NOO-22815

Using Expert Systems to Implement a Semantic
Data Model of a Large Mass Storage System

Larry H. Roelofs
National Space Science Data Center
Computer Technology Associates
Rockville, Maryland 20852

William J. Campbell
National Space Science Data Center
National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771

Abstract

The successful development of large volume data storage systems will depend not only on the ability of
the designers to store data, but on the ability to manage such data once it is in the system. Our hypothesis
is that mass storage data management can only be implemented successfully based on highly ‘intelligent’
meta data management services. Such services would allow database administrators and users to
manipulate, update, and access data, and related information and knowledge in a logical manner and yet
is powerful enough to support the performance needs of a large mass store system. Historically, there have
been attempts at building data management services for very large volume data systems, however, when
the amount of data being managed got large the meta database itself failed as a consequence of its own size
and complexity.

There now exists a proposed mass store system standard proposed by the IEEE, that addresses many of the
issues related to the storage of large volumes of data, however, the model does not consider a major
technical issue, namely the high level management of stored data. However, if the model were expanded
to include the semantics and pragmatics of the data domain using a Semantic Data Model (SDM) concept
the result would be data that is expressiveness of the Intelligent Information Fusion (IIF) concept, the result
would be data that is organized and classified in context to its use and purpose. The implementation of a
SDM requires the application of Al and related computer science technologies such as object oriented
representation, property inheritance and rule based decision making. Presently there does not exist unique
software for developing SDM’s that address the complex representation of data meta data and related
information and knowledge.

This paper presents the results of a demonstration prototype SDM implemented using the expert system
development tool NEXPERT OBJECT. In the prototype, a simple instance of a SDM was created to
support a hypothetical application for the Earth Observing System, Data Information System (EOSDIS).
The massive amounts of data that EOSDIS will manage requires the definition and design of a powerful
information management system in order to support even the most basic needs of the project. The
application domain is characterized by a semantic like network that represents the data content and the
relationships between the data based on user views and more generalized domain architectural view of the
information world. The data in the domain are represented by objects that define classes, types and
instances of the data. In addition, data properties are selectively inherited between parent and daughter
relationships in the domain. Based on the SDM a simple information system design is developed from the
low level data storage media, through record management and meta data management to the user interface.
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Background

In the past decade, operations and research projects that support a major portion of NASA’s overall
mission have experienced a dramatic increase in the volume of generated data and resultant informa-
tion that is unparalleled in the history of the agency. This information glut is growing nonlinearly
due to the increasing number and quality (higher resolution) of sensor systems and is expected to
continue to accelerate in this fashion for the foreseeable future. The effect of such large volumes of
data is that without a significant improvement in information technologies there is no assured way
that desired data can be managed, identified and accessed.

If nothing is done to reverse this process, large data archives will evolve that may contain very
valuable data for which there is no easy way to find desired data. The reason being is that the search
times to find desired files will be prohibitive as selection will require human interpretation and user
queries will not map logical into the data being stored. For example, in the Earth Observing System
(EOS), which is a major new NASA project supporting the “Mission to Planet Earth” program, data
volumes produced could be as high as four Terabytes per day, with much of the data being spatial in
nature. [1] If such volumes are accumulated over the life of the mission (planned for 15 years) the
total data volume may be as high as 30 Petabytes (30,000 trillion bytes) when backup and data
reprocessing are included.

In addition to the amount and kinds of data, the number of professionals in the application disci-
plines is not expected to increase significantly enough to resolve this data/information selection
problem. Thus the dilemma arises that the amount and complexity of data and information system
will exceeded the ability of scientist and engineers to understand and take advantage of them. [2]
Based on the scope, expected growth and dominance of the data volume problem, it is anticipated
that the future ability of NASA to say apace with the data it collects from space and Earth science
programs will be significantly affected by its ability to manage and use such data in an efficient and
timely fashion.

The Limitation of Information Systems for Mass Storage

Present database management systems cannot support the low level performance needs of a mass
store system, and at the same time provide the capability to the user to identify, select and access
desired data quickly and easily. The result is that the design of an information system for a large
mass storage system must be separated both operationally and functionally into two elements: (1)
Low Level Record Management and (2) High Level Meta Data Management and User Interface
(Figure 1). The low level record management component must be biased toward performance and
must focus on storing and managing file storage records at the device or hardware level. The high
level meta data management system must interface to both the low level record management and
user interface components and provide a robust data management and access to the files in the mass
store system. In addition, such a system should allows the user to access the data without under-
standing the data domain architecture, data content or data query language.

