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SUMMARY

The Rotorcraft Dynamics Division, Aeroflightdynamics Directorate, U.S. Army Avia-

tion Research and Technology Activity (AVSCOM) has developed the General Rotorcraft

Aeromechanical Stability Program (GRASP) to calculate aeroelastic stability for rotorcraft

in hovcring flight, vertical flight, and ground contact conditions. In this report, GRASP is

described in terms of its capabilities and the philosophy behind its modeling. The equa-

tions of motion that govern the physical system are described, as well as the analytical

approximations used to derive the equations. These equations include the kinematical

equation, the element equations, and the constraint equations. In addition, the solution

procedures used by GRASP are described.

GRASP is capable of treating the nonlinear static and linearized dynamic behavior

of structures represented by arbitrary collections of rigid-body and beam elements. These

elements may be connected in an arbitrary fashion, and are permitted to have large rei-

n.rive motions. The main limitation of this analysis is that periodic coefficient effects are

not treated, restricting rotorcraft flight conditions to hover, axial flight, and ground con-

tact. Instead of following the methods employed in other rotorcraft programs, GRASP is

designed to be a hybrid of the finite-element method and the multibody methods used in

spaeecra.ft analyses. GRASP differs from traditional finite-element programs by allowing

multiple levels of substructures in which the substructures can move and/or rotate relative

tu others with no small-angle approximations. This capability facilitates the modeling of

rotorcraft structures, including the rotating/nonrotating interface and the details of the

l)lade/root kinematics for various rotor types. GRASP differs from traditional multibody

programs by considering aeroelastic effects, including inflow dynamics (simple unsteady

aerodynamics) and nonlinear aerodynamic coefficients.



1. INTRODUCTION

Previous helic(q)ter aeroelastic stability programs have suffered from significant re-

strictions. The General Rotorcraft Aeromechanical Stability Program has been developed

using a modern approach which overcomes these limitations.

1.1. Background

In early efforts made to calculate the aeroelastic stability of hingeless helicol)ter ro-

tor blades, it was common practice to make use of simple physical models (e.g. , spring-

restrained, centrally-hinged, rigid blades (ref. 1)). Later work treated configurations that

were somewhat more complex, and included models of elastic blades (ref. 2), body degrees

,,f freedom, and inflow dynamics (ref. 3). These simple approaches to rotorcraft aeroelastic

stability calculations have been very valuable for gaining physical insight into many com-

plicated phenomena (e.g. , coupled rotor-fuselage stability). They all are, however, based

,)n a single physical model, and therefore are of limited value when more realistic rotorcraft

configurations must be analyzed.

Because of the complex couplings inherent in a bent and twisted beam, the calculation

of aeroelastic stability is particularly important in the analysis of rotor blades haviilg

cantilever root boundary conditions (e.g., hingeless and bearingless rotors). In bearingless

rotors, the blade/root kinematics demand a great deal of modeling flexibility because

iudividual blade designs tend to have widely varying configurations. The FLAIR program

(refs. 4, 5, and 6) is able to perform this type of aeroelastic stability calculation, but is

limited to a configuration that has a rigid blade, a uniform flexbeam, linear aerodynamics,

static induced velocity, and several different blade/root configurations. While FLAIR is

currently being used in the rotorcraft community, it lacks the flexibility and generality

necessary for it to be considered general-purpose analysis.

For analysis of problems involving complete rotorcraft, there exist large helicopter sim-

ulation programs such as C-81 (ref. 7) and G400 (ref. 8). These programs were designed

primarily for time-history analysis of rotorcraft behavior in forward flight rather than for

acromcchanical stability. Despite their generality and complexity, these programs have

limitations (primarily related to aerodynamics) which are pointed out by Johnson (ref. 9)

in his discussion of these and other large rotorcraft programs. While the CAMRAD pro-

gram overcomes re,my of these limitations, all of these programs (including CAMRAD) are

restricted to a fixed number of physical models, and lack the modeling flexibility needed to

deal with a wide variety of blade/root geometries. Many of these programs rely on results,

such as a set of modes, from other programs. This approach may present an assortment of

modeling difficulties, especially for bearingless rotor blades. In particular, the mathemati-

cal and physical consistency of a combined approach is seldom examined, and the physical

bases of the individual programs are likely to not be consistent. Furthermore, in stability

analyses a nonlinear static equilibrium solution is needed about which to linearize -- an

important consideration which most of the earlier simulation programs do not address.
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Thcrcforc, it is important that a code bc dcvelopedin which bladc structural dynam-
ics, isolated blade stability, and isolated rotor stability, as well as coupled rotor/airframe
stability, can all be treated under a consistentset of physical assumptions.

Dynamic coupling programs, such as DYSCO (ref. 10), which have a high degree
of generality, allow coupling of discrete componentmodels and/or modal representations
of flexible structures. While DYSCO has a very powerful, executive-driven system, it
currently cannot treat the aeroelasticbehavior of bearingless rotor systems undergoing
geometrically nonlinear deformation. The problem is that it lacks a su_ciently general
element ii, its element library.

Several recent implementations that apply the finite-element method to rotorcraft
problems (refs. 11, 12, and 13) are not able to overcome these limitations because their

physical models are limited to a single configuration. Simply breaking a rotating beam

into a number of finite elements yields nothing more than a discretized rotating beam.

This approach does not meet the requirement that the beam be coupled with an airframe,

or model blade/root kinematics of an arbitrary configuration. The classical finite-element

method is based on the breaking up of a single structure (i.e., a beam, plate, or shell)

into an arbitrary number of elements and expanding the appropriate field variables into

polynomial shape functions. This approach by itself also lacks the flexibility to deal with

truly arbitrary rotorcraft configurations because a helicopter is a system of structural

components, some of which may be rotating and/or translating relative to one another.

Because of this, rotoreraft are actuMly more akin to the multibody systems (refs. 14 and

15) encountered in spacecraft problems. Unfortunately, few multibody programs possess

the capability to deal with flexible components, and none have the capability to deal with

aeroclastic phenomena since they were developed primarily for spacecraft applications.

All previous attempts at modeling rotorcraft problems have incorporated certain re-

stricti_ms that are undesirable in a truly general-purpose program. General-purpose codes

that are currently under development, or will be deveh,ped in the flffure, sh_mld t_ver-

come the major shortcomings of existing aeroelastic analyses. Consider, for example, tt, e

following typical restrictions:

The first is a restriction to linear, small-displacement approximations of beam elastic

deformation. This restriction is unacceptable in a general-purpose rotorcraft program

because the rotor blade aeroelastic problem, especially fi,r hingeless and bearingless r_,t,,r

blades, has been conclusively shown to be a nonlinear problem. A c_,nsistent at_proach

based on nonlinear kinematics is required for these configurations.

The second is a restriction to elastic blade models with ordering schemes, second-

degree nonlinearity, or "moderate" rotations. These approximations are undesirable be-

cause the governing equations often have to be augmented with certain higher-order terms

if the values of certain structural properties are not within some nominal range (Rosen

and Friedmann (ref. 16)). Therefore, in a general-purpose analysis, the higher-order terms

must be present. Ordering schemes, while still a valuable tool when used in special-purpose

ct_des and codes where accuracy is a secondary consideration, are neither necessary nor

desirable in a general-purpose context. Furthermore, a bearingless-rotor flexbeam must



undergo deformation-induced rotations of the order of the collective pitch angle -- a ro-

tation too large to be classified as "moderate." Thus, bearingless rotor problems demand

a largedeflection analysis without artificial restrictions on rotations due to deformation,

the degree of nonlinearity, or the values of blade properties.

The third restriction is to a fixed number (usually one) of configurations (e.g., isolated

hingeless blade or coupled bearingless rotor and body or a single blade/root configuration).

This restriction is unacceptable in a general-purpose code because the intent of such a code

is to analyze different types of configurations with a single, consistent set of assumptions.

Such a code should be able to treat all currently known blade/root mechanisms and, at the

same time, model configurations that do not yet exist. It should be possible to construct a

new configuration with simple building blocks and with no artificial limitations on the pro-

cess. For maximum flexibility in treating these different configurations, the finite-element

method is the preferred aI)proach. Moreover, the existence of many different, blade/hub

configurations for helicopters requires a capability to analyze arbitrary configurations of

structures, parts of which may be rotating. Thus, the code should employ the multibody
philosol_hy.

1.2. Approach

To overcome the aforementioned limitations of the existing methods of aeroelastic

stability analysis, the General Rotorcraft Aeromechanical Stability Program has been de-

veloped. GRASP combines the finite-element and muir|body approaches, and incorporates

multiple levels of substructures to provide a powerful tool for rotorcraft analysis. The de-

sign of GRASP is based on the concept of a collection of flexible and rigid bodies connected

in an arbitrary manner. Libraries of elements, constraints, and solution algorithms appro-

priate for the helicopter aeroelastic stability problem were designed and built into the

l)rogram.

The element library promotes the modeling of the blades as beams; construction of

arbitra.ry mechanisms to treat blade/root kinematics with beam elements and rigid bodies;

treatment of the filselage as either a rigid body, a collection of beam elements, or a n,odal

representation obtained from some other source; and treatment of both static and dynamic

induced inflow by means of blade-element/momentum theory. The constraint library allows

arbitrary connections between elements, includes constraints that allow for compliance in

the constrained relative motion between elements, and includes constraints that allow

the connection of rotating and nonrotating substructures. None of the constraints in the

library use any kinematical approximations, such as small-angle assumptions. The solution

procedures include nonlinear static equilibrium and linearized stability about equilibrium,

b_th presently limited to the hovering flight condition.

It should be noted that these physical modeling assumptions and solution procedures,

while adequate for aeromechanical stability analysis in axial flight and ground contact,

are not adequate h,r a comprehensive rotorcraft dynamic analysis as defined by .Johnson



(ref. 9). The analysis methodology used in GRASP, although a viable approach for ap-

plication to nonlinear dynamics in forward flight, would require considerable effort to be

implemented in GRASP.

Several very desirable, but not required, features of a general-purpose code, lmve

been incorporated ii, GRASP. 1) The accuracy of tile analysis may be increased wittmut

having to add more elements. The aeroelastic beam finite dement developed specifically

for GRASP uses a variable-order (or p-version) approach, which is based on high-order,

,_rth_,normal, polynomial displacement fimctions (refs. 17 and 18). 2) As much as p_ssible,

tim equations of motion are formed by the program internally, minimizing the possibility

of human error in the equations. 3) The user interface is capable of handling a general

problem without having to be supplied with the form of the equations of motion or even

the number of degrees of freedom. 4) Both large and small problems can be modeled

with the same code. Thus, the number of degrees of freedom is not fixed a priori. This

feature not only requires a great deal of flexibility in assembling the system equations of

motion, but also requires that data be structured and managed in core with a flexibility

m,t inherent in FORTRAN (ref. 19).



2. SOLUTION APPROACH

GRASP is specifically designed to provide a tool for determining tile equilibrium

deflections and aeroelastic stability of arbitrary rotorcraft configurations in hover or vertical

flight. A GRASP rotorcraft model is considered to be an aeroelastic system consisting of

_ structural system, lnwtions ,_f which may be rotating relative to one an_ther, and a

1,,ovil,g air mass with which tile structure interacts. All parts of the model ,nay be subject

to forces and externally applied constraints. The position of any point on the structure or

the air velocity at any point in the flow field relative to an inertial frame of reference may

he determined by solving a system of partial differential and boundary value equations.

These equations are obtained from the laws of fluid and structural mechanics, and from

the constitutive properties of the materials in the structure and the air.

In vertical flight, hover, or ground contact a rotoreraft can assume a steady-state

equilibrium configuration when the airflow, gravity, and the rotor spin axis are aligned;

and when the angular velocity of the rotationally isotropic rotor is constant. In this

restricted case where tt, e structure is not subject to time-varying forces, it is possible to

eliminate explicit time dependence from the equations. This steady-state equilibrium can

be considered to be static when contrasted to the more general periodic equilibrium found

in forward flight problems. The steady-state equilibrium configuration is characterized by

a ti,ne-invariant deformation in tile nonrotating portions of the rotorcraft, a steady flow of

air through the rotor disk, and time-invariant deformations of the rotor blades with respect

t_, a rotating reference frame. The steady-state solution then calculates the equilibrium

values of all of the model generalized coordinates and generalized forces.

The equations of motion for the continuous-structure portions of the structure are

discretized by means of variable-order, finite-element shape functions. The equations for

the structure then become a system of nonlinear, ordinary differential equations. It is

possible, as indicated above, to eliminate all explicit depeI, dence on time from the equations

f_,r the restricted case of axial flight or ground contact. A linearized system of equations

may then be calculated by taking small perturbations about the static equilibrium state.

The stability problem is defined, therefore, by a second-order system of linear equations
with constant coefllcients.

For infinitesimally small perturbations about a previously-calculated, steady-state

configuration, the dynamic motion of the rotorcraft can be represented as a linear combi-

nation of complex eigensolutions. Since the aeroelastic stability of tile rotorcraft can be

determined directly from the eigenvalues, the primary objective of GRASP can be satisfied

by computing these eigensolutions. The frequency and damping information in tile eigen-

values and the modal information in the eigenvectors, which can also be obtained from the

eigensolutions, facilitate the user's understanding of the dynamics of the rotorcraft.

The eigensolution provides the complex eigenvalues and eigenvectors for _11 model

degrees of freedom associated with the equations of motion M_ + C_ + Kt/= 0 which have

been linearized about a steady-state deformation. These equations are often referred to

as being "asymmetric" because of the nonsymmetry due to aerodynamics contributions

to the c_e_cient matrices C and K. The coefficient matrix 2_I, which is both synmletric

6



and positive-definite, contains contributions from the mass of the structural model and

from the "apparent mass" of the air. The coefficient matrix C contains contributions from

structural and aerodynamic damping and inertial forces. The coefficient matrix K contains

contributions from structural stiffness and effective stiffness from aerodynamic and inertial

forces. Like the steady-state solution, this solution requires that the model correspond to

a physical system which is not subject to time-varying forces. Currently, the asymmetric

eigensolution must be computed by using the steady-state solution obtained for an identical

model. This solution procedure prohibits one, for example, from obtaining the steady-state

deformations of an isolated blade, then applying that solution to a coupled, rotor/fuselage

configuration.

