
1 90- 22313

SYSTEM CONTROL OF AN AUTONOMOUS PLANETARY MOBILE SPACECRAFT

William C. Dias
Barbara A. Zimmerman

Sequence Automation Research Group
Mission Profile and Sequencing Section

Jet Propulsion Laboratory
California Institute of Technology

PHONE: Dias (818) 354-0153 Zimmerman (818) 354-6700
MAIL: Jet Propulsion Laboratory, MS 301-250D

4800 Oak Grove Drive, Pasadena, CA 91109

ABSTRACT INTRODUCTION

Our goal is to suggest the scheduling and
control functions necessary for
accomplishing mission objectives of a fairly
autonomous interplanetary mobile
spacecraft, while maximizing reliability.
Goals are (a) to provide an extensible,
reliable system conservative in its use of
on-board resources, while (b) getting full
value from subsystem autonomy, and (c)
avoiding the lure of ground
micromanagement. We propose a functional
layout consisting of four basic elements:
GROUND and SYSTEM EXECUTIVE system
functions and RESOURCE CONTROL and
ACTIVITY MANAGER subsystem functions. The
system executive includes six subfunctions:
SYSTEM MANAGER, SYSTEM FAULT
PROTECTION, PLANNER, SCHEDULE
ADAPTER, EVENT MONITOR and RESOURCE
MONITOR. The full configuration is needed
for autonomous operation on Moon or Mars,
whereas a reduced version without the
planning, schedule adaption and event
monitoring functions could be appropriate
for lower-autonomy use on the Moon. An
implementation concept is suggested which is
conservative in use of system resources and
consists of modules combined with a network
communications fabric. The paper introduces
a language concept we have termed a
"scheduling calculus" for rapidly
performing essential on-board schedule
adaption functions.

Interplanetary mobile spacecraft (rovers)
require more autonomy than spacecraft in
planetary flybys or orbiters, if they are to
be acceptably productive. This is essentially
because knowledge of the environment
changes over a much shorter time scale than
the speed at which data could be received and
analyzed and commands generated and sent
from Earth, given the light-time delays
(Wilcox, et al, 1987; Dias, et al, 1987).
Even a low autonomy rover on the relatively
nearby moon needs more autonomy in the
control area than other spacecraft if it is
required to move continuously (Pivirotto, et
al, 1989).

This paper proposes a FUNCTIONAL SYSTEM
CONTROL ARCHITECTURE in which a design
or requirements for a design could be
phrased. We address fairly autonomous
rovers first of all. Second, adaption of the
control architecture to a low-autonomy
Lunar rover is discussed. Next, the paper
has a section on the practicalities of
implementing the control architecture. Last,
we discuss ongoing research in the JPL
Sequence Automation Research Group on the
development of a language in which the rule
base of vital parts of the control system
could be phrased.

The design process, as well as the design
itself, should be responsive to the needs of
operations managers to ascertain reliability
and functionality. This is because the control
system partly substitutes functionally for
ground operations. Fairly autonomous rovers
would need to be able to reliably perform

223

many of the spacecraft command and control
functions now performed only on Earth
(Linick, 1985). It will be seen the
functional layout preserves some of the
current division of responsibilities among
traditional ground system and subsystem
elements. Various parts of the COMMAND
GENERATION process, including REQUEST
GENERATION, REQUEST INTEGRATION,
SCHEDULE GENERATION and COMMAND
TRANSMISSION, are proposed for on-board
implementation.

Our proposed architecture assumes a
spacecraft with a complex and varied set of
goals and activities only partly predictable
during design. Activity schedules will
require some parallelism and optimization,
as now provided for on Voyager and Galileo.
There will inevitably be a desire for a great
degree of ground control, to maximize
mission return. In fact the command and
control system design must walk a tightrope
among the three paradoxically competing
concepts of system autonomy, subsystem
autonomy, and maximal ground control, each
proffered in the name of maximizing return.

The control system needs to be as VERSATILE
as possible, because the exact desired
operational modes and combinations of
activities for a spacecraft are not always
fully knowable in advance, and this will be
especially so for a planetary rover. The less
known in advance about the particulars of
the environment, the more varied that
environment, the more varied and general
the set of tasks, and the larger the suite of
approved instruments, the less predictable
the final operational range will be.

To promote rover functional EXTENSIBILITY,
the control system design should incorporate
features able to enhance the software

development environment. Quick changes
may be needed in the software implementing
traverse and sample acquisition functions
after landing, whether due to unforseeable
hardware failures or unexpected conditions.
Depending of course on the mission design,
sample return mission surface stay times
could be as short as a few months, adding
greatly to pressures for operational
responsiveness (Bourke, et al, 1989).

Rapid software turnaround presents a danger
of its own in an operational environment. By
being versatile and robust enough to
comprehensively trap and correct fault
conditions, a good control system design
should make fast software development
turnaround possible in the operational
phase. We can define the architecture to
maximize probability of success. We have
done this by incorporating software
verification in the fault protection scheme.

Our architecture differs considerably from
other proposals, though it takes a layered
approach often favored by other designers
(IKI, 1988; Simmons, et al, 1989).
Resulting as it does from the considerations
in the above paragraphs, our proposal is
oriented towards providing "general
purpose" spacecraft functionality by
representing what currently exists as
ground operations functions on board. This
approach differs from Subsumption
Architecture (Brooks, et al, 1989) and
from the Task Control Architecture
(Simmons, et al, 1989). These appear to be
oriented towards a predefined (but
presumably robust) set of "behaviors", and
towards missions which could be
accomplished with rovers operating in a
more narrowly defined functional envelope
than the kind of mission we foresee. We feel
early interplanetary rover missions will
need to use mobile spacecraft which are as
general in capability as is reasonable, for all
the reasons in the above paragraphs. I!
seems likely there would be a place for both
the "behavioral" and "general purpose"
architectural philosophies in a well funded,
longer term solar system planetary
exploration program, however.

