
// /

\/

<'t 7" - J

IRDS Prototyping With Applications
To The Representation Of EA/RA

Models

Anthony A. Lekkos

University of Houston - Clear Lake

December, 1988

Cooperative Agreement NCC 9-16
Research Activity No. SE. 14

:,':" >-, 7,"7 "

Uric] .-s

!; ._ I 0] 0 ,: t ,,_ a 7

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I'C'A .L R.E.P.O.R.T

m

IRDS Prototyping With Applications
To The Representation Of EA/RA

Models

Preface

This research was conducted under the auspices of the Research Institute for

Computing and Information Systems by Anthony A. Lekkos, Associate Professor of

Computer Science at the University of Houston - Clear Lake. Bruce Greenwood,

University of Houston graduate student provided assistance on this project.

Funding has been provided by the Spacecraft Software Division in the Mission

Support Directorate, NASA/JSC through Cooperative Agreement NCC 9-16

between NASA Johnson Space Center and the University of Houston - Clear Lake.

The NASA Technical Monitor for this activity was Steve Gorman, Deputy Chief of

Space Station Office, Mission Support, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.

Final Report

University of Houston-Clear Lake

Research Institute for Computing and Information Systems

Research Activity SE.14

prepared by

Anthony A. Lekkos, Ph.D.

Associate Professor

Computer Science

and

Bruce Greenwood

Graduate Student

Computer science

December 1988

Table of Contents

Section I:

Section II:

Section III:

IRDS Requirement Document

IRDS Design Document

Project Results

Section I

REQUIREMENTSDOCUMENTFOR AN IRDS
(Information Resource Dictionary System)

I INTRODUCTION

A. INTRODUCTION

This section describes the requirements of an IRDS system.

B. IRDS Need and Provisions

The Information Resource Dictionary System (IRDS) has evolved
from the need for better techniques of information management. It

has been proven ineffective for a data system to merely describe
it's data contents. As the need for information has risen, so has

the need to manage information resources. The IRDS has been

developed as a tool to describe a data system's hardware, soft-

ware, interfaces, internal structures, etc. in order to provide
for more complex data management requirements and efficient pro-

cessing of the data.

C. BACKGROUND

IRDS began as an effort to develop a standard data diction-

ary system by ANSI under technical committee X3H4 and the National
Bureau of Standards (NBS) in 1980. These two efforts were joined

in 1983. To facilitate standards development and acceptance, the

Institute for Computer Science Technology of the NBS used both

industry and government evaluations.

Do BENEFITS

i. Cost Reductions - U. S. Federal Government as an example:

a) Improved identification of existing sharable
information resources.

b)

c)

Reduce redundant development effort.

Consistent documentation to simplifiy

software conversion.

data and

d) Reduce personnel training due to portability of

aquired skills.

2. Aid in development and maintenance of systems

throughout the life cycle.

3. Support user defined standardized data element programs.

4. Provide information management reports.

Eo DESIGN OBJECTIVES

A. Major objectives - the following objectives shall be met

by this IRDS.

i. IRDS shall provide support features of existing

IRDS.

2. IRDS shall provide for flexibility to support a wide

range of user environments.

a) Modularized approach as a base level standard
shall include, but not be limited to the following

modules.

i. Core system - shall provied the basic

capabilities needed by most organizations.

2. A maintainable security system to insure data

integrity.

3. User/application program interface (not

implemented).

4. DBMS documentation support (not implemented).

3. IRDS shall be implemented in such a way as to

insure portability of skills and data.

a) User interfaces - IRDS shall provide at least one
of the following user interfaces.

i. Menu driven "panel" interface. - The user shall

be able to perform functions and operations

by use of pop-up window selections.

2. Command language Interface. - The user shall be

able to perform functions and operations by

building IRDS executable commands.

F. DOCUMENT NOTATION

I. For the remainder of this document, all system standard

types will be presented in all upper case (i.e. ENTITY_TYPE).

II SYSTEMOVERVIEW

AQ Concepts and Assumptions

I. User View and Data Organization

a) IRDS shall be based on
attribute model.

the entity/relationship/

•

•

i. Entity shall be defined as a description of a real

world concept, person, event, or quantity.

2. Relationship shall be defined as a binary

association between entities.

3. Attributes shall be defined as properties of

entities and/or relationships.

4. There shall be no dictation of any type of

implementation approach.

5. Types - there shall be a defined type for every
instance of an entity/relationship/attribute.

The IRD Schema - Shall describe the structure of the IRD.

a) IRD Schema shall contain all pre-defined and
implemention unique entity/attribute/relationship types

b) IRD schema must allow addition of user defined types.

c) The IRD Schema must allow definition of user defined
functions and control facilities•

IRD System-standard schema - shall define the allowable
contents of the IRDS.

a) The system standard schema must allow expansion for

user defined types.

b) The system standard schema must allow definition of
user defined functions and control facilities•

BQ SYSTEM PRE-DEFINED TYPES - The IRDS shall include, but not be

limited to the following descriptions of physical entities

(types).

l• Entity Types - Definitions.

supported by the IRDS

These entity types must be

a) Data Entities

i. DOCUMENT - Describes instances of human readable
collections.

2. FILE - Describes instances of an organization's data
collections

3. RECORD- Describes instances of logically associated
data.

4. ELEMENT- describes instances of data belonging to an
organization.

5. BIT-STRING - Describes strings of binary digits.

6. CHARACTER-STRING- Describes strings of characters.

7. FIXED-POINT - Describes exact numeric values.

8. FLOAT - Describes approximate numeric values.

b) Process Entity Types

i. SYSTEM- Describes instances of processes and data.

2. PROGRAM- Describes instances of automated processes.

3. MODULE - Describes instances of automated processes
which are subdivisions of type PROGRAMor processes
called by PROGRAMentities.

•

c) External Entity Types

i. USER - describes individuals or organization

components.

Relationship types- describe associations between entity

types. The following relationship types must be

supported by the IRDS.

a) CONTAINS - Describes instances of an entity being

composed of another entity (RECORD CONTAINS ELEMENT).

b) PROCESSES - Describes associations between Process
entity types and Data entity types (SYSTEM

PROCESSES FILE).

c) RESPONSIBLE-FOR - Describes associations between
organizational entities and other entities (USER
RESPONSIBLE-FOR PROGRAM).

d) RUNS - Describes associations between External and
Process entities (Name RUNS Prog-name).

e) GOES-TO - Describes flow associations between Process
entities (Input-mod GOES-TO Process-mod).

f) DERIVED-FROM - Describes associtions where the
entity is the result of a manipulation of the
entity (Report DERIVED_FROMDatabase).

target
source

g) CALLS - Describes "call" associations between
entities (PROCESS CALLS MODULE).

Process

h) REPRESENTED-AS - Describes associations between

types and entities which describe ELEMENT (Name
REPRESENTED-AS Ascii-string).

ELEMENT

C.

3. Attribute Types- describe entity/relationship types.

a) Here is a list of pre-defined attributes.

ACCESS-NAME

ALLOWABLE-VALUE

CLASSIFICATION

DATA-CLASS

DESCRIPTION

DOCUMENT-CATEGORY

LAST-MODIFICATION-DATE

LOCATION

NUMBER-OF-LINES-OF-CODE

NUMBER-OF-RECORDS

ADDED-BY

ALTERNATE-NAME

COMMENTS
DATE-ADDED

DESCRIPTIVE-NAME

HIGH-OF-RANGE

LAST-MODIFIED-BY

LOW-OF-RANGE

NUMBER-OF-MODIFICATIONS

RECORD-CATEGORY

b) Entity name attributes - shall be used to identify

entity and must include the following three names.

each

i. ACCESS-NAME - shall be a unique key identifier for

all entities/attributes/relatlonships. It shall be
limited in size to facilitate data entry. It shall

be composed of alpha-numeric characters.