7



3. MODELING APPROACH

In order to form a mathematical representation of a structure that may contain bodies

which are experiencing large kinematic motions relative to one another, it is necessary to be

a.ble to write the full, nonlinear equations of motion for the structure. The fundamentals of

the apt)roach used in GRASP to derive these equations are adapted from methods that were

originally developed for spacecraft applications (ref. 20). For the types of structures that

GRASP is designed to represent, additional emphasis has been placed oi1 using multiple

levels of substructures to model a structure.

The first step in modeling a structure in this manner is to decompose the structure

(called the parent) into a set of subordinate substructures (called children), each of which in

turn may also be decomposed into a set of child substructures. This decomposition process

continues until every substructure has been decomposed into simple structural elements.

The lowest-level substructures (i.e. those with no children) are called elements. The result

of this method of modeling a structure is a hierarchically-ordered set (tree) of substructures

(fig. 1) that has the complete structure at the root and elements at each of the leaves.

Under this modeling scheme, a parent substructure may have any number (including zero)

of child substructures but only one parent substructure. The only substructure without a

l)arent is the complete structure, which is at the root of the tree.

Model-type subsystem: 1

System-type subsystems: 2, 3

Element-type subsystems: 4, 5, 6, 7

Figure 1. Hierarchical substructure tree.

The hierarchical model representation implemented in GRASP allows great generality

in the types of configurations that can be analyzed, and permits essentially arbitrary kine-

matic motions of components relative to one another. This general framework, along with

a software design that emphasizes the use of libraries for constraints, elements, solutions,

and so on, means that the capabilities and limitations of the program are those associated

with the members of the libraries, not with the program in general.



3.1. Subsystems

In GRASP, substructures are abstracted into subsystems. Each substructure is then

represented by a subsystem, which may be classified according to its position in the hi-

erarchy (fig. 2). The subsystem representing the complete structure (or model) is called

a model-type subsystem. Substructures having no children (elements) are represented by

element-type subsystems. The remaining subsystems, those having a parent and at least

tree child, are represented by system-type subsystems. To represent the substructures that

make up the model, subsystems serve several functions. First, they contain the complete

definitions of the substructures that they represent. Second, they are repositories for the

generalized coordinates, generalized forces, and dynamic matrices associated with the sub-

structures. Finally, they serve as the basic units of the hierarchical organization, which

is an integral part of the computational process t_f transforIning the parent generalized

coordinates to the child generalized coordinates, and transforming the child generalized

forces to the parent generalized forces.

_ Root

t

Element Element Element

Figure 2. Hierarchical subsystem tree.

Subsystems, in general, may contain the following: a frame of reference, a set of nodes,

a set of generalized coordinates, and a set of constraints. Each of these entities performs

a different function within the subsystem, and will be described in the following sections.



3.1.1. Frames of Reference

Every subsystem in a GRASP model (with the sole exception of the air mass element)

has a frame of reference associated with it. The frame of reference is not associated with

any material point on the substructure, but instead serves as the "point of view" for the

subsystem. As such, it establishes the coordinate system for that subsystem. The initial

position and orientation of a reference frame may be selected to define a coordinate system

that is natural for the subsystem (e.g., a hub-centered frame of reference might be selected

for a subsystem that contains a helicopter rotor).

Since reference frames are not physically connected to any structure, but, rather are

allowed t_ move freely, six degrees of freedom are associated with each frame. These

degrees _,f freedom define the position and orientation of the frame of reference for the

current subsystem relative to tile reference frame for its parent subsystem.

In addition to serving as a reference for the subsystem, the frame of reference may be

used to model the discrete motions of the substructure. This can often lead to significant

simplificati_ms in the equations of motion for subordinate subsystems. For exa.mple, if a

reference franle is attached to the root of a rotating beam and used to model the rotational

motion of the beam, the equations of motion of the beam itself need not explicitly include
the rotational motion.

Since Newton's laws hold only in an inertial reference frame, the model-type subsystem

at the root of the tree is defined to be fixed in an inertial frame of reference. Therefore,

while a model-type subsystem does have a frame of reference, that reference frame has no

degrees of freedom associated with it since it must be inertial. As a result, tile motions of

every part of the system can be related to an inertial frame of reference.

3.1.2. Nodes

Nodes are used by GRASP to introduce degrees of freedom into a model. In general,

the degrees of freedom introduced by a node may be any generalized coordinates that can

be associated with a physically identifiable property of the structure. For example, the set

of degrees of freedom for a node could be defined to be tile three rigid-body translations

and the three rigid-body rotations of a point on a structure. Alternatively, there could be

a node whose degrees of freedom are defined to be modal coordinates.

Currently, two ,qfferent types of nodes are used by GRASP: structural nodes and air

nodes. The structural nodes provide the measures for the local displacement and rotation

of a structure. They move with tile deformation of the structure and may be conceptualized

as massless, infinitesimal, rigid bodies that are physically attached to the structure. The

air nodes define the induced inflow velocity field through a helicopter rotor. The degrees of

frecdom fi)r tile air node are measures of the velocity distributions around the rotor disk.
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3.1.3. Constraints

The constraints act as a sort of "glue" that holds a model together. Constraints
,re used to model both physical constraints (e.g., pins, gimbals, and clamps), and to

eliminate the dependent degrees of freedom that have been introduced into the model. An

example of a physical constraint would be the clamped boundary condition at one end of

a cantilever beam. That end of the beam is modeled by constraining the node at one end
(_f the beam to have no translational or rotational motion. Now consider two frames of

reference that are defined to move as if they are rigidly connected to one another. For this

system, there are twelve degrees of freedom (six for each frame), but only six of them are

independent. Therefore, a constraint must be defined to remove the dependent degrees of

freedom. In general, the set of constraints for a subsystem must be sufficient to reduce the

total nnmber of degrees of freedom to only tile independent degrees of freedom f_r that

subsystem. Similarly, for the complete model, all dependent degrees of freedom must be

eliminated.

All of the constraints implemented in GRASP are based on purely kinematical rela-

tionships. There are no restrictions to small or moderate displacements or rotations in any

of the constraint equations. However, it is necessary to avoid the singularity that occurs

for deformation-induced rotations of 180 ° . This singularity arises as a result of using

finite-rotational kinematics that are based on Rodrigues parameters (ref. 21).

The constraints in GRASP are implemented at two levels: the program level and

the user level. The constraint "primitives" are found at the program level. These simple

c_mstraJnts provide a basic set of connections among generalized coordinates, frames, and

nodes. At the user level, these prinfitive constraints are combined to provide the user with

physically meaningful constraints between structural elements. For example, the rigid-

body mass connectivity constraint, which is used to attach a rigid-body mass element to

a structure, is a combination of a primitive constraint between frames and a primitive

constraint between nodes.

In order to provide a full set of constraints, the constraint library in GRASP includes

several different classes of coustraints. These include constraints between two frames, con-

straints between two nodes, constraints between generalized coordinates, and constraints

between a frame and a node.

3.2. Elements

Elements are subsystems that have no children. In addition to frame and nodal

degrees of freedom, they may also have additional, non-nodal generalized coordinates.

Computationally, the elements are the primary source of virtual work in the structure.

For steady-state problems, the elements return the generalized forces associated with a

given set of generalized displacements. For perturbation problems, the elements return

the elexnent coefficient matrices. These matrices are determined from the perturbations

in generalized forces resulting from perturbations in the generalized coordinates and their
time derivatives.
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3.2.1. Rigid-body Mass

The rigid-body masselementrepresentsa rigid body that is subject only to inertial
and gravitational forces. It hasa singlestructural node that is located at the masscenter,
and its axesare alignedwith tile principal axesof the body. Tile frame of referencefor tile
rigid-body masselementcoincideswith the nodal coordinatesin their undeformed state.

3.2.2. Air Mass

The air masselementmodels the momentum air flow through an axisymmetric rotor
disk. The degreesof freedomassociatedwith this elementare introduced through a single
air node. Sincethe air masselement is defined to be fixed in inertial space, the frame
degreesof freedomare suppressed.For steady-stateproblems, the residualscorresponding
to the uniform inflow velocity and the radial velocity gradient are calculatedfrom momen-
tmn considerations(ref. 22). For the asymmetriceigenproblem,only the momentum terms
(ref. 23) involving uniform and first-harmonic, cyclic perturbations of the inflow velocity
contribute to the elementcoefficient matrices.

3.2.3. AeroelasticBeam

The aeroelasticbeam elementrepresentsa slender,nonuniform beam (without shear
deformation) that is subject to elastic, inertial, gravitational, and aerodynamic forces.
The primary assumption in the derivation of the elementequations (ref. 24) is that strains
remain small relative to unity. There are no small-angleapproximations made and all
kinematically nonlinear effects are included. One current limitation is that orientation
a.ngles(ref. 21) (of type body-three: 1 2-3) are used in the description of finite rotation
inside the beam element. Thus, rotations due to the deformation of beam elementsmay
not exceed90° .

The aeroelasticbeam elementdegreesof freedomcomefrom a frame of referencethat
coincides with the root of the element in its undeformed state, structural nodes at the
root and tip, an air node, and a set of internal degreesof freedom. The internal degrees
of freedom result from the higher-order polynomials that may be used to increase the
accuracy of the beam deformation calculations. When no internal degreesof freedom are
specified,the aeroelasticbeam is an Euler-Bernoulli beamin which the axial and torsional
defi)rmations in excessof a built-in pretwist are representedby linear polynomials, while
the bending deflect:ons are representedby cubic polynomials. The method of adding
internal degreesof freedomto improve the accuracyof anelement is moreconvenientthan
adding elements,and is also more efficient (ref. 17) given the samenumber of degreesof
freedom. Internal degreesof freedommay be addedselectively to reflect the dynamics of
the clement. For example, if a beam is very stiff in bending and extension but soft in
torsion, additional torsional degreesof freedom may be addedwithout having to include
any more bending or extensionaldegreesof freedom.

The aerodynamicforceson the beam element are calculated from quasi-steadystrip
theory using lift, drag, and momentcoefficientsthat arepiecewisecontinuousfunctions of
the angleof attack. Spanwisescalefactors for the lift, drag, and moment may be specified
to allow for tip loss and other similar effects. The chord width, the pitch angle of the

12



zero-lift-line, and the offset of the aerodynamic center from the elastic axis may also vary

over the length of the element. The aeroelastic beam element also calculates the blade-
element contributions to the induced velocity, which are combined with tile momentum

contributions from the air mass element elsewhere.

13



4. SOLUTION METHODS

The solutions currently implemented in GRASP allow the user to calculate the steady-

state deformations of a structure under load, and then to solve for the eigenvalues and

eigenvectors of the deformed structure. In order to obtain a valid eigensolution, the steady-

state def,)rmations that are used must be such that the structure is in equilibrium.

4.1. Steady-State Solution

The equations for the steady-state equilibrium of the model are a set of nonlinear,

algebraic equations of the form

Q, = f(ql,...,qlv); 71--- 1,...,N (4.1-1)

where the Qi are the generalized forces (residuals), the qi are the generalized coordinates,

and N is the number of system degrees of freedom. These equations are genera.ted in-

ternally 1)y GRASP at the element level, and automatically assembled 1)y the constraints,

which combine the contributions from the finite elements into the final set of equations. The

solution to this set of equations is obtained through the use of the Levenberg-Marquardt

algorithm. This algorithm minimizes the sum of the squares of the residuals from the

steady-state equati,ms. The implementation in GRASP uses the IMSL (ref. 25) subrou-

tine ZXSSQ.

For problenls involving the aeroelastic beam element with internal degrees of freedom,

the solution algorithm is used at two levels. First, it is used in an outer iteration loop to

arrive at a solution to the steady-state equations for the complete model (which excludes

the aeroelastic beam interna] degrees of freedom). In addition, it is used in a separate,

inner iteration loop to calculate the internal degrees of freedom for each aeroelastic beam

element. A full inner solution for each aeroelastie beain is calculated for each iteration of

the outer solution.

In order to arrive at a steady-state solution, the residual forces on the system must

be calculated, given a deformation state. The algorithm that is used to calculate the

residuals for the top-level subsystem in the hierarchical organization of the model is based

(m a full-order tree traversal (fig. 3). When traversing down the tree (away from the root

subsystem), the st.__e vector for each child subsystem is calculated from that of its parent.

Also, the inertial motion of the child subsystem reference frame is calculated from that of

the 1)arent. Upon reaching an element, the state vector for that element and the inertial

moti,m for the elenlent frame are used to calculate the element residuals. Traversing

back up the tree (towards the root subsystem) the residuals from each child subsystem

are transformed into its parent subsystem and added to the parent residuals. When the

traversal is complete, the residuals corresponding to each generalized coordinate in the root

subsystem are known. The complementary processes of calculating the state vectors and

assembling the residual vectors are accomplished by using the constraints, which define

the relationships among the degrees of freedom in the parent and child subsystems.

14



l

Calculate generalized coordinates (I, 2, 3, 5, 7, 10_

Assemble generalized forces (4, 6, 8, 9, 11, 12)

Forces calculated in subsystems 4, 5, 6, 7

Figure 3. Steady-state solution full-order traversal.