The rationale for separating the low level record management from the rest of the database system is
that the mass store system performance and the large number of individual records limit the kind of
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data management system that can be implemented. Such a system must be simple in order match the
access and I/O performance of the storage hardware and at the same time be easy to update and
manage. Since the low level meta data system is not intended to support user access, it will be
necessary to implement a separate high level meta data system that can interact with the low level
meta data system and at the same time interact with and support the user interface. Using present
database technologies the system would most likely use a relational database system, even though it
would impose limitations on the capabilities of the mass store system in terms of data access and
ingest [3]. There three reasons for this selection: the technology has significantly grown in perform-
ance and capability over the past ten years, such that it now provides significant benefits over data-
bases that are based on the other two data models (network [4] and hierarchical [5]); it is a fairly
mature technology that is well understood, easy to implement and easy to maintain; there are a large
number of commercially available software systems that run on most of the popular computers
available today.

However, once the decision is made to implement the high level meta data management system
using a relational database there are significant representation and data manipulation issues inherent
in relational technology, namely:

Database architecture based on a flat file structure

Database abstraction limited to aggregation

No way to capture and manage meta knowledge (procedural and control information)
No way to support the representation of time

b N S
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5. No way to deal with class-type and derived data where it is required to support the gener-
alization of the class

6. Difficult query language based on relational calculus that is not easy to use or understand

7. The database requires normalization in order to function efficiently.
The first issue can be explained by considering that in a relational database management model, the
tuples in a relation correspond to the records in a file and the tables are simply flat lists that can be
manipulated only by table joining. [6,7] The second, third, fourth and fifth issues are a consequence
of the mathematics that the database model is based on. Essentially, the only structure that a rela-
tional database supports is aggregation (one to one, one to many and many to many), not class, type
or time. [8] The sixth issue is also a consequence of relational calculus which requires very precise
syntax and structure in order to form a mathematically correct query. Such a query language usually
requires a rather sophisticated user to form even the most simple requests. [3]

The last issue is the result of the need to optimize the database design in order to maximum perform-
ance and minimize maintenance. [9] However, normalization usually results in most of the seman-
tics and pragmatics of the data domain being removed. The removal process is the consequence of
redundant, but logically related, attributes being deleted from common relations (tables), such that an
attribute exists only once in the database. This removal process logically fragments the database in a
manner that makes the database difficult to understand, to the casual user, without a design map (e.g.
E/R diagram). If this is combined with the lack of expressiveness of the Database Manipulation
Language (DML), it is no wonder that few large database systems are understandable by the users’
except through some simplistic interface that more often than not severely limits the users’ access to
the data.

Given the above, the only recourse is to put all the semantics, pragmatics, procedural and operational
knowledge into a user interface which must be totally customized to accommodate each application
or user view. Since the interface is usually implemented after the database has been designed and
populated, its architecture tends not to be related to the database architecture in any way.

A Proposed Solution

Considering the data volume problem, it would appear that large mass store systems will be needed
to store the flood of data that will be collected over the next fifteen to twenty years. However,
traditional database technologies will not be able to support the high level meta data management
needs of such a system, and at the same time have the performance capability necessary to handle
low level file management. Consequently, alternative information management strategies that
implement the management and access of data, meta data and supporting information and knowledge
in a coherently structured manner must be employed. Such a structured approach to data and infor-
mation management we call Intelligent Information Fusion (IIF). The IIF concept is based on a
layered architecture that supports the semantics, pragmatics and syntax of the data domain from the
system, data and user points of view so that data can be input, managed and accessed in the most
efficient and appropriate manner. A diagram representing the overall IIF concept, in the context of
an EOS archive, is shown in Figure 2.
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The IIF concept consists of three essential elements that are absolutely necessary to the successful
implementation and operation of a large mass store system, these are:

1. Semantic and Knowledge Based Representation, which we call information synthesis is the
process that captures the essence of the data enterprise (i.e. database domain) at all three
levels of data representation (semantic, pragmatic, context, and syntax) for the generalized
data domain. It addresses functional and operational views, from the highest level class
structure, to intermediate meta data, to the lowest level data granule or file.

