the

principal features incorporated in the satellite

configuration. The need to fly GRADIO at the

minimum possible altitude results in a significant

drag force. To provide a mission of long enough

duration for recovery of adequate scientific data,

the effect of the drag must be minimised. The

cross sectional area presented to the 'airflow' is

thus reduced resulting in a long slender satellite

body limited by accon_odation constraints of the

AR44 SPELDA ]O payload carrier assembly (see

Figure 6). The electrical energy demand is large

enough to require solar array wings as well as the

body mounted solar arrays, but these must be edge

on the airflow again not only to minimise drag,

but also to avoid large disturbance torques on the

satellite and thereby affecting GRADIO. In

consequence it is only possible to fly in near

dawn-dusk orbits, placing a minor restriction on

scientific return in relation to tidal effects

from the sun.

That the GRADIO instrument measures the gravity

field of the satellite as well, has unusual

consequences for the satellite internal layout in

addition to the above mentioned drag minimisation.

lhe instrument must be placed not only at the

centre of gravity of the vehicle, but this centre

of gravity must also be the neutral point for the

gravitational attractions of all components to
minimise their influence. Symmetry is thus of

major importance, and the heavier units should be

placed as far away from GRADIO as possible. The

supporting electronic subsystems contained in pods

on the sides of the body meet this requirement in

principle, while also assisting thermal stability

close to GRAD]O since significant variable heat

generation is remote from the instrument.

The largest masses are however the fuel (approx.

(me ton in total) in the 16 tanks. Normally under

manoeuvring accelerations the fuel in the tanks

moves or 'sloshes'. To almost totally remove this

effect, tanks with stable metal diaphragms are

used, restraining the fuel to one end of the tank.

The fuel used during the period of GRADIO

measurements also is contained only in the outer

tanks, i.e. furthest from GRADIO. The fuel in the

inner tanks is used during initial manoeuvres to

place ARISIOTELES in the correct orbit.

In addition, the symmetry requirement can only be

met by positively monitoring fuel consumption from

the individual tanks, in order to maintain the

centre of gravity within fractions of a millimetre

of the GRADIO centre.

Tab. I : ARISTOTELES Satellite Properties

o Satellite Mass dry 960 kg

launch 1990 kg

o GRADIO Mass 65 kg

o Power at Solar Array I080 W

o GRADID Power Consumption 60 W

o S-Band Telemetry I Mbps

o Data Storage (36h) 260 Mb

Subsystem Characteristics

The majority of the subsystems for ARISTOTELES are

conventional in character with special attention

being paid to satellite structural and thermal

effects on GRADIO. However, the performance of the

attitude and orbit control system is intimately

linked with the orientation and control of GRADIO

and thus to the quality of the instrument data

output. Because the instrument is attached to the

spacecraft structure, it is directly affected by

drag forces and spacecraft disturbances, placing

high demand on control accuracy.

Conclusions

The ARISTOTELES system study 2 proved that a

spaceborne gradiometer can meet an Earth gravity

field determination requirement of better than

5 mgal with a spatial resolution of lOO km half

wavelength. The required orbit altitude is about

200 km or less with an instrument accuracy of

better than IO -2 E.U. given that at least the

tensor components Tyy (across track) and Tzz

(radial) were nw_asured. This is achieved by means

of a 2D GRADIO directly attached to the satellite

structure. Although a suspended accommodation of a

3D GRADIO with at ]east 6 3D accelerometers

promises better results, the fixed GRADIO solution

has been selected as baseline to meet the tight

schedule which may not allow the more challenging

approach. The lower instrument performance of the

_D fixed GRADIO can be partly compensated for by a

gravity mission of six months instead of three and

a high performance AOCS subsystem.
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DEVELOPMENT AND ACCOMMODATION
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ABSTRACT

I . INTRODUCTION

The european ARISTOTELES mission aims at the determination of the Earth

Gravity field at short wavelength with a Global coverage. Gravity gradient

measurements will be achieved during six months by the GRADIO instrument on

board a dedicated satellite in a near dawn-dusk sun-synchronous orbit at an

altitude of 200 km. The objective is an accuracy of better than 5 mgals for

_ravity anomalies, at ground level for blocks of I" x 1".

According to the present knowledge of the potential, the recovery of the

higher spherical harmonics (degree and order greater than 30) is of main

importance. This leads to focus on the variations of the measured components Tjj

of the gravity gradient tensor, at frequencies greater than 5 × 10 -3 Hz. The

resolution, required for the gradiometer, is 10 -2 E6tvos (i.e. 10 -11 s -2) with

an averaging time of 4 s. [Balmino et al, 1984 ; Balmino and Bernard, 1986].

