
\

N90-22300

SPACE COMMUNICATIONS SCHEDULER: A RULE-BASED APPROACH

TO ADAPTIVE DEADLINE SCHEDULING

Nicholas Straguzzi

GE Advanced Technology Laboratories
Moorestown, NJ 08057

ABSTRACT

Job scheduling is a deceptively complex subfield
of computer science. The highly combinatorial na-

ture of the problem, which is NP-complete in

nearly all cases, requires a scheduling program

to intelligently traverse an immense searcb tree

to create the best possible schedule in a minimal

amount of time. In addition, the program must

continually make adjustments to the initial
schedule when faced with last-minute user re-

quests, cancellations, unexpected device failures,

etc. A good scheduler must be quick, flexible, and

efficient, even at the expense of generating

slightly less-than-optimal schedules.

The Space Communications Scheduler (SCS) is

an intelligent rule-based scheduling system de-
veloped at GE's Advanced Technology Laborato-

ries. SCS is an adaptive deadline scheduler
which allocates modular communications resourc-

es to meet an ordered set of user-specified job re-
quests on board the NASA Space Station. SCS

uses pattern-matching techniques to detect po-

tential conflicts within a schedule, then resolves

these conflicts through algorithmic and heuristic

means. As a result, the system generates and

maintains high-density schedules without relying
heavily on backtracking or blind search tech-

niques. SCS was designed to allocate communica-

tion devices on board the Space Station, but its

general-purpose scheduling strategy is suitable

for many common real-world applications.

1.0 INTRODUCTION

"Scheduling" is a term very familiar to most peo-

ple. Personal schedules are routinely made and
revised; it is a task so common that few people

think about the cognitive actions involved in its
performance. Yet, the seemingly simple act of

scheduling, which can be loosely defined as allo-

cating the resources necessary to perform a set of

jobs over a specific time interval, is one of the
more complex problem areas of computer science.

Two general classes of scheduling problems exist:

precedence constrained and deadline. Precedence
constrained scheduling (sometimes called simply

constraint scheduling) is very closely related to

classical computer planning problems. In its most

basic form, constraint scheduling generates an

agenda for performing subtasks of a specified job,

given a partial ordering of the subtasks and a

deadline for completing the job. Garey and John-
son (Garey and Johnson, 1979) illustrate con-

straint scheduling with the example of a college

freshman building a four-year course plan. Be-

cause certain courses are required for gradua-

tion, and because most of these courses have pre-

requisites of their own, developing an

appropriate schedule is, as every college student

knows, a non-trivial task.

Deadline scheduling (sometimes called interval,

appointment, or timetable scheduling) is a some-

what more familiar problem class. Here, the goal

is to create an optimal timetable for the execution

of a set of jobs over a specific interval of time, giv-
en a finite set of available resources and a set of

acceptable release times (earliest start times),
deadlines (latest completion times), and priorities

for each job. Common real-world examples in-
clude a doctor's receptionist scheduling patient

appointments and a computer's operating system

scheduling the execution of batch programs.

What actually constitutes an "optimal" schedule

varies from application to application. In the first

example, an optimal schedule would be one that

allows the maximum number of appointments,

while in the second, it might maximize the sum

of the priorities of the executed programs. 1

1. Many application areas fall into both scheduling classes. Engineers at a car manufacturing plant, for example,
must make use of both constraint scheduling (deciding the optimal order for assembling the parts of a car) and
deadline scheduling (allocating the personnel and resources to perform each task at the appropriate time).

75

Both constraint and deadline scheduling are NP-

complete in virtually all non-trivial cases (Garey

and Johnson, 1979), which forces all automated

scheduling systems to rely heavily on heuristic

search techniques. Unfortunately, certain real-

world scheduling considerations make good

schedules extremely difficult to generate, even

heuristically. The resources available to perform

the jobs may be very limited or they may not be
shareable between jobs. Jobs may have varying

durations or variable release times, they may be

uninterruptible, or they may not be permitted to

run concurrently with other jobs. In addition, a

scheduler is not necessarily finished after the ini-
tial schedule is made. Unforseen circumstances

often arise during job execution time, such as a

last-minute emergency request or an unanticipat-
ed equipment failure, that require the scheduler

to make "on-the-fly" adjustments.

I.I Related Research

Because of the very diverse nature of scheduling

problems, as well as their inherent intractability,

the goal of computer science researchers is not to

create one general-purpose program that can

handle every conceivable scheduling problem, nor

to create a program that guarantees optimal

schedules instantaneously. Rather, the goal is to

create programs that generate near-optimal

schedules, in a reasonable amount of time, for

one specific subclass of scheduling problems.

Most recent research has concentrated on Job-

Shop Scheduling (JSS), a general subclass of
problems within the domain of Operations Re-

search (Martin and Pling, 1978; Marcus, 1984).

The goal of most JSS systems is to develop near-

optimal schedules for manufacturing or industri-

al facilities where slight improvements in sched-

uling efficiency may translate into huge amounts

of savings to a company. Another popular re-

search area is the development of schedulers for

computer operating systems (OS) (Deitel 1984;

Tanenbaum, 1987). Many OS textbooks include a

chapter on scheduling; Deiters An Introduction to

Operating Systems (Deitel 1984) contains a good
set of goals for an OS scheduler.

Within the field of Artificial Intelligence (AI),

scheduling is part of the Planning Systems do-

main (Nillson, 1980). Much of this research is con-

cerned with modeling the real-world planning en-

vironment and representing the effects that
certain actions have on the model. Deadline sched-

uling is often represented as the lowest level on

the planning tree, performed only after goals are

identified and task sequences are determined. So-
phisticated planning systems will consider dead-

line scheduling restrictions as part of the overall

plan generation process (Hayes-Roth et al., 1979).

Fox and Kempf (1985) have studied the dual prob-

lems of computational complexity and executional

uncertainty on job-shop scheduling domains.
From this, they have defined two basic principles

for building an efficient scheduler. The "Principle
of Least Commitment" states that a scheduler

should never commit a job to a specific time inter-

val or resource set until there is a good reason to

do so. The "Principle of Opportunism" states that

a scheduler should take advantage of all available
opportunities to reduce its search space.

1.2 Terminology

A job (also called a service) is a single, indivisi-

ble, real-world task to be performed within a

specified time interval. The actual nature of a job

varies from application to application. To a doc-

tor, a job may be one consultation session with a

patient. To a factory line worker, a job may be

assembling ten electric motors by a certain dead-

line. Associated with each job are a priority, a set

of preconditions that must be met before the job

may begin (also expressible as set-up time), the

time constraints for scheduling the job, and a set

of resources needed to perform the job.

A resource is anyone or anything available for use in

the execution of a job, such as a person, a work area,

a tool, or a raw material. Like jobs, resources are as-

sumed to be indivisible units for scheduling purpos-

es. The maximum number of jobs that a resource

can support at one time is known as its capacity. A
dedicated resource has a capacity of one, while a

shareable resource has a capacity greater than one.2

2. Note that shareability and indivisibility are not mutually exclusive terms. A mainframe computer is shareable
in the sense that more than one user may be logged in at any given time. It is indivisible in that a user does not
request the "left half' or the "bottom one-third" of the computer when reserving CPU time. Similarly, a box of
ten identical screwdrivers may be thought of as ONE shareable, indivisible resource with a capacity of TEN jobs.