The functions required for the rover as a
whole are taken generally from Smith and
Matijevic (Smith, et al, 1989). We have
added Global Navigation, Data Handling, and
Pointing and Articulation to their System
Executive, Telecommunications, Power,
Thermal, Science, Mobility and Sampling.
Thus, our idea on how lhese subsystem
functions should be defined is slightly
different, but exact subsystem delineations
are not our purpose. Instead, our hope is to
clarify the system / subsystem interface in

224

general. We find no essential conflict
between the Smith and Matijevic formulation
and ours. The emphasis is different. Their
method appears to provide a convenient
means for designating the control, command,
and data paths to be included in a roving
spacecraft from high to low levels, before
design begins. Where they provide a general
purpose tool and framework, we try to
provide and justify the functional
relationships which need to be used to fill in
the details in the Smith and Matijevic
architecture matrix, with emphasis on the
System Executive over the subsystems. We
wanted to show the most meaningful
functional interfaces and formulate them so

that people can begin to think of allocation of
functions to modules.

The control system needs to incorporate
concepts from spacecraft FAULT PROTECTION
(Riethle, 1983) in order to improve
RELIABILITY over research and ground-
based robots and robotic vehicles. In a
"classic" form of fault protection, signals
from one or a few subsystems are used to
determine a fault and then pre-canned,
simple and highly structured routines take
control of the subsystem or spacecraft and
throw it into a predetermined, safe, but
usually non-productive state. This "classic"
form of fault protection needs to continue to
exist on planetary rovers, but its scope
needs to be limited in such a way that more
intelligent autonomy is not subverted by its
sheer simple-mindedness. More refined
forms of fault protection which take into
account the higher level of intelligence on
the spacecraft must be included, or the
advantages of intelligent autonomy would be
lost.

Finally, it may seem that this architecture
is too complex, that it could never execute in
a timely fashion. We do not take this
potentially serious problem lightly. The
functional description appears complex
partly because we did not want it to appear
incomplete through overgeneralization. We
wanted to try to bring out a description of
the functions and interrelationships that
might be required, perhaps more complete
than available in the past. The design and
implementation could turn out considerably

simpler than the functional description
might cause one to expect, but all functions
should be addressed in the design process. We
also feel we have allayed some of these
complexity concerns in the implementation
section.

OVERVIEW

This section contains an abbreviated
description of the overall control flow of the
architecture. In the subsequent detailed
section on selected elements, we give a fuller
description of the behavior of the major
elements.

GROUND I

_1 SYSTEM'1 EXECUTIVE

I
,p

I . ,o0.cECONTROLLER

t
nRESOURCEi

SYSTEM

FAULT

PROTECTION

_r

ACTIVITY

MANAGER

i

I

Figure 1. Basic Functional Control Architecture Layout.

The functional control architecture has four
basic elements: GROUND, SYSTEM EXECUTIVE
(SE), ACTIVITY MANAGERS (AMs), and
RESOURCE CONTROLLERS (RCs). These share
control as shown in Figure 1. Ground and SE
in combination provide the system-level
command and control functions, while the
subsystem functions are performed by the
AMs and RCs in various combinations for

different operational modes. The SE and RCs
each have separate fault protection
functions, but the AMs are oriented more
strictly towards command generation,
command, and control, and have no fault

protection role.

225

In the operational scenario for autonomous
modes, which are the ones addressed in this
paper, GROUND provides goals and schedule
contraints -- general and specific -- to the
rover SE. GROUND uses some sort of
simulation based on whatever information it
has from orbit, previous traverses,
statistical likelihoods, and the rover's
sensors to try to foresee likelihood of
success. There is no guarantee that goals are
achievable within time constraints, only
some probability. Goals should try to
encompass at least a few hours of activity,
preferably a day or so, with fallback
contingencies in case operations take longer
than expected, and fill-in items in case
activities take less time than foreseen.

ACTIVITY

MANAGER

PLAN-

NER

::::::::::::::::::::::::::::::::::::

iiiiii i iiiiiiii
::::::::::::::::::::::::::::::::
,:.:.:.:.:.:,:-:-:-:-:-:-:-:.:-:.:.:

:::::::::::::::::::::::::::::::::::
::::::::::::::::::::::::::::::.:::

Figure 2. System Executive command/control

architecture. All functions required on more

autonomous rovers. Only shaded areas needed

for command/control of low-autonomy rovers.

Figure 2 depicts the internal functional
interfaces of the System Executive in more
detail. The on-board SE co-ordinates rover
operations through the SYSTEM MANAGER.
First the SYSTEM PLANNER and the requisite
subsystem AM PLANNERS agree on a plan to

accomplish the goals. They do this by first
having the SYSTEM PLANNER arrive at sub-
goal and activity sequences and resource and
time envelopes within which the AMs must
plan, then having the AM PLANNERs arrive
at sequences implementing the goals to the
degree possible. A series of "events" would
be part of any schedule agreed upon. These
events would be more or less at the same
level as those used by a Voyager or Galileo
ground sequence team in its higher level
scheduling activities today. The time
relationships among these would be partly
relative, that is, the time at which an event
would occur would be phrased as relative to
other events, not as an absolute time (though
the system would always have a nominal
absolute time for future events.) Sequences
are phrased relative to events, with the
exact time of commanding to be determined
later, in execution.