2. View and Application Representation supports multiple discipline, user, and application
goals, based on the understanding and needs of the users.

3. Automated Data Cataloging and Characterization supports the addition and updating of data
to the mass storage system while automatically updating the supporting meta data to reflect
changes and additional data. [10]

The first element is the most important for the implementation of a large mass store system since it
provides the organizational structure of the storage system, and its supporting record management

system. In addition, it also provides input and direction to the design of the higher level meta data
and user interfacing that supports the data access and ingest operations.

Information Synthesis and Semantic Data Models

Information synthesis, the context of the massive data storage problem, means the structuring and
fusion of data, information, knowledge, and meta knowledge into a coherent structure that can
logically be used for a particular purpose. The information synthesis concept is based on the seman-
tic data model, enhanced with a knowledge base that can provide the control and operational strate-
gies needed to support a complex information domain. The semantic data model was proposed in
the late seventies by McLeod and King, [11] and refined by Potter, and Trueblood. [12] The model
draws on research from the fields of Database Management (DBM) and Artificial Intelligence (Al)
in performing data domain or enterprise modeling. The model is intended to address and overcome
the problems of domain representation limitations that exist in the three traditional database models
[13]; the hierarchical , network, and relational. All three of these models are basically record
oriented with very complex data manipulation languages. [9] Their development was motivated and
influenced by primitive file system implementation concerns that limit the size and volume of such
systems. [14]

The development of models that provide more user oriented modeling flexibility, without being
constrained by an implementation structure, was the primary goal of early semantic data model
researchers [15, 16]. The resulting models provided a “natural” mechanism (e.g. similar to the way a
user or system designer views an application) for specifying the design of a database which more
accurately represents the data and relationships among the data than the traditional models. [12]

The IIF concept allows database designers to represent the objects of interest in the proper context
and their relationships in a manner that more closely resembles the view that the user has of these
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objects and relationships. [8] Consequently, designers are freed from the necessity of having to
model a variety of different relationships with only one modeling construct, which typically results
in the loss of their exact meaning. The end result of using limited constructs is that the application
design falls short of modeling the user’s actual situation or needs.

One of the most important features of the IIF concept is that it provides powerful abstraction con-
structs, such as generalization and aggregation, that are not found in the traditional data models. [17]
Generalization allows the designer to group similar objects together in order to concentrate on the
more general group object. Aggregation allows the designer to model an abstraction object based on
the properties or attributes on the object. [8] Other constructs that deal with time and space have
also been associated with semantic data modeling. [16]

In addition to generalization and aggregation, semantic data models are characterized by the notion
of “derived or virtual data.” [18, 19] Essentially, derived data can be thought of as data values
which are not actually stored in the database but are produced or derived when needed from existing
data and relationships. This concept is very important for mass store systems since it can potentially
reduce the stored data volume significantly, because the storing of explicit values is unnecessary in
as much as the relationships and means exist for deriving this data.

Semantic data models may be classified according to one of three general categories: relational,
functional and semantic network. Models in the relational category are basically extensions to the
relational database model. The functional models have an equally strong mathematical influence. In
the functional model, the function is the primary notion used to represent and manipulate objects and
relationships. The third model category is the semantic network model which has a close relation-
ship to the semantic network knowledge representation formalism found in the Al field. However,
unlike the early network models it was necessary to enhance the model with meta knowledge about
the domain that describes how the data is manipulated and acted on, as proposed by Potter and
Kerschberg. [12,20]

An Intelligent Information and Fusion Prototype

To prove the usefulness of IIF concept to the mass storage information system design, a demonstra-
tion prototype effort was undertaken using existing technologies. A cursory survey of the market
place was conducted to identify any existing semantic database system tools. The result was that
there are few commercially available systems, none which provide the robustness necessary for
supporting large mass storage operations. Therefore, the only alternatives were either to develop
new customized modeling tools or to use existing related technologies to implement such a tool.
The second alternative was selected because previous experience has shown that there is a higher
probability of success if several existing technologies can be combined to create a new single inte-
grated tool.