2. DESCRIPTIVE-NAME - A longer unique description of

the entity. It shall have sufficient length to

adequately describe most entity names without the

necessity of abbreviations.

3. ALTERNATE-NAME - shall describe the different names

an entity may have. An entity may have more than
one alternate name. ALTERNATE-NAMEs do not have to

be unique.

Major Services and Functions

i. User Input and Maintenance - the following are guidelines

for the required services and functions for user input.

The IRDS shall not allow modification or deletion of any

pre-defined types.

a) Add new entities - There shall be a means of adding new
instances of entities into the IRDS for all user de-
fined entity, attribute, and relationship types•

b) Delete new entities - There shall be a means of
deleting any or all previously entered instances of
user defined entities. Pre-defined types must never be
deleted from the IRDS.

c) Modify existing IRDS entities - There shall be
a means for modifying (add/delete/change) the attri-
butes of all existing instances of IRDS entities• There
shall be no changes allowed to the standard attributes
of all pre-defined types.

d) Copy entities - There shall be a means of copying any
existing instances of an IRDS entity• The new entity
may not have the same ACCESS-NAMEor DESCRIPTIVE-NAME
as the parent or any other entity.

•

a)

•

•

b)

Output

The IRDS must allow for user defined report contents•

The IRDS must allow for user defined output

destination.

Entity lists - are viewable lists of related IRDS
entities shall be provided to facilitate user choices

at data entry time. The IRDS shall provide a means to

designate a list of entities which can be used for

output and/or data input.

Schema Maintenance - The system shall provide the abili-

ty to add, delete, change and copy entity types, attri-

bute types, and relationship types. As mentioned
in II.C.I above - no modifications can be made to the

standard attributes of pre-defined types•

III SYSTEMREQUIREMENTS

A. Minimum System Requirements.

I. The system must be implemented in IBM PC or compatible

(Intel 8086/8088) Running under MS-DOS 2.0 or higher.

2. The system must contain at least two disk drives (360 K

floppy drives or one 360K drive and hard disk).

3. Color monitor not required. High resolution monitor

not required. Standard Monochrome monitor required.

So Optimum requirements.

i. The system may be implemented on an IBM XT/AT,

compatible running under MS-DOS or higher.

2.

.

4.

5.

PS/2 or

The system should contain one floppy

(360K/I.2M/I.44M) and 20M hard disk or better.

drive

Color monitor not required.

Smalltalk V - Object oriented programming system may be

used to build applications with this IRDS.

System may be run with mouse.

Co optional Equipment

i. Printer option - system may contain and parallel/serial

printer compatable with system hardware.

2. Color monitor may be used to enhance graphics

capabilities and screen resolution.

3. For hardware with Intel 80286/80306 the Smalltalk V/286

upgrade may be used.

IV FUNCTIONALREQUIREMENTS

This section identifies the various classes and sub classes
used by the IRDS system and also gives a listing and description
of functions used by each class. All operations described assume
an appropriate security permission.

A. Notation used

All types and entities shall be presented in all upper case
letters. Key field names shall be underlined. The following
abbreviations ares used to describe some of the more common types

and entities.

i. ANAME = ACCESS-NAME

2. DNAME = DESCRIPTIVE-NAME

So
Function Classes - The IRDS system shall provide pre-defined

types for use by the user to define and develop their
own entities, relationships, and attributes.

I. Class IRD - this class holds the information about the

IRD schema types. The IRDS shall provide the three

meta-types listed below. In addittion, The IRDS must
allow for adding, deleting, editing, and co_ying schema

types as restricted by the guidelines in thls section.
All three meta-types shall contain the following attri-

butes:

ANAM}_, DNAME, ADDED_BY, DATE_ADDED, LAST_MODIFIED-

_BY, LAST_MODIFIED, NUMBER_OFMODIFICATIONS, COM-

MENTS, DESCRIPTION, SECURITY.

IV.B.I Cont'd..

a) Meta-type ENT TYPE - will be used to store
instances of pre-defined and user defined ENTITY_TYPE.

b) Meta-type REL_TYPE - will be used to store instances

of RELATIONSHIP_TYPES.

c) Meta-type ATT TYPE - will be used to store instances
of ATTRIBUTE TYPE. Functions defined here include

addition, deletion, update, and list. These

functions may be used freely amoung user-defined meta-

types. Pre-defined meta-types are subject to the fol-

lowing contraints.

•

i) Addition - does not apply to pre-defined

meta-types.

ii) Deletion - is not allowed for pre-defined

meta-types.

iii)

iv) List - is allowed for pre-defined meta-types.

Class Entity- describes the different sub-classes

Update - is not allowed for pre-defined

meta-types.

of

ENT TYPE and the functions required by each. Class

entTty shall allow for the addition, deletion, update,

copy, and listing of user defined entity sub-class

types.

a) Adding entities - requires the following information to
be entered to a new instance of meta-type ENT_TYPE.

i) The ACCESS NAME - must be a unique name.
ii) The DESCRIPTIVE-NAME - must be a unique name.

iii) The Attribute list - shall be selected from a list
of available attributes (instances of ATTR_TYPE).

b) Modifying entities - is performed on the attributes of
a user-defined entity or on user added attributes of

pre-defined entities. Modification of the entity shall
include the following options (where applicable):

i) Adding new attributes.

ii) Modifying values of existing attributes.

iii) Deleting user-defined attributes.

c) Deleting entities - This function applies only to user-
defined entities. An entity cannot be deleted if it is

a component of an existing relationship. The relation-

ship must be deleted first. ACCESS-NAME must be speci-
fied to delete an entity.

d) Copying entities - may be done by specifying the
ACCESS-NAME of the source and a new, unique ACCESS-NAME

and DESCRIPTIVE-NAME of the target.

e) Listing entities - shall be done by the IRDS by popping

up a window either upon user request, or when the
current operation requires the use of a list of enti-

ties (such as adding an attribute).

f) The following restrictions
defined instances of ENT TYPE.

shall apply to the pre-

•

•

•

•

•

•

i) addition - does not apply to pre-defined ENT_TYPEs

ii) deletion - is not allowed for
ENT TYPES.

pre-defined

iii) update - is allowed on values of existing
attributes• User defined attributes may be added

and deleted from instances of ENT_TYPE.

iv) copy - is allowed for pre-defined ENT_TYPEs.

v) list - is allowed for pre-defined ENT_TYPEs.

These restrictions apply to all Entity sub-classes

of ENT TYPE (see IV.B.3 through i0).

Entity sub-class "System"- is a pre-defined instance of

meta-type ENT TYPE. User defined instances of
sub-class System shall require the functions addition,

deletion, update, copy, and list. There are no pre-
defined instances of sub-class System•

Entity sub-class "Program"- is a pre-defined instance of

meta-type ENT TYPE. User defined instances of
sub-class Program shall require the functions addition,

deletion, update, copy, and list. There are no pre-

defined instances of sub-class Program•

Entity sub-class "Module"- is a pre-defined instance of
meta-type ENT TYPE. User defined instances of
sub-class ModuYe shall require the functions addition,

deletion, update, copy, and list. There are no pre-
defined instances of sub-class Module•

Entity sub-class "File"- is a pre-defined instance of

meta-type ENT TYPE. User defined instances of
sub-class File--shall require the functions addition,

deletion, update, copy, and list. There are no pre-
defined instances of sub-class File.