2. GRAVITY GRADIOMETRY ON BOARD A NON DRAG FREE SATELLITE

The components T are determined by means of differential measurements
lj

between highly sensitive accelerometers composing the gradiometer [Runavot et

al, 1983; Bernard et al, 1983]. Each of them measures the resultant T of the

4

effects of gravity gradient [T], angular motion , and acceleration U due to

drag and radiation pressures.
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Linear combinations of the measured 7
[

-9

-9

components of: I[-T]+ [,2]J, n, V.

allow us to determine separately the

The variations of [_z] which cannot be distinguished from those of [T] have

to be minimized and estimated. This requires high performances for the attitude
-9

-9

control and restitution: over periods of 200 s, the variations of _ and _ must

be less than 10 -6 rad/s and 10 -7 rad/s z.

In practice, the accelerometric measurements are corrupted by mismatchings of

the accelerometer scale factors and aligments, non linearities, bias drifts and

noise. The gradiometer baseline being about one meter, the accelerometers must

be designed in order to achieve a resolution of 5 × 10 -*2 ms-Z/_-_.

To take advantage of such a performance, sufficient rejections of the

disturbances, due to drag variations in particular, must be obtained for the

differential accelerometric measurements. Accelerometer scale factors and

alignments have to be accurately matched. For that purpose, sine wave

calibrating accelerations are applied by means of two pairs of unbalanced wheels

rotating at constant angular velocities. Synchronous demodulations of the

accelerometer outputs at the angular frequencies of the wheels provide the

information necessary for the estimations of the deviations. The expected

accuracies are 10 -5 for scale factor matchings and 10 -5 tad for alignments.

Nevertheless, the instrument being accommodated on board a non drag free and
-9

Earth pointed satellite, the acceleration in the along track direction x is

about 10 -4 ms -z with variations that can reach 6 % for periods less than 200 s.

In these conditions, it appears hopeless to obtain a resolution of i0 -z E6tv6s
-9

in the direction x. Thus, for the ARISTOTELES mission, the gradiometer is

composed of four accelerometers located at the corners of a square in the plane
-9 -9

(y,z) perpendicular to the drag. With this configuration, the diagonal component
-9

T (y cross-track direction) can be directly measured; the variations of [_z]
YY

must be rejected for the determination of T ; T is very sensitive to the
zz yz

variations of the roll angle.

3. GRADIO ACCELEROMETER PRE-DEVELOPMENT

This 3-axis accelerometer is based on the electrostatic suspension of a cubic

proof-mass which is maintained motionless with respect to a set of electrodes

forming a cage around it [Bernard, 1987]. The accelerometric measurements are

derived from the drive voltages, applied to the electrodes in order to control

the six degrees of freedom of the suspended mass.
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GRADIO benefits of the experience acquired in ONKRA with the CACTUS

accelerometer [Boudon et al, 1978; Bernard et al, 1982] and with further studies

of 3-axis electrostatic accelerometers supported by the french ministry of

Defence (DRET) and Space Agency (CNES) [Bernard et al, 1985].

The GRADIO accelerometer is designed in order to insure preliminary tests

under normal gravity conditions: the vertical axis (drag direction on orbit) is

less sensitive but permits the electrostatic suspension of the proof-mass on

ground.

Experimental feasability studies have been performed since 1986 with

suspensions of 70 gram proof-masses made in silica. The horizontal axes of these

laboratory models have, on ground, a measurement full scale range of i0 -s G.

A pendulum bench has been realized in order to preserve the accelerometers

from the seismic noise in the laboratory. A soft environment of about

10 -8 G r.m.s in a 0.i Hz bandwidth is achieved.

The on ground testing of the 2 sensitive horizontal axes is nevertheless,

limited by any variation of the coupling with the vertical axis or of the

accelerometer orientation. Because of these limitations and of the necessity of

testing the final configuration for flight, tests in the ONERA drop tower

facility will have also to be performed under microgravity conditions.

In 1988, the pre-development of the GRADIO accelerometer has been undertaken

under ESA contract. The design has been optimized to meet the requirements while

insuring the compatibility with the on ground testing. The proof-mass is made in

platinum-rhodium alloy: its mass is 320 grams for a size of 4 × 4 × 1 cm. The

high density minimizes the disturbances due to non gravitational forces. The

electrode set, obtained by ultrasonic machining and grinding of three silica

plates, exhibits a high geometrical stability.