In the execution phase of the plan, the AM
EXECUTION CONTROLLER actually sends
commands to (and reads data from) the
RESOURCE CONTROLLERS, which are the
only entities able to address the physical
resources directly. The RESOURCE MONITOR
(RM) keeps track of resource status
(including progress on events) at the system
level, by reports and / or polling techniques.
The EVENT MONITOR keeps tabs on the
progress of the schedule with respect to the
events. It does this by receiving both timed
and event-tagged progress reports from the
AMs, and (redundantly) by RC reports
relayed from the RM. Discrepancies in these
reports result in fault protection,
replanning, or other exception processing.
AMs may optionally read event reports from
the EVENT MONITOR. The SCHEDULE
ADAPTER constantly modifies the timing of
the system-level sequence, within agreed
parameters, based on event-progress
reports from the EVENT MONITOR. The AMs
modify their schedules for data and for
commanding the RCs based on near-realtime
scheduling refinements from the SCHEDULE
ADAPTER. The latter is also able to
dynamically reconfigure the RCs based on
schedule changes, and the AMs are then
limited to commanding within those
parameters.

226

Replanning can occur during execution,
either because specific events in a schedule
are designated as points for plan refinement,
when the next increment of information is
available for planning, or because
unforeseen conditions caused an existing
schedule to be invalidated. Sometimes,
subsystem replanning will be necessary
without system replanning being needed.

RESOURCE FAULT PROTECTION responses,
including reflexes, may be invoked to safe a
resource based on resource-internal
information alone. Signals are then sent
system-wide. SYSTEM FAULT PROTECTION
may be invoked in response to conditions
signaled by combinations of subsystems, the
schedule becoming dangerously unworkable,
disagreeing progress reports from the AMs
and RCs, or signaling of computed status
derivatives and trends indicative of faults
from the RM. One would try to autonomously
replan out of at least some fault protection
response modes.

DETAILED FUNCTIONS OF SELECTED
SYSTEM ELEMENTS

This section discusses selected elements of
the architecture in more detail than in the
overview.

SYSTEM PLANNER

First, the System Planner processes
ground-supplied GOALS into a serial and
parallel collection of MAJOR ACTIVITIES
which will bring about the desired goals.
Time factors are only applied in a gross way,
which is enough to eliminate many schedule
possibilities.

Second, the System Planner derives schedule
constraints and resource utilization
envelopes within which each major activity
must be planned.

Next, the System Planner waits while
subsystem AM Planner functions derive a
SCHEDULE from the required activities (See
Activity Managers, below). The System
Planner then integrates the resultant
subsystem-derived schedules, which may
include changing the previously imposed

resource and schedule constraints and asking
for additional subsystem planning.

The SCHEDULE derived by the planning
functions must have a form consonant with
the need for on-board schedule maintenance
in realtime. This is more than is required of
a contemporary spacecraft schedule. In
general a schedule might be defined as the
timed series of events and states of all
resources and subsystems which is
determined to bring the desired activities to
completion. In order to allow for later
realtime adaption, the new type of schedule
must include temporal relations among
events, of a sufficiently economical nature to
allow operations in realtime. In other words,
an EVENT-DRIVEN SCHEDULE is needed. Each
event or state change needs to have its time
requirements described relative to when
other events or state changes take place.

Stated more abstractly, the schedule consists
of a set of functional relationships among the
three elements of states, events and times,
such that, where t is an instant in time and
F1 and F2 are functions:

1. System Statet = Fl(Subsystem Statest)
2. Acceptable System Statet = F2(System

Statet-l)

and, where F3 is a function, Eventa is next
on the schedule and Events b l through bx
have already occurred:

3. Acceptable Time Interval(Eventa)=
F3(Times (Eventbl Eventbx))

Applied recursively, what this expresses is
that acceptable activities or states of both
the system and of each subsystem, for any
instant in time, depend on the states of all
those entities dynamically as matters
progress. This is similar to a system which
runs according to "control laws". In this
way, schedules are derived without assigning
all final times, but with needed time linkage
among events and states. In the last section in
the paper, we discuss a language and some of
the rules of a "scheduling calculus" which
could be used to express and enforce the
functions in a real system.

227

The following are possible examples of
"events" at the level of interest of the
System Planner. These correspond roughly
to a fairly high level of planning,
specifically the initial sequence integration
which occurs right after request generation
for a spacecraft. They stop short of device
management which in this conception is at
the level of the subsystem AM Planner and
RC.

start

start

start

start

/ finish a camera platform slewing
operation
/ finish a single maneuver in the
course of a longer traverse
/ finish a sample arm movement (or,
maybe a joint movement)
/ finish warmup of a sample
processing oven

SCHEDULE ADAPTER

The Schedule Adapter converts the schedule,
phrased in expressions to be operated on by
the scheduling calculus, into a high-level
SEQUENCE with final times, exact states,
etc., assigned. Whereas "schedules" include
functional relationships among times, events
and states, "sequences" include only the
times, events and states which result from
applying the functions based on knowledge at
a given instant. Thus what is known about the
spacecraft high level sequence might include
only a few seconds or minutes of activity.

So the Schedule Adapter routinely uses the
rules of the scheduling calculus to derive
acceptable ranges for the next set of all
subsystem states from the current state. In a
closely related function, it continually
changes the system's idea of when events will
occur. These adaptions thus do not
necessarily constitute a need for schedule
changes (i.e., replanning) in our
terminology.

The Schedule Adapter is very dependent on
input from the Event Monitor to keep it
informed of status of all relevant events, or
uncertainty in that status. The Schedule
Adapter must have a way to respond to
unclear state or event status knowledge,
informing System Fault Protection which
may be the one to decide what to do.