The solution methods available in the current version of GRASP are restricted in that

the same model must be used for both the steady-state and asymmetric eigenproblem solu-

tions. This creates a problem for the steady-state solution algorithm whcn a configuration

contains ,mconstraJned degrees of freed_m. This can occur when a model having b.th r_,-

taring and nonrotating components is being analyzed. For such a configuration, tile cyclic

degrees of freedom generated by the rotating constraints are unconstrained. It can also

occur in a.irborne configurations, which suffer from the same problem because their body

degrees (,f freedom are unconstrained. To alleviate this l)roblem, GRASP currently marks

these unconstrained degrees of freedom during tile building of the nmdel, and eliminates

them from the state vector used in the minirtfization algorithm.

4.2. Asymmetric Eigenproblem Solution

The system equations for the asymmetric eigenproblem can be expressed in the famil-

iar form

_/q + C_ + K_ = 0 (4.2-1)

where the q's are infinitesimal perturbations of the generalized coordinates. The algorithm

used to assemble the coefficient matrices for the root subsystem is very similar t_, that

used to calculate the steady-state residuals in that it also is based on a full-order tree

traversal (fig. 4). However, while traversing down the tree, no state vector calculations

are required. Upon reaching an element, the coefficient matrices for that element are

calculated. During the traversal back up the tree, the constraints are used to assemble the

child subsystem matrices into the parent matrices. At the conclusion of tile traversal, the

coefficient matrices for the model subsystem are complete.
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2 11

Assemble subsystem matrices (4, 6, 8, 9, 11, 12)

Calculate element matrices in subsystems 4, 5, 6, 7

Figure 4. Eigensolution full-order traversal.

The solution of this set of equations is begun by factoring matrix ._I using the Cholesky

deeomosition algorithm. The GRASP implementation uses subroutine LUCECP from the

IMSL (ref. 25) library. M then becomes

_M - LL T (4.2-2)

Introducing the transformation

= LT_ (4.2 3)

the mass matrix hi can be reduced to an identity matrix and the system equations can be

written as

Az + L-iCL-Tz + L-1KL-T_. = 0 (4.2-4)

Writing this system of equations in first-order form

[0 01[ 0 ]A _= -L-'KL -T -L-'CL -T 7) (4.2-5)

where

{z } (4.2-6)Y=

Time may be eliminated by the introduction of

{z-}"Y : Az * e'_t (4.2-7)
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which allows the extraction of eigenvalues and eigenvectors directly from the matrix oil the

right-hand side of equation (4.2-5). The dynamic matrix is balanced, converted to Hes-

senberg form, and then the QR algorithm is used to obtain the eigensolution. Finally, the

eigenvectors are transformed back to the original coordinate system via the transformation

q* = L-T z* (4.2-8)

GRASP uses subroutine RG from tile NASA/Ames Cray library to calculate the

eigensolutions.
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5. COORDINATE SYSTEMS

In GRASP, many different coordinate systems are used to mathematically describe

the physical structure. To differentiate among them, each coordinate system is identified in

its undeformed state by a capital letter (e.g., A). Depending on the context, a,n identifier

may refer either to the coordinate system itself or to a point located at the origin ()f the

coordinate system. The addition of a prime or a double-prime to the identifier indicates

that the designated coordinate system either is in a state of static equilibrium (e.g., A') or

is in a dynamically perturbed state (e.g., A"). With these multiple coordinate systems, it

is often desirable to use several types of mathematical notation when deriving and writing

equations. Not only can the form of tile equations be simplified, but also they can be

made more readable. This section is intended as an introduction to the notation used in

the sections where the equations are actually derived.

5.1. Vectors

Vectors play an important role in coordina.te system mathematics. Associated with the

orthogonal axes emanating from the origin of every coordinate system is a set of dextral

unit vectors. These unit vectors are called the base or basis vectors of the coordinate

system. In addition, vectors are used to define variables such as position, velocity, and

acceleration. Three types of notation are used in writing vector expressions and operations:

vector-dyadic notation, index notation, and vector notation.

5.1.1. Vector-Dyadic Notation

All vectors and dyadics used in GRASP are underlined (e.g., V), and all unit vectors

are identified by a circumflex. The difference between a vector and a dyadic should always

be clear from the context of its usage. For a coordinate system A, the basis vectors are
-,4

written as _bi , where i = 1,2,3. Any unit vector other than a basis vector is denoted by _,

and may appear either with or without superscripts.

When kinematical quantities have coordinate systems associated with them, the rela-

tionship is defined by using the appropriate superscripts. For example,

RBA --

vBA "

ABA --

position of the origin of coordinate system B

with respect to the origin of coordinate system A

velocity of the origin of coordinate system B

with respect to coordinate system A

acceleration of the origin of coordinate system B

with respect to coordinate system A

angular velocity of coordinate system B

with respect to coordinate system A
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Forcesand momentsaresignificant in their point of application aswell astheir source.
The notation adopted herein is

F A -force at A

M A -moment at A

F_,r example, a force and moment at A contribute to a moment at B according to tile

relationship

M____B = AI A + R AB x A A (5.1.1-1)

5.1.2. Index Notation for Vectors

A vector 1i___ in the A basis may always be expressed as

^A
I; = VAib_i (5.1.2-1)

where the summation convention adopted is that repeated indices are always summed

over their range. Unless otherwise specified, Latin indices assume the values 1,2,3; Greek

indices assume the values 1,2. The subscript A in VAi indicates that the measure numbers

VAi are defined in the A basis.

Two symbols frequently encountered in vector operations that use index notation are

the Kronecker delta hli and the Levi-Civita epsilon ei./k where

0 iCj
6i./ =

1 i=j
(5.1.2-2)

0
elik = +1

-1

any index repeated

cyclic permutation

acyelic permutation

(5.1.2-3)

The Kronecker delta consists of the components of the identity tensor in a Cartesian

coordinate system, while the Levi-Civita epsilon consists of components of the permutation

tensor in a Cartesian coordinate system. Some useful identities regarding both of these

symb,ds may be found in reference 26.

5.1.3. Matrix Notation for Vectors

Using index notation, a vector 1,_ nlay be expressed in the A basis as shown in equa-

tion (5.1.2-1). Since the basis is identified by the subscript A, the measure numbers

themselves may be viewed as a complete description of the vector. Thus, the column

matrix VA can be defined to be

/VA/_h = VA2 (5.1.3-1)
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asan alternate way of expressing the vector V. The dot product U.V may then be written

as

UTVA = IUA1 UA2 UA3 j VA2 (5.1.3-2)

VA3

The cross product of two vectors U and V may be written as

AA AA

U_ x I'Z = UAib, x Valb,

_A

= eo k UAjVAkbi (5.1.3-3)

^A
~ ).

_- UAijtAjb i

This equation implies that the measure numbers of the cross product in the A basis are

simply the elements of the matrix product UAVA where

()ij=-eiik()k (5.1.3-4)

For example,

0 -- UA3 UA2 }
(f A = UA3 0 --UA1 (5.1.3- 5)

--UA2 UA1 0

There are also several useful identities that can be derived for two column matrices a

and b
fit = _ 5

ab = -- ba

(5.1.3-6)

ab =ba T -- ab T

ai,- =/,a
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5.2. Finite Rotations

In many kinematic analyses, rotations are assumed to be either infinitesimal or moder-

ate in size. These assumptions allow certain simplifications in the kinematical relationships,

but constrain the range of applicability of the analysis. In GRASP, no such assumptions

are made and all rotations are assumed to be of arbitrary size (finite). Finite rotations are

expressed in four ways in GRASP:

(1) direction cosines,

(2) Euler rotations,

(3) Tait-Bryan orientation angles, and

(4) Euler-Rodrigues parameters. Internally, GRASP expresses all finite rotations in terms

of direction cosine matrices. For tile conveifience of the user, any of tile other three

methods may be used to specify the input to GRASP. Since there are significant

differences in the algorithms used to compute the direction cosine matrix, all three of

the ,,ther representations are also discussed in detail.

5.2.1. Direction Cosines

When a coordinate system B undergoes an arbitrary rotation relative to coordinate

system A, the basis vectors are related by the equation

b, = (5.2.1-1)- --tY _3

where the superscripts are coordinate system identifiers, not indices. The matrix of direc-

tion cosines C BA is orthonormal such that

cBAc AB --- cABc BA --- (5.2.1-2)

It should be noted that the form of the matrix of direction cosines used in this manual is

the transpose of that developed in reference 21.

Similarly, with this notation it is easy to show that a basis change for any kinematical

vector can be performed by changing the subscript and multiplying by the matrix of
direction cosines for the bases.

I,_ = cRAVA (5.2.1-3)

Note that for kinematical vectors the superscripts are unaffected by these operations.

5.2.2. Euler Rotations

If coordinate system B, initially coincident with A, rotates about a unit vector _ fixed

in A by an angle 0 (fig. 5) then the matrix of direction cosines can be written as

C BA : A cos0 + CAcAT(1 -- COS0) -- eA sin0 (5.2.2-1)

where
_A

CAi ---- e_ " b_i (5.2.2-2)
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Figure 5. Euler rotation.

5.2.3. Tait-Bryan Orientation Angles

hA -B

Consider two coordinate systems A and B with coincident basis vectors _bi and b i .

Let the orientation of B with respect to A change as follows (fig. 6):

*B

(1) Perform an Euler rotation of B about _ --bj (j = 1,2, or 3) by an angle 8i;

^B

(2) Perform an Euler rotation of B about __= b k (k -- 1,2, or 3, k # j) by an angle 8k;

(3) Perform an Euler rotation of B about _-- __,e (l-- 1,2, or 3, I # k,l # j) by an angle

St.

The final orientation of B relative to A depends both on the magnitudes of 81, 82, and 83

and the sequence j-k-l. Details of this type of transformation may be found in reference 21

where Tait-Bryan angles are classified as orientation angles of type body-three. For the

rotation sequence 1-2-3 the matrix of direction cosines is calculated as follows:

[ 0 0 1 0 0

C BA = --s3 c3 0 [ 0 1 0 0 c1 s 10 0 1 s_ 0 c2 0 -sj cl

where

C2C3

_-- --C253

_2

C1J3 + 8182C3 8183 -- C182C3

ClC 3 -- S18283 SlC3 -- CLS283

--_1C2 CIC2

ci = cos 0 i

si -- sin Oi

(5.2.3-1)

(5.2.3-2)
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b_ 02

Figure 6. Tait-Bryan orientation angles (1-2-3).

5.2.4. Euler-Rodrigues Parameters

For two coordinate systems A and B, three parameters ¢i = 2eai tan(°) may be used

to describe a change in orientation (ref. 21). The values of ¢, herein are scaled by a factor

of 2 relative to tile Rodrigues parameters presented in reference 21, so that for infinitesimal
- ^A - _B

values of <hi = ¢i, the rotation may be regarded as a vector 61b i = ¢i bi with C °A = A- _.

The matrix of direction cosines is then simply

cB _ (1-
1 + _ (5.2.4-1)

4

The angular velocity of B relative A, expressed in the B basis, can be written as

l+-q_
4

These relations contain no trigonometric functions and are easily expressed in a shorthand

matrix notation. Furthermore, a simple inverse transformation exists s _ that given C BA,

the values of ¢ may he obtained from

2eijk C_ A
¢i - (5.2.4-3)

1 + Cl_ A

where C_ A is the trace of C _A. Given ¢ and f/_A, ¢ can be obtained from

: (a + _ + --4-)"B (5.2.4 4)

Traitsformations between Euler-Rodrigues parameters and direction cosines (or angular

rates) are very simple relative to the transformations required for Tait-Bryan angles.
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5.3. Angular Velocity and Virtual Rotation

The measure numbers for the angular velocity of coordinate system B relative to

coordinate system A expressed in the A basis, [_ABA, may be deternfined from tile addition

theorem discussed in reference 27. They can be related to the time derivative of the matrix

of direction cosines as follows:

d BA: --_'_BAcBA:--cBA_ BA (5.3 1)

By virtue of the Kirchhoff kinetic analogy (ref. 28), _BA in Eq. (5.3-1) may be replaced

with _C BA and f_a with BA, _b B . The expression for the components of virtual rotation
,}f/3 in A then bec,mies

_BAcB A BA _BA_cBA = --_)13 = -C _)m (5.3-2)

The corresponding virtual rotation vector g_Sa is used in determining the virtual

work due to applied moments. The components of virtual rotation may be obtained from

any cxpression involving the angular velocity in a manner identical to that used to obtain

equation (5.3-2) from equation (5.3-1).

Similarly, infinitesimal perturbations of the rotation vector can be obtained by sub-

stituting _,t_A for d lIa and _a for (-/_A in equation (5.3-1).

cB A = _O_ Acii A = _c]3 A_BAA (5.3-3)

5.4. Velocity, Acceleration, and Virtual Displacement

Velocity and acceleration vectors are obtained by applying the superposition theo-

rcms discussed in reference 27. The calculation of the velocity and acceleration vectors

is fundamentally nothing more than the diffcrentiation with rcspect to time of a position

vector in (i.e., relative to) some coordinate system. It is often necessary to determine the

time derivative of a vector iu coordiuate system B, wheu the derivative is known only in

coordinate system A. Given an arbitrary position vector R and its first and second time

derivatives in A, the first and second time derivatives of __Rin B may be determined from

the following expressions.

lld_R = A d_ R _-_AB+ ×R
dr-- dr-- -- --

B1 _ B B
dt 2 -- dt _--

A d(Ad R _-_AB)____AB (A d ___Ali)= _ dr_+ xR_ + x R+ xR

(5.4-1)

d 2 dflaB 2_2 AllA Rq_ A x R+ x
dt 2 -- dt -- -- --

A d ____Ali (_'_Ali R)× ×
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The Kirchhoff kinetic analogy (ref. 28), can also be applied to equation (5.4--1) to
obtain the virtual displacementvector. Time derivatives in B, t_t (), are replaced with

B6( ); velocity vectors in A, Ad(• ,it )' are replaced with virtual displacments in A, A_( );

and angular velocity vectors flAB are replaced with virtual rotations ,5¢ AB.