The feasability of the electrostatic suspension of such an heavy proof-mass

under 1 G is demonstrated. The manufacturing of two models is on going and

differential tests, rejecting the residual seismic noise, will be done to

evaluate their performances.

4. CONCLUSION

The first step of the GRADIO accelerometer development has been achieved

through the electrostatic suspension of a 300 gram proof-mass, on ground.
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By maintaining our efforts in the next years, the first space gravity

gradiometer can be developed for a Solid Earth mission at mid-nineties.
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ABSTRACT

Satellite gravity gradiometry is a technique now under developrnent which, by the middle of the next
decade, may be used for the high resolution charting from space of the gravity field of the earth and,
afterwards, of other planets. This paper reviews some data analysis schemes for getting detailed gravity maps
from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such

maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in
combination with data from a Global Positioning Systen_ (GPS) receiver carried on the same spacecraft. It

compares these accuracies with those of current and future maps obtained from other data (conventional
tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical
interest.

I. INTRODUCTION

A gravity gradiometer placed in a low, polar, near-circular orbit, will provide within a few months a fine
global sampling of the gravity field. From such data, high resolution maps of the anomalous field (through I00

km half-wavelength) are expected, if the accuracy of each component of the gravity tensor measured by the
instrument is of the order of 0.01 Eotvosor better (this means detecting a change of I0 -12 m/see 2 in gravity

acceleration over a I0 cm distance). Both the level of resolution and the homogeneous quality of the results
worldwide are beyond what can be obtained by any other space technique, except altimetry. It will have the
advantage over altimetry of not being restricted to the oceans and of being more accurate at mid- and long-
wavelengths, although fine resolution is likely to be considerably poorer. These conclusions follow from a
number of studies (Balmino, 1995, NASA Gravity Workshop, 1997, Colombo, 1987, ESA Report, 19gg, etc.).
Those studies suggest that the gravitational effects of major oceanographic and geophysical features (such as
global ocean circulation, mantle convection, spreading and subduction zones, etc.) could be charted with
uncertainties of the order of 10% of their values at the earth's surface. The global character of the data
offers the possibility of studying large areas now poorly known (Antarctica, the Artic, parts of South America
and Africa), and also regions from which reliable information is not readily available (much of Asia).

Employing gradiometers to chart the gravitational fields of other planets and their moons is a further step to
take, once the major ones of building and using an earth-mapping instrument have succeeded.

2. DATA ANALYSIS

A successful gradiometer mission should collect millions of measurements over several months. To
represent gravity worldwide to the expected resolution of better than I00 kin, in the order of I00000

parameters have to be estimated, regardless of the type of base functions used (as long as they are generic
functions, such as spherical harmonics, point masses, mean anomalies, and so on). There are two main
categories of maps to be considered: global and local. A global map represents the field over the whole earth;
a local map, the field over a limited region. Both kinds are complementary: a global map can be used for
studies of the planet as a whole; its resolution may be less than the maximum allowed by the data, because
the largest number of parameters that can be estimated in practice may not be enough to represent the
smallest details everywhere. A local map may reach that maximum resolution over a limited area, because
only enough parameters for this geographically restricted representation are needed. A good global map may

be used to eliminate trends from the data employed in local maps, to help distinguish small details. Efficient
schemes for analysing data, whether global or local, can exploit the uniform geographical distribution of the
measurements resulting from the gradiometer's sampling of the field at regular intervals along an orbit with a
repeating groundtrack. Such an orbit, with a repeat period comparable to the duration of the mission, provides
the finest, most even coverage possible over that period.

2.1 Global Maps

The two n_ost laborious numerical operations involved in estimating the parameters of a global gravity

n_ap by a least squares procedure are the formation and the inversion of the normal matrix of the estimator.
_,_ith a repeating orbit, a regular, uninterrupted sampling of the field by a gradiometer, and the use as base
functions of uniformly spaced point masses, or gravity anomalies, or else of spherical harmonics, the elements
of the normal matrix can be calculated directly by analytical expressions (instead of being accumulated

observation by observation). The matrix also has a very strong structure that allows its fast inversion and
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limits roundoff error propagation, in spite of its enormous size (order of l0 l0 elements). This structure may

be block-diagonal, and very sparse (with spherical harmonics), or block-Toeplitz circulant, and highly
redundant, (with gridded point masses and mean anomalies). In the case of spherical harmonics, the block-

diagonal structures occur when the potential coefficients are separated first by order, then by parity (sine or
cosine). For a perfectly circular orbit, a third symmetry exists: that of harmonics where n-m Ls even versus
those where n-m is odd (n is the harmonic degree and m the order). This type of structure, as well as the