The Schedule Adapter sends sequence
revisions to the relevant AM execution
control functions, which adapt in turn.

The Schedule Adapter provides configuration
commands to the RCs. The AMs, which
actually run the rover through an activity
such as a rolling maneuver, are limited to
commanding the RCs within the envelopes
configured by the Schedule Adapter for each
moment in time. This mechanism provides
system level resource control while allowing
the responsible AMs reasonable command
authority over those resources needed.

There may have been specific points in the
schedule designated for system or subsystem
replanning or plan refinement. If so, these
are honored in an event-driven fashion the
same as other dependent events.

The Schedule Adapter may be called upon by
System Fault Protection to invoke a special
schedule implementing a fault protection
schedule, and to abort a current schedule in
an organized way.

Another part of the Schedule Adapter's
function is to realize when incompatible
combinations of conditions occur or are
about to occur. For instance, if the rover is
running behind schedule in getting to a site
of scientific interest, low priority activities
may need to be either rushed through, with
controlled loss of data quality, or abandoned
entirely. It is up to the Schedule Adapter to
do this and signal the AMs and RCs
accordingly. If conditions deteriorate
further, the System Planner and AM
Planners must be reinvoked to completely
rework the schedule and salvage what is
possible of the original goals. As a last
resort, the rover should inform Earth of the
problem at the next opportunity. Ground can
then respond by recommanding with adjusted
goals. This can be an expensive solution in
terms of wasted rover time, a fact that needs
to be worked into the original decision on
what to do if a schedule fails under various
conditions.

228

SYSTEM EVENT MONITOR

This function holds the current system
knowledge of all events previously
completed/aborted in the schedule or in
progress. It accomplishes this by seperately
monitoring both resource and activity status.
This redundant approach provides cross-
checking considered highly desirable in
spacecraft fault monitoring (Riethle, 1983;
Reiners, 1985).

First, AM Execution Controllers provide
activity status to the Event Monitor, both at
predetermined intervals and at status change
points agreed to in the schedule. This is a
high level check that activities are on
schedule and status is acceptable. Activity
status report frequency will undoubtedly
vary by operational mode. Events to be
reported can be unplanned. For instance
when the AM Execution Controller becomes
aware independently that its plan is no
longer workable, that needs to be reported.

Second, event-related resource status
reports are provided from the System
Resource Monitor, which has collected these
from the RCs. Unplanned events, such as the
invocation of a reflex action by the RFPCs,
also need to be reported.

The Event Monitor integrates these various
sources of event status and reports to the
Schedule Adapter to help it make decisions.
System Fault Protection is informed in case
event patterns reported can be used to infer
fault conditions. The software validation
function is served because some (perhaps
most) software problems will show up as
error reports or as inconsistencies in event
reports among the various sources.

SYSTEM FAULT PROTECTION (SFP)

This function includes the separate areas of
fault detection, fault analysis, and fault
reponse. It detects system-level fault
conditions from combined messages from the
System Event Monitor, System Resource
Monitor, Resource Fault Protection
Controller, and Resource Controllers.
Messages can include both status and data
determined in the design process. It may

execute hard-coded (or at least high-speed),
high-reliability responses to faults detected,
forcing the spacecraft into very well defined
states from which recovery will be as easy
as possible. It may conceivably also initiate
slower fault responses requiring normal
schedule planning channels. It seems likely
System Fault Protection would include
reliable, predesigned, canned schedules in a
form able to be adapted to specific current
conditions by the on-board Planners and/or
Schedule Adapter.

The System Fault Protection functions need
to respond directly from primary inputs --
otherwise they would be dependent on other
functions and therefore less foolproof. At
least some responses must be designed to
operate without permission from the System
Manager. The System Manager must in turn
be informed as soon as fault protection is
invoked. This requirement poses a problem
faced by all systems with distributed
authority and / or redundant data -- the
possibiiity that different parts of the system
will be working to cross purposes for some
interval of time, with resultant system state
ambiguities. The problem cannot be fully
addressed until the design phase. Hopefully,
the pre-canned fault protection schedules
can be designed so as to be adaptable by the
Schedule Adapter to the particulars of the
current state.

SYSTEM RESOURCE MONITOR

The System Resource Monitor has three
separate ways of monitoring resource status.

First, the SE receives a "heartbeat" -- or
elementary status message -- from each RC
on a regular, timed basis. These messages
are independent of any specific task the
resource has been commanded to perform.
The total absence of a message, a message
conveying an error status, or a message
containing data from which an error
condition is deduced, can be grounds to
invoke system-level fault response.
Heartbeat occurence and frequency may vary
from subsystem to subsystem, but as a point
of reference, Galileo heartbeats are at
approximately 0.7-second intervals.

229

Second, the RCs report to the Resource
Monitor in connection with the specific tasks
they have been commanded to support. These
messages are tagged to the portion of the
command sequence that brought them about.
A "resource event" in this sense includes any
RC status change, or any change in the tasks
being supported even though there may be no
other resource status change. Reports are
also required at regular intervals (much
like the heartbeats) as a cross-check that
status is as expected and things are on
schedule.

Third, signals from the RFPC are received in
the event resource-level fault protection is
invoked.

Both planned and unplanned resource status
changes are events and are duly reported to
the System Event Monitor.

ACTIVITY MANAGERS (AMs)

Identified subsystem functions requiring
AMs are: Science Payload, Sample
Acquisition, Traverse, Global Navigation,
Telecom, Data Handling, and Imaging. We
discuss the AMs only to the degree necessary
to put them in context with the rest of the
rover control system. Their design is
specialized, different for each subsystem
function, and not the subject of this paper.