B_R= ASR+_¢AS ×R (5.4-2)
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6. SUBSYSTEMS

As describedin Section 3, the physical structure that is being modeled by GRASP is

broken down into a hierarchy of substructures. Each of these substructures is represented

in GRASP as a subsystem. Every subsystem in the model is in turn composed of a set of

components which may include a frame of reference, a set of nodes, a set of constraints,

and a set of child subsystems. It is the interrelationship among these components that

allows the construction of the equations of motion for each subsystem.

6.1. Frames of Reference

The position of the frame of reference F for a child subsystem relative to the frame

_,f reference S for the parent subsystem is defined as R Fs, and the orientation (direction

cosines) of the child subsystem's frame relative to the parent's frame is defined as C vs

(fig. 7). Since Newton's laws apply only in inertial frames of reference, all equations of

motions must be written relative to an inertial reference frame. Therefore, it is essential

to have a method of transforming back to the inertial frame from any subsystem frame in

the model. If the position and orientation of the parent's reference fl'ame S are defined

relative to an inertia] reference frame [, the inertial position and orientation of any child's

reference frame F can be determined from the parent's reference frame S by applying the

fl_llowing equations recursively.

RFt =R Fs _ R st

C FI :cFSc SI

(6.1-1)

In addition to the position and orientation of any reference frame relative to the inertial

reference frame, it is necessary to know the inertial motion of every subsystem frame. A

subsystem reference frame may experience accelerations relative to the inertial frame if it

or any of its direct ancestors is experiencing translational accelerations or rotation motions.

Thus, if the inertial motion of the parent's frame of reference S is known, then the velocity,

angular velocity, and acceleration of the child's frame F can be obtained from the following

equations:

I__[FI =___rFS @ vSI _[_ ____SI X R FS

_rI =Q___SI q_ Q FS (6.1-2)

A_AFI=AFS + Asx + _sr × (_sl × RFs)
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Figure 7. Frames of reference.

When expressed in the appropriate bases, these equations become (in matrix form)

()SI DFS

_' :c_S(_y + _s)

- Sl - SI FSA_' =CF_(A__ + Ay + _ _ R_ )

Note that in the current version of GRASP, it is assumed that V Fs = A Fs = O.

(6.1-3)
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Framesalso possesssix rigid-body degreesof freedom. Thus, while frames are not
physically attached to the structure, they may moverelative to oneanother in space.In the
caseof steady-state deformations, these six degreesof freedominclude three translations

ahmg the defi,rmed frame basis vectors and the three Euler-Rodrigues pnranmters for

angular displacements. Tile steady-state displacement vector fl>r frame F is

RF' F F' F "F'_ = RF, _ _bi (6.1-4)

Tile steady-state frame rotations are expressed in terms of eF'F, and the direction

cosines of the deformed frame coordinate axes F r with respect to the undeformed coordi-
cF'Fhate axes F are written as --ij . In matrix notation, the steady-state frame state vector

is

qF' = ¢_" F

F,,r dynamic perturbations about the steady-state condition, the displacement vector
is

F" F' ^ F"
R_F''F' RF,, [ b i (6.1-6)

The dynamic I)crturbations of the frame rotations are expressed in terms of infinitesimal
-F °' F'

rotations 0_.,,/ , for which the direction cosines (ref. 21) are

- F" F'

cF"F' = _ -- OF"i (6.1-7)

In matrix notation, the dynamic perturbation frame state vector is then

F" F' /
RF"i (6.1=8)

qF" = "F" F'
OF"i

The virtual displacements for the steady-state and dynamic formulations are simply

variations of the displacement coordinates

, _F'

F" F' - F"
6R F''F' =_RF,,, bi

(6.1-9)

and the virtual rotations are variations of the rotational degrees of freedom

, F'

..... -- F' i ---t

F tt

(6.1-10)
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6.2. Nodes

Nodes are used by GRASP to model the kinematics of a structure, and their degrees

of freedom are representative of the physical states of that structure. The position and

orientation of any node is defined relative to the frame of reference for tile subsystem in

which the node resides. Thus, for a node N in a subsystem with reference frame F, tile

position and orientation of N with respect to F are __RHe and C NF, respectively. Two types

of nodes are currently used in GRASP: structural nodes and air nodes. The kinematics of

these nodes are described in tile following sections.

6.2.1. Structural Nodes

A structural node represents a specified material point on a structure. Since the

material point may have up to six degrees of freedom, the structural node also has six

degrees of freedom. For the case of steady-state deformations, these six degrees of freedom

include three translations along the undeformed nodal basis vectors _.N and three Euler-

Rodrigues parameters ¢/N'N for angular displacements. The nodal displacement vector for
node N is then

N,N^N
B N'N = RNI b_i (6.2.1 -1)

The direction cosines of the deformed nodal coordinate axes N' relative to the undeformed
N'N

axes N are expressed as Cij . Then, in matrix notation, the nodal state vector is

{ I_N'N }

"_"Ni

qN' : cN'N (6.2.1-2)

Note that the n()da.l steady-state degrees of freedom are referenced t() the undeformed nodal

basis, whereas the frame steady-state degrees of freedom are referenced to the deformed

frame basis.

is

For dynamic perturbations about the steady-state condition, the displacement vector

t_N"N' N"N' ^N__ = nNi b i (6.2.1-3)

The dynamic perturbations of the nodal rotations are expressed in terms of infinitesimal
"N"N'

rotations ONi , for which the direction cosines are

=N" N'

C N''N' = A - ONi (6.2.1-4)

In matrix notation, the dynamic perturbation nodal state vector is then

{ N"N'}
RNi

qN" = -N"N'
ONi

(6.2.1-5)

Note that the nodal dynanfic degrees of freedom are referenced to the undeformed nodal

basis, whereas the frame dynamic degrees of freedom are referenced to the dynamically

perturbed frame basis.
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The virtual displacementsfor tile steady-stateand dynamic fi)rmulations are simply
variations of the displacementcoordinates

_RN'N N'N ^N__ =_RNi bi

(6.2.1-6)

N"N' ^N
6R lv''N' =_RNi b_i

and the virtual rotations are variations of the rotational degrees of freedom

_1_ N'N =_,N'NbN
Ni --t

N"N' N"N' *N

_'/' =_¢Ni --hi

(6.2.1-7)

6.2.2. Air Nodes

The generalized coordinates representing the axisymmetric flowfield associated with

a helicopter rotor are introduced into GRASP by means of the air node. The generalized

coordinates arc defined relative to an inertial frame of reference I, and determine the

inertial air velocity at a point _ as

oQAA (6.2.2-1)uQ'= _(u, + +

hA

where bj is an inertially fixed unit vector and A is a coordinate system whose origin is

located at the center of the axisymmetric flowfield. The distance from the center of flow v

can bc calculated from

-- + (RAQA (6.2.2-2)

F,,r the case of steady-state inflow, U n and 7_ represent the uniform inflow velocity

and the radial velocity gradient, respectively. The other two generalized coordinates have

no physical meaning under these conditions, and therefore are not used. The air node state

vector for steady-state inflow is then

qA' : ( U¢7_,. } (6.2.2-3)

To model dynamic inflow, generalized coordinates U#, 7 A, and 7_ represent the

collective and two cyclic velocity perturbations. The air node state vector for dynamic

inflow is then

qA,, = 7 A (6.2.2-4)
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7. CONSTRAINTS

The purpose of a constraint is to create a dependency among generalized coordinates.

In GRASP, the dependencies among the generalized coordinates are used to eliminate

dependent generalized coordinates in favor of independent generalized coordinates. In

the following sections, the general formulation of a primitive constraint will be presented,

followed by the specific applications in GRASP. Then, the composite constraints that have

been constructed from the primitive constraints will be discussed.

7.1. Primitive Constraints

Consider a set of generalized coordinates that are related to one another through a

constraint. The constraint relationship g may be written in the special form

q_, =gi(q_,...,q,,tv,) , (i = 1,...,N e) (7.1-1)

Thus, the generalized coordinates related by the constraint can be partitioned into two

sets: a set to be eliminated, qe, and a set to be retained, qr. Using the constraint relation-

ship, the set to be eliminated can be obtained directly from the constraint functions which

depend only on the set to be retained.

The virtual work fi,r the generalized coordinates associated with the constraint is

N e N _

6W : Z 5qc, Qe, + Z 6q,., Q,.,
i=1 i:1

(7.1-2)

The sum of the generalized forces Q associated with a generalized coordinate may differ

from zero for two reasons. First, during the process of seeking an equilibrium solution,

equilibrium may not always be satisfied. In this case, the sum tff the generalized forces is

residual force that is a measure of the error in the approximate solutim,. Second, even if

the complete system is in equilibrium, individual subsystems may not be in equilibrium.

The generalized forces for these subsystems will be nonzero.

Taking the variation of equation (7.1-1)

5qc, = Z Og--A-
j: 10q,.¢ 5q,.j ,

(i = 1,...,N (7.1-3)

and substituting Eq. (7.1-3) into Eq. (7.1-2)

Ogi
(7.1-4)

This relationship is used by GRASP to incorporate tile contributions of the generalized

forces associated with the eliminated generalized coordinates into the retained generalized
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fl_rces.During calculation of steady-state residuals, the residuals associated with the elim-

inated generalized coordinates are transformed and added to tile appropriate residuals in

the parent substructure's residual vector.

The treatment of constraints for small perturbations about an equilibrium state is

a little more involved. For this problem, each generalized c(H_rdinate is assumed to be

the sum of an equilibrium value and an infilfitesimal perturbation from that value (i.e.,

q = _ t 4). Equations (7.1-1), (7.1-3) and the generalized forces Q can all be expanded

in Taylor series about the equilibrium value. Noting that equation (7.1-1) is valid when

q - q, expansion of equation (7.1--1) yields

(i= 1,...,N _) (7.1 5)

Expansi_,n of equation (7.1-3) yields

N ( N )Ogi O_gi .

6q¢, = JE=, _q", _ + kZ=10q_, Oq,., q'" +"" '

(i= 1,...,N _)

(7.1-6)

Expansion of the generalized force, Q, for both eliminated and retained terms yields

N e N"

j--I j=-]

N e N _.

j=l j=l

(i= 1,...,N _)

(i=l,...,N _)

(7.1-7)

where the linear operator, L, contains the terms normally associated with the mass,
d _ d

damping, and stiffness matrices, -M_- - C_ - K. Note that the minus signs are present

in the definition ,,f x_ because the generalized fi:_rce is generally regarded as positive on

the right-hand side of the dynamical equation, whereas the linear coefficient matrices are

regarded as positive on the left-hand side.

GRASP calculates the -_I, C, and K matrices for a subsystem by adding the contri-

butions of each of its children. The rows and columns of the child subsystem's matrices

correspond to all of the generalized coordinates of the child. The constraints are used to

eliminate dependent generalized coordinates, resulting in matrices whose rows and columns

correspond to only the retained generalized coordinates of the child. The matrices elements

are then added to the elements of the parent's matrices that correspond to the child's inde-

pendent degrees of freedom. The required transformations can be found using the virtual

work for the subsystem.
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An expressionfor the virtual work from small perturbations about the equilibrium

state may be obtained by substituting equation (7.1-6) and the eliminated and retained

subsets from equations (7.1-7) into the virtual work expression in equation (7.1-2).

N * N" )

k=l k=l

(7.1-8)

After discarding terms of second or higher order, the expression for virtual work

consists of a constant part and two first-order parts in q. The constant part is the same

as equation (7.1-4), except that it is evaluated for the equilibrium state.

N e N _"

/ agi -- )
i=l )'zl

(7.1-9)

The first linear portion of the virtual work is the single term

Z_-_gq,. ' 02gi -Q_, q,.k =
j = 1 to=1 ,. i= 10qrj Oq,. k

N*" N r

Z >____,6qr, \ --,',,.,,]
j:l k:l

(?.1-1o)

The matrix K a represents the geometric stiffness associated with the constraint. During

assembly of the matrices for the parent substructure, GRASP calculates this geometric

stiffness and adds it to the stiffness matrix in the parent substructure. This extremely

important term is often overlooked. For instance, a pendulum, modeled as a rigid-body

mass constrained to rotate about an offset axis (using a screw constraint) derives all of its

stiffness from this geometric stiffness term.

The remainder of the linear terms are

N" N _ ( N _ )
j=_ k=l i=10qr_

ZZ_q,.j [-',',,',, +
j= J k= a = Oq,.j

(7.:-::)
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After substituting equation (7.1-5) into equation (7.1-11) for the eliminated perturbation
coordinates these terms become

ZZ_qr, L,-j,-, + i/Te,rh+
j=l k=l .= 7rj

N" N" N" (7.1-12)

e,.a.q,__ - ) vOq,., 47 Z Z --- Oq,., q"'l=1 i= l 1=10q,,j Lele_

The quantity within the parentheses in equation (7.1-12) can be thought of as defining

a new set _f _I, C, and K matrices in terms of the retained and eliminate<l portions of

thc ,,riginal matrices. GRASP calculates the new matrices and adds their elements to the

dements of the parent substructure's matrices.

The definition of a constraint follows from the specification of the function g. To obtain

a. solution for a system in equilibrium, the matrix o_ must be known. A perturbation
0q

solution, however, requires both the matrix 0_ and the geometric stiffness matrix K _. In
Oq

the 5,11owing constraint derivations, matrix °O-_qwill be denoted by _.

7.1.1. Fixed Frame

The fixcd frame constraint describes a rigid connection between two frames of refer-

once, F and S. Regardless of the changes in position and orientation relative to inertial

space that they may undergo, their position and orientatioI, relative to one another re-

mains constant. The current (child) frame F will have its degrees of freedom eliminated,

while the degrees of freedom for the superordinate (parent) frame S will be retained. In

GRASP, this constraint is available through the user interface.