7B

The number of jobs actively being supported by a
resource at any given time is known as the re-
source's load. An idle resource is one with a load

equal to zero. A free (or available) resource has a

load less than its capacity, while a busy resource
has a load equal to its capacity. An overloaded
resource has a load greater than its capacity and
indicates that an error condition is present in a

schedule. The jobs competing for an overloaded
resource are said to be in conflict.

A scheduler (whether human or machine) takes

a description of the set of jobs to be performed
and the resources available to perform them, and
produces a schedule which maps resources to
jobs. An allocation is when one resource is re-
served for one job over one interval of time, and
a supported job is one which has reserved all of
the resources necessary for its execution. Finally,
a schedule is any mapping of resources to jobs.

2.0 SPACE STATION COMMUNICATIONS

GE's Government Communications System Divi-
sion (GCSD) is a member of the McDonnell-
Douglas team awarded NASA's Space Station

Work Package II. GCSD's task is to develop the
Space Station's Communications and Tracking

System (C&TS).

C&TS will be comprised of a number of subsys-

tems, each handling a specific class of communi-
cations (see Figure 2-1). The Space-To-Space
Communications (STSC) Subsystem, for example,
supports links between the Space Station and
non-terrestrial sources (satellites, the Space
Shuttle, etc.). All subsystems consist of a set of
modular communications devices that can be con-

figured in a variety of ways, depending on the
Space Station's current needs. A set of devices
that supports a single communication link is
called a string; at any given time, a subsystem
may have several (or zero) active strings.

All C&TS subsystems are managed by the Con-
trol and Monitoring (C&M) Subsystem, which is
responsible for allocating communications re-
sources, monitoring the performance of on-line
devices, diagnosing equipment failures, and tak-
ing whatever actions are necessary to maintain
error-free communication links. GE engineers, as
part of an ongoing IR&D project, have been eval-

K,

User Interface

Space Station Communications and Tracking System

I Space-To-Space

I
\

f

\

Space-To-
Ground

i
i

•:.d1

Tracking
I InternalVideo/Audio

I Internal C&T5 Control Bus I

Control and Monitoring Subystem (C&M)

C&TS AI-Based Systems

Space
Communications

Expert
(SCE)

Space
Communications

Scheduler

(sos)

Figure 2-1. Architecture of Communications and Tracking System (C&TS).

77

uating the feasibility of integrating two knowl-
edge-based systems within C&M: the Space Com-

munications Expert (SCE) and the Space Com-

munications Scheduler (SCS).

GE's Advanced Technology Laboratories (ATL)

developed SCE in 1987 as an embedded expert

system designed to monitor and maintain

strings within the STSC Subsystem. SCE allo-

cates new strings on command, then evaluates

data from various sources, such as external

test procedures, device status reports, and the

global Space Station database, to ensure that

the string is operating normally. When anoma-
lies are detected in a communication link (corn-

link), SCE isolates and replaces the device

causing the problem. In 1988, GCSD developed

an expanded version of SCE, the Prototype In-

telligent Space Communications Expert System
(PISCES). PISCES extends SCE to include both

strings and partial device failures in the

Space-To-Ground Communications (STGC) Sub-

system.

SCS and PISCES were conceived as cooperating

expert systems that form the "brain" of C&M.
SCS's role is to allocate and schedule C&TS de-

vices, and then transfer control to PISCES which

assembles and maintains the resulting strings.

When PISCES recognizes a device failure, it noti-

fies SCS, which in turn adjusts its schedule ac-

cordingly and specifies an available replacement
device to PISCES.

2.1 SCS Scheduling Domain

C&TS is a relatively standard deadline schedul-

ing domain in which "jobs" correspond to individ-

ual communication links (called "services"), and
"resources" are the modular communication de-

vices used to create strings (transceiver-modems,
switches, fiber-optic links, antennas, etc.).

As with SCE, the first-year development effort of

SCS concentrated solely on the STSC Subsystem.

A string within STSC typically consists of five

interconnected devices (see Figure 2-2). Trans-

mitted signals first travel through a Baseband
Signal Processor (BSP) which connects STSC

with the many data busses on board the Space
Station. The Transceiver-Modem (XMODEM)

modulates this signal and sends it through an

. °

° .

I BSP

DA TABUS

• To allocate a string, a user must reserve:
....one XMODEM.
....one AME in the proper location.

Figure 2-2. Standard Space-To-Space

Communications String.

outgoing Intermediate-Frequency Switch (IF-

SWITCH) to a specific Antenna Mounted Equip-
ment (AME) from which it is transmitted. Re-

ceived signals traverse the same path in the op-

posite direction, except that an incoming IF-
SWITCH is used.

The two critical devices on an STSC string are
the Transceiver-Modem and the Antenna. Select-

ing an XMODEM forces the selection of the BSP

and IF-SWITCHes because they are hardwired

together. The four types of AMEs are OMNI,
AIR-LOCK, SERVICE-BAY, and PARABOLIC.

They are located at various fixed spots on the
outside of the Space Station. To allocate an

STSC string, one must allocate an XMODEM

(any operational one will do) and an AME of the

appropriate type in the appropriate location.

Figure 2-3 shows the XMODEMs and AMEs of

STSC represented as SCS tables.

78

Tables (Resources)

P -- (pl, ..., pm)

p, = if, H, M

.esourc]ID Capacity

Priority

pl = (XMODEM-AI, 10¢, I)

p2 = (XMODEM-A2, 100, I)

p3 = (XMODEM-A3, 100, 1)

p4 = (XMODFM-BI, I00, I)

p5 = (XMODEM-B2, 100, I)

p6 = (XMODEM-B3, 100, 1)

p7 = (OMNI-AME-I, 80, 3)

p8 = (OMNI-AME-2, 80, 3]

Service Reouests (Jobs)

Y_,= (o,, ..., o°)

_ = (J, H, T, PO

_ Z' I .ResourceJob ID (Table)
Specificatior

Priorities Time

!c>.__n
P=

p9 = (OMNI-AME-3, 80, 3) "_1

p 0 = (OMNI-AME-4, 80, 3)

p I = (AIR-LOCK-AME-I, 80,3)

p 2 = (AIR-LOCK-AME-2, 80, 3)

p 3 = (GIMBAL-AME-I, 80, I)

p 4 = (GIMBAL-AME-I, 80, I)

p 5 = (SERVICE-AME-I, 80, 3)

T = ('r,, ..., _n) I

_ = _, (Pl,'_, PO)I
Glass ID Resources in|

class__===___

T=
= (XMODEM,

(XMODEM-A I , XMODEM-A2,
XMODEM-A3, XMODEM-B I,

XMODEM-B2, XMODEM-B3))

_2 = (OMNI-AME PORT,

(OMNI-AME-1, 0MNI-AME-3)

"r..3 = (0MNI-AME-$TARBOARD,

(OMNI-AME-2, OMNI-AME-4)

Figure 2-3. Resource tables and table classes for C&TS.