AMs provide a level of intelligence higher
than the RCs for important spacecraft
subfunctions (e.g., autonomous power
subsystem, Fesq, et al, 1989; autonomous
navigation subsystem, Gat, et al, 1989).
They trade or share control depending on
operational mode. On less autonomous
spacecraft, subsystem planning and
monitoring would be performed by ground
subsystem engineers or scientists in
coordination with system level engineers. On
a more autonomous spacecraft such as a
fairly autonomous rover, the AMs to some
extent represent on-board the functions the
subsystem engineers serve on the ground.
AMs have NO FAULT PROTECTION
RESPONSIBILITIES, because it would be
redundant, and because they represent areas
such as navigation where fast software
development turnaround is desirable. AMs

requiring data from other AMs for planning
or execution functions must obtain and
update information in common data base
areas to maintain controls.

The fully implemented AM is presumed to
have a PLANNER and an EXECUTION
CONTROLLER.

The AM PLANNER utilizes specialized
subsystem knowledge unavailable to the SE
planner to derive (1) a sequence of time-
driven and event-driven commands to be

given to the RCs, and (2) a corresponding set
of expectations (Gat, et al, 1989). The AM
Planner co-ordinates provisional plans with
the SE Planner. It should be noted that, as in
the case of the SE planner, planning may be
incremental. That is, a high level activity
such as the acquisition of a sample will
probably be worked out as a series of steps
with estimated times, with final planning
applied only as preceding steps complete.

The AM EXECUTION CONTROLLER co-
ordinates execution of plans agreed to
between the AM Planner and the SE Planner.
It implements control by commanding the
RCs and reading data and status from them. It
may read event status, if desired, from the
SE Event Monitor. It responds to schedule
envelope changes provided by the Schedule
Adapter in near realtime. It reports its
version of events and status back to the Event
Monitor on both a time- and event-driven
basis. It may be interrupted by the SE if the
latter decides things are not on track and
invokes fault protection or replanning.

RESOURCE CONTROl I I=RS (RCs)

Every resource is governed by a Resource
Controller (RC) which has about the same
level of intelligence as a typical
contemporary disk controller. All contact
between a resource and other elements

(except resource-level fault protection) is
through its RC. RCs for different purposes
could have different amounts of memory and
CPU power, but they would all have the same
qualitative functions: receiving commands,
sending status, sending and receiving data,
and keeping track of a time-linked stack of
commands for one resource. The RC accepts

230

reconfiguration commands from the Schedule
Adapter and commands from the AM
Execution Controllers, provided these are
within the configuration envelope provided
by the Schedule Adapter. It provides both
time- and event-tagged status to the System
Resource Monitor and System Fault
Protection functions. Status messages
returned by the RC include identifiers so
that other functions may know which
event(s) from the sequence the resource is
currently working on, and the RC's progress
on the sequence.

RESOURCE FAULT PROTECTION
CONTROLLERS (RFPCs)

Any precanned, fixed routines which are
designed to automatically, unconditionally
and unilaterally change individual resource
states based on sensor fault readings are
handled by the RFPCs. This is a basic,
conventional spacecraft fault protection
strategy which will continue to be needed for
some faults. Examples include fuse
protection, automatic shutdown of electric
heaters exceeding temperature specs, or
trend analysis for individual resources.
Other system elements such as the RCs, AMs
and SE Event Monitor are informed of the
fault status through normal channels after
the fact.

In some cases, a system-wide fault response
is needed, which must be processed by
System Fault Protection (SFP). In those
predefined cases, the duty of the RFPC is to
simply send the status to the RC and the
important fault data to the SFP for action.

In our view, RFPCs would also implement
any required resource-level reflexes. These
include any action or behavior, at the level
of the individual resource, required on an
unexpected basis and on too short notice for
organized involvement by the planning
functions. We believe reflexes should be
considered fault reponses for spacecraft
design purposes. Of course, not all reflexes
result from true emergencies and will
therefore sometimes result in situations
easily handled by on-board software.

The invocation of any reflexes or resource-
level fault protection presumably
necessitates replanning after any further
immediate spacecraft sating is complete.

RESOURCES

Resources are commandable elements

providing services, conditions, or
commodities to the requesting elements,
through their RCs. All communication to a
resource is through the RC in normal modes.
The following commandable resources have
been identified for a planetary rover: Power,
Thermal State, Data Handling, Science
Payload, Science Imaging, Sampling
Mechanisms, Pointing and Articulation,
Mobility / Vehicle State, Mass Storage, and
Telecom Data.

At this stage of the design, there is always
the possibility that some high-speed control
requirement will later be found requiring
direct communication with the resource.
That discovery will have to await the testbed
development stage.

LOW-AUTONOMY INTERPLANETARY
ROVERS

True teleoperation, in which both command
and low-level control is in the hands of an
operator, is thought to be an unreasonable
means of controlling rovers even on the
Moon. The light time delay of around three
seconds is too great (Pivirotto, et al, 1989).
300 milliseconds may be the maximum for
teleoperation.

Our view is that all the functional elements
discussed in this paper would be needed in
some degree for fairly autonomous
interplanetary rovers, regardless of the
distance from Earth. However, considerable
economy is possible for a Lunar rover with
lower autonomy and interactive commanding
from Earth, because the round-trip
communication delay (light-time plus
electronic delays) is likely to be only a few
seconds. All planning (system and
subsystem), schedule maintenance and event
monitoring functions can be done on Earth.
These would be tightly integrated in operator
command terminals. Activity execution

231

monitoring, mode switching, resource
handling and fault protection would be on the
spacecraft. See shaded areas on Figure 1.
This is more autonomy and on-board control
than would be provided by teleoperation.