Steady-State. Consider two frames in their undeformed (S and F) states and in their

steady-state (S' and F') configurations (fig. 8). The degrees of freedom of F (and F') are

considered to be dependent, while those of S (and S') are independent. The frames are
assumed to be connected such that

R__S'S -4- R SF 47 ___FF' 47 R_F'S' = 0 (7.1.1-1)

where

and

Titus,

F' S' RFSR s , =

cS'ScSFcFF'c F'S' =

R F'F = Br's' + R s's _ B _s

(7.1.1-2)

A (7.1.1-3)

F's' _ cF'S'CS'SRFSF = s + )

C F'F : cF'S'cS'Sc SF

(7.1.1-4)
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Figure 8. Fixed frame constraint.

Consider the virtual work performed in the F' frame at F'.

T F' F'F T F'
6W = (_R_: F) F,_, + (_¢F, ) MR, (7.1.:-_)

Tile virtual displacements and rotations at F are related to those at S such that

_,_, _, SR_S)u.,_ F,'filE2F'F= C (_gs, S - _C S'

_'s' s' _s's S,SR_S ): C ('_Rs ,s + _¢s, C

__c_,_ ,(_._,s_.._,_ R_¢_:_)

(7.1.1-6)

I t t tFF FS SS
_¢r, = C _¢s,

so that the virtual work performed in the F' frame at S' becomes

F 't F t,_w :t_n_,S)Tc s' F_, +

S'S T S'F' F' _FS I_F'_(_¢s,) (c M_., + ..s, - s,,
(7.1.1-7)
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Equations (7.1.1-7) show the contributions of the force and moment acting at F to the

force and moment at S for the steady-state problem.

Dynamic. Now consider the two frames in their dynamically perturbed (F" and S")

states (fig. 8). The perturbed position and orientation are related by

B_s" s t " F" RF"' S"-t- R s' F' + RF' + = 0 (7.1.1-8)

where

and

Thus,

F I$ F I

RF,,

c F" F'

F" S" F'S'
Rs,, = R s,

cs"S'cS'_"cF'F"C F''s'' = A

__ cF"S"(Rs, ,S''S' __ Rs,,F"S") _ cF'S"cS"S 'RS ,F'S'

= cF'"S"CS"S'cS'F'

(7.1.1-9)

(7.1.1-10)

(7.1.1-11)

Taking the variation of both sides yields

_ S" S'

: +

:

:s"s' F'S' (7.1.1-12)(Lx- Os, )Rs, J

The transfi)rmation from the F" frame to the S" frame can then determined in terms

of R and K c.

= o C F''s'' (7.1.1-1a)

where the columns of 7_ are associated with variations of the generalized coordinates

_R_:: s' and _¢s;;s', and the rows are associated with _RFF:: F' and _¢F;:F'. Then,

 o[0 0]-F' -F'S' (7.1.1-14)
0 FJ, R s,

S" S' "S" S'
where the columns of K G are associated with generalized coordinates Rs,, and Os,, ,

S" q' S" S'
and the rows are associated with 3R_,," and 6_s,, . Equations (7.1.1-13) and (7.1.1-

14) define the constraint formulation for dynamic perturbations about the steady-state

configuration.
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7.1.2. Structural Node Demotion

The structural node demotion constraint describesa rigid connection betweena node
D in the chihl subsystem which has a flame of reference F, and a node I in tile parent

subsystem which has a frame S (fig. 9). The degrees of freedom for the dependent node

D will be eliminated, while the degrees of freedom for the independent node I, the super-

ordinate frame S, and the current frame F will be retained. In GRASP, this constraint is

generated internally, and is not available through tile user interface.

Figure 9.

I

Structural node demotion constraint.

Steady-State. The governing equations express the displacement and orientation of

node D in terms of those of I, S, and F. The basic equations for the deformations come

fr_lll

R__v'D=lt_'r + R_'I + R_Is' + It s's + It sF + R__FF' + Rv'D
(7.1.2-1)

cD'D =cD' I'cI'I cIS 'CS' S CSF CFF ' cF'D

In matrix notation the basic equation governing displacement is

n'_ '_ =C''_'C'_'Fc'_ScSS'[eS"(C'I'R_'" + n;") + It'd'+ n_:S] -
(7.1.2-2)
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It is also necessary to take the force and moment at D' and find their contributions to the

h, rces and moments at I', F', and S'. For this, the virtual displacement and rotation of

D' relative to D is required. Tile virtual displacement is

,, Rf ,,6RDD 'D -- -- cDF'_bF , cF'FcFScSS' q- q- _- S' J {-

c rcrF .'.' R,") nf .'C C _¢s, Rr + + + "s j+

C_rCr'FcFScSS'[c s''-'''(_¢, C'" R,,D'" + _R,"r) + bRf:s] +

D '_' _F'FcF'FcFSRfS cDF'_SRT:FC " _¢F,

cDF'_DF'F cDS ' S' cDI_SRII'!= - _'"F, + bRs, S + _

_,F'--r'FR_;F o_'--S'SR_,'s 0I -_'I o'rC 5¢F, + C 5¢s, -_ C _¢_ R z

cOS'(,SR_:S -o's s's-Rs, _¢s, )+

CvI($R _'I_ RI-u'_' _¢I1'i )

and the virtual rotation is

(7.1.2-3)

, ,g'_DS £,h S S DF' '_' = cDI 'I __ ._ -ws, - C (7.1.2-4)

The virtual work performed in D' contributes the following terms at I', S', and F'

T D' S'S T D' I'1 T D' , T D' _D'FIgD'
5)4]=-(,5R_', F) F F, +(,_R s, ) F_,-! (_R t ) F] --(_¢FF, F) (2il F, +'_f' -F,)4-

, T D' _D'SIgD' 'I T D' -D'I' D'
((51bss's) (Ms' +*_s' *s' )+(_i_b_ ) (M I +n, F I )

(7.1.2-5)

Dynamic. For dynamic perturbations about the steady-state configuration, the basic

kinematic relation is used to determine the matrices R and K c'. Tlte basic equation

governing the displ, :ement is

R_D".' =RD"r' + tt r'r + R_r'1 + _Rrs'' + RS"S ' + R s's-

RFS RF'F RF"F '

_RD"D' =Ro"r' Rr'r RrJ R s"s'+ + + R rs'' + - R_F'S'-

RF"F ' _ RDF" _ RD'D

(7.1.2-6)
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Expressing the position of the perturbed state relative to the steady-state position in the

D basis (fig. 9), the dependent node displacement may be obtained.

DII jtl

=cOF"cF"F'cI_'S'cS'S"cS"tCIr Rj,, +

CV/'CF"F'cF'S'cS'S"cS"I(R_ ''r + R_'_)+

c D F" c F" F ' F' S' S' S" IS" S" S'c c (Rs,, + Rs,, )--

cDF"c F'' F' C F' S' Rs ,F'S' 4-

DF" __ RD'DC°F"(R_',',r + R_,, )

(7.1.2-7)

The first variation is

S" S" I I"
_R_ ''v' =cDF"cF"F'cF'S'c s' C ,_Rt 1'+

S" S" S' D F" F" F'
cDF"cF"F'cF'S'c S' 6Rs,, - C 6RF,, 4-

S" S" I II' I'I" D" I"
cDF"cF"F'cF'S'c S' C C 6C RI,, 4-

cDF"cF" F'cF' S'6cS' S '' [cS"[ c[l'cl'J '' RI,,D"r' +

s", '"" R;") ,s" s"s'_C (R_ 4- + Rs,, +Rs,, J+

cDF"t_cF"F'cF'S ' [cS'S"cS"IcII'cI'I '' D"["Rr,, +

S' S" IS" S" S' F' S'cS'S"c_"'(n;"" + n;")+ c (_,, + ns,, ) - R_, ]

(7.1.2-8)

Similarly, the relationship governing tile virtual rotation is

D"D' =6¢V"r' r 6¢ri is" o"s'6¢ +6¢'" + +6¢ +6¢ ° -

6¢F'S' _ _¢F"F' -- 6¢ DF'' -- 6¢0'D
(7.1.2-9)

which in the D basis becomes

(7.1.2-10)
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The virtual work doneby a force at D" is then

(_RID,, D, T D" I"I' T D' IS' -D' S"S' -D' F"F') F_ =(_R I ) (F; ÷C F_, Os,, C IF'- F_,OF,, )_-

(_R_:'s'T o' -.' s"s' -0' F"r) (f_, + F_, Os,, - Cs'_'F_, OF,, )-

(_R_:: F' T) F,_,+D'

. , T -D'I' D' ~D'-D'I' I"I' cIS ' -D'S' -D' S"S'(6¢I I) (n I F; +F]R t 01 + ns, F_, Os,,

IF'-D'I' ~ D' F" F'
C R F, F_, OF,, )q-

( ,5_,s;: s' ) t ( flOS,'S' r_' _ CS" FD' RIt" ' ' _ Fg'RS:: s' +

- D' I' 1"I' - D' S' - D' S" S'
cS'* F_'Rt Ot + Rs, F_, Os,,

S' F' ~ D' S' - D' F" F'
C RE, F._, OF,, )-

(_¢;;: F')_(k_; F'F_' - CF"_?'RI '''' - Cr _'P_,'R_:;_'+
F' I ~ D' - D' I' 1"1' " D' - D' S' S" S'

C F] Rl 0i +C f's'F_,Rs, Os,, -

-19' ~ D' F _ F"F'
F.#, RF., OF,, )

(7.1.2 11)

and the virtual work done by a moment at D" is

_,,_, T .... ,,., T ._,, -S" -F'F' . D"(,¢_; ") Mg :(,¢I ") c "_ (_ os,,S')cS'r(_x +OF,, )Mr,

F' D" _

"F' T D"

+

" ' ' ' - ' " ' - ' F'F'
{_lS II.fD _S S' __ cIF M D OF,, )+=(_¢I ' )_(M.° + .... _, _,,

S"_' T ._, - D' S"S' - D' F"F'(_¢s,, _ ) (ME, + Ms, Os,, - Cs'F'MF, OF,, )--
F,,_, T ,_,

t' .t.,,(_¢r,, ) Mr

(7.1.2-12)

The matrices "P. and K a are

co, -c',hf",' co_' _co_'R_'_' _cot COrR,;r]R = (7.1.2-13)J0 C TM 0 C DS' 0 -C DF'

where the columns of R. are associated with variations of the generalized coordinates

_n_::r r'_' s"s' s"s' r'r' r"r, 6¢I" , _Rs" , _¢s" , _RF,, , and 6¢F" , and the rows arc associated with
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_ I:_D" D' D" D'"'V" and 6_D,, . Then,

g G =

0

0

0

0

_ c F' I FF'

0 0

- D' - D'I'
-F r R I 0

0 0

-c,' , ',' ry,'
0 0

- D' - D' I' - D'Cr'lFI R I -cF'S' F:_,

_ CIS' r D,

_t_lS'rSo'r_D' - o'"_ _--s, - s, +Ms, )

_riD'

- D' S' - D' - D'
-R s, F_, - M s,

0

C F'S' r_,-D' Rs,-D'S'

0 cIF'PFD,, '

0 c1F'(hV;r +Mr, )-O'

0 C S'F'rED,'

0 cS'F'(hl_;S' F_.,~D' +1_,)- D'

0 0

" D' ~ D' F'
o -F_, R F,

(7.1.2-14)

where the columns of K a are associated with perturbations of the generalized coordinates
RI"I' -I"1' -S"S' "S" S' "F"F' -F"F'I" , Ol,, , Rs,, , Os,, , Rr,, , and OF,, , and the rows are associated with 6RII',', I',

_s,, _Rr" and 6¢F,,

7.1.3. Screw

The screw constraint describes two nodes, D and I, that are connected by a mecha-

nism that permits translation along and rotation about a single axis which is fixed in the

coordinate system of both nodes. The dependent node D will have its degrees of freedom

eliminated, while the degrees of freedom of the independent node I wiP be retained. This

constraint is available through the GRASP user interface.

To simplify the derivation, two intermediate nodes located on the screw axis _'_" will

be introduced (fig. 10). The "stationary" node S is rigidly connected to the independent

node I, while the "moving" node M is rigidly connected to the dependent node D. Nodes

M and S initially coincide in both position and orientation, but may translate along and

rotate about the screw axis relative to one another.
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scr

D

Figure 10. Screw constraint.

Steady-State. For the steady-state problem, tile equations governing the degrees of

freedom must be developed, as well as the equation for the contribution of tile force and

moment acting at D' to those at I'. The basic displacement and orientation relationships
for the screw constraint are

RV'_ =RD'M ' + R M's' + R s'r + R rl +_R Is + R sM + R My

cD' D =_cD'Ai ' Cl%,l' Itt' Viii ' s' CS' I ' CI' I cID

(7.1.3-1)

where 1Q' indicates a node whose position and orientation relative to S' is the same as

that of/%I relative to S. The position of D' relative to D in the D basis is then

where

RD' D __cDI cII' CI' s ' cS'M ' CIt4'M' cM'D ' RDD: M' __

t-,Dlt-_lI't-vl'S' 8cr'
R_ M + ,., ,_, t, ue s, +

+ R;"- Rf')

R M'S' : u_ "cr'

.nd u is the screw displacement.