3.0 SPACE COMMUNICATIONS
SCHEDULER

SCS is a rule-based scheduling system developed
by GE's Artificial Intelligence Laboratory in
Moorestown, NJ. SCS was designed to allocate
and schedule modular communications equipment
on board the NASA Space Station, automatically
making adjustments during job execution time
when faced with unexpected device failures or
last-minute user requests. It combines algorithmic
and heuristic search techniques, sophisticated
pattern-matching capabilities, and a flexible
scheduling strategy adaptable to many different
applications. SCS was implemented using Infer-
ence's Automated Reasoning Tool (ART TM) expert

system shell augmented with custom LISP and C
code; it runs on a Digital TM VAX computer.

SCS addresses deadline scheduling problems
char- acterized by:

1. Continuous, indivisible jobs -- Once started, a
job will not be preempted before completion.

2. Negligible or constant set-up times between
jobs I Set-up times are usually a trinary
function of two jobs and one resource, yielding

.

,

a time. For example, SETUPTIME(A,B,R) =
10 means that it will take 10 minutes to "re-

set" resource R between the end of job A and
the start of job B. SCS requires that all set-
up times are either negligible (in which case
they can be ignored) or relatively constant (in
which case they can be automatically added to
the duration of each assignment).

Low-capacity resources -- Each resource has a
relatively low capacity, generally five jobs or
less. SCS takes approximately 1.5 times long-
er to schedule a (k+l)-capacity resource than a
k-capacity one.

Partial order of job prioities -- Each job has
its own scheduling priority, and no job may
preclude a higher-priority job from being
scheduled. In other words, it is better to

schedule one job of priority 100 than 10 jobs
of priority 90.

The subclass of scheduling problems handled by
SCS is actually very common. Virtually any do-
main requiring "appointments" -- from a doctor's
office, to dinner reservations, to library books, to
a college computer terminal room, to communica-
tions equipment aboard the Space Station -- is a
domain in which SCS is applicable.

79

3.1 SCS Data Structures

Within SCS, jobs are represented by service-
requests, resources by tables, and allocations by
blocks. Service-requests and tables, along with
certain scheduling parameters, make up the input
to SCS. No two service-requests or two blocks
may be exactly alike. The lone output of the sys-
tem are the blocks that make up the schedule.
This section contains the formal definitions of

the input and output specifications of SCS.

All SCS time specifications are in military format
with discrete one-minute increments. A time in-

terval is specified as an ordered pair (tl, t2), in-
clusive of its startpoint but not inclusive of its
endpoint. For example, "(0800, 0900)" specifies 60
one-minute units of time, the first unit beginning
at 8:00 AM and the 60th beginning at 8:59 AM.
While this is a somewhat inelegant convention,
no perfect way exists to model time as an or-
dered set of discrete elements (Allen, 1983).

3.1.1 Service-Requests

A service-request is a 4-tuple,

a = (j, _, T, p)
Z = {el, ..., am}

J = {J(_i) I l<i<_ml

where j is the job represented by a; _ is an or-

dered pair, (_p,Tti) , specifying priority; T is a set
of 4-tuples, T = {T1,T2,...}, Ti = (to, (A+,A.),
MINA, d) representing the time constraints; and

p is the resource set, (Pl,P2,...), required to per-
form s.

Each service-request corresponds to exactly one
job, jeJ. However, a job may be represented by
multiple service-requests, each with a different _,
T, and/or p. Once a job is successfully scheduled
by SCS, all alternative requests for that job are
automatically deactivated.

_p and _i are called the scheduling priority and
inertia value of a. Scheduling priority is used
only during the initial scheduling phase, and it
represents the relative importance of a in com-
parison to other service-requests. If and when a
job is successfully scheduled, the inertia value
specifies how difficult it is to "bump" that job
during the rescheduling phase.

T, the time constraint for s, is itself a set of 4-
tuples. Each Tie T consists of a start time (ts); the
allowable negative and positive offsets from the
start time, (A_,A+); a boolean flag (MINA) which,
when set, specifies that the request should be
scheduled as close as possible to ts; and the job's
duration (d). In standard terminology, the re-
lease time for _ is (t_ - A.) and the deadline for
is (t_ + A+ + d). Each Ti in T signifies an equally
acceptable time interval for scheduling the job.

Finally, p specifies the resource set for _. Be-
cause resources are represented as "tables" with-

in SCS, p is expressed as a nonempty set of table
names or table classes (see Section 3.1.2). For a

to be successfully scheduled, all tables in p must
be available at the specified time; otherwise, no
resources are allocated and _ is deactivated.

An example of how to specify SCS service-
requests is given in Figure 3-1.

3.1.2 Tables and Table Classes

A table is a triplet such as

p ffi (r, Xp, _)
P = {Pl, ..., Pn}

R = {r(pi) I l<i_<n}

where r is the resource represented by p, _p its
reduction priority, and)_ its capacity. Every re-
source, ri, has exactly one corresponding table,

Pi, and vice versa.

The reduction priority, 7tp, is used during the lat-
ter stages of scheduling when SCS assigns a fixed
start time and resource set to each job. The higher
a table's reduction priority, the more likely its cor-
responding resource will be used continuously in
the final schedule. X represents the resource's ca-
pacity and is specified as a positive integer.

For efficiency, similarly used resources can be
collectively expressed as table classes. Whenever
a service-request specifies a table class, T, (l_T),
in its resource set, SCS will automatically gener-
ate N new requests (N = IT I) with the table
class replaced by each _ • T. This allows a user
to issue general resource requests such as "one
room large enough to hold 20 people" rather than
"Either Room B or Room C or Room D or..."

80

m=
THE JOB. My office building has three conference rooms: m_

Room A (capacity: 10 people) M
Room B (capacity: 15 people)
Room C (capacity: 20 people)

Each room can be reserved for one conference at a time. I need to reserve one room and one

of our three (identical) vugraph projectors for a staff meeting sometime tomorrow. !

My first choice (priority 100) is to hold the meeting in the morning. It may start at exactly 8:00 AM, or

anytime between 9:00 and 9:30. It will run for three hours, and there will be 20 attendees.
g

Our second choice is to have the meeting at 1:00 in the aftemoon. It can start as late as U
1:30, if necessary, but I'd prefer if it began within 10 minutes of 1:00. Only 15 people can II

attend an afternoon meeting, and it will last only 2 1/2 hours. !
I

In either case, once the meeting is scheduled it should not be bumped in favor of any job B
with a pdority of less than 150.

m m m | m m | | m | | | m m | mm m mm m m m m | mm |

THE TABLES AND TABLE CLASSES:

p,=(ROOM..A, 100, 1)
p:=(ROOM_B, 100, 1)
p_=(ROOM_C, 100, 1)

p.= (VUGRAPH, 80, 3)

"c_= (CROOM_10, (ROOM_A, ROOM_B, ROOM_C))

•:: = (CROOM_15, (ROOM_B, ROOM_C))
.c_= (CROOM_20, (ROOM_C))

i i i i m i | i I i i i i i i i i i i

THE
SERVICE-REQUESTS:

a+ (STAFF_MTG,
= (100,50)

((800, (000, 000), FALSE, 300),
(900, (000, 030), FALSE, 300)),

(CROOM_20, VUGRAPH))

(STAFF_MTG,

= (8o,70)
((1300, (000,030), TRUE, 230)),
(CROOM_I 5, VUGRAPH))

m m m m m m m m m m m m m m m m m m m

Figure 3-1. Service-request and table specifications for the "Staff Meeting" scenario.