Entity sub-class "Record" - is a pre-defined instance
of meta-type ENT TYPE. User defined instances of sub-

class Record shall require the functions addition,

deletion, update, copy, and list. There are no pre-
defined instances of sub-class Record•

Entity sub-class "Element" - is a pre-defined instance

of meta-type ENT TYPE. User defined instances of sub-
class Element shall require the functions addition,

deletion, update, copy, and list. There are no pre-
defined instances of sub-class Element•

9. Entity sub-class "Document" - is a pre-defined instance

of meta-type ENT TYPE. User defined instances of sub-
class Document shall require the functions addition,
deletion, update, copy, and list. There are no pre-
defined instances of sub-class Document.

i0. Entity sub-class "User" - is a pre-defined instance of
meta-type ENT TYPE. User defined instances of sub-
class User shaYl require the functions addition, dele-

tion, update, copy, and list. There are no pre-defined
instances of sub-class User.

ii. Class Relationship - The IRDS shall provide functions

for addition, deletion, update, copy and list with

respect to instances of meta-type REL TYPE. Attributes
are fixed in all instances of class Relationship, so no

update function is necessary. Since the attributes

describing a relationship consist only of ACCESS NAME

and type, modification of the values of each instance
is more safely handled by addition and deletion func-
tions. An instance of class Relationship will be

defined by the collection of attributes:

Rel (Elname, Eltype, E2name, E2type)

12.

where

REL TYPE.

Class Attributes - the IRDS system will handle

functions of addition, deletion, update, and

by manipulating instances of ATTR_TYPE in class

(see IV.B.I.C).

"Rel" represents an instance of meta-type

the
list

IRD

D. User Interface

I.
Menu Driven "Panel" Interface - The IRDS shall provide a

visual screen/keyboard interface with mouse support
which will allow the user to select items from a menu

by positioning the cursor on a desired item and enter-
ing a carrlage return or mouse click.

For the main menu and other branching menus, the

IRDS shall provide pop-up windows for each selectable
item. Each selection will provide a small pop-up win-

dow with the listed applicable options. Moving the

cursor out of the window will erase the window. For

data entry screens, all input is handled by the key-
board. Edited data is saved by moving the cursor

outside of the first or last entry field.

Error messages are to be displayed on the bottom
two lines of the screen in flashing text and are to be

accompanied by a short audio alarm. Successful entry
screen completions will return the user to the most

recent window.

•

window shall list all available options for
Window"

Each
the current branch and include a ,'Previous

option as the last entry in the option list.

Menu Screens and Windows

A) Main menu options- will include the following:

EDIT ADD DELETE QUERY REPORTS QUIT

i) Add - pops up a menu asking if you wish to add meta-
types, entities, relationships, or attributes. Each
selection will cause a prompt for an ACCESS-NAME and
DESCRIPTIVE-NAME. If these entries are valid, an entry

screen will appear along with a listing of possible

attributes. The user will pick from the list of avail-

able attributes to build the instance of the new enti-

ty.

2) Edit - pops up a window prompting for meta-ty_e,
attribute, entity, or relationship. After a selectlon

is made, another window containing a listing of exis-

ting entities of that class is presented. The user
will select the entity he wishes to edit and an entry

screen with the selected entity's values appears• The

user may now enter values from the keyboard or select
from an add/delete window to add or delete attributes.

Pressing the "Esc" key from within a selection will

return the user to the entry screen.

3) Delete - Pops up a window prompting for a meta-type,
relationship, attribute, or entity type. After this
selection a list of all ACCESS-NAMEs of that type shall

appear in a new window. Selecting an entity from this

list will pop up a new window prompting "Are You Sure"

with "Yes/No" options.

4) Query - pops up a window requesting a selection for a
saved query or the command line. The command line will

open an empty window and allow the user to compose.his

own query command. The query is executed by a carrlage
return. After the query executes, a "save?" prompt

will appear. If the user selects "yes" then a prompt

for a query description will appear. Selection of the
saved query option will pop up a window with a breif

description of previously save queries. The user will

then select his choice from this list.

5) Reports - will pop up a window to select a meta-ty_e,
relationship, entity, or attribute. This selectlon

will pop-up another window requesting a "Screen/

Printer/Both" option. Selecting the output device(s)

will produces a list of all instances and attributes of

the selected entity.

6) Quit - will pop up a window with an "Are You Sure?"
prompt. Answering "Yes" will return the user to DOS.

A)

V DATABASE REQUIREMENTS

The underlying structure of the IRDS is a group of related

tables. Each class and sub-class will have its own table
definition. Class attribute is the exception in that it is

synonomous with class ATTR TYPE. These terms can be used
interchangeabley throughout this document. Here is a list

of the tables and their attributes.

ENT TYPE - contains instances of entity types. Attributes

hate been described in section IV.B.

i) System - of meta-type ENT_TYPE, has these attributes

SYSTEM (ANAME,DNAME,ADDED-BY,DATE-ADDED,MODIFIED-

BY,LAST_MODIFICATION-DATE,NUMBER-OF-MODIFICATIONS,

COMMENTS, DESCRIPTION).

2) PROGRAM - of meta-type ENT_TYPE, has these attributes

PROGRAM (ANAME, DNAME, ADDED-BY, DATE-ADDED, MODIFIED-

BY, LAST-MODIFICATION-DATE, NUMBER-OF-MODIFICATIONS,

LANGUAGE, LINES-OF-CODE, COMMENTS, DESCRIPTION).

3) MODULE - of meta-type ENT_TYPE, has these attributes

MODULE (ANAME, DNAME, ADDED-BY, DATE-ADDED, MODIFIED-

BY, LAST-MODIFICATION-DATE, NUMBER-OF-MODIFICATIONS,

LANGUAGE, LINES-OF-CODE, COMMENTS, DESCRIPTION).

4)

5)

FILE - of meta-type ENT_TYPE, has these attributes

FILE (ANAME, DNAME, ADDED-BY, DATE-ADDED, MODIFIED-

BY, LAST-MODIFICATION-DATE, NUMBER-OF-MODIFICATIONS,

NUMBER-OF-RECORDS, COMMENTS, DESCRIPTION).

RECORD - of meta-type ENT_TYPE, has these attributes

RECORD (ANAME, DNAME, ADDED-BY, DATE-ADDED, MODIFIED-

BY, LAST-MODIFICATION-DATE, NUMBER-OF-MODIFICATIONS,

RECORD-CATEGORY, COMMENTS, DESCRIPTION).

B)

6) ELEMENT - of meta-type ENT_TYPE, has these attributes

ELEMENT (ANAME, DNAME, ADDED-BY, DATE-ADDED, MODIFIED-

BY, LAST-MODIFICATION-DATE, NUMBER-OF-MODIFICATIONS,

DATA-CLASS, LOW-OF-RANGE, HIGH-OF-RANGE, COMMENTS, DES-

CRIPTION).

7) DOCUMENT - of meta-type ENT_TYPE, has these attributes

DOCUMENT (ANAME, DNAME,ADDED-BY, DATE-ADDED, MODIFIED-

BY, LAST-MODIFICATION-DATE, NUMBER-OF-MODIFICATIONS,

DOCUMENT-CATEGORY, COMMENTS, DESCRIPTION).

8) USER - of meta-type ENT_TYPE, has these attributes

USER (ANAME, DNAME,ADDED-BY, DATE-ADDED, MODIFIED-BY,

LAST-MODIFICATION-DATE, NUMBER-OF-MODIFICATIONS, LOCA-

TION, COMMENTS, DESCRIPTION).

REL TYPE - contains instances of relationship types.

Attributes have been described in section IV.B.

i) Each instance of a relationship type shall exist

in one table of the form described in section IV.B.