(7.1.3-2)

(7.1.3-3)
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These equations simplify somewhat since C Is = C rs' = C D'M' -_ C DM = A. C M'M'

can be easily expressed as an Euler rotation, given the screw rotation 0, and _¢"' the screwe/%l, ,

axis unit vector. The virtual displacement is then

_RDD'D CDI_cII'cI'S'cS'M'cI_f'M'cM'D'DD'Itf '_D, +

D' M'
cDIcII'cI'S'cS'I_f'_cI_I'ItI'cM'D't_D, +

I F pICm_Cn'C_'S'e_s_,e u + CmCn'C I s e_s_,fu+

cDI(_cII'RSI,'I' + 6RI 'I)
(7.1.3-4)

' - S' I' '=c_"[6Rf'- (R,°'_' ÷ u_lcr + R, )6¢I'+
r t :$cr' DD'/_l' ftl]

e}¢ 6u+ _1 _"I o-j

and the virtual rotation is given by

6¢0° (6¢_' + el 60)D' -__ cDI ' or' (7.1.3-5)

is

The virtual work at the screw connection and at I' due to a force and moment at D'

I'I T D' I'I T6w =(6_x ) F1 + (6¢,)

6u(e;_"') TF_' + 60(e_ _'

- D' I' D'R, F/ +MF)+

T -D'M' D'I (R, FI +M_ ° )
(7.1.3-6)

Dynamic. For the dynamics of the constraint, the equations governing the degrees

of freedom are used to to find the matrices 7"4 and K a. Consider the nodes and the screw

axis in their perturbed states (fig. 10), an infinitesimal perturbation from their steady-state

positions and orientations. The basic equations are similar to those of the steady-state case.

RO"o' =RD"M" RM"XI" RX_"s" RS"I"+ + + +

R I''l' + _RI'D'

6¢ °"0' =6¢ °''_'' + 6¢M"X_" 4 _¢M-"S" +

6%/,S" I ..... I ....+6¢J s +6¢ "

(7.1.3-7)

The first, third, fourth, and sixth terms are zero in both equations. Proceeding as above,

and noting that

t,,_,,t,Cl1, , -r,1,)clr,C r'r =A-C =C xf(A-Ot

-.,,., _ I" l' II'
6C _''r' = - Cl'r(_ - 8} " )6¢! C (7.1.3-8)

_cM"M" =_ en-.c," f,M M
o_eM,, tJ
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the R and K c matrices are then

cDI __ cOlk?'l' COleOlCr' ,,..:t"TOl'-'scr' I:_O't_'l'el"tl

0 C m 0 CDte'/r'
(7.1.3-9)

where the columns of R are associated with the variations of the generalized coordinates

iSRt/'r, h4,tt ''r, 6u, and 60, while the rows are associated with 6R °''°' and _fDn''°'

Z G _.

"0 0 0 0

- D' I' zscr' ?i'D' _D' f-_D' 31' ,_scr'0 -FID'Rz -_I * I -* I atl _I

o ,)Tp?, o o
(nD_M_ T.acr _ .Dr

-, ,,, FI __(R_'M')T_,,.'_,.' Fff '

(7.1.3-10)

where tile columns of K c are associated with the perturbations of the generalized coor-
- I"1' "1"1' "dinates R t , 01 , _, and 0 and the rows are associated with 6R_ ''r, 6¢_ r _u, and

7.1.4. Copy

The copy constraint describes the relationship between generalized coordinates that

are com,nou to both pa.rent and child subsystems, but are otherwise unconstrained. This

situation most often exists when unconstrained generalized coordinates in the child sub-

system are passed up to the parent subsystem. This constraint is not available through

the (]RASP user interface.

Steady-State. From equation (7.1-1), the constraint relationship between the child

subsystem generalized coordinates q¢_ that will be eliminated and the parent subsystem

geueralized coordiuates q_, that will be retained can be written as

q_, = qr,, (i = 1,...,N) (7.1.4-1)

Therefi_re, the calculation of the contributions of these generalized coordinates to the child

subsystem state vcctor involves only copying the values of generalized coordinates from

the parent subsystem state vector into the child sul)system state vector.

The variation of qe, is then

6qe, = 6qr,, (i ----1,... ,N) (7.1.4-2)

When this expression for ,Sq_, is substituted into equation (7.1-2), the virtual work is

N

6W = Z 6q_j (Q_, + Q_,)
j=l

(7.1.4-3)
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Thus, to assemble the residual vector for the parent subsystem, the contributions of these

generalized forces from the child subsystem are added to the generalized forces frmn tile

parent system.

Dynamic. Tile derivation of the constraint dynamics follows a similar vein. First,

the perturbed generalized coordinates, the variations of the generalized coordinates, and

the generalized forces are expanded in Taylor's series.

q_, = (lrj, (i = 1,... ,N) (7.1.4-4)

gq¢, = _iq_i (i = 1,...,N)

N N

j=l j=l

(i : _,...,N)

N N

j=l j=l

(i=l,...,N)

(7.1.4-5)

(7.1.4-6)

When these expressions are substituted into equation (7.1-2), and the resulting expression

simplified, the virtual work is written as

6)4; = Z 6q,., e,
i=1

N ]+ _, + _ (L,e_+ L,._ + L,_ + L,_) _._
./=1

(7.1.4-7)

Since the q,, generalized coordinates exist only in the child system, and the qr_ exist only in

the parent system, Le,, i and Le;.i are null. The T_ matrix is, therefore, an identity matrix.

For small perturbations about the steady-state solution, the coefficients in the rows and

cohmms associated with the copied generalized coordinates in the child subsystem dynamic

matrices (2_I, C, and K) are simply added to coet_cients in the corresponding rows and

columns of the parent subsystem dynamic matrices. The geometric stiffness matrix K a is
null.

7.1.5. Prescribed

The prescribed constraint is used to describe the permanent deformation of a partic-

ular generalized coordinate. This constraint is trivial, because the steady-state value is

constant. In GRASP, the prescribed constraint is available through the user interface for

nodal degrees of freedom.

Steady-State. Following the derivation of a general constraint, consider a child

subsystem that has N ¢ generalized coordinates q_, i = 1,..., N e. For this constraint, one

of those generalized coordinates (e.g., q¢, ) has a prescribed, constant value.

qex = constant

q_,:g, (qr,, . . . ,q,,. ), (i = 2,...,N _)
(7.1.5-1)
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The total virtual work is
N c N r

i=1 i=1

(7.1.5 2)
N _ N"

i=2 i=1

since the variation of the prescribed generalized coordinate _qel is zero. Therefore, this

generalized coordinate makes no contribution to the virtual work of either the child or par-

ent subsystem. In practice, degrees of freedom that are prescribed in the child subsystem

may be elinfinated from the parent subsystem state vector.

Dynamic. The derivation of the dynamic constraint equations for small perturba-

tions about the steady-state solution proceeds following equations (7.1-5) through (7.1-7).

The only difference is that in equations (7.1-5) and (7.1-6), i = 2,...,N e. When these

expressions are substituted into equation (7.1 -2),

Oq,.iOq,.h(l"h +''" Q_, + Z L_,_k(t_h + Z L.,_h(7_h
k--_l k=2 k=l

= i=2 j=_

(7.1.5-3)

From this equation it can be seen that the contributions to the virtual work are the

same as for the general case, with one exception. The rows of Le,_h and L_, and the

columns of L_ie h and L,_j, associated with the prescribed generalized coordinate have

becn eliminated. This is equivalent to removing the appropriate rows and columns from

the 11I, C, and K matrices that are passed up to the parent subsystem.

7.1.6. Copy Air Mass

The copy air mass constraint is the constraint used to transform the air mass gener-

alized coordinates and forces between ctfild and parent subsystems. This constraint is a

clone of thc copy constraint, specialized to copy only the four air mass degrees of freedom.

Due to the fact that the air mass degrees of freedom are defined in an inertial frame, and

need never be trah_mrmed out of that frame, the generalized coordinates and forces are

simply copied. The copy air mass constraint is not available through the GRASP user
interface.

7.1.7. Periodic Frame

The periodic frame constraint describes the relationship between a superordinate (par-

ent) frame S and three or more identical, child frames Fk (for k = 1,2,... ,b) rigidly at-

tached to S. Frames Fk are located at equally-spaced, azimuthal intervals about an axis

fixed in S (fig. 11). The origin of S is located on the axis of symmetry, wt, ile the origins

of the F_ may be located elsewhere. In GRASP, the periodic frame constraint is available

through the user interface.
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Figure 11.

F1

Periodic frame constraint.

The deriva.tion of the periodic frame constraint is very similar to that for the fixed

frame, except that it is assumed here that there are b identical frames spaced at equal

azimuthal intervals around an axis. The quantity "_¢FhI'_SFttis independent of k, and C F_s =

C F' sT k where

Tk = To + Tc cosCk + Ts sinCk (7.1.7-1)

and where

TO [10 ]0 0

0 0

TC [i°10 (7.1.7-2)

TD [i °°0 1

-1 0

2,_(k¢k-- b -1), k=l,2,...,b (7.1.7-3)

The fixed frame equations can be easily modified to account for this configuration. It will
-S

be assumed that the axis of symmetry for tlle periodic, child frames is b I .
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Steady-State. For the steady-state problem, the equations for the deformed position

and orientation of any one of the child frames can be written as

' ' ' RF;,S' _ CF;,F_ F,SF;,Vk =cF, S TkRS, S + "'U;, RvkRF_

F' S' S' RF_ S' F' S'--C ' cS'STTcSF'R Fhs (7.1.7-4)
=C , T_Rs 's + "F;. Tk k Fk

CF;,F_ =CF; S'Tk cS' ST'kr CSF,

Ill order t,, make the left-hand sides independent of k, let r:s's _,8's = 0 and _bs's_LS'2 : _"8'3
(/) _;' S

= O. Since tile right-hand sides are equivalent for all k, all Tk can be set to To to

siml)lify the equations. The virtual displacements are then

F;.F_ =cF_S'To6R_:S cr;S',v j:t.-,S'S,r, Tg.,SFxDFhS6RF_ -- "L0 u"_ "*0 _-_ "tFj,

(7.1.7-5)

_pF_S',7_ t;DS'S To_'_S'Sr.S'S,rT_SF, FhS

and the virtual rotations are

' r'S' S'S
_,/,F_F, _ C"_ To_¢s, (7.1.7-6)

The virtual work at S' due to the b sets of forces and moments acting at F_ is therefore

b

' F h Fh F_

,5)4; = (6RF_ Fh / " F_ + (6¢F_ ) MF_
k=l

, T ' ' ' S'S T [TuTcS, F_ F,
__ S S T S F 1 F, '__
-b{(hR s, ) T O C FF: + (6_Ps, ) MF_

(TTCs'Fi FFF/,)-cS'STo TCsF' RF'S]F,j}

(7.1.7-7)

Dynamic. For small perturbations about the steady-state solution, the perturbed

position and orientation (fig. 11) of any one of the child frames Fk is

*'F_'IT_F_"F]' ----rlF_"S"*'V_' -[- C F"S", TkRs,,S"S' - C F"S"I Tk c s"5'T[cS'F: RF;,F],S'

" ' F"S" " ' ' '
CV;,F: =C , TkC s S TTC s F,

(7.1.7-8)
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To first order in the perturbation quantities, the virtual displacements and rotations are

" ' [ S"S' _S"S'

_-'F_"_rcF;'F;, =CF_,S,,Tk [6Rs,, + 6_bs,,

_,d,F_' F_, =cF;' S '' S" S',, Tk ¢ s,,
F_

n
(7.1.7-9)

= S" S'

Note that the geometric stiffness matrix will come from the 8s,, term.

After substituting into the expression for the virtual work, the matrix _ is

F"S" /_T_S'F; nF_SF'

0 CF;'s"T_
(7.1.7-10)

S st S t

where the columns of R correspond to gRSll s' and _¢s', , and the rows correspond to

bRF,, and "_F;' . The matrix K _ is
-h

g G __

0 0

b

- ' " ' ' F'S'_-_rI, T,._S'F' _Fh DFh s fir_
1

7 .'tk t_, ".VF, ltlz , w .t k
h --k

k----1

(7.1.7-11)

" S" S' "S" S'where the columns of K G correspond to Rs,, and 8s,, , and the rows correspond to

oF;' F; _,/, v;' F;
"'F_' and _wF,, • For evaluation of the lower-right submatrix, it should be noted that

b

Ez[( )r,
k=l

1 T 1 T

=b[T$( )To + -iTc ( )T_ + -iT, ( )2", 1 (7.1.7-12)

when the expression enclosed in parentheses is independent of k.

7.1.8. Periodic Node Demotion

Just as the periodic frame constraint is very similar in concept to the fixed frame con-

straint, the periodic node demotion constraint has a similar relationship to the structural

node demotion constraint, ht this case, a node belonging to a parent subsystem is repli-

cated in the child subsystem at b equMly-spaced azimuthal intervals about an axis that

is fixed in the parent subsystem. The periodic node demotion constraint is m,t available

through the GRASP user interface.

The degrees of freedom of the b child subsystem nodes D_ are expressed in terms of

the degrees of freedom of F_, S, and I. To visualize this constraint, consider figure 11 and

imagine a, node I associated with frame S and a node D_ associated with each frame Fk,
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as in figure 9. The virtual work done at all nodes Dk for k = 1,2,... ,b is determined at

Fk. Tile total virtual work is summed for k = 1,2,..., b and determined at S and I. For

this constraint, it is assumed that the axis of symmetry is b I , and that bI also lies along

that axis.

Steady-State. The governing equations for the periodic node constraint are dcrived

in a similar manner to those of the structural node demotion constraint. First, let

crhS =cF_S'

cDhl __cD'kI'

: cF1STk = cFIS'Tk

D' I'= cO11T_ = C , Tk

(7.1.8-1)

where Tk is derived in equation (7.1.7-1) and (7.1.7-2). When

RF_S
F i S;r

=R;2, = constant
Fk r-h

/_Dh I D_ I'
Dh =RD' k = constant

the positions and orientations of the frames and nodes may be written as

RD_DhIOh :cD'F_'cF_'FhcFtSTkcSS' [ CS'I(cI''T[CI'D'1RD_ ''+

"') R'/,'R, + + Rf,']
cD.F_[t-yF],Fh I:IFhS F_Fh RDhF_

_'-" "_Fh + RF_, "_F_ )

(7.1.8-2)

(7.1.8-3)

cDt, Dt; _g._Dtl' ' rlp" g',I ' I¢'_IS' t"TS ' Sr?_Tt'_SF_ t"_Ft, F_; cFhDt;
--,.., .t lt ,.._ t., ,./ .t k t., ,,.,

To make equation (7.1.8-3) independent of k, let Rts,s' = 0, C Is' = A and let Tk = To (all

displacements and rotations for S and 1 take place along or about the axis of symmetry).