An example of how to specify SCS tables and ta-
ble classes is shown in Figure 3-1. Note that the
capacity of each conference room is 1, not 10, 15,
or 20. While a room may be large enough to seat
up to 20 people, it still can support only one
meeting at a time.

3.1.3 Blocks

The output from SCS is a set of blocks representing
the mapping of tables to service-requests (i.e., re-
sources to jobs). Blocks are expressed as a 5-tuple:

= ((_, T(_, P(_, tw, to)

B = {J31, ..., J3p]

where (_ is the service-request associated with 13,
T(_ (e T((_)) is the time constraint of

corresponding to the block
P(_ (e P((_)) is the set of tables in which

the block is present
tw is the window of time for the block
tc is the critical time of the block.

The window of a block, tw, is expressed as an or-
dered pair (tws, twe). The length of the window
is at least as long as the duration (d) of T(y. In
addition, the window is a subinterval of T(_'s re-
lease time and deadline.

The critical time, tc, specifies the subinterval of t
in which the block, if chosen for the final sched-
ule, will definitely be in use. It, too, is expressed
as an ordered pair, (tcs, tce), where tcs = twe - d

and tce = tws+ d. If the length of t w is greater
than or equal to two times the block's duration,
d, then the block has no critical time, and tc is
expressed simply as "NONE."

To better illustrate critical times, consider a ser-
vice-request that specifies a release time of 800
hours, a deadline of 1100 hours, and a duration
of 200 hours. Such a request could be scheduled
from either 800 to 1000, or from 900 to 1100, or
from 845 to 1045, etc. No matter which start and

81

end times are chosen, however, the request must

be in execution between 900 and 1000. Therefore,

the block generated from this request would have

tw(9) = (800, 1100) and tc(9) = (900, 1000).

The specific types of blocks found in SCS include

the following: A fixed block is one in which tw =

tc; that is, its window length is exactly equal to
its job's duration. A critical block is one in which

tc _ "NONE"; similarly, a noncritical block has

tc = "NONE". A split block is a special type of

noncritical block in which (twe - tws) = 2d. Two

blocks are alternatives if they share a common

job (91 _ 92 & J(91) = J(92)), while a unique block
is one with no alternative.

A generalized definition of schedule can now be

given as "any conflict-free set of blocks." A sched-

ule is called complete if it consists of only fixed,

unique blocks. Schedules that are not complete

are partial (that is, they contain at least one

block which is nonunique and/or nonfixed). Par-

tial schedules are converted to complete ones by
assigning fixed start times and resource sets to

each job and removing superfluous blocks; this

process is called reduction. Examples of SCS

blocks are given in Figure 3-2.

3.1.4 Notational Conventions

Notational conventions for representing tables

and blocks can be defined pictorially. Conflicts,
overloaded resources, block alternatives, etc., are

much more noticeable when displayed graphical-
ly rather than as a textual list of n-tuples.

Figure 3-3 introduces the notational conventions

used to represent blocks and tables. The two dis-

tinct formats for representing blocks are stan-
dard notation and critical notation. Standard

notation, which highlights duration and delta

time, is best suited for displaying SCS schedul-

ing states. Critical notation highlights a block's
critical time (or lack thereof) and is useful for

identifying conflicts and overloads.

Figure 3-4 shows two blocks, 91 and 92, graphed

within table P3 ("ROOMC"), using critical nota-
tion.

3.2 SCS Operation

The two operational phases of SCS are the

Scheduling Phase and Rescheduling Phase. Its
five distinct modes of execution are called Pre-

Processing, Placement, Allocation, Completion,
and Deallocation. Section 3.2.1 discusses the

scheduling strategy used by SCS in each of its

various system states.

3.2.1 Scheduling Phase v_, l_e_ched_ling
Phase

During the Scheduling Phase, the SCS gener-
ates an initial schedule from a static set of ser-

vice-requests and tables. Then, SCS switches to

the Rescheduling Phase in which additions and

changes to the initial schedule may be made. Al-

though they are mutually exclusive, both phases

share a common set of rules, data structures,

computational states, search strategies, and ter-

minology. The most important distinction be-

tween the two is that in the Scheduling Phase

SCS creates a new schedule, while in the Re-

scheduling Phase SCS adjusts an existing
schedule.

g
_oo_oo_oooooooooooooooooo_o_

b2= ((_1, 2,

(ROOM_C, VUGRAPH),
(900, 1230),
(930, 1200))

_ = (o2, 1, #
(ROOM_B, VUGRAPH),

(1300, 1600),
(1330, 1530)) (1330, 1530))

bl =(m, 1,
(ROOM_C, VUGRAPH),
(800, 1100),
(800, 1100))

b3= ((_z 1,
(ROOM_C, VUGRAPH),
(1300, 1600),

Figure 3-2. SCS blocks corresponding to the "Staff
Meeting" scenario.

Scheduling phase is run once, and only

once, for any given set of input. After the

initial schedule is generated and has been

accepted by the user, SCS automatically

switches to the Rescheduling Phase. Note

that the Scheduling Phase operates on a
static set of input data. If the user wish-

es to make any changes to the input set

while SCS is actively generating a sched-
ule, two choices are available: either wait

until for Rescheduling Phase and make

the changes then, or halt the system, ad-

just the input, and start the system over.

82

El

p=

i I_

p = (r,_, _)

-tABLES

r

t2

tws tcs tee twe tws tws+d t_E-d t_

_(a) N _(a) PB
_critical blocld {non-critical block1

L-_-_

tws_) [d] twE

I
_(a) ea

standard notation

tws tws+d twE

(I
_(o) P.

(sPlit block'_

crit/cal notation

b = (o, PB,(tws,two),(tcs,tcE))

d = d(O)

j = j(o)

BLOCK5

Figure 3-3. Notational conventions.

890 , ,11,oo ,

(100, 50) tVUGRAPH}

_)3 --
I02

I I_STAFF-MTG;z'_ I

i Kx×x×x×_l I
(100, 50} _UGFLAPH}

100

I 14_)0 I I 17(

ROOM_C

Figure 3-4. Graphing table ROOM_C in the "Staff
Meeting" scenarios.