An initial prototype system was conceived, based on a Macintosh II computer, using the expert

system development tool, NEXPERT, built by Neuron Data Inc. NEXPERT provided many features
that were necessary for semantic data modeling including:
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» Frame based representation for creating data objects, data classes super classes that represent
the content of the data domain
+ Inference engine that supports rule strategies that employ pattern matching and forward and
backward chaining for capturing the meta knowledge and procedures that support specific
operational agendas
» Object representation that supports, properties, meta slots and multiple inheritance in both
directions for supporting the passing of data properties and values between data objects and
classes.
* Graphical interfacing for displaying, in a easy to understand manner, the complex network
structure that represents the data domain. [21]
In addition to the development tool, it was also necessary to find or create a hypothetical database
for modeling. The second option was selected since this was only a demonstration prototype effort.
However, in order to understand how scientific databases are designed, two operational databases
were reviewed, the Pilot Land Data System (PLDS) and the NASA Climate Data System (NCDS).
Both systems store their sensor data off line and use the ORACLE DBMS for management of the
meta data which is structured into two levels of abstraction. Namely, a Data Catalog that provides a
general over view of stored data sets and a Data Inventory which provides detailed information
about each stored data set. . In addition to the Data Catalog and Data Inventory meta database
structure, both have an interface based on the Transactional Application Executive (TAE) software,
with the NCDS enhanced to include some data visualization.

Besides understanding how existing data systems manage their data and meta data, a atmospheric
scientist was interviewed to determine how she perceived the overall EOS data domain, as well as
her specific areas of interest within the domain. The result of this effort was the definition of a
simple structure for studying cloud cover, as well as the identification of three critical design goals
that the model should be able to support. These goals were:

1. Where are all occurrences of a specific data object (e.g. episodic event, El Nino)

2. What data objects have been found for a specific observation.

3. What data objects have been found to occur, or change, over time for a specific location.
Semantic Model Design

Based on a review of the two data systems studied, the atmospheric scientist interview and a review
of the EOS program, a hypothetical EOS data domain was formulated and is presented in Figure 3,
Semantic Model Top Level View. The domain consisted of the three major data areas (Instrument,
Interest Area, and General Parameter) that could be used to organize and find data as well as a more
detailed structure to support a specific area of interest (e.g. atmosphere and cloud cover). The
specific area of interest selected for the prototype was atmosphere, with the sub area clouds.

In addition to an overall data domain structure there were six key design considerations identified
that needed to be accommodated in the data modeling process. These considerations were:

1. All low level data elements or granules had to inherit the property slots, and where appropri-
ate, the values associated with the slots from its parent class object.
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2. All first level data objects that related to a specific sensor observation file in the low level
records management system must have properties associated with the object that represent
the important features observed in the record, as well as all ephemeris and supporting ancil-
lary data.

3. Rules are required to guide the ingesting and summarizing of data set header data (name,
data, time, location, etc.) from the low level data objects to the object’s class frame. [22]

4. All low level data objects and their associated sensor observation file have to be accessible
by all logical paths.

5. Must be able to interact with a relational database system to allow it access and read low
level data in the records management layer.

6. Must be able to deal with both the generalized data domain organization as well as support-
ing unique applications that use the data for some specific goal or purpose.

A data model based on the data domain concepts was formulated. The model included the three
major information components that make up a data domain: the operational or database view, the
application or semantic view and meta knowledge and control. In addition, the operational view was
driven by three design considerations: the creation of a skeleton structure upon which the rest of the
model could be implemented, the representation of the database domain that it supported the man-
agement, access and ingest of the actual data objects (individual sensor observations), and a strategy
to support the access of data by instrument.

Construction of the Prototype
STEP 1 - Formulation and Characterization of the Operational View

The first step in the operational view representation was to identify the major class objects in the
data enterprise and determine how they were related. Once this information was determined, it was
input into NEXPERT by characterizing each class object with a frame that defined its daughter
classes, as well as any properties that needed to be associated with the frame. In this step the top
level database object was defined as, Enterprise, with primary super class objects (or domains):
Instrument, Area of Interest, and General Parameter. In some since these three super class objects
represent more than just the high level abstraction of its daughter elements because they must also
include meta and procedural knowledge. The rationale for selecting the above super classes were:

. Instrument - The low level data needs to be stored and managed by instrument so an overall
super class object must be created that deals with the topic area of instruments.