The virtual displacements and rotations are required in order to calculate the virtual

work of a force and moment at D_ for all k.

t _F t i t

fRD: D" = _ Ct',F_,6¢F_F" cFtF, cF, SToC ss' [cS"(CH'ToTC'Z),._D, k17t_t +

Rtt 1') + nlsS' + Rss:s] +

cDhF/,cF/,FhcFISToCSS'_S'S ' , , ,
_0S' [ CS I( CII ToT CID'rID"I''D_ -4-

Rzz "r') + RIss,' + Rs',s]+ (7.1.8-4)

cDhF_cF_FkcFtSToCS S ...... I'I "" T "D'[C _ "(6¢, C" T 6 C" 'rcr)'h"++D_+

' -_'7, F_ Fk _F_F_,I_FI, S F_Fk

CD'F;'(--O_I'F;, (_" "'F, + 6RF_, )

5O



' S'S
.%/,D_D, =cDkF_cF],FhcF1SToCSS' (CS'I_I'I + _¢S' )--_WD k

t t

cDk F_. X./.Fk Fk
(7.1.8-5)

The virtual work due to the virtual displacements of each of the nodes D_ is

I (_,/ F_Fh )T{ il,fD,k ~ , ,_t
I-_DhFk _iID_, )A_

__] =_ _ (_RFr_Fh )TP D_ _

(_n_;')_c"sT0_C sr' F£ '_+

(*'s's'r"_'STf'_'M_ '_+ ,-_F; +o_,s, _ _- _ ,_ [cs'STorCS_'c _F;(nD'_F" c_;_"n_:s+

cF;,Fh cF_ SToCSS'R_,5 )] "r-,s' s,rT r_sF_12D'_ 1,"" _-o "_ " Fh 1 +

(_01''_r/c's'cs's_rcs_*M''_,\ o r, + {C_s'CS'STorCS_'C_r;t_-_;Ir/'"'_+

cf;v'RV'Sa + CV;'F_cVxST°css'( Rs;s + RJsS') +

CIS C s ST, TcSF_ Fr), \cF;FkcF'SToCSS'cS"RII"] } o F, /

(7.1.s-o)
The sulnmation of terms involving the virtual displacements and rotations at S' and I'

involves only a multiplication by b. The corresponding terms at Fk need not be summed

since only one system contributes to the virtual work there.

Dynamic. As in the case of the equations for the steady-state periodic node demotion

constraint, the derivation of the equations for the dynamics is similar to the derivation of

the structural node demotion constraint dynamic equations. In a manner sinfilar to that

for the static equations above, let R_ s' -- 0 and C Is' = A. Also, let

cF_S _=C_/,s' F" S"= C _ = cF_sT_ = cFIS'T_ = cFI'S"T_ ---- constant

C D_I =C D'_I' = C D'_'I'' = cD'IT_ = cD"I'T_ = CD"'I"Tk = constant

RFh s _ RF_, S' F_'S"
F_ --'_'; = R_,,._ = constant

(7.1.8-7)

Rt)_ _RD_,_' = RDI, '*''
1)_ -'_O'_ "_D'_' = constant
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Tile resulting equation for tile matrix R is

cOhl _RD_I'cDhl cDhS ' _cDhS'hD'_S'Dk

0 C ohl 0 C DhS'

__cDkF_ cDhF_ &D'hF
_F_

0 -C D_F_

(7.1.8-8)

where

C oht = C °hF;. C F'S'TkCS't'

C Dhs' --C DhF_CFIS'Tk (7.1.8-9)

s'r'T[CFa°"R°;'' CS"nl '' n'/,'RD'k S' =C *
"'s, ok + +

Tile columns of R correspond to _R_ ''I' &b_ ''I' s"s' s"s', , _R s, , &bs,, , v..,_RF_'F_,, and v,_.,,'%/,F_'F_
F h ' -k

respectively; while the rows are associated with _RD'_'D'kDhand _5¢DD_Oh . The coefficients of

the geometric stiffness matrix K c are then

_R/t''l, row:

I"I'
R, column: 0

OI"l' column: 0

RS,, S _
s,, column: 0

S It S f

Os,, column: - -

(7.1.8-10a)

RFFilF_' column: 0

Ovr!iF_ column: --'r'Tc'lFIk"" .,,£"19;,_,
- h --1

52



- l"l
6¢ x rvw:

R_"*' column: 0

ill ]-I

0.t column:
e '_* I *_'I ]ate--

-_ " s k " l ""I J "_s

,._ll S t

Rs,, column: 0

__¢1 S¢

0_¢,, column:

R F;,'F_; column:

0r_' F,_ column:
_'

/-II [l

R[ column: 0

ill ]I

O[ column: 0

,_11 S !

Rs,, column: 0

S II S t

9s,, column:

RFI,' V;
F,_' column:

"k

- D' I' " D'
-bTd(R_' 2'; ')To- b "vT r fi D'_ '" '_-o ,.., " Pp')T_-

b TTcbD_I' - ,_ .,._, _;')r.-b<rtM?,)-

"_z _1 + T_CZF_M 1

- b(T_C;)-

0

T_C'FIpD;
F,

(7.1.S-lOb)

(7.1.8-10c)
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_¢_;:s,row:

F_' V;.
bRyn, row:

1-ft ]-f

R_ column:

01 column:

Rs;; s' column:

Slt _t

Os,, column:

I{F_.' F_. column:
F_'

oF_' f_ column:
F:'

I" I'
R[ column: 0

Ozt''r column: 0

R_::s'column: 0

og::s' column:

F_'F_ column:
RF_,

Ol:_'F_ column:
r:,

b(r[C')-1

T -Di -Oi l' b"rT[_l)i :"Oil')T c-
- bT o ( F_ R I )To - _.,¢ _- , IQ

_br?(_?_k_",")T.
2

b(T[y?':)

= , , . , brlr, WlbD'll'_2D' I

-bT0_(_,_'' _F')To-_ ,_.., )T_-

,rTc 6v_" w", )To - b(T0T M D' )-

o

. t _ t

r:R,"_"c'_:F;'_'+ nc '_:MF'_'

0

(7.1.8-10d)

(7.1.8-10e)
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It i

-le

rOW"

Ill[ I

R I column:
. i I

r_D, t', Fl l _
--rF_ _ lk

rll [I

Ot column: FF;-D;CV't-°;rLR_ Tk

RS,, column: _ l_Dt('TFtI_k

(7.1.8-10f)

S"S' -O ° ' -_'I r

Os,, column: F[_I'CF, tRI ' Tk

RF_,'F_, column: 0
F_'

oFI,'F_ column:
r,;,

_ # _ # I

P_ R n,t F_
- FF I r,

7.1.9. Periodic Generalized Coordinate

A rotationMly isotropic structure consists of three or more identical substructures

that are spaced around an axis of symmetry at equal azimuthal intervals. Tile periodic

generalized coordinate constraint exists in order to transform generalized coordinates that

belong to the rotationally isotropic structure into the generalized coordinates for a generic

member of that structure. Additionally, it must transform generalized forces for a generic

substructure into the generalized forces fi_r the complete structure. In one sense, it is

simply an extension of the copy constraint for periodic structures. In GRASP, the periodic

generalized coordinate constraint is not available through the user interface.

Steady-State. The set of independent generalized coordinates for a rotationally

isotropie structure may be grouped as collective (q0), cosine (q_), and sine (q,) components.

The generalized coordinates for the kth generic substructure qt_ ::lay be written as

q_ = qo+q_cosCk+q, sinCk (7.1.9-1)

where ¢k = _-(k- 1). The variation of these coordinates is

6qk = _qo + _q_ cos Ck + tSq, sin Ck (7.1.9-2)

is

Given generalized forces Qk, the total virtual work from all of the generic substructures

b b b b

_VI)= Z_qkTQk:$qoTZQk +$q_TZQkcos ¢. +$qsTZQksin¢k (7.1.9-3)
k:J k=t k=l k=l
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Sincethe generalizedforce of a genericstructure is independentof k, Q0 = Qk and

6)IV = ¢SqoTbQo (7.1.9-4)

Dynamic. The dynamic perturbations of the generalized coordinates are related in

thc sanle manner as the variations of the steady-state gcneralizcd coordinates.

4_ - 40 + 4ccos qs_+ 4. si,, 4,_ (7.1.9-5)

Like the generalized forces, the substructure coefficient matrices M, C, and K are inde-

pendent of k and

_w = @_T(i_k + C_ + K4k) (V.l.9-_)

The contribution to the virtual work in terms of the independent generalized coordinates

is

h_)W = E [8q°T + 8qcT c°s _bk + 8q'T sinCk] [_3,] _c cos_k +
_= J q0 silt ¢1,

{ }• 4o
[c] Occos _,_

4. sin q_k
{0o}}+ [K} qocos,_k

_. sin _bk (7.1.9-7)

b6qoT(M_o + C_o + K4o) + _6q_T(Mqc + C_, + K4,)

b T ""
+ _,Sq, (M4, + Cqo + Kit,)

The matrices for the rotationally isotropic structure therefore have three rows and columns

for every row and column in the generic substructure, and are of block diagonal structure.

7.1.10. Periodic Air Mass

The periodic air node constraint describes the transformation of the air node gener-

alized coordinates and forces between subsystems associated with periodic structures and

subsystems associated with generic substructures. Since the air node generalized coor-

dinates describe an induced airflow velocity field that is already axially symmetric, the

periodicity of the structure has no effect on them. In fact, it is assumed a priori that the

flow field is interacting with a rotating, periodic structure. This constraint is not available
from the GRASP user interface.

Steady-State. When a subsystem is periodic (in the sense that it consists of three or

more generic, periodic members such as those described under the periodic node demotion

constraint), the steady-state air node generalized coordinates uA and ._A are simply copied
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from the parent subsystem to the child subsystem in a manner similar to the copy air

mass constraint. During the assembly of the generalized forces, the air nude generalized

forces from a single, generic substructure are simply multiplied by b and added to the

corresponding generalized coordinates of the parent subsystem.

Dynamic. For perturbed motions, let the generalized coordinates for the kth subsys-

tem be

(tk -- Tk(1; 6q k = Tk6q (7.1.10-1)

where Tk is as given in equation (7.1.7-1) and where

qk = ¢ : ; q= _1A2 (7.1.1[)-2)

and

}_qk = _¢lA_k
_pa

; tq= re,a2 (7.1.10-3)

Note that (_ and q will not appear in the dynamical equations. The equations now trans-

form in exactly the same manner as the ones in the copy air mass constraint.

7.1.11. Rotating Frame

The rotating frame constraint describes a constraint that is very much similar to the

fixed frame constraint, except that frame F is rotating at a constant angular speed relative

to frame S (fig. 12). The axis of rotati_m passes through the origin of F and along "bE

No time-dependent terms are retained in the equations. In GRASP, this constraint is

available through the user interface.

Steady-State. In moving to its steady-state, equilibrium position, the axis of rotation

follows b I . The position vectors R_sF and R s'F' are constant in the S and S' bases,

respectively. The change in orientation is then

= cF (t)= T(0C  (o) (7.1.11-1)

where

T(,) = To + T_ cos (_t)+ T, sin (_t) (7.1.11-2)

where To, To, and T, are given in equations (7.1.7-2).

The kinematics for the rotating frame constraint are based on the following equations.

" F's' s' SR_S )n_;" =TCF'S'(0)(ns, + ns, _ - C _'

cF' F =TcF' S'(o) CS' S cSf(o) T r

(7.1.11-3)
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Figure 12. Rotating frame constraint.

The tirne-dependent terms in these equations vanish if all of the displacements and rota-
^F r

tions of S' relative to S are along and about _bj (the axis of rotation). Therefore, let

F t F tR_,f :n,_,f :o

_F'F _.,qF'F : 0--W3

(7.1.11-4)

The virtual displacements and rotations of the F' frame are then

/ /_R_;[ F's' _s's s's rs
_n_',F = o = ToC (o)(_R_:_ + _¢_, C R_ )

0

8¢F" _'s' o,
b¢_ ;F: 0 = To Cr (0)/5¢_, s

0

(7.i.ii-5)
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where the use of only the To component of T eliminates the time-dependent terms.

The virtual work at S associated with the force and moment at F yields the following

contribution at S:

_W -:(_n_: S)TcS'F'(0)r[F_,'-

($¢_: s)T/_F,S C S'F'(0) ToT El,'+ (7.1.11-6)

Dynamic. The position and orientation of the perturbed frame relative to the steady-

state position and orientation are related as follows:

F" F' TC F'' F" S" S"S' S"S' F'S'RF. -- _"(o)(Rs,, + Rs,, - C Rs, )

cF"F' __TcF"S"(O ) cs"s ' cS'F'(o) T T

(7.1.11-7)

From these equations, the virtual displacement and rotation may be obtained. To first

order in the perturbation quantities,

S"S' _ S" S'

6R_',',t _' =TCF"s"(O) [6Rs,, + 6¢s,,

_¢_:: F' =TC F'' s"(0 ) _¢_;; s'

- S" S'

(A _ o,,, )R_:_']
(7.1.II-8)

- S" S'

where contributions due to geometric stiffness come from the Os,,

7_ is

tenn. The matrix

R

" F' S' ]

T(0CF"s"(0) -T(t)CF"s"(0)R_,

o T(t)c F''_"(0) (7.:.::-9)

" S" S'
where tile columns of 7_ correspond to R_,, and _s"s'•"s', , and the rows correspond to

6RE:: F' and 6¢_:: F'

Since 7_ depends on t, the time-dependent terms must be removed from the final

transfi_rmed equations. This is easily accomplished by taking the time-averaged value

of the transformed equations. The only contributing (i.e., nonzero) terms then are the

constant terms, the cos2(_T) terms, and the sinZ(_T) terms. In addition, since _R depends

on t, terms from matrix M will contribute to M, C, and K in the transformed equations

and C will contribute to C and K by virtue of the following relations

- F"F'

RF,,

-F" F'

0F.