SCS is normally inactive during the Reschedul-

ing Phase, and returns to an active state only

when the set of service-requests (Z) or tables (P)

changes. The important feature of the Reschedul-

ing Phase is that it makes nondisruptive schedul-

ing adjustments, meaning that it will keep the

original schedule as intact as possible during re-

scheduling. This feature is particularly important

for the Space Station because any changes in the

C&TS schedule may have a ripple effect on the

schedules of other systems (e.g., payload deploy-
ment, laboratory experiments, astronauts' per-

sonal agendas, etc.).

SCS's projected role for the Space Station is its

running in the Scheduling Phase once per eve-

ning to generate the C&TS schedule for the next

day. SCS remains active in Rescheduling Phase

throughout the day to handle last-minute ser-

vice-requests, device failures, newly activated re-

sources, etc.

3.2.2 Modes of Execution

SCS utilizes a five-step scheduling strategy, with

each step known as a mode of execution. The SCS

system state can be specified as an ordered pair

of phase and mode:

S = SpxS m
= {SCHEDULING, RESCHEDULING} x

{PRE-PROCESSING, PLACEMENT,

ALLOCATION, COMPLETION,
DEALLOCATION}

If the operational phases (Sp) define the goal of
SCS (creating a new schedule or adjusting an exist-

ing one), then the five modes of execution (Sin) de-

fine the approach that SCS uses to reach its goal.

SCS's scheduling strategy may be described as a

sophisticated generate-and-test algorithm. In

summary, one unprocessed service-request is se-
lected and translated into blocks, which in turn

are entered in the appropriate tables. Next, SCS

analyzes each table to determine when and
where conflicts are present. It then uses a collec-

tion of algorithmic, heuristic, and blind-search

83

rules to resolve each conflict. Finally, SCS de-

cides whether the new partial schedule is "valid"

(i.e., the current request is successfully sched-

uled, no previously scheduled job has been dis-
placed, and the partial schedule is reducible to
some final schedule) or "invalid". In the latter

case, SCS restores each modified table to its pre-
vious state and marks the current request as "un-

schedulable." This process is repeated until each

job has been processed, at which point SCS fixes

a time interval and resource set for each job.

The key to this strategy is that each intermedi-

ate partial schedule must be reducible to some fi-

nal complete schedule such that every job in the

former is also in the latter. That is, if you arbi-
trarily fix any one nonfixed block in the partial
schedule, then one method to reduce it to a final

schedule must still be available without displac-

ing any jobs. Reduction is defined in more detail

in Section 3.2.2.3 on Allocation Mode. Figure 3-5

shows the state transition diagram of SCS.

3.2.2.1 Pre-Processing Mode

Pre-Processing Mode is the first computational
state of SCS, the user's input specifications are
received and translated to ART TM relations. Un-

like the other four execution modes, Pre-

Processing Mode is never called explicitly. Rath-

er, it remains in a wait state until new input is

received from the user. It then activates, inter-

rupts the current execution mode, processes the
new input, and returns to the wait state.

3.2.2.2 Placement Mode

The main computational state of SCS is called

Placement Mode. In this mode, service-requests

are translated into blocks, and resource conflicts

are detected and resolved. Figure 3-6 shows the

transition diagram for Placement Mode and its

seven substates: Selection, Block Generation,

Resolution, Acceptance, Restoration, Rejection,
and Displacement.

USER
INPUT

PLACEMENT ALLOCATION

P=I_

Figure 3-5. State transition diagram for SCS.

84

j(o_,)scheduledpreviously:
o_,deactivated,
Z_,=Z;+oo

j(ou) not scheduledpreviously

To Allocation Mode..

BLocK B' =B'- ZD

oo deact ivate_

MENT

Schedul inq

OR

2 _ -Pass

Rescheduhng

Nc Legal

"_ Displace-

_',, Ments

REJECTION

J

Figure 3-6. Substrate transition

SCS operates on one service-request at a time
from the agenda of unprocessed requests. Recall

that the relative scheduling priority, _p, of each
service-request defines a partial order on Z, and
that this partial order determines scheduling or-
der. In the Selection substate, SCS selects the

current-service-request (represented by o0) at ran-
dom from the set of requests at the top of the agen-

da. Though using the maximum duration of each
request as the second discriminator seems reason-
able when selecting G0, no improvement using this
approach was observed during system testing.

The Block Generation substate performs two func-
tions. First, it checks whether the job correspond-
ing to G0 is already present in the partial sched-
ule. Formally, it checks if 9 (_e B) (j(_) = j(c0)). If
so, SCS deactivates the request and selects a new
G0. Otherwise, SCS generates _0, the set of blocks
defined by G0, and sets B' = B u _0- One service-
request may generate dozens of alternative blocks
for a job, but these will be reduced to, at most, one
fixed block in the final schedule.

diagram for Placement Mode.

In the Resolution substate, SCS detects and re-

solves any conflicts in B'. This substate is by far
the most complex component of SCS and is dis-
cussed in detail in Section 3.3, "Conflicts and
Resolution."

For the current-service-request to be successfully
scheduled, B" must meet two criteria after all con-
flicts are resolved. First, GO must be represented
by at least one block in B'. Second, every job rep-
resented by a block in B must also be represented
in B'. Formally, 9 (_eB') (c(_) = GO) ^ V (_e B) 9
(_'e B') (j(_') = j(_)). If both criteria are met, then
the new partial schedule is accepted.

If either of the two criteria are not met -- that

is, either G0 is not represented in B', or it
"bumped" a job that had been scheduled in B --
then the new partial schedule is invalid and the
previous partial schedule is restored. The next
state transition is dependent on whether SCS is
in Scheduling or Rescheduling Phase. In the lat-
ter case, the Displacement Substate will attempt

85

to displace blocks from B so that a 0 can be suc-

cessfully scheduled (see Section 3.2.3 "Reschedul-
ing Strategy"). If SCS is in Scheduling Phase, or

if displacement has already been attempted for

G0, then the Rejection substate deactivates G0
and returns control to the Selection substate.

3.2.2.3 Allocation Mode

When Placement Mode is complete, SCS switches

to Allocation Mode. Here, the partial schedule

specified by B is reduced to a final, complete one.

Each job is assigned a fixed start time and re-

source set, and its alternative blocks are re-
moved.

Just as Placement Mode processes Z sequentially

according to each request's scheduling priority,

Allocation Mode processes P sequentially accord-

ing to each table's reduction priority. The higher

the value of _p for a table, the more likely its
corresponding resource will be in continuous use
during job execution time.3 The current-table be-

ing reduced is denoted P0- Note, however, that
the reduction of P0 may cause changes in other

tables not yet reduced (because the same block is

often present in multiple tables).

The reduction strategy used by Allocation Mode
is based loosely on the Fox-Kempf Principle of

Opportunism. A huge number of complete sched-

ules may be derivable from one partial schedule,
B, thus indicating a heuristic reduction strategy.

Consider, though, that certain jobs in J may be

represented by only one fixed block (call it _le B)
in the partial schedule. Because SCS has no op-

tion on scheduling this job, and because every ef-

fort must be made to keep resources in continu-

ous use, the system should try to find another

block, _2, that can either start when [31 ends, or

end when _1 starts.