REL(Elname,Eltype,E2name,E2type)

where REL can be any user defined entity of REL TYPE or

one of the pre-defined relationship types described in

section II.B.

C) ATT_TYPE - contains instances of attribute types.

The attributes of the above tables are the same as have

been described in section II.B

VI NONFUNCTIONALREQUIREMENTS

A.

S.

Co

Do

The following constraints must be made to the IRDS. Most of
these contsraints are functions of the IRDS environment

which can vary significantly.

Memory - IRDS requires a minimum of 256K RAM to operate

properly. Some lar@er applications will require more memory
space. IRDS works in conjunction with other systems such as
DBMSs which also must be loaded into memory. Consult your

software manual or vendor for these specifications.

Storage - IRDS files will require ????K disk memory. Data

files can be any size up to the maximum capacity of the

storage media.

System Response - IRDS system response is not time critical.

Although designed to be interactive, response time on the
real time level is not required. The system's

implementation is designed for a single user, single task

computer, so response time shoulde not be a significant
factor.

Invalid Characters - IRDS does not implement use of any

function keys or the "Ctrl" or "Alt" keys.

Vll MAINTENANCE

A.

So

C.

Here is a list of planned system enhancements. Caution

should be taken not to design implementations on the

expectations of the planned features.

Upgrades - Future versions of this IRDS may allow for
modifications to the user interface. Look for color

graphics and windows, and going directly from entry screens
to the main menu.

New Functions - Future versions may contain record

versioning, system security at the Schema description,

Schema, and IRD levels, a Dictionary Output Facility, SQL-

based Query Language interface, and IRD-IRD data transfer.
All of these features are to be implemented in accordance

with the emerging FIPS standard.

Hardware Constraints - certainly hardware is changing quite

rapidly. IRDS will plan to be supportive of the most recent
technologies by offering network capabilities, and protected

mode versions.

REFERENCES

Most of the information in this specification was
from information presented in the following documents.

selected

A Technical Overview of the Information Resource Dictionary

System by Alan Goldfine and Patricia Konig; U.S. Department of
Commerce, National Bureau of Standards; NBSIR 85-3164, April,

1985.

"A Relational Information Resource Dictionary System"

Dolk and R.A. Kirsch II; Communications of the ACM,

Number i; January,]987; pp.48-60.

by D.R.
Volumn 30

IBM PC, XT, AT PS/2 are trademarks of IBM.

8086,8088,80286, and 80386 are trademarks of Intel Corp.

MS-DOS is a copyright of Microsoft Corp.

Smalltalk V is a copyright of

Section II

IRDS DESIGN DOCUMENT

I. INTRODUCTION

This document contains a formal design specification for a
scaled down IRDS implementation compatible with the proposed FIPS
IRDS standard. The major design objectives for thls IRDS will
include a menu driven user interface, implementation of basic
IRDS operations, and PC compatibility. The IRDS will be imple-
mented using Smalltalk/V (digitalk Inc.) object oriented pro-
gramming system and an ATT 6300 personal computer running under
MS-DOS 3.1 (Microsoft Corp.)

This document is divided into 7 sections as described below.

I. Introduction

II. Data Flow Diagram

III. User Interface Description

IV.

V.

VI.

Software Components

Class Definitions

Data Field Definitions and global variables

VII. Error Messages

II. OVERALL DATA FLOWDIAGRAM

User GET
.......... >REQUESTED
Command METHOD

User Command

System Classes

System Lists

Method

Name

GET

REQUESTED
CLASS

User

Commands

Method and

Class Name

ERROR

CHECKS

USER

Error

Messages

Method and
Class Name

PERFORM

METHOD ON

OBJECT

Updated

System Lists

Display Resul

III. USER INTERFACE

I. Menu Driven "Panel" Interface - The IRDS shall
provide a visual screen/keyboard interface with mouse
support which will allow the user to select items from
menus and windows by positioning.the cursor on a de-
sired item and entering a carrlage return or mouse
click.

For the main window and other branching menus, the
IRDS shall provide pop-up windows for each selectable
item. Each selection will provide a small pop-up win-
dow with the listed applicable options. Selecting the
"close" option from the top _ane will close the window%
For data entry, all input is handlea Dy tne KeyDoara
using standard Smalltalk/V editing functlons and tech-
niques or is selected from the window options.

Error messages are to be displayed on the bottom
two lines of the screen and are to be accompanied by a
short audio alarm. Successfuly entered data will close
the current window and return the user to the most
recent previous window.

Each method selection window shall list all avail-
able options for the current branch. Closing the
window will return the user to the previous window.

2. Menu Screens and Windows

A) Main menu options - a window that will include:

EDIT ADD DELETE QUERY REPORTS QUIT

i) Edit - p .pos up a window, prompting, for meta-type,_ attri-
bute, entlty, relatlonshlp or other user deflned types.
After a selection is made, another window containing a

listing of existing instances of that type is pre-
sented. The user will select the instance he wishes to

edit and an entry window with the selected instance's

values appears. The user may now select values from

the window and change them or select from an add/delete

pop up window to add or delete attributes.

2) Add - pops up a window requiring a selection of adding

metatypes, entities, relationships, or attributes.
Each selection will cause a prompt for ACCESS-NAME,

ALTERNATE-NAME, and DESCRIPTIVE-NAME attrubytes. If
these entries are valid, (no duplications are allowed)

a listing of possible attributes will appear in a
selection window. A set of core attributes will be

added to each newly created Entity or Metatype. Each

attribute selected will require a confirmation window
and an "add another" option. The user will pick from
the list of available attributes to build the instance
of the new entity.

3) Delete - Pops up a window prompting for a meta-type,
relationship, attribute, or entity type. After this
selection a list of all ACCESS-NAMEsof that type shall
appear in a new window. Selecting an entity from this
list will pop up a new window prompting "Are You Sure?"
with "Yes/No" options. Deletions will not be allowed
for predefined types. An error message will be
displayed if the user should try such.

4) Query - pops up a window requesting a selection for a
saved query or a new query. The new query will open an
empty text window and allow the user to compose his own
query command using Smalltalk/v syntax. When the user
has finished editing, they will be presented a selec-
tion window with the options to save, cancel, or list
query names. If the user selects "Save" then a prompt
for a query descriptor will appear. "Cancel" will
close the wlndow without saving the new query. Once
the query has been saved, the user must make changes
through the "saved query/edit" options.

Selection of the saved query option will pop up a
window listing brief descriptors of previously saved
queries. The user will then select his choice from
this list, and be presented with a selection window
allowing the user to edit, or delete. Editing a saved
query will pop up a text window with the Smalltalk/v
source code for that query. The user may edit as he so
chooses. When finished the user will be presented
with an option window allowing him to save or cancel
the work. The delete option will open a confirmation
prompter window (Are you sure? Y/N). Executing a query
is done through the standard Smalltalk/V highlighting
and executing techniques.

5) Reports - will pop up a window to select a meta-ty_e,
relationship, entity, or attribute. This selectlon
will pop-up another window requesting a "Screen/
Printer/Both" option. Selecting the output device(s)
will produce a list of all instances and attributes
values of the selected entity.

6) Quit - will pop up a window with an "Are You Sure?"
prompt. Answering "Yes" will return the user to DOS.

i.

explicit

options.

IV. SOFTWARE COMPONENTS

User Interface Options - This section wil define the

functions required from each of the user interface

A. EDIT Option -

i. Definition - The edit option is used to change

attributes or attribute values of existing instances of

entity and meta types. Attribute types and relation-

ship types do not require the edit option. They are
best handled with add and delete functions only. Small

Talk/V automatically provides methods for saving changes.