It is likely that Lunar rover programs will
naturally precede Mars rovers (Report of
the 90-Day Study, 1989). This provides an
opportunity to perfect the designs and
techniques for autonomous schedule
maintenance on the ground in an earlier
program. Those functions would later be
moved on-board to achieve the greater
autonomy necessary for productivity at the
up to 40-minute round trip light time
delays presented by Mars, or by more
autonomous Lunar rovers.

IMPLEMENTATION OF THE SYSTEM
EXECUTIVE ARCHITECTURE

To the SE the planetary-vehicle domain
appears to be made up of a two-level
hierarchy of elements. The top level of the
hierarchy represents the vehicle functions
or activities. The lower represents lhe
hardware that participates in carrying out
the activities. This view of the rover domain

suggests an architecture that supports
multiple interacting tasks which can access
a pool of resources. A suitable architecture
can be modeled, superficially, by a modern
computer operating system (Rashid,
1986). However, the computer operating
system model is not complete or sufficient
because the control procedures commonly
invoked fall short of those required for a
capable rover's operation. To control a
fairly autonomous planetary vehicle the
system design must specify a comprehensive
self-analysis tool with which to track the
state of the vehicle. In this section we
describe an architecture for the SE's control
functions, and a procedure for planning and
diagnosis of the state of the rover as it
carries out a task. The procedure, which we
call a scheduling calculus, combines
qualitative relationships with arithmetic
expressions to render judgements about the
rover's state, and the validity of a schedule
or sequence given that state.

OVERVIEW

Preliminary system designs (Pivirotto, et
al, 1989; Lambert, 1989) have typical
planetary vehicle functions such as sample
acquisition, navigation, data handling,
science, imaging, and telecommunications
controlled by several independent
processing elements (See Figure 3).

RESOURCE

F ."on
RESO_OURCE

ScI_ ;ET_O_ _,ng

RESOURCE m _ _ RESOURCE

T_ Handling

RESOURCE

Figure 3. A Distributed Computing Network.

Processing Elements (ovals) and Resources

controlled by independent activity modules

through e common system-level network.

In addition, the processing elements share
some form of mass storage and system
resources. The processors and the resources
are joined by a communication fabric which
connects each of the processing elements to
one another and to the resources. We will
refer to this communication fabric as a
network. We envision a layered architecture
whereby the activities direct their requests
for resource usage through the SE (Figure
4). Access to the SE, the activities, and the
resources is by message passing which is
supported by SE service routines.

An important concept in the proposed design
is that the SE's subfunction modules are
modelled as a collection of one or more
independent processes that communicate
through message passing. The modular
nature permits the SE to be dynamically
configurable to accomodate the requirements
of a mission. Further, we envision a system
in which one or more of the SE's subfunction
processes reside in each processing element.
The distributed capability, which is
independent of the number of processors,

232

can be used to partition the demand on the
rover's computer resources.

Figure 4. Rover Command / Control System
Layered Architectural Layout.

SYSTEM EXECUTIVE MODULES

The following sections describe the five
classes of modules that make up the SE.
These are the SYSTEM MANAGER, SYSTEM
FAULT PROTECTION, SYSTEM PLANNER,
SYSTEM MONITOR, and SYSTEM NETWORK
MANAGER. It is assumed that the system
executive processes reside on top of some
form of computer operating system
environment which provides the low-level
functionality with which the hardware is
addressed and the data managed. In a
distributed system there has to be some
means by which data of a global nature are
provided to the processes. While the SE, the
RCs and the AMs depend on these services,
they are not part of the SE functions and are
not discussed in what follows.

System Manager

This element of the SE provides the
interface between the ground and vehicle,
and among some of the major on-board
components. The system manager configures
the control system to support the mission

requirements. For a less autonomous rover
that is to be commanded from the ground,
the system manager directs the command
sequence to the relevant AM Execution
Controllers and Resource Controllers. For a
more autonomous rover the System Manager
activates the planner processes, and the
event monitor.

System Fault Protection

Both lower- and higher-autonomy rovers
need on-board fault protection. It is likely
the great body of fault detection, analysis
and response code could be thought of as
stored in this separate class of modules.
However, it is necessary for efficiency to
distribute some of the fault detection
responsibilities to the System Monitor and
Network Manager modules, outlined below.
In addition some elementary fault
responses, somewhat redundant, will
probably be required as part of the code
running in each node in a multiprocessor
network. As stated elsewhere, other fault
protection is implemented at the subsystem
level, entirely outside the SE. However, it is
the responsibility of the system fault
protection class of modules, in the event of a
system fault, to activate fault protection,
retrieve the necessary data to configure the
resources and return the rover to a known
state, and send the necessary commands to
orchestrate controlled aborts of on-going
processes. In the higher-autonomy rover,
stored, configurable schedules can be
provided on-board to the System Planner
and Schedule Adapter for these purposes.

System Planner

The two planner processes, a Planner and a
Schedule Adapter, provide a layered
implementation of the scheduling processes.
The system manager directs relatively high
level goal and constraint data to the system
planner. The goals are expanded by the
planner into a time-ordered set of tasks for
the Activity Managers to process. The
Activity Managers produce the detailed
sequence of events that accomplish the tasks.
Before execution, this sequence is returned
to the planner for verification and Event
Token extraction (see below). The schedule

233

adapter monitors the plan's execution,
adjusting the sequence as needed.

There are several features that reflect the
degree of sophistication represented by the
SE planner and schedule adapter processes.
The planner must automatically generate
and maintain a schedule. This is a significant
task which ground-based planners
currently do not fully support. We are
investigating the Remote Mission Specialist
(RMS) system developed by the Sequence
Automation Research Group at JPL (Rokey,
et al, 1990), and the research on automatic
planning by the same group (Eggemeyer, et
al, 1990) for solutions to the planner
requirements. In addition, our own work on
the scheduling calculus can be used for the
schedule maintenance task.