Fixing _2 next to _1 creates a chain of length

two. SCS's reduction strategy is to first extend

any existing chains in P0 as long as possible.

When no chains are extendible, SCS tries to

create a new chain from the remaining set of

nonfixed blocks in P0- Only "Minimize-Delta"
blocks are exempt from this process; these are

fixed as close as possible to their requested start

times before any attempt at chaining begins.

When all blocks in B are fixed and unique, Allo-

cation Mode halts and the final schedule is pre-

sented to the user. SCS enters Rescheduling

Phase (if it is not there already) and waits for

new user input in Conclusion Mode.

3.2.3 Rescheduling Strate_¢

SCS's rescheduling philosophy is to make adjust-
ments to the current schedule with as few dis-

ruptions as possible. If a service-request appears

on the agenda during Rescheduling Phase -- ei-

ther because the user just issued it, or because

one of its allocated resources suddenly became
unavailable, or because it was bumped from the

final schedule by another job -- SCS will first try

to schedule it without disturbing any existing
blocks. Failing that, SCS will displace certain

lower-priority blocks to "squeeze" the new re-

quest into the schedule. These bumped jobs are,

in turn, placed on the agenda and rescheduled.

Certain jobs will naturally increase in priority

once they become part of the final schedule. On
the Space Station, for example, the astronauts

will arrange their personal schedules according

to the daily job schedule they receive each morn-

ing. Even a relatively minor job, such as a non-

critical scientific experiment, may require exten-
sive preparation time.

The inertia of a service-request, _i(_), specifies
the difficulty of displacing c during Rescheduling

Phase. Inertia is specified as a nonnegative incre-

ment to the request's scheduling priority and d

cannot bump a unless _p(d) > _p(a) + _i(c).

The Placement Mode of the Rescheduling Phase

will perform two separate attempts to schedule a

request on its agenda. During the first pass, this

mode operates exactly as in Scheduling Phase

unless, and until, the Rejection substate is

3. The reason why SCS strives to keep resources in continuous use stems from the Space Station domain. To
conserve electricity, each device in the Communications and Tracking System is turned off when not in use.
All such devices must undergo a "power-up procedure" before being switched back into operation, and this pro-
cedure can be relatively expensive in terms of electricity.

86

reached. Instead of deactivating c0, SCS trans-
fers control to a seventh Placement Mode sub-

state called Displacement. Here, SCS creates a
displacement set, BD (B_BD), for c 0. BD includes
all blocks in B which (1) conflicted with a block

_e B0 during first-pass Resolution, and (2) have a
rescheduling inertia less than _'s scheduling pri-
ority. SCS then sets B = B - BD and returns to
the Block Generation substate.

If cO is still unschedulable after the second pass,
BD is wholly restored and control is passed to

the Rejection substate as usual. If c O is success-
fully scheduled, however, then a total restoration
of the displacement set will be impossible. In-
stead, SCS will attempt to restore each block in
BD individually, beginning with the one having
the highest inertia. Call the set of unrestorable
blocks BD'. SCS will reactivate all service-
requests corresponding to a block in BD' and
place them on the agenda, where they will be re-
scheduled accordingly.

The Deallocation Mode, also performed during
the Rescheduling Phase, is strictly administrative

in purpose. In Deallocation, SCS sets Pp, the set
of processed tables, equal to the empty set. This
ensures that the Allocation Mode, when it is re-
run, will process and reduce every table in P.

Recall the Staff Meeting scenario of Figure 3-1.
The first service-request on the agenda, Cl, re-
quests one 20-seat conference room and one vu-
graph projector for a 3-hour period, beginning at
either 8:00 AM or sometime between 9:00 and

9:30 AM. SCS will generate the two blocks de-
scribed by this request, then skip over c2 be-
cause its job is already represented in B.

Now assume that c3 (j(c3) = "TRAINING"; YI(c3)
= (75, 10)) requests a 20-seat conference room for
1.5 hours starting sometime between 8:00 and

8:30 AM (see Figure 3-7). Only ROOM_C seats
20 people, so this training session will either be
held in that room or not held at all.

STAFF_MTG has already reserved ROOM_C for
most of the morning, but has requested more
time than it actually needs. The question is
whether a method exists to satisfy the require-
ments of both jobs.

This is the basis of SCS's conflict-resolution
scheduling strategy. When the new B0 is added
to B, a number of time intervals will likely have
a resource reserved for more jobs than the re-

source can legally support. The goal of the Reso-
lution substate is to detect and resolve all the

conflicts that might prevent B from being reduci-
ble to a complete final schedule.

3.3 Conflicts and Resolution

Conflicts in scheduling and their resolution are an
innate part of creating almost any type of sched-
ule. The following example introduces just how
SCS addresses such conflicts and resolves them.

The Conflict Set for B is denoted X = {Z1.... ,_n}
where each conflict is an ordered triple:

Zi ffi (_, (tl,t2), _).

Zi may be read "block _ cannot be scheduled be-
tween interval tl to t2 while all blocks in • are

870 I I 11p0 I I 14po

100, 50) {MUGRAPH}

b3 (!oo,50) {VUGRAPH}

I
_%_1 I

(75,10) { }

100

I 1710

ROOM C

:X,1= (b2, (900, 930), {b _})

= (bl, (830, 930), {b3})

Z3 = (b3, (800, I000), {b I})

:Z4= (b3, (930, 1000), {b 2})

X' = (b3, (930, 1000), {b ,, b_})

Figure 3-7. STAFF_MTG vs. TRAINING conflict.

87

present in B." For every Xi, the n blocks in hu(Xi)

must represent n distinct jobs.

3.3.1 Conflicts and Decidability

schedule may cause a safe conflict to become

dangerous. Any conflict that cannot be easily
proven safe or dangerous is called "undecidable"

(Xe XU).

A conflict can be detected as follows: add up the

number of distinct jobs present in a table at any
time and then check if the sum exceeds the ta-

ble's capacity. Note, however, that "table" is not

one of the parameters in the conflict triplet. Con-

flicts are a property of blocks alone, and a block

may be present in more than one table. In fact,
two conflicts found in different tables are often
combined to form a third conflict.

Certain types of conflicts are harmless. Figure

3-8a shows a two-block table that can clearly be
reduced to a final schedule, despite the presence

of an overload at (tl,t2). However, the conflict in

Figure 3-8b is definitely harmful. One of its two
blocks will have to be eliminated if the table is to

be reducible. The first type of conflict can be la-
beled "safe" and the other "dangerous."

A question now arises, does a simple algorithm

exist that decides whether any given X is safe or

dangerous? Apparently not. While many conflicts,

such as the two in Figure 3-8, are easily decida-

ble, some appear to require nothing short of
trial-and-error.