2. Functions Required

a. Edit select window - a pop up window displaying

the possible e_it options of "Metatype or "Entity

type" See section V.5.B.2

b. Select edit option - takes the selected type

from the Type Yist pane option.and displays the
appropriate type's attributes in the attribute

list pane.

c. Edit attribute value - displays the attributes

value in--the text pane for editing.

d. Cancel edit - closes the Edit-select-window

without saving changes.

e. Add attribute - allows the user to select a
desired -attribute from a list of all available

attributes and add it the the selected types at-

tribute list. This function also applies to both

entities and metatypes.

f. Del attribute - allows the user to remove a

desired -attribute from a list of all available

attributes. This function also applies to both

entities and metatypes.

g. Verify_delete attr - test to see if an attri-

bute requested _or deletion is pre-defined for
that type. If it is, an error messages is given

and the operation is not allowed.

h. Edit attribute value - allows the user to

change a value to an added or existing type's
attribute.

B ADD Option -

i. Definition - The add option is used to add new

metatypes, attribute types, relationships, and entity

types to the system. Adding attributes to existing
entities is covered under the EDIT option (IV.I.A).

• Functions Required

a. Add select window - a pop up window displaying

all possible Types to be added. These include
metatypes, entlty types, relationship types, at-

tribute types, and any other user defined types.

b. Select_add_option - takes the add-select win-
dow option and opens a series of windows prompting
for the ACCESS-NAME, DESCRIPTIVE-NAME, AND ALTER-

NATE-NAME.

c. Add another attr - allows the user to select

another- attribute from the system attribute pane

to add to the type's attribute pane when creating

a new type.

d. List_sys_attributes - displays the system's
attributes in the system attribute pane. The list

will not include the attributes which have already

been assigned to the new type.

e. List new attributes - displays the type's at-

tributes- in-the type attribute pane. The list

will not include the attributes which have not

been pre-assigned or selected from the system

attribute pane.

f. Select list attributes - selects an attribute

from the attribute list to be added to, or deleted

from the new type.

g. Edit attribute value - allows the user to add
a value to an added-or existing type's attribute.

h. Del attribute - deletes a selected attribute

from the type's attribute list and returns it to

the system attribute pane.

i. Verify_new_name - test that the name of the new

type does not already exist in the system• The
functions will return "true" when the newly

assigned name is unique.

I. Unique_metaname
2. Unique_entname

3. Unique_relname

C

4. Unique_attname

DELETE option -

i. Definition - The delete option is used when deleting

metatypes, attribute types, relationships, and entity

types from the system. Attributes cannot be deleted
until they have been removed from all instances of

Entity type and subtype and metat[pes. Metatypes can-
not be deleted until all of its instances and subtypes

have been deleted first. Deleting attributes from

existing entities is covered under the EDIT option

(IV. I.A).

2. Functions Required

a. Del select window - a pop up window displaying

all possible -types to be deleted. These include

metatypes, entity types, relationship types and

attribute types. See section V.5.B.3.

b. Select_DEL_option - takes the Del select window

type pane or the subtype pane choice and dTsplays
the instances in the subtype pane or the instance

pane respectively.

c. Pre-defined test functions - these functions

prevent the deletion of pre-defined types. They
will return "true" when a type is pre-defined.

i. Is_predefined meta

2. Is_predefined_rel

3. Is_predefined_att

4. Is_predefined_ent

d. Select del_subtype - takes the type selected
on the del select window and dipslays the subtypes

in the subtype pane.

e. Del confirm - displays a prompter window

asking "AVe you sure? Y/N". The user must enter
"Y" in order to perform the deletion.

D QUERY Option -

i. Definition - The query option allows the users to

build and execute their own query commands from an edit

window or execute a previously defined and saved query.

2. Functions Required

a. Query_option window - allows the user to choose
between selecting a saved query or building their

own. See section V.5.B.6

b. Compose_guery_window - allows the user the op-
tions of saving or cancelling a new query.

i. Compose query - opens an empty text window
and allows the user full editing, high-

lighting and executing functions within the
window.

2. Cancel _uery - closes the text window
without sa_ing the changes made.

3. Save_new_query - allows the user to assign
new querles a name and save them.

a. List queries - pops up a list of saved

query names and descriptions.

b. Get_new_query_name - allows the user to
enter a new name for the query.

c. Valid query name - checks to see that

the a duplicate query name has not been
entered.

d. Update_query_list - adds the new query
and name to the query list.

c. Saved_query_window - allows the user to exe-
cute, delete, or edit saved queries from a list.

i. List_saved_queries - see IV.D.2.b.3.a

2. Select_queries - allows the user to select
a query from the displayed list.

3. Del Query - allows the user to delete the
selecte_ query.

4. Run_query - allows the user to
the selected query.

run

5. Edit query - opens a text window
displaying- the selected query's smalltalk
code and allows full editing, highlighting,
and exection functions.

E. REPORTOption -

i. Definition - The Report option will allow the user

to list existing type instances, their attribute names,
and their attribute values to the screen, printer, or

both.

. Functions Required

a. Report select window - a pop up window dis-

laying alY possible types to be printed. These
nclude metatypes, entity types, relationship

types and attribute types.

b. Output_select window - opens a window to allow
the user to select the output destination (screen,

printer, both).

i. Print - sends output to the printer only.

a. Print meta

b. Print attr

c. Print rel
d. Print--ent

e. PrintZent_type

2. Screen - sends output to the screen only.

a. Show meta
b. Show--attr

c. Show-rel

d. Show-ent

e. Show_ent_type

3. Both - sends output to the printer and the

screen.

a. Write meta

b. Write attr
c. Write-rel

d. Write-ent

e. Write_ent_type

c. Select_report_subtype - if subtypes exist for

the selected metatype, this will display thie

subtype instances in the sugtype select pane.

mo

Go

QUIT Option -

i. Definition - The Quit option will let the user

return to DOS and end the IRDS session.

2. Functions Required

a. Quit menu - allows the user the option of qui-

ting or returning to the main menu.

b. Quit - ends the software session and returns to

DOS.

Non-user Functions -

i. Definition - These are functions which run in the

background without the direct knowledge or request of
the user. These functions are used mainly for display

purposes.

a. Error messages - displays error messages at the
bottom of the screen.

i. Add dup_typename - warns the user that he

is trying to add a type name which already

exists in t_e system.

2. Predefined_typename - warns the user he is
trying to delete a predefined type or

predefined attribute of a type.

3. Type_not found - warns the user he is

searching for a type name which does not
exist.

4. Must del meta att - warns the user that an

attribute must be deleted from metatype in-

stances before the attribute can be deleted

from the attribute list.

5. Must del ent att - warns the user that an

attribute must -be deleted from entity type
instances before the attribute can be deleted

from the attribute list.

V CLASS DEFINITIONS

The following classes have been derived from the require-
ments document for this IRDS. These classes will contain re-
quired functions (methods) which are unique to each class and in
accordance with the functions for the operations defined in
section IV. Section IV lists the functions according to the user
interface operation. This section lists the functions as
specific methods of a class. Algorthms are also given in a
pseudo-ADA code.

i) Class Metatype -

Contains the class information and operations for creating

metatype sub-classes.This class can be implemented using the

Smalltalk/V Dictionary class where the metatype name is the

key to a sorted collection (array) carrying the type's
attribute names.

A. Methods

i. Add_metatypes adds a new metatype name and attribute
name array to the existing metatype dictionary.

screen for metatypes.

Algorithm:

Begin

Get (New_type_name)
If Unique Meta_name (new_type_name, Metatype_list)
then

Add_metatype_to_list (new type_name,Metatype_list)

Else

Dup_name ("Metatype") --Error

End if

End.