block-Toeplitz one, is not exclusive to gradiometry, but arises whenever these base functions are used

together with equispaced gravity data sampled along a repeating orbit. They are discussed in Colombo (19gl),
_1994), and (1987), and in Wagner (1993). In the case of spherical harmonics, the representation of the

potential along a repeating orbit is a Fourier series with the same repeat period as the orbit; in this series,
harmonics of different orders, parities, etc., have no common frequencies. This causes many columns of the

matrix of observation equations associated with the potential coefficients to become orthogonal when the

sampling rate is much higher than the frequency content in the signal. It is also necessary to take care of
time-varying components of the signal that do not share the periodicity of the orbit. As explained in Colombo
(1984), most of the orbital perturbations due to the anomalous gravity field repeat with the orbit (so they are

"geographically correlated": they are the same every time the spacecraft passes over the same place, in each
successive repeat). There are, however, deep resonant perturbations (caused mostly by the zonals) that will

_ary from one repeat to the next; there are also rotational effects, instrumental drift, etc., that lack this
periodicity. They can be accomodated by means of additional parameters associated with suitable non-
periodical time functions, to be estimated together with the potential coefficients. The result, for spherical
harmonics, is an "arrow" normal matrix, as shown in Figure I. The two edges of the "arrowhead" are non-zero
elements associated with both potential coefficients and with the additional parameters; the "shaft" of the

arrow is a string of diagonal blocks of decreasing size associated with the potential coefficients alone. This
matrix can be inverted efficiently and accurately by the method explained in Colombo (1994).

71

Figure 1. Sparse "arrow" structure of the normal matrix of spherical harmonic potential coefficients
for a repeating orbit. White areas show location of zero elements.

2.2 Local Maps

If the data has been sampled without significant interruptions (a few small gaps can be filled by simple

interpolation, to restore symmetry, without significant degradation of results), a variety of efficient data
analysis techniques can be used; a few examples of these are given here. By separating ascending from
descending passes, and chosing a region with parallels of latitude as the northern and southern limits, and

groundtracks of passes as the eastern and western edges, equispaced points along the remaining passes define
a twisted regular grid on this region. Using this grid to place the point masses or mean anomalies of a local
representation leads to an adjustment of their values where the normal matrix is block-Toeplitz. Moreover, in
equatorial regions, for sufficiently small areas (where the tracks are virtually straight and parallel, and the
earth can be treated as flat), two-dimensional Fourier expansions can be used to represent the field, and fast

Fourier transform procedures implemented to estimate the parameters of the local maps.
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3. MISSIONANALYSES

Missionanalysesbasedon a globaldata coverage using instruments measuring several components of the
gravity tensor over a six-month period, with sampling/averaging data rates of a few seconds, indicate that the

sensitivity of the gradiometer initially increases with wavelength, as one would expect from the frequency
response of a twice-differenced process (the gravity potential), and then decreases as the spectrum of the
potential decays nearly exponentially with frequency, primarily due to the effect of altitude. The spherical
harmonic representation of the field has been used in all cases, assuming equispaced measurements along a
circular, polar, repeating orbit, to use the efficient methods outlined in section 2.1 for setting up and
inverting the normal matrix to obtain the variance-covariance matrix of the estimated potential coefficients.

Figure 2 shows the accuracy of the coefficients estimated with data froma 0.01 Eotvos (E) instrument
with a 4 second sampling/averaging rate. A nunlber of spurious effects, mostly of low frequency, such as"
orbit errors, instrumental drift, effects of rotation, attitude error, etc., have been suppossedly removed by

filtering out all information below three cycles per orbital revolution (i.e., only signal with periods shorter
than .30 minutes is left). This leads to conservative error estimates. For thegradiometer, two curves, one for
an accuracy of 0.01 E, and another of 0.0001 E (the expected accuracy of the supercooled instrument under
development for NASA by Ho Paik at the University of Maryland) are shown. Both indicate an initial steep

increase in sensitivity, followed by a botttoming-out at about degree 90, and experiencing a nearly
exponential increase (approximately straight line in the linear-log graphs shown here) beyond degree 200. The
divided curve marked "0.01 E+GPS, best and worst cases'* corresponds to the combination of the gradiometer
measurements with GPS tracking data in the estimation of the gravity field model. This assumes that a GPS