SCS classifies conflicts into three categories, X =
X S u X D w X U (see Figure 3-9). Dangerous con-

flicts (xeX D) are resolved algorithmically, either

by restricting the width of _00 or removing it en-

tirely. Similarly, safe conflicts (Xe XS) are ignored

for the moment, although later changes to the

3.3.2 Dangerous Conflicts

A decision as to the type of conflict is basically a

problem of pattern matching. Templates can be
defined that describe a certain class of conflict in

its simplest form. A pattern matcher would then

try to find matches for these templates in a heav-

ily crowded schedule. This type of problem is

well suited for a rule-based implementation such
as ART TM .

Fortunately, the majority of dangerous conflicts

fall into three easily defined classes. The most

common type is a first-order conflict. This conflict

occurs in table p when the critical times of k(p)
blocks overlap each other, and these in turn over-

lap another block. The four conflicts El-X4 in Fig-
ure 3-7, as well as the one in Figure 3-8a, are
first-order conflicts.

A simple second-order conflict is shown in Figure

3-10b. Here, noncritical block 4 overlaps the criti-

cal times of blocks 1 through 3, but no first-order
conflicts are present. Block 5 overlaps block 4 at

both points tA and tB. Upon examination, it is ap-

parent that block 5 must either (a) start after tA
or (b) end before tB if block 4 is to be schedulable.

Third-order conflicts (see Figure 3-10c) are close-

ly related to second-order conflicts, except that in
this example block 4 is a critical block rather

K(A)

t
"----I"

bl !
!

_(B)i {1
!

(a)

ts tet_ t2
I

1 I I
i I

x(A) i i {}

k(B) , 11
I I

r

(b)

Figure 3-8. Safe vs. dangerous conflicts.

CONFLICTS(x)

SAFE

CONFLICTS

(xo
UNDECIDABLE

SINGLE _ CONFLICTSCONFLICTS FIRST-ORDER

 Xu,
_DANGEROUS _ SECOND-ORDER

CONFLICTS _ CONFLICTSCOMPOUND (X0)
CONFLICTS THIRD-ORDER

(Xcoc'lPOUND) CONFLICTS

Figure 3-9. SCS conflict classes.

pet i.

ts

b3

tA ta tE
I I I
I I

i i i i

r

first-order conflict

; (b3, (tA, tB), {b l, b2})

(a)

p_'-

ts tE

2
1[

tA tB
! !
I I

b5 I I

I I-:-:::.:::_..;i:::::::i_tI
i i

b4 I I

I f_i:_:_!_]I

bl !b3 2

! I

second-order conflict

= b_, (tB, tA), {bl, b2 b_, b4})

(b)

ts

/ ---.

2

tA tB
I I

I I

; I

34 i ,

_ i

N N
: ! |

g r

third-order conflict

XI =- (b_, (tB, tA), {b 1, b2, b4})

tE

(c)
Figure 3-10. Dangerous conflict; classes recognized by SCS.

89

than a noncritical one. Again, note that no

first-order conflicts are present and that

block 5 must start after tA if block 4 is to be
scheduled.

Both second- and third-order conflicts have

t2(_) less than tl(_). It seems strange to say
that a conflict is present "between 10 AM

and 9 AM". However, if one considers tl(_)

to be the latest safe time that J3(_) can end,

and t2()0 to be the earliest safe time that J]00

can start, then this order of specifying times
is consistent for all three conflict classes.

Note also that the job duration of _(_) must

be greater than (tl00 - t2()0) minutes for any
conflict to be valid.

3.3.3 Operations on Conflicts

As described previously, the presence of a dan-

gerous conflict simply means that a certain block

cannot be scheduled concurrently with certain
other blocks. How such a conflict should be re-

solved, or even if it should be resolved, is not al-

ways clear.

Consider Figure 3-11. This table clearly contains

a dangerous first-order conflict, _ = (2, (tl, t2),
{1}). Does this mean that block 2 must be re-

stricted to start after t2? Not necessarily. If

blocks 1 and 1A are alternatives, that is, j(1) =
j(1A), two options are available: block 2 can be

restricted, or block 1 can be removed. Which op-

tion is "correct" depends on the service-requests

yet to be processed.

A dangerous conflict with more than one possible

resolution is called an open conflict. The Fox-
Kempf Principle of Least Commitment calls for the

decision on resolving open conflicts to be delayed as
long as possible. A closed conflict is one which has

only one possible resolution, in which case SCS can

make the necessary adjustment immediately.

Now consider Figure 3-12 which has two danger-

ous first-order conflicts:)_1 and)_2- Assume j(1A)
= j(1B). Both conflicts are open when examined

separately, but notice that if block 2 is scheduled

across time t2, then neither block 1A nor 1B is

schedulable. A new closed conflict has appeared

from the intersection of two open ones:)(= (2,
(t2, t2), {1A, 1B}).

ts

p .__

blA

_(1A) { }

I I

tE

b2

{ }

bl

rt(1) { }

K r

_, = (b2, (tl, t2), [b,})

Figure 3-11. An "open" dangerous conflict.

Combining two open conflicts in this manner

yields a compound conflict (represented)(). Com-

pound conflicts are always dangerous, though they

may be open or closed. They differ from single con-

flicts in that two or more blocks in u/()() may repre-
sent the same job. A complex set of rules governs

when and how two conflicts may be combined.

The criteria for determining whether any conflict,

single or compound, is open or closed can now be

addressed. Given Z = (_}, (tl, t2), u/), if no job in

u/(_) has an alternative not contained in _P(Z),

then X is closed.

SCS resolves closed conflicts by moving the offend-

ing block completely out of the conflict interval.

Specifically, for any closed conflict)_ = (_, (tl, t2),
u/), SCS will try to split J_ into two new blocks:

one running from tws(_}) to tl()0, the other from

t2(x) to twe(_). Of course, if a new block is not

wide enough to support j(_), then it is removed
from B.

3.3.4 Undecidable Conflict_ and Resolution

Sta s

As stated earlier, SCS is unable to make decisons

concerning certain dangerous conflict classes.

Most of these occur in tables having an overa-

bundance of noncritical blocks. Figure 3-13 illus-
trates one such example. None of the three

9O

ts t, t2 t3 tE

p

b2

_(2) { }

b,A b_B

_IA) { } r,.(1B) { }

/I; r

Z' = (b2, (t,, t2), {b,A])

%2 = (b2, (t2, ts), {b,a})

Z '= (b_, (t2, t2), {b,,, b,B})

Figure 3-12. A "closed" compound conflict.

known conflict orders are present, but no method

exists to reduce this table without removing one
of the 13 blocks.

Although a scheduler should ideally not make

firm scheduling decisions until absolutely neces-

sary, SCS requires that all partial schedules be
reducible at the conclusion of each Resolution

substate. SCS must, therefore, assume that all

undecidable conflicts are dangerous. At this

point, SCS can still heuristically adjust the

ts

bi3

I '13

I

p __.