. Update metatype - saves changes to a metatype made
from tKe Edit Select window. This method is invoked

after the "save changes" prompt has been confirmed.

3)

Algorithm:

Begin

Get_selected_metatype (metaname)

If not Is_predefined metatype then

Add to_metatype_iTst (Metaname)
end if-

If Metatype_delete_option then

Delete_metatype(metaname)
end if

If Metatype changed (metaname) then

Dictionary.Metaname.attribute list :=
metaname.attribute list

End if

End.

Delete metatype - Deletes a metatype name
and confirmed in the Edit select window.

selected

Algorithm:

Begin

Select metat[pe_list(metatype list,Aname)
If Is_predeflned_metatype (Aname)
then

Predefined_typename (Aname) --Error
Else

Delete metatype from list (Aname) --Removes aname and
:-its associated attributes from the dictionary

End if

End.

4) Add to metatype - adds an attribute name to a new
or existing metatype when editing. The attribute was
added from the Edit select window or the Add select

window.

Algorithm:

Begin

Replace the Dictionary array with an array containing

the new metatype name inserted alphabetically.

End.

5) Del from_metatype - deletes an attribute from
existing metatype when editing. The attribute
added from the Edit select window.

an
was

Algorithm:

Begin

Replace the Dictionary array with
deleted metatype name removed.

an array where the

End.

6) Is Predefined_metatype -returns a boolean value
indicating if the metatype is pre-defined. This is
accomplished by checking for its presence in the global
variable array "Predefined_metatypes"

7) Add_metatype to list - inserts a new name into the
metatype list as selected from the Add_select_window's
type attributes pane.

Algorithm:

dictionary := dictionary + aname

8) Del_metatype_from list - deletes an existing name
from the metatype list. This method can only be in-
voked after all subtypes and instances of the metatype
have been deleted.

Algorithm:

Remove the metatype name from the metatype dictionary.

9) Attr in metatype - tests to see if an attribute to
be deleted is contained in any metatype. This function
returns true if the attribute can be found in the array
associated with the metatype name in the Metatype dic-
tionary.

B. Instances - these types are considered pre-defined and
are to be implemented with the system. They cannot be de-
leted. All of these instances will contain the following
pre-defined attributes: Access name, Descriptive_name Ad-
ded_by, Date_added,
ber of mods, Comments,

i) Ent_type
2) Rel_type
3) Att_type

Last mod by, Last mod date, Num-
and--DesCription. -

C. Example
table below.

- The metatype dictionary will represent the

Key

"Ent_type"
"Rel._type"
"Att_type"

Array (sorted collection)

Ent type attributes
RelZtype attributes
Att_type attributes

Each array can be modified by the user, but originally
will contain the following values:

§('ACCESS NAME' 'DESCRIPTIVE NAME' 'ALTERNATE NAME'
'ADDED BY' 'DATE ADDED' 'LAST_MOD_BY' 'LASTZMOD_DATE'

,NUMBER_OF_MODS'--'COMMENTS').

Note that the above attribute names are listed as core

attribute names in section VI.

2) Class Entity -

Contains the class information and operations for cre-
ating Entity instances. This class can be implemented
in two levels of Smalltalk/V class Dictionary. The
first level contains the entity names as the key and
their associated attributes• The second level contains
the instances access name as the key. It's correspon-
ding subtype name is the first element of a two element
array. The second element contains an array of in-
stance values in the same order of the attributes in
the entity names dictionary.

A. Methods

i. Add entity - Adds new entity names to the entity
subtype dictionary.

Algorithm:

Begin

Get (New type name)
If Unique EntZname (new_type_name, Entity_list)
then

Add Entity and its attributes to the entity
dictionary

Else
Dup_name ("Entity") --Error

End if

End.

• Edit entity- saves changes to the attributes of entity

suStypes made from the Edit_selection_window.

Algorithm:

Replace the attribute list in the sub-type dictionary
with the modified attribute names.

3) Delete_entity - Deletes an entity subtype selected
from the Del select window from the subtype diction-
ary. Note that deleting an attribute from an instance
is not allowed. Instead, a new entity subtype with
different attributes must be defined.

Algorithm:

Begin

Select entity list(entity list,Aname)-- from del select
If Is_predeflned_entity (Aname) window --
then

Predefined_typename (Aname) --Error
Else

Delete entity from subtype dictionary
Delete the entity name from the Ent_type global

variable
End if

End.

4) Add ent instance, Del ent_instance, and Update_ent
instance are similar to What was described in items i,

2, and 3 above except these methods use the instance

dictionary of their corresponding subtype. These me-

thods may be used only when instance values change, not
when attributes are added or deleted.

5) Add to entity - adds an attribute name to a new or

existing entity when editing. This method also adds
the attribute to the entity types existing instances.

The value assigned is null.

Algorithm:

Replace the sub type's associated array in the entity

subtype dictionary with the old array + the new
attribute name.

Loop through the entity instance dictionary and find

all instances matching the subtype name with their

first array element. Add the null value to the new

attribute's position in the instance value array.

6) Del from entity - deletes an attribute name from a
new or existTng entity when editing. This method also
deletes the attribute from the entity types existing
instances.

Algorithm:

Replace the sub_type's associated array in the entity
subt[pe dictionary with the old array - the new
attrlbute name.

Loop through the entity instance dictionary and find
all instances matching the subt[pe name with their
first array element. Remove the item associated with
the deleted attribute from the instance value array.

7) Is Predefined entity returns a boolean value indi-
cating-if the entity is pre-defined.

Algorithm:

Search the global variable "Pre-defined Ent_types" for
the requested entity name. If found, return true,
otherwise return false.

8) Add entity to list- inserts a new name into the
entity --global variable selected from the Add-select

window.

Algorithm: Add a new name to the entity subtype list
and copy the attributes into the associated array. Add
the entity subtype name to the Ent_type global
variable.

9) Del entity_from list - deletes an existing name from
the entity global _ariable, the subtype list, and all
of its instances.

Algorithm:

Delete the entity name and array from the Current

enttype global variable list. Then search for the
entity subtype name in the entity subtype dictionary
and delete it. Then delete the entity subtype instance

dictionary.

i0) Attr in entity - tests to see if an attribute to be
deleted Ys contained in any given entity subtype. An
attribute cannot be deleted if it is contained in any
instance of entity type or metatype.

Algorithm:

For each entry in the entity subtype dictionary, check
each attribute for a match with the attribute to be
deleted. Repeat for the metatype dictionary. List all
cases of matching names and return true. If no names
match, return false.

B. Instances - the entities listed below are considered
pre-defined and are to be implemented with the system. They
cannot be deleted. These are listed in the global variable
,,Predefined_enttype". Each instance of these types will
contain at least these attributes when the system is imple-
mented: Access name, Descriptive name, Added by, Last mod
by, Date added,-Last mod date, and--Number of MUds. All--new
instances--of entities-wilY contain these attrTbutes.

i) System
2) Program
3) Module
4) File

5) Record
6) Element
7) Document
8) User

C. Example - the two tables below represent the relatinship
between the two levels of entity type and subtype.

Entity Subtypes

Key

'Document'

'Files'

'Record'

Array

§('Access name' 'Descriptive name' 'Added_
by' 'Modified by' ' T)

§('Access name' 7Descriptive name' 'Added_

by' 'Modified by' ' T)

§('Access name' 7Descriptive_name' 'Added_
by' 'Modified_by' ' ')

Subtype Instances

Key

'Doc I'
m

'DOC 2'

'Rec i'

Array

§('Document'§('Dl' 'Document i' 'bag'

'12/08/88' 'rpg' '12/I0/88' 7 ,))

§('Document'§('D2' 'Document 2' 'ram'

'ii/i0/88' 'rpg' '12/i0/88' 7 ,))

§('Record' §('RI' 'Record 2' 'bif'
'ii/15/88' 'rpg' '12/i0/88' ' '))

• Class Attribute -
Contains the information and methods to perform operations

on attribute types. The class will be implemented as a

global variable called Att type. The variable will contain

an array of text strings representing the attribute names.