I.s,,s,1{.s,,s,}R s" -Rs,,
--R +R

"S" S' - S" S'

Os" Os, ,

(:.:.::-:o)
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K a, the geometric stiffness matrix, is

0 0
K a -

0 [CS"F"(O) TTI2F'I-_F'S'"0 " F' ] *"S'

(7.i.II-Ii)

(7.1.11-12)

S" S' "S" S'
where the columns of K G correspond to Rs,, and Os,, , and tile rows correspond to

,sn:_',',s' and_¢_:;s'

7.1.12. Rotating Node Demotion

The rotating node demotion constraint describes the relationship between two nodes,

,,ne of which is located in a rotating frame of reference and the other in a nonrotating frame

of reference (Iig. 13). This constraint combines many of the characteristics of the rotating
framc and structural node demotion constraints. It is assumed that the child frame F is

rotating about a fixed axis at an angular speed f_, and that a dependent node D is defined

relative to that rotating frame. The parent frame S is stationary (relative to F) and an

independent node 1 is defined relative to S. The rotating node demotion constraint is not

available through the GRASP user interface.

Steady-State. The governing equations for the steady-state condition are siufilar to

thosc for structural node demotion except that

cF_(t) :T(t)c_S(0) _-cr'_'(t) : T(OCr's'(O) = C°_(t)

=T(t)CoI(o) = cD'r(t) = T(t)CD'r(O)
(7.1.12-1)

D' I f
In addition, R Fs and R[, are constants, and

T(t) = To+ T,cos(m) + T0sin(m) (7.1.12-2)

The governing equations describing the deformed position and orientation of the de-

pendent node are then

R_,":'=C_"_'C'_"_TCF_(O)C_s'[C_"(C'" R_'" + R;") + R_,' + Rf _]-

cDF'[cF'FTcFS(o)R Fs + RE: F + R DR']
(7.1.12-3)

cD'D __TCD'I'(o)CI'I cIS'cS'ScSF(o)TT cFF'cF'D

In order to be independent of t, let T = To and choose RDF,F' = 0 and C DF' = A. Thus,

only displacements along and rotations of D about the axis of rotation can be nonzero.
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Figure 13. Rotating node demotion constraint.

The virtual work at D' due to a force and a monmnt acting at D' is determined in terms

of the virtual displacement and rotation

_F'

_R D'D __ _ cDF, I_F,FcF,FToCFS(o)cSS, + cI)F, cF, FTcFS[ 0 cSS, R_ S,_S'S- _) s _¢s,+

cDF'cF'FToCFS(o)c ss' [C s', (6¢,_"' C H' Rj,D'" + 6R,r'r) + 6RS:S] _

cDF' [ -- q_F 0 t ) S +
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The virtual work done at D' is then

T D' 'F T D' _D'FI2D'_W = - (_R_',F) r_, - (_¢_, ) (MF, + ,,r, , r, )+
( r_DS' s _Tr'_S' S,r',SF[n "trlt_ _.D' .

o ,t S, ] _, _, _ul-tO-t" F -r-

' - D'S S'S SF T D'
(_¢s, slT[cs'ScSF(o)T;"MF' 4- R s, C C (OIT 5 F,_ 1+

(_RI") TCISCSF(O)ToFD'+

(g¢I")T[cIScFS(O)TorMFD' + RD'I'C_SCSF(o)Tf FFD'I

(7.1.12-5)

Dynamic. The governing equations are similar to those for structural node demotion

except that, as in the static case, RFDF' = 0 and C DF' = A. The governing equation for

the position of the perturbed dependent node is

RD" D ' = RD" I" RI" I' RI' I ____S" S'+ + + R_Is'' + + R s's-
- - (7.1.12-6)

R NS _ R FN _ RF'F _ RF"F _ RDF" _ RD'D

where

R_ NS 4- R__FN --_ R_ S'S 4- R___N'S' 4- t_ F'N' - R__F'F (7.1.12 7)

Solving for the dependent node displacement,

BD" D' =By"1" R_I"I' RS" s'+ + R I'I + R Is'' +

RF' N' _ RDF"_ RF"F' _ RD'D

_ RN'S'_

By referring the displacements to the D basis this vector relation becomes

D" D'
RD _=cDF'cF"F'cF'N'cN'S'cS'S"cS"ICII'cI'I '' R1 .D''I'' 4-

C_"C_"_'C_'_'CN'_'C_'_"C_"_(R;"" + R;'")+
S" S'

cDF"cF"F'cF'N'cN'S'cS'S" (RIs,S/' + RS,, )--

F' N' N' S' N' S' _
cDF"cF"F'c C R D

F'N' F'N' F"F' DF" _ RDD'DcDF"cF"F'c RN , -- cDF" (RF ,, 4- RF,, )

(7._.12-s)

(7.1.12-9)

The virtual displacement is then

S"1 I'1
_R_"D' =CI)F"cF"F'cF'N'cN'S'cS'S" C 6R t +

cOF"c_"_'c_'_'c,,'_'c_'_"_R_::_ ' _ c_"_R_::_'+
D" I"

cDF"cF"F'cF'N'cN'S'cS'S"cS"Ic11'_CI'I"RI ,, +

0 F'' s' 1" D"I"el)F" F'cF'N'cN'S'(_C S'' [cS"IcII'c 1' RI,, 4-

IS" S" S'c_"'(Rf'1' _ nf 1)4-R_,, 4-R_,, ]+

cDF'bcF" F'cF' N' [cN'S'cS' S"cS"I cI I'cI'I '' Rp ,D''I'' .4_

S" I 1"1' RII' IcN'S'cS'S"c (R I 4- )4-

S" S' N' S' N' S' F' N'c_'_'c _'_''(_,_,'' + R_,, ) - c R_, - RN, }

(7.1.12-10)
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and the virtual work done by the force at D' is

- _"D' r v' r' v' c,N'(cN'F'F_'- N'S' S"S'__Rv ) rt, =(_Rj "')T[C"CN"_'F_, + ) C Os,,
cIN'cN'F ' -D' F"F_, 0r,,F']+

S" S' _(_Rs:;S')r[cS'N'CN'F'Fy,' + CS'N'(CN'_'Fy,')-cN'S'Os,,
- D' F"F'

cS'N'cN'F'FF , OF,, ]--

(_n_:;F,)Fb,+T_,
" - N'I'-D'I' I"1'

(_/'I I I')T[cIN'RD',I'cN'F'FbD'+cIN'(cN'F'F_ D') C RI 01 +

cIN'_2D'I'(cN'F' D' - S"S' GIN' ~D'I ' N'F' "D' F"F'• _N' F g, ) cN'S'Os,, - R N, C F_., OF,, ]+

[ str \ r - D' I' Nr F ' D' S' N' D' ~ N' I' I"I'

D' - N' S' S" S'
cS'N' (cN'F'F_-,, ) C Rs,, 4-

I -D'I' I"I'
cS'N'(cN'F'Fp,,')'C N' R I O I -4-

S' N' " D' I' D' - S' S" S' _
C R N, (cN'F'F_,) C N' OS,,

S' N' - D' S' N' F' - D' F" F'c RN, c F_,OF,, ]--
F" F' T F' N' D' F' - D' - D' F' N' N' I I" I'

(_%,,, ) [(c nN, ) Fb - F;-, C C nj -
- D' F' N' N' S' S" S' - D' F' N' N' I - D' I' ?"I'

F_, C C Rs,, + F_, C C R_ 0_ +

- D' F' N' - D' S' S" S' - D' F' N' D' F' - F"
F r,C cN'S'R s, Os,, -Fp,(C R N, ) Or,, P']

(7.1.12-11)
The virtual rotations can be easily obtained from the variation of the direction cosine

relation

_C D''D' : - C D''D'CD'D_D"D'CDD'_¢D

:cD" I"_CI" I'c I' I c IS'cS" S' cS' N'cN' F' cF' F"cF" D cDD' +

cD"I"CI"I'cI'IcIS"_cS"S'c o°'N ......C,,_ ,, C F'F''CF''DCDD'+

cD"I ''CI" I' CI'IcIS"cS"S ' cS'N'cN'F' _cF'F '' cF"DcDD '

(7.1.12-12)

titus yielding

_D"D' "I'cID A ,_ uwS,, ,_ --_I/_ D : C DI _DS"_AS"S'K._S"D cDF"__)F, ' cF"D

Upon removal of the tilde the virtual rotations are

_"D' vr"Cr"----C F'cF'N'cN'S'cS'S" cS"I6_3II"I' 4-

cD_"c_"_'c_'N'c_'_'c_'_"_¢_;;_' _ cVF"_¢_;;_'

(7.1.12-13)

(7.1.12-14)
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and tile virtual work doneby the moment is

....... T "_' .... S*'S' "F'F' D'(,_¢_ '-') M_' =(_¢I ')TC_"('_-Ss,, )cS'N'CN'r(_+Or, )Mr +

(_I_Ss::s')T(A ZS"S'ht_S'N'cN'F(A -F"F' O' "F* T O'- "s" ,'_ + OF,, )MF,, -- (6¢ F,, ) MF,,

=(*¢I"r)r[C_N'CN'r mp,'_+ Cm'( C_'F' Mr°')- CN's' Os,,S"S'_
cIN ' N_F ' - D _ F"F S

C ./_I F, OF,, ] -{-

)T[cS'N'cN'F' ' S'N' N'F' D' - N'S' S"S'(6¢_;;s' M_ + C (c M;., ) C Os,,
- D' F"

cS'N'cN'F'JI, IF, OF,,F']-

,, , T D'(_¢;, F ) M_,

since C F'N' - T, let C N's' = C F's' (7.1.12-15)- , as in the structural node demotion constraint. The

time-dependent terms can be eliminated when R DF' = 0 and C DF' = A.

Combining the virtual work due to the force and tim moment at D", the matrix 7Z
can then be cMeulated.

cDF'TcF'I _cDF'TcF'If_?'I' cDF'TCF'S'

0 C OF' TC F'I 0

(7.1.12-16)

--cDF'TCF'S'IJ_D_'S' -C oF' 0 ]

cDF'TCF'S' 0 -C DF'

I"I' S" S' S"S' F" F
where the columns of R are associated with t_R I , 6¢/"I', 5Rs" , 6¢s', , _RF,, , and

_¢FFIIF', respectively; and the rows correspond to 6R_) ''°' and 6¢_"D'. The coefficients of
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the matrix K a are

_Rtl ''I'r row:

I"I'
R I column:

8[ column: 0

Rs,, column: 0

L._ II S l

Os,, column:

RF" F'
F" cohlmn: 0

_CIF'(TTFD')-cF'S'

(7.1.12-17a)

row:

F" F'
OF,, column:

R//''I' column: 0

c IF'TT fi_D'

l.ll [I

01 column:

S tf S I

Rs,, column: 0

S tt S 1

Os,, column:

F tl F'
RE,, column: 0

_ C'r(TTF ')'cF'[

(7.1.12-17b)

[ i:2,D'[tr',IF' r,r,T _-D' x -
t"'+[ '+ '_" +'F' I + CIF'tTTMF,,)-ICF, s,.n. .

F It F*

OF,, column: a_lbo'l'g'_IF'rr'T_'o',__.t _r F, _}_ ,._('[F' TT_*IF,_-AtD'
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_ K_S" S' T
•is,, row:

TIW ] I

R r colunm: 0

1/111

01 column: 0

S II S I

Rs,, column: 0

,_lf Sl

05,, column:

F tl l_ t

RF,, column: 0

S'F' T D'
-C (T Fb, )'C F's'

(7.1.12-17e)

row:

F tt F I
OF,, column:

RI ''Y column:

I"I'
0t column:

S It S l

Rs,, column:

os" s' column:
Sit

F It F'
RF,, column:

c S' F' T T fi,FD,'

cs'F'(TrF ')-Cr,

_ cS'F' (TTED')-CF',

cS'F'(TT Ffl')-cF'S'
(7.1.12-17d)

-[R_'s'cS'F'(TTFff)-+ (T M_, ) lCcS'F ' T D' - F'S'

0

F" F' " D' S'
OF,, column: l_s, cS'F'TT _'D'

" F' + cS'F'TTJ(_D'
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row:

Ill ll

R 1 column: 0

Ozt''T' column: 0

RsS;:S' column: 0

Sii St

Os,, column: 0

(7.1.12-17e)

R_::F' column: 0

row:

F tf F ¢

OF,, column: 0

R t column:
-D'

- F_, TC r't

,"r -.' ,hO','0 t column: F_, TC r'

SItS I

R_,, column:

_jf# S I

O_,, column:

~ D' F' S'- F;,,rC

~ D' ~ D' S'
F_,, TcF'S'Rs ,

(7.1.12-17f)

/ 7#r F;

RF,, column: 0

F II F I

OF,, column: 0

7.1.13. Rotating Generalized Coordinates

The rotating generalized coordinate constraint relates generalized "oordinates in one

subsystem to the corresponding generalized coordinates in another subsystem that is ro-

tating at constant angular speed relative to the first. This constraint is often applied to

subsystems that contain periodic structures. This constraint is not available through the
GRASP user interface.

Steady- State.

coordinates is

where

The general form of the transformation from rotating to nonrotating