2

schedule to minimize the chance that a later ser-

vice-request will be precluded unnecessarily.
However, SCS's first priority is to schedule the

current service-request, and it might become nec-

essary to make some restrictive decisions to

squeeze o 0 into B.

b!o bll b12

I ' I ' I ' I10 11 12
I I I

_t.(lO) {} _(1i) {} _(12) {l

I bl b2 b3 b4 , ibs be b7 bs b9

I'l'l'l'l'l'l'l'l'l1 2 3 4 5 6 7 8 9
I I I I I I I I I

/[

Figure 3-13. An undetectable dangerous conflict.

The obvious first stop is to do nothing about un-
decidable conflicts until all closed conflicts have

been detected and resolved. Resolving one closed

conflict often greatly decreases I XI because it

may eliminate a block that was part of many oth-
er conflicts.

Stop two is to safely eliminate an undecidable con-

flict, either by removing the overload condition

that is causing it or by converting it into a safe

one. Simply nudging a block out of a conflict inter-

val or eliminating it completely, if it has an alter-

native that is not part of any conflict, often elimi-
nates an undecidable conflict. SCS uses a set of

heuristics to choose an effective, relatively nondis-

ruptive adjustment, then checks if any existing

conflicts may be combined or closed as a result.

If these methods fail, step three is to do whatev-

er is required to successfully schedule G0, no

matter what effect this may have on the schedul-

ing of future requests. SCS checks the most

promising search paths looking for any successful

and reducible partial schedule.

The longer SCS requires to eliminate XU, the

less flexibility SCS has to deal with

t E later service-requests. Consequently,
the more conflict classes that are de-

cidable, the better quality schedule

I SCS will produce. However, the exe-cution time of SCS is directly propor-
tional to the number of decidable con-

flict classes.

In the Staff Meeting example dis-

cussed at the beginning of this sec-

tion, SCS recognizes four dangerous

conflicts when G3's blocks are added

to B (Z1 to Z4; see Figure 3-7). A

fifth, compound conflict (ZI') is gener-

ated by merging Z3 and Z4- Three of

these are closable (Z1, Z2, ZI'), and
r the resulting partial schedule is

shown in Figure 3-14.

91

4.0 IMPLEMENTATION

SCS has been implemented on a Digital VAX-

8650 mainframe under the VMS operating sys-
tem. SCS contains over 300 ART production

rules, and 1000 lines of custom C and LISP code.

The user supplies an ASCII file containing defini-

tions of the service-requests, tables, and schedul-

ing parameters.

800 1100 1400 1700

(75,10) { } (100,50) (VUGRAPH}

00 ROOM C

Figure 3-14. The "Staff Meeting" scenario of Figure 3-1 with
all conflicts resolved.

A graphical user interface to SCS has

also been developed using a Digital
VT341 color terminal (see Figure 4-1).

Tables and blocks are represented in

graphical format, with the user hav-

ing the option of displaying or sup-

pressing critical times. Mousing on a

corresponding graphic obtains infor-
mation on tables or blocks. A column

of mouse icons along the right edge of
the screen allows the user to enter
commands to SCS.

The user interface may be run as a
coprocess or parent process to SCS.

The scheduler generates a series of

one-line ASCII messages that notifies

the interface program when a signifi-

cant action has been performed.

l_i,I,,,II,II,,,l_lII,i,l,,,II_III,III,III,|l,,,|iiilI,IIiI,l_i,I_jiI_i|I_,

I P'/,,;_._/,,] Ib,l _G_ I

II://;.c_zlIF_l E I

__D_

SCH-MODE, Placernent

JOB I D: G Table Name: XMODEblS
Job Capacity: 9

STATUS: Accept Scheduling Priority: I

Figure 4-1. SCS user interface.

I_H_N_I

Frq

92

These actions include creation of a table, creation

of a new block, adjustment or deletion of an exist-

ing block, selection of a new current-service-

request, or a change in the system's phase or
mode. The user interface acts on these messages

sequentially, adjusting the display to reflect the

new system state.

5.0 CONCLUSIONS AND FUTURE WORK

The conflict-resolution scheduling strategy of SCS

works quite well within SCS's limited scheduling

subclass. Empirical data indicates that SCS oper-

ates in low-order polynomial time for I PI (the
number of tables) and IJ I (the number of distinct

jobs). It appears, however, to be exponential for

MAXk, the maximum capacity of any pe P (hence

the requirement for low-capacity resources).

Future development work may address variable-

length job durations ("I need a conference room
for between three and four hours"), non-reusable

resources, and resource sets with nonidentical
time constraints CI need a conference room for

two hours, and a vugraph projector for the first

half-hour"). Another useful feature would be to al-

low inertia values to be specified as a function of

time, based on the theory that it is better to re-

schedule a job ten hours before its scheduled start

time rather than just ten minutes beforehand.

SCS may also be translated into C or Ada to im-

prove speed and facilitate soi_ware verification.

Before any translation can occur, however, an effi-

cient means for detecting dangerous conflicts is

needed because SCS will no longer have access to

ART TM's powerful pattern-matching facility.

SCS could also be extended to allow temporal re-

strictions between jobs. For example, a specifica-

tion could be made that job Jl may not begin exe-

cuting until J2 halts. Restrictions could also be

specified at the service-request level ("if J l is
scheduled via _1, then _2 must run concurrently

with it"), or they could define one job to be con-

tingent on another ("If J l is scheduled before
0800 hours, then do not schedule J2"). Allen [9]

lists 13 possible relationships between time inter-
vals that could be used as the bases for temporal

restrictions.

REFERENCES

Garey, M.R., and D.S. Johnson; Computers and

Intractability: A Guide to the Theory of NP-

Completeness. New York, NY: W.H. Freeman

and Co., 1979.

Martin, C.F., and R.S. Poling; "Fast, Dynamic

Programming Selection Algorithm for the Job-

Shop Problem with Job Availability Intervals",
GE Technical Information Series, No. 78CIS012,

1978.

Marcus, R.; "An Application of Artificial Intelli-

gence to Operations Research", Communications
of the ACM, Vol. 27, No. 10; pp. 1044-1047; Octo-
ber1984.

Deitei, H.M.; An Introduction to Operating Sys-

tems. Reading, MA: Addison-Wesley, 1984.

Tanenbaum, A.S.; Operating Systems - Design

and Implementation. Englewood Cliffs, NJ:

Prentice-Hall Inc.,1987.

Nillson, N.J.; Principles of Artificial Intelligence.

Palo Alto, CA: Tioga Publishing Co., 1980.

Hayes-Roth, B., F. Hayes-Roth, S. Rosenschein,

and S. Cammarata; "Modeling Planning as an In-

cremental, Opportunistic Process", Proceedings of
the Sixth International Joint Conference on Arti-

ficial Intelligence; IJCAI-79, Tokyo, pp. 375-383,

1979.

Fox, B.R., and K.G. Kempf; "Complexity, Uncer-

tainty and Opportunistic Scheduling", Proceed-

ings of the Second Conference on Artificial Intelli-

gence Applications. Washington, DC: IEEE

Computer Society Press, pp. 487-492, 1985.

Allen, J.F.; "Maintaining Knowledge About Tem-

poral Intervals", Communicatons of the ACM_

Vol. 26, No. 11; pp. 832-843, November 1983.

93