« Area of Interest - The user can select data by area of interest, where the focus is on some

property within the area, sub area or component (e.g. cloud type at some time and/or loca-
tion). This super class object is part of the application view which is the logical area where
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discipline, feature objects (data objects found with in a sensor observation) and supporting
scientific information should be located.

» Parameter - Data can be selected by parameter across multiple disciplines or areas of inter-
est (e.g. temperature for some location for land, atmosphere and water). This super class
object is an alternative path that users require when the focus is more parameter and less
single interest area oriented.

After the first super class objects were selected, each was expanded into several lower level daughter
classes using generalized information gained from discussing the problem with scientists involved in
atmospheric science and scientific database system design. A diagram of the result of this step is
presented in Figure 3, Semantic Model Top Level View. Of particular importance is how the do-
main can only be represented by a network. This seemed rather obvious to a user until one tries to
use the graphics tools of NEXPERT and finds that what is presented is a tree that is session depend-
ent. However, upon closer inspection the super class object General Parameter was also found to be
a subclass object of each of the subclasses in the Area of Interest super class object. Thus General
Parameter serves not only as a high level super class object, but it is also a daughter object for each
of the sphere objects (Aimosphere, Lithosphere, Hydrosphere) in the Area of Interest super class
object .

Under the super class object General Parameters, representative physical parameters were identi-
fied and selected that appeared to cut across discipline and unique science boundaries. This was
considered important because of the need to study a single parameter for more than one discipline.
Although it is possible to look by Interest Area, by sphere and by General Parameter, this query
would produce a large amount of non-relevant data since there are many more antecedents involved
in defining what data or information is desired.

Under the super class object Instruments three classes were created that are used to partition this part
of the domain into more manageable groups. This structure approximates what needs to be done in
order to efficiently perform a query based on instrument type.

STEP 2 Formulation and Representation of the Instrument Super Class Object

The second step in the modeling process was the complete representation of the instrument super
class. This is of critical importance since this is where all of the data sets and related sensor observa-
tions are located and subsequently managed. A singularly important consideration was that the
model had to accommodate the automatic input of meta data and identified feature data into the
database as new data objects were added to the mass store system. The impact of this requirement
was profound, as it required a property inheritance strategy to function both from the top down as
well as the bottom up.

NEXPERT supports a robust property inheritance capability by providing either top down, bottom
up or both. Basically properties are included into each frame’s property list by name. After the
name is entered the system asks for the property to be defined by type as either a strings (variable
length), integer, floating point, date, time, or boolean value. After the slot is defined, an inheritance
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strategy is selected and a property value is put into the slot. If the parameter is to be inferred, then
the slot will defined as empty and the value will be determined based on some set of rules. (It
should be noted that at the beginning of the model development session the breadth first strategy was
selected as the default.)

Property slots were needed for the data model for three purposes. First, they were required to allow
the passing of relevant class type information to the low level objects that were associated each
unique data records in the mass store system (information such as sensor resolution, sensor type,
etc.). Second, they were required to store summary information at the class level based on the
inference of all the related parameters of the daughter objects. Third, they were required for storing
‘identified features’, detected and cataloged as part of the Automatic Data Cataloging and Charac-
terization process. [10 ]

The property slots without values, were inferred by rules for the following cases:

» To determine meta data for a data object from the header record of the data file stored in the
mass store system. Meta data consisted of ID number, date, time, observation location, etc.

o To determine summary information properties that would be required for some parent object.
Information inferred included: data range, time range, number of data records, etc.

» To store identified features found in the data file (sensor observation) from the results of the
Automatic Data Cataloging and Characterization process. Identified features include such
things as clouds, volcanos, thunderstorms, lakes, forests, etc.

Once the instrument super class domain representation was complete (shown in Figure 4), sets of
rules were coded to support the summarization of the inheritable properties from all the daughter
data objects into property slots at the class level. For example, rules were created that read the “date
value” from each data object’s “date” property. These values were then stored in a list, and sorted in
ascending order. When this was complete the top value would be the earliest date and the bottom
the latest date. When the two values were combined they provided the date range that was then
placed in the class’s date range slot. Using a similar strategy all of the class’s other summary prop-
erty slots were populated.