System Monitor

The system monitor provides for the
required event and resource monitoring
functions. This includes maintaining
current resource status for system
purposes, and serving as a central
repository of event status around which
other modules can synchronize. It is
expected that some of the fault detection --
or preprocessing for that purpose, such as
trend analysis -- would be offloaded from
the system fault protection modules to the
monitor modules, for efficiency.

Network Manager

All of the rover elements, including the SE,
communicate via message passing. The
network manager provides the system
services to support this activity. The
system services provide a message format
that characterizes the nature of the

communication. The message format
includes fields for the message type, the
sender, the event tag, and the command or
data, and possibly the destination. Based
upon message type, the messages are
expeditiously forwarded to relevant
processes. The sender of a message need not
know how a request for data will be filled,
or how a message will be routed. For
example if the message type is that of a
"heartbeat" message from a Resource

Controller it is directed by the network
manager to the Resource Monitor process of
the SE.

The network manager provides for both
added security and ease of application
programming. The subsystem implementers
access all of the rover functions through a
uniform interface -- a message protocol. In
addition, the network manager implicitly
provides the capability to monitor message
traffic over the network. Statistics gathered
by this process can be used to measure the
health of the subsystems on the net.
However, care must be taken in the design of
this type of support to insure that the
service does not overwhelm the computer
resources.

SCHEDULING CALCULUS

The overall function of the schedule adapter
and monitor processes is to integrate the
responses from multiple task activities to
determine whether the activities are leading
to the given objectives or to an undesirable
state or possible fault condition. We are
required to assign a qualitative value for the
state of the vehicle, based upon quantitative
information supplied by the resources. In
addition, we are required to judge whether
the events reported during the execution of a
sequence match the goal set for the task, or
whether conditions of the vehicle or in the

environment require the sequence to be
changed. We chose to investigate the methods
of qualitative processing (Bobrow, 1985)
as an approach to solving the above problem.
In particular, we are in the process of
developing a language that implements an
arithmetic reasoning tool. The work follows
closely that described in the paper
Commonsense Arithmetic Reasoning
(Simmons, 1986). We are using the UNIX].
yacc procedure (Johnson, 1983) to build
the scheduling calculus language. The
language combines methods of graph search,
interval arithmetic, relational arithmetic,
constraint propagation, and function
evaluation to arrive at decisions about the

validity of a schedule step, and conclusions
about the rover state. A capability of the

1UNIX is a trademark of AT&T.

234

language can be illustrated by one of
Simmons' examples. Given the ranges of
three quantities A, B and C we want to
determine the acceptable range for a fourth
quantity, D:

A is constrained to the interval [3,4]
B is constrained to the interval [1,4]
C always has the value of 2
D is related to A,B,C by (B*C)/(A+B)
We assert the relation B >= C
B is now constrained to interval [2,4]
Using interval arithmetic we determine D

is constrained to [.5,1.6]

REQUIRED KNOWLEDGE BASE

The tool will require a knowledge base that
provides functions, parameters, values, and
constraints that describe an acceptable
operating environment. We call this a model
database. The high-level goals provided by
the uplink process will provide further
functions and constraints with which to
reason about the system. The event tokens
derived by the planning process and
resource sensor data also contribute to the
knowledge base. We call this the derived
knowledge base. Using the model and derived
bases, directed graphs can be built by the
language as reasoning tools. Values for the
functions are the nodes of the graphs and
relations among the functions are the arcs.

REASONING ABOUT RESOURCE STATES

The procedure to reason about the
resources' states is simple in principle.
Resource Controller output data and state
messages are examined to see if they fall
within acceptable time and value intervals.
The change or lack of change with respect to
time is noted. The changes contribute to a
table of derivatives that can be used to
identify trends in the behavior of a resource
or a set of related resources. This trend
analysis serves in part as a fault detection
device, allowing prediction of future
conditions and intervention before some
faults occur. Data for the trend analysis is
collected and preprocessed locally by the
monitor processes, to reduce network
loading. Further fault analysis and response

is performed by the System Fault Protection
module.

EVENT TOKENS

The interactions of the system planner and
Activity Managers produce a time ordered
set of event tokens which represent steps in
the schedule that indicate levels of progress.
The event token format is a tag or label, a
time interval and expectation values for
rover state parameters. The event tokens
are assembled into tree structures which

are used by the schedule adapter to measure
the progress of the sequence.

REASONING ABOUT THE SCHEDULE

Conditions derived from information

provided by elements of the event token
trees are used by the schedule adapter to
trigger the scheduling calculus processes.
Below are two simple examples. The first
illustrates what may be a common condition
in rover operation -- things taking longer
than predicted.

With the current node of the event token
tree, we have reached the end of one of a
series of traverse segments. The duration
of a traverse segment was predicted to be
1 hour. The actual time was 1.5 hours,
exceeding the specified interval. The
sequence calls for an obligatory downlink
in an hour. The scheduling calculus
procedures are invoked to determine how
the sequence and constraint envelopes for
the planning of the next traverse segment
are to be changed for acceptable
productivity while ensuring the vehicle
stops for the downlink telemetry at the
proper time.

The second example is one that has the
vehicle supporting a science experiment.
Again, this example is an illustration of the
non-deterministic nature of planetary
vehicle operations. This example illustrates
the requirement for the scheduling calculus
to reason about the rover environment.

Objective: Take a multispectral image
of a designated feature along
a traverse.

235

Parameters: Exposure time vs. amount of
ambient light, location
coordinates, frequencies,
objective, and sun angle.