receiver is carried on board of the gradiometer satellite, and that it tracks continuously the GPS spacecraft
from the full constellation, simultaneously with a ground GPS network of some 10 globally distributed stations
(in order to correct the GPS clocks and orbits, as well as the satellite receiver clock, by double differencing
of observations (Yunk et al., 198_)). This not only strengthens the gravity field solution at low degrees (here,
through degree 30), but also helps the operation of the ground network (primarily set up for geophysical
experiments on geodynamics, according to current expectations for the 1990's) by reinforcing the geodetic
connections between the widely separated stations. In this way, two different geodetic and scientific tasks
can be combined to mutual advantage. The "worst case", upper curve, assumes large orbit errors, and
considerable unresolved carrier-phase biases (order of 10 cm). The "best case", lower curve, corresponds to
the ideal situation of no orbit errors either for GPS or for the gradiorneter satellite, and no unresolved biases.
(For further details on the GPS calculations, see extended abstract on GPS/GP-B by Smith et al., in this
issue.) In general, the assumptions were: both the LI and L2 frequencies are used, with carrier-phase and

pseudorange measured: up to seven GPS satellites simultaneously visible from the lower satellite at all times;
average GDOP of 3; data corrected for ionospheric refraction and then double differenced; assumed
nLeasurement noise: I cm for carrier-phase, and 10 cm for pseudorange (after fifteen minutes averaging) in
the worst case; I cm for carrier-phase, and zero cm for pseudorange in the best case.

Clearly, GPS data and gradiometry con_plement each other, as the former is more sensitive to lower
frequencies, and the latter to higher ones. The 0.0001 E curve is the same as for 0.01 E, but shifted down two
decades. At the top of Fig. 2, the broken curve represents the power spectrum of the anomalous field, or full
spectrum of the signal. Where the plot of the accuracies of the spherical harmonics intersects this spectrum,
signal and noise are equal, and this is usually adopted as the point of highest recoverable frequency. For the
0.01 instrument, this point happens at about degree 360, for a half wavelength of some 70 kin.

Figure 3 shows the curves for gradiometry/GPS of Figure 2 against the published accuracies of current,
low resolution models such as GEM-TI (top left corner), and those expected for the improved models planned
for the early 1990's, which will include satellite altimetry as well as conventional satellite tracking data.

hnprovements over such models from the combination of GPS data and gradiometry are shown to be about
two orders of magnitude in accuracy, and nearly one order of magnitude in resolution (fields like GEM-TI and
its planned successors are limited to resolutions of some 400 km half wavelength). Also plotted are the
accuracies expected from the superconducting gradiometer (0.0001 E) and from satellite-satellite radio-
tracking systems like the one designed for the now shelved GRM mission. Figure 3 suggests that a 0.01 E
instrument will be better than GRM for features with a harmonic content above degree 120 (i.e., lg0 km half
wavelength).

The curve at the top of Figure 4 is the spectrum of the stationary sea surface topography (based on the
_ork of Levitus on global circulation). Also shown is the spectrum of the M2 ocean tide based on the model of

Schwiderski, and that of changes in the field over the length of the mission due to post-glacial crustal rebound
and sea level adjustment. The plots indicate that major ocean tides can be estimated accurately (in fact, due
to orbital resonances not considered in the calculations, tides can be estimated better than suggested here).

Post-glacial rebound is barely observable over six months with a 0.01 E instrument, and a 0.000i E device may
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be required for its study. The geoid calculated from gradiometry should be good enough to separate most of
the stationary ocean topography from the mean sea surface determined with satellite a[timetry.
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Figure 4. Comparing the accuracies of potential coefficients recovered from gradiometry, alone and

in combination with GPS data, to the spectra of various phenomena of interest in oceanography and
solid earth geophysics.

4. CHARTING THE GRAVITY FIELDS OF OTHER MEMBERS OF THE SOLAR SYSTEM

Gravity and topography can be mapped from space by means o£ gradiometry and altimetry; jointly, they
can help identify the geological structures underlying the surface of a planet. Devices such as radar
altimeters and gravity gradiometers may be carried in future space probes destined to orbit other members of
the solar system, including the moons of the major planets. Because very little is known about those celestial

bodies, instruments many times less sensitive than those needed to gain new information on the earth, may
provide nevertheless a wealth of new knowledge. Since many planets and moons have little or no atmosphere,
expensive, heavy, complex drag-compensating systems are largely unnecessary, and spacecraft can stay in
lower orbits for longer periods than in Earth. Many planets are smaller than our own, but their geophysical
features are of the same size or even larger than those on Earth. All these factors tend to compensate for any
loss in instrument sensitivity caused by the more stringent limits on weight, size, volume, power consumption,
durability, and cost, as well as from a less benign enviroment (e.g., equipment with moving parts in close
proximity, etc.), likely to characterize interplanetary missions.
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