A. Methods

i) Add attributes- adds a
attribute global variable.

new attribute name to the

Algorithm:

Begin

Get (new_attr_name)
If Unique attr_name (new_attr_name)
then

Add attribute to the end of Current_atttype

Else

Du_ name ("Attributes") --Error
End l_

End.

2) Delete attribute - removes an attribute name from the

attribute global variable.

Algorithm:

Begin

Select attr list (attribute_list,option)

If is_predefined_attribute (option_attribute_list)
then

Predefined_typename ("attribute") --Error
Else

If attr in_entity then
Must del ent attr (entity,attribute) --Error

else

If attr in metatype then
Must del meta attr(metaname,attribute) --Error

else

Del attr name (option,attribute_list)
End if --

End if

End if

End.

4) Is Predefined attribute returns a boolean
indicating if the-entity is pre-defined.

Algorithm:

Search the global variable ,'Att_types" for the
ted attribute name. If found, return true.

value

reques-

B. Instances - the following instances of attribute type are
predefined and are to be present in global variable "Pre-
defined_atttype" types when the system is implemented. They
cannot be deleted.

ACCESS-NAME
ALLOWABLE-VALUE
CLASSIFICATION
DATA-CLASS
DESCRIPTION
DOCUMENT-CATEGORY
LAST-MODIFICATION-DATE
LOCATION
NUMBER-OF-LINES-OF-CODE
NUMBER-OF-RECORDS

ADDED-BY
ALTERNATE-NAME
COMMENTS
DATE-ADDED
DESCRIPTIVE-NAME
HIGH-OF-RANGE
LAST-MODIFIED-BY
LOW-OF-RANGE
NUMBER-OF-MODIFICATIONS
RECORD-CATEGORY

Co Example - The Att_type global variables are defined

below.

Current atttype = §('ACCESS NAME' 'ALLOWABLE VALUE' 'ADDED_

BY' 7ALTERNATE_NAME' 'CLASSIFICATION' 'CO[[MENTS' ' ')

• Class Relation -
Contains the information and methods to perform operations

on relationship types. Class relation will be implemented
as an instance of class IdentityDictionary. Its key will be

the relationship name, which can have multiple instances in

the dictionary. Each multiple key will have different val-

ues in the associated array.

A.

i)

Methods

Add relations - Adds a new relationship name and values

to The relationship dictionary.

Algorithm:

Begin

Get (new rel_name,elname,e2name,eltype,e2type)

If Unique_rel_name
then

Add rel to list(new_rel name, elname, e2name,

- eltype,--e2type, Relationship_list)
Else

Dup name ("Relationship") --Error
End 17

End.

2) Delete relation- Removes a relationship name from the
Relationship dictionary.

Algorithm:

Begin

If Is_predefined_rel (option,el,e2)
then

Predefined_rel_type (option,el,e2) -- Error
Else

Remove the relation name from the dictionary.

End if

End.

3) Is Predefined relation returns a boolean value indi-
cating if the reYation is predefined.

Algorithm:

Search the global variable ,,Predefined_Att_Type" for
the requested relationship name. If found return true.

4) Unique tel name - returns a boolean value indicating
whether -the- relation name + the two entity names

already exists as an instance of the class.

Algorithm:

For each instance of the relationship name, check the

two associated entity names. If they match the given

entity names (to be added, or deleted) return false,

otherwise return true.

5) Add rel to list - physically adds new relationship

types to the relationship global variable.

Algorithm:

Add the relationship name to the end of the relation-

ship global variable Current_reltypes.

6) Del re[from list - removes an element from the
relationshTp gYobal variable and all instances in the

dictionary.

Algorithm:

Begin

For each instance of the given realtionship name

Loop
If rname = Relationship list.access name

and elname = relationship list.elname

and e2name = relationshipZlist.e2name

then
Remove instance from the dictionary

End if

End loop

Remove the relationship name from the Rel_type

variable

global

End.

C. Example - the relationship global variable and dictionary
are demonstrated below.

Current_reltype = §('CONTAINS' 'CALLS' 'GOES_TO' 'RUNS'
'...,')

KEY

Rel name

'CONTAINS'

ARRAY

§ (ENT TYPE1 DESCRI,ENT TYPE2,DESCR2)
§ ('FiYes' 'Personnel file' 'Record'

'Personnel record'

. Class Window -

Contains o_erations
interface wlndows.

to open, close and select from user

A. Methods

i) open (windowname) - will
instance of class window.

pop up the windowname

2) Close (windowname) - will remove
instance from the screen

the windowname

3) Get (windowname,option) - will retrieve a selected

value from the active open window.

B. Instances

I) Add_Select_Window

a. Header = "ADD"

b. Selectable options:

I. Metatype

2. Entity
3. Relation

4. Attribute

c. Pane Layout

i. Type select pane - upper left.
Select the metatype to add to.

2. Type attributes pane - upper middle

Displays the attributes of the selected

type

3. System attributes pane - upper right
Select a new attribute from the system
attributes.

4. Attribute edit pane - lower
Edit attribute values.

2) Edit_Select_Window

a. Header = "EDIT"
b. Selectable options:

i. Metatype
2. Entity

c. Pane Layout
I. Type select pane - upper left

Select the metatype to edit
2. Attribute list pane - upper right

Select the types attributes for editing.
3. Type edit pane - lower

Edit the attribute values.

3) Del_Select_Window

a. Header = "DELETE"
b. Selectable options:

i. Metatype
2. Entity
3. Relation
4. Attribute

c. Pane Layout
i. Type select pane - upper left

Select the metatype to delete
2. Subtype select pane - upper right

Select the Subtype to delete (blank
no subtypes are declared)

3. Instance select pane - lower
delete the selected type instance.

if

4) Report_window

a. Header = "OUTPUT TO"

b. Selectable options:

i. Screen
2. Printer

3. Both

5) Report_select_window

a. Header = "REPORT TYPE"

b. Selectable options:

i. Metatype
2. Attribute

3. Relationship

4. Entity

c. Pane Layout
i. Type select pane - Left side

Select the type to report
2. Subtype select pane - Right side

Select the subtype to report (blank
no subtypes exist)

if

6) Query_option_window

a. Header = "QUERY"

b. Selectable options:
i. Select

2. Compose

v)

i0)

ii)

Compose_query_window

a. Header = "COMPOSE"

b. Pane Layout
Text edit pane with a pop-up options menu
see c. below.

c. Selectable options:

i. Edit - make changes to the query

2. Save - save the query, calls a prompter

asking for a new query name.

3. Execute - execute the query

Saved_query_window

a. Header = "QUERIES"

b. Selectable options:

i. Select - pop up the query_list_window

and gets a selection.

2. Execute - runs the saved query
3. Delete - removes the query from the list

4. Edit - calls the Compose_query_window

Query_list_window

a. Header = "SAVED QUERIES"

b. Selectable options:

I. Query_list name 1

2. Query_list name 2
3. Query_list name 3

:

n. Query_list name n

VI DATA FIELD DEFINITIONS & GLOBAL VARIABLES

A) Field Names

Attribute name

Access name

Added__y

Allowable_values
Alternate name
Classification

Comments

Data class

Date added

Description
Descriptive_name

Document_category

High_of_range

Last_mod_by
Last mod date
LocaTion-

Low_of_range
Num lines of code

Num--of mods

Num--of--records

RecordZcategory

string

string

string

string

string

string

string

string

string
string

string
integer

string
string

string

integer
integer

integer

integer

string

Width

8 *

8 *

i0

8 *

l0

30 *
I0

8 *

30

30 *

i0

6
8 *

8 *

i0

6

6

4 *

6

i0

* Core set of attributes - these attributes are

matically added whenever a new
created. They are stored in

"Core attributes".

auto-

entity instance is

the global variable

B) Global variables

Predefined_metatype = §('Att_type' 'Ent_type' 'Meta_type'
'Rel_type')

Predefined enttype = §(Document' 'Files' 'Record' 'Element'

7Bit string' 'Character string' ,Fixed_point'

'Float' 'System' ,Program 7 'Module' 'User')

Predefined Reltype = §('Contains' ,Processes' 'Responsible
-for' 'Runs' 'Goes_to' ,Derived_from' 'Call sT

'Represented_as')

Predefined atttype = §('Access_name' 'Added by' 'Allowable
--value' 'Alternate name' ,Classiflcation' 'Com-

ments' 'Data class' 'Date added' 'Last mod date'

'Description'-- ,descriptive-name' ,Document--cate-

gory' 'High_ of range' 'Last mod by' 'locUtion'
'Low of range' 7Lines_of_ code7 TNumber of mods'

'Number of records' 'Record_category')
The following variaSles should actually be
However, Smalltalk/V does not provide for this.

constants.

Current_metatype = §('Att_type' 'Ent_type' 'Meta_type'

'Rel_type')

Current enttype = §(Document' 'Files' 'Record' 'Element'
- 'Blt_string' 'Character_string' 'Fixed_point'

'Float' 'System' 'Program' 'Module' 'User')

Current_Reltype = §('Contains' 'Processes' 'Responsible
for' 'Runs' 'Goes to' 'Derived from' 'CaTls'

'Represented_as')

Current_atttype = §('Access_name' 'Added by' 'Allowable
value' 'Alternate name' 'Classification' 'Com-

ments' 'Data class' 'Date added' 'Last mod date'

'Description'-- 'DescriptiveZname' 'Document--cate-

gory' 'High_ of range' 'Last mod by' 'Location'

'Low of range' 7Lines of code T TNumber_of_mods'

'Number of records' 'Record_category')

Core attributes = §('Access name' 'Added_by' 'Alter-
- nate name' 'Comments'--'Date added' 'Last mod date'

'Description' 'Descriptive_name' 'Last_mod_by'

'Num of mods).

ERROR MESSAGES

Error messages are generic in nature and can be invoked from

any method by passing in strings containing the specific types or

data to be displayed in the message. Messages are displayed at
the bottom of the screen and force a computer beep to notify the

user of an unexpected event.

I. Predefined typename (name) - this message is displayed

whenever there-is an attempt to delete a predefined entity,

attribute, or type.

2. Dup_name (name) - this message is displayed whenever a

new type, or attribute is being added and the new name given

already exists in the system.

3. Must del attr(name,att name) - this message is

displayed whenever an attribute is being deleted, but still

exists in an entity or metatype attribute list.

Access_name

Attribute

Class

Dictionary -

Display window

Edit window

Entity

Entity subtype

GLOSSARY

- the key attribute which is used to describe
every system entity o r IRDS object.

- Type or name used to describe an entity.

- contains the methods and data structures for
manipulating similar objects.

a Smalltalk/V class cosisting of an associa-
tion between a key string and another object
(usually an array of strings).

- a window which shows a list of items which can
be browsed, but not selected or edited.

- a pane or window which will allow full editing
of its contents.

- a group of defineable parts (internal of ex-
ternal) associated with the IRDS.

- a specific defineable part associated with the

IRDS.

Header

Instance

IRDS

- the title pane of a window

- the lowest form of object. An instance of a

class represents the actual object and/or its

data values.

- Information Resource Dictionary System. It

contains information about the different parts

of the system and its environment.

List pane

Metatype

Method

Pane

Prompter

Query

- see Select pane.

- The overall object tyoe from which other types

are derived.

- an action taken on an object which will access

or change the object in some way.

- a specialized isolated division of a window.

window - asks a question and allows the user to enter

or edit an answer.

- a question, in smalltalk syntax, posed to the

IRDS.

Relationship

Select window

Smalltalk/V

Text window

- a representation or description of how two
entitles are associated with each other.

- see list window.

- an object oriented programming environment and
language by digitalk Inc.

- allows the user to edit the contents of the
text in the window.

INDEX

Add function

Attribute

Classes
Attribute
Entity
Metatype
Relation
Window

Data flow diagram

Delete

Edit function

Entity

Error messages

Field names

Global variable

Glossary

Introduction

Main menu

Metatype

Query

Quit

Relation

Reports

Software components

User Interface

Window

5,7

21

13-27
21-22
17-20
13-16
23-25
25-27

3

5,8

4,6

17

29

28

28-29

30-31

2

4,5

13-16

5,9

5,12

23

5,11

6-12

4-5

25

Section III

PROJECTRESULTS

The task of creating an object oriented model of an
Information Resource Information System -- IRDS was undertaken to
learn more about the IRDS.

Learning to use Smalltalk/V was one of the most
frustrating tasks we have undertaken. Due to our previous
programming experience in functional and procedural languages,
the syntax of the Smalltalk language was very difficult to pick
up. By the time we began to be comfortable with the environment
and the Smalltalk classes, It was much too late to implement any
type of IRDS design.

We also found that the original design was also based on our
previous programming languages. The object oriented design and
environment was completely different than what we expected, and
therefore the original design was practically worthless when it
came time to implement it.

Smalltalk system security is nonexistent. It is possible
for anyone to modify any class, method or object in the image
file with no more effort than a few point and click moves with a
mouse. Also, there is a severe flaw in the system integrity
checks. It is possible, for instance, to name a global variable
with the same name as a class or subclass. The result is that
the class is no longer useful in the system because Smalltalk
attempts to send messages to the global variable rather than the
class.

Another problem associated with the environment was that of
data entry screens. There is no obvious way to develop a forms
driven user interface within Smalltalk. This, combined with pop-
up menus and lists, would be the first user interface choice for
a pseudo-database application such as an IRDS. Windows seemed a
bit to clumsy when data entry was concerned. The windows had to
be designed where a large text window was used in order to edit a
single attribute value, or use a series of prompter windows, one
for each data item, with no way to display more than one window
at a time. Clearly, a whole new series of classes and methods
would be required for a interface like this to be implemented in
Smalltalk.

As a result of my difficulties in learning Smalltalk, the
IRDS design was reduced to nothing more than a specific database
application with barely the basics in functional methods (Add,
Edit, Delete, Print). Many useful and necessary functions were
not even attempted. Some of these include

l)

2)

3)

4)

Versioning of objects

Automatic system updates (creating obvious relationships

for newly entered entities)

All inclusive functions (such as automatically

removing attributes from existing entities when the

attribute is to be deleted from the system).

Copying instance and/or type data to newly created

instances and/or types, and

5) The effect of change report which lists what impact to

the system any given change would make. The IRDS can

be a very powerful tool for document maintenance and

statistics, but there simply was no time to

implement these functions in my project.

Suppose that a reasonable IRDS was created. How would one
attach it to an existing application so that updates can be done

without user data entry. A command interpreter/query processor

would need to be created unless the user would want to

communicate to the IRDS using the Smalltalk programming

language from within the Smalltalk environment. The application

would have to be run from within the environment in order for the

system to do even the simplest of automated maintenance.