When the rover arrives at the feature,
based upon the sun angle and the position
of the scan platform, the scheduling
calculus procedure will reason whether
there will be sufficient light during the
time interval for the observation. If there
is not, the method can calculate a new
exposure time. However the method must
also reason whether this exposure time
can be used and still meet the overall
objectives of the schedule.

STATUS

The scheduling calculus language currently
supports the relational, interval, and
functional arithmetic, as well as built-in
typed functions and the ability to create
typed symbols. It can perform operations
illustrated by the Simmons example and
will soon operate on preconstructed graphs.
We are in the process of designing the
database specification and interface, and the
procedures for automatically constructing
the graphs.

CONCLUSIONS

This rover system control architecture
proposal is complex because we have tried
to offer something which could eventually
grow into a comprehensive solution to the
problem of maximizing mission return of a
rover very remote from Earth, by moving
difficult, complex, time-consuming ground
processes on-board. Whatever the ultimate
solution to the apparent paradox among
system, subsystem, and ground control,
rover mission complexity will be reflected
in the command and control system. It still
remains to be proved (1) whether these
functions can be implemented, and (2)
whether the resultant implementation can
be tested well enough so mission managers
will allow the system to be used. We are
optimistic on both counts.

ACKNOWLEDGEMENTS

The work described in this paper was
carried out at the Jet Propulsion Laboratory
/ California Institute of Technology under a
contract with the National Aeronautics and
Space Administration.

While the authors have sole responsibility
for the contents of this paper, we wish to
extend special thanks to the following JPL
personnel for ideas and review of the
report: Jim Burke, Carol Collins, Sven
Grenander, Ken Lambert, Jacob Matijevic,
William McLaughlin, Donna Pivirotto, Dave
Smith, and P. Richard Turner.

A complete list of credits would be
impossible, however the authors wish to
thank the following people for ideas:
Charles Budney, Curt Eggemeyer, Matt
Golombek, Mike Hollander, and Rob
Manning.

REFERENCES

Bobrow, D., Editor, (1985). Qualitative
Reasoning About Physical Systems.

Bourke, R., Kwok, J., and Friedlander, A.
(Nov 1989). Design of a Mars Rover and
Sample Return Mission, Proc. of CNES
International Symposium on Space
Dynamics, Toulouse, France.

Brooks, R., and Flynn, A., (Oct 1989).
Rover on a Chip, Aerospace America.

Dias, W., and Gershman, R., (Oct 1987). A
Day in the Life of a Mars Rover. Jet
Propulsion Laboratory Internal Report,
D-5075.

Eggemeyer, W., and Cruz, J., (to appear
May 1990). PLAN-IT-2: The Next
Generation Planning and Scheduling
Tool, Proc. of Goddard Conference on
Space Applications of AI, 1990.

Fesq, L., and Stephan, A., (1989). On-
Board Fault Management Using Modeling
Techniques, Proc. Inter-Society Energy
Conversion Engineering Conference
(IECEC).

236

Gat, E., Firby, R., and Miller, D., (July
1989). Planning for Execution
Monitoring on a Planetary Rover, Proc.
of NASA Conference on Spacecraft
Operations, Autonomy, and Robotics.
Houston, TX.

IKI - Space Research Institute (USSR)
(1988). Martian Rover Motion Control
Principles Preliminary Concepts, Pr-
1422.

Johnson, S., (1983). YACC: Yet Another
Compiler Compiler. UNIX Programmer's
Manual, Vol. 2. Bell Telephone
Laboratories, Murray Hill, N.J.

Lambert, K., (Oct 3, 1989). A
Computational System for a Mars Rover,
AIAA 89-3026. AIAA Computers in
Aerospace VII.

Linick, T., (1985). Spacecraft Commanding
for Unmanned Planetary Missions: The
Uplink Process, Journal of the British
Interplanetary Society, Vol. 28 No. 10.

Pivirotto, D. and Dias, W., (1989). United
States Planetary Rover Status-1989,
Jet Propulsion Laboratory Internal
Report D-6693.

Rashid, R., (1986). Threads of a new
System. UNIX Review. Vol 4, No. 8.

Reiners, T., (Aug 1985). Autonomous
Redundancy and Maintenance
Management Subsystem (ARMMS)
Executive Summary. JPL internal
report D-2414.

Report of the 90-Day Study on Human
Exploration of the Moon and Mars, (Nov
1989). National Aeronautics and Space
Administration.

Riethle, G., (Aug 1983). A Summary
Overview of Technology Appfied to the
ARMMS Demonstration Project. Fault-
Tolerance Techniques. JPL internal
report D-948.

Riethle, G., (Oct 1983). A Summary
Overview of Technology Applied to the

ARMMS Demonstration Project. ARMMS
Executive Software. JPL internal

report D-1122.

Rokey, M., and Grenander, S., (to appear
Jun 1990). Planning for Space
Telerobotics: The Remote Mission

Specialist, IEEE Expert.

Simmons, R., (Aug 1986). 'Commonsense'
Arithmetic Reasoning, Proceedings of
AAAI-86, Philadelphia, PA.

Simmons, R., and Mitchell, T., (Jul 25,
1989). A Task Control Architecture for
Autonomous Robots. Proceedings of SOAR
'89 Conference.

Smith, D., and Matijevic, J., (Oct 1989). A
System Architecture for a Planetary
Rover. Proc. of the NASA Conference on

Space Telerobotics, January 1989. JPL
Publication 89-7.

Wilcox, B., and Gennery, D., (1987). A
Mars Rover for the 1990's, Journal of
the British Interplanetary Society
(JBIS), Vol 40, No. 10.

237