STEP 3 Formulation and Representation of the Application View

The application view consists of the discipline domain which is characterized by areas of scientific
interest, and science object domain which contains all classes and objects that are studied and meas-
ured as part of a scientific endeavor. There is a close logical link between any discipline domain and
its related objects of interest. However, they are separate in that a discipline domain uses observa-
tions from instruments to study phenomena that are the objects of interest. The discipline observa-
tions are actually the same as instrument sensor observations with some value added processing such
as calibration correction and registration.
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The modeling of the first domain resulted in the representation of the Area of Interest super class
and the Parameter super class discussed in Step 1. The representation of both these super classes is
incomplete, with only sufficient detail to demonstrate the semantic modeling concept and how one
accesses data by either interest area or parameter.

The actual structure for each of the super classes was based on interviews with a atmospheric scien-
tist supporting the NASA Climate Data System, and was organized to focus on selecting desired
sensor observations that were ingested in the instrument super class domain. Figure 5 provide a
diagram of this domain.

The representation in atmospheric science focused specifically on clouds and cloud related phenom-
ena. Access to data using the two class objects was supported by links between objects that span
between the operational view and the application views. These links are shown in Figure 6, Seman-
tic Model Overall Architecture. The links provide not only the pointer to where a particular data
object class can be found in the instrument super class domain, but it also provide a path for meta
data to move so that objects that relate to phenomena of interest can be updated with parameter data
from the instrument class objects. For example, summary data from the class objects AVHRR cloud
observations and MODIS cloud data sets were linked to the object Formations . [1] Within these
objects, meta information was further summarized using rules such as would be required to deter-
mine the date range for all observations regarding cloud formations along with information as to a
list of sensors that observed identified formations. Using the information stored in the summary data
property slots, it would be possible to present to a database user information that would assist in
selecting desired observations prior to actually browsing through actual data sets. Information stored
in a summary property slots might include what instruments are available, the time duration of a
sensing activity and the number of observations made.

The modeling of the second domain is based on creating a logical structure of related data classes
and objects that can be associated to a specific area of interest, discipline or parameter. The ration-
ale for building this part of the model was motivated by having to support some sort of Automated
Data Cataloging and Characterization operation. Basically such an operation would scan a sensor
observation for any unique feature and then note this feature in a identified list that is related to the
observation itself. Because automated data ingest is still in its formative stages, several assumptions
had to be made as to how it will function. The assumptions are:

1. All detected features/objects are placed in a property slot called detected list that is associated
with the sensor observation object in the instrument super class domain.

2. Detected features are coded so they can be sorted by class/group in some sort of logical
structure.

3. All detected features/objects retain parameters that point back to the sensor observation
where the feature/object was found.
Given the above conditions, features and objects move from the detected list parameter slot to the
science object domain where sets of rules are used to sort the objects into the various grouping
where they will be stored and then summarized at higher levels. This part of the semantic data
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model was not prototyped in NEXPERT because of the uncertainties involved in how the object will
be ingested and classified. Once these two issues have been resolved then the model can be updated
to accommodate the feature/object ingest function.

Conclusions

Once the model prototype was completed, dummy data set objects, and associated detected lists
were put into the model and evaluated. The evaluation found that semantic modeling significantly
aided in understanding the data domain; something that needs to be done prior to building any
database system. Of special note is the fact that semantic data modeling, when coupled with sup-
porting meta knowledge provides a powerful tool for defining the logical architecture, and resultant
information system design, for a large mass storage system. In addition, the semantic data modeling
design approach provides a method for laying out a information system design and development
effort and then a way of measuring the effort’s success against some logical standards. Given this,
we feel that any future data system design of any size and complexity should consider this approach
since it probably is the only way one can be certain that the resultant design is logical sound and
supports not only the needs of the database administrator but also the needs of the user.

The design and development of any useful semantic data model will require a great deal of effort
that is directly dependent on how complex of the operational and application views of the data
domain. It cannot be over emphasized how much effort (much of which probably will be of a high
quality like a knowledge engineer) such a modeling activity may require especially for a large mass
store system.

Finally, it appears that it is possible to implement a semantic data model with an associated knowl-
edge base using an object oriented expert system development tool like NEXPERT. However, one
should be cautioned that familiarity with the tool is quite important as the complexity of the model
will dependent on how well the tool is able to represent the domain.
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