ORIGINAL CONTAINS COLOR ILLUSTRATIONS

NAVIER-STOKES SOLUTIONS ABOUT THE F/A-18 FOREBODY-LEX CONFIGURATION

Farhad Ghaffari Vigyan Research Associates

James M. Luckring, James L. Thomas NASA Langley Research Center

> Brent L. Bates Vigyan Research Associates

Abstract

Three-dimensional viscous flow computations are presented for the F/A-18 forebody-LEX geometry. Solutions are obtained from an algorithm for the compressible Navier-Stokes equations which incorporates an upwind-biased, flux-difference-splitting approach along with longitudinally-patched grids. Results are presented for both laminar and fully turbulent flow assumptions and include correlations with wind tunnel as well as flight-test results. A good quantitative agreement for the forebody surface pressure distribution is achieved between the turbulent computations and wind tunnel measurements at $M_{\infty} = 0.6$. The computed turbulent surface flow patterns on the forebody qualitatively agree well with in-flight surface flow patterns obtained on an F/A-18 aircraft at $M_{\infty} = 0.34$.

Overview

- Navier-Stokes Formulation
 ° CFL-3D
- Grid Generation
 - Transfinite interpolation
- Results
 - Laminar, turbulent flow
 - Comparisons with wind-tunnel experiment
 - Comparisons with flight test
- Summary

an and a second second second

Grid Generation - Transfinite interpolation

- H-O topology
- Far field
 - \circ Inflow, outflow $pprox 1 \ ar{c}$
 - \circ Radial pprox 1.5 $ar{c}$
- Baseline grid
 - $\circ \quad \text{Block } 1: \, 31 \times 65 \times 27$
 - $\circ \quad \text{Block } 2: \, 65 \times 65 \times 31 \\$
 - Approximately 185,000 points
 - $\circ y^+ pprox 2$ for wind-tunnel conditions
 - $\circ y^+ \approx 8$ for flight conditions
- Refined grid
 - Doubled number of radial points
 - \circ Normal surface spacing $\approx 0.25 \times$ baseline
 - $\circ y^+ pprox 3$ for flight conditions

......

Computed Results

- Wind tunnel conditions
 - $M_{\infty} = 0.6, \ R_{\bar{c}} = 0.8 \times 10^6, \ \alpha = 20^{\circ}$
 - Laminar, turbulent flow
 - Comparison with experiment
- Flight conditions
 - $\circ M_{\infty} = 0.34, \ R_{\bar{c}} = 13.5 \times 10^6, \ \alpha = 19^{\circ}$
 - Turbulent flow
 - Comparison with experiment

FREDERIC FALL STATE FOR FILMED

367

ORNAINAL PAGE IS OF POOR QUALITY

		-
		e e
1		

and a second second

ORIGINAL PAGE IS OF POOR QUALITY

•

.

,

1

Grid1: 27x31x65 Grid2: 31x65x65

Grid1: 11x31x65 Grid2: 17x31x65 Grid3: 31x65x65

372

· · · · · ·

373

ATTEN PARA SO

• .

.

PRECEDER: FACE SILVER NOT FILMED

375

GERNAL PAGE IS

a construction of the second second

•

tightig foll wheth orke monthly

379

Grid3: 31x65x65

PRECEDING PAGE GLANK NOT FILMED

.

.

mi . . .

Summary of Results

- Significant differences between laminar and turbulent solutions
 - \circ Forebody
 - LEX upper surface
 - Body-LEX juncture on lower surface
- Turbulent solutions provide good correlation with experiment
 - Surface C_p comparison with wind tunnel data
 - Surface flow comparison with flight test data
- Convergence achieved with practical resource utilization
 - $\circ \approx 185,000$ points
 - $\circ ~\approx 2400 ~cycles$
 - $\circ ~pprox 2$ hours of Cray-2 time

. .

ander in an a start with the start the start of the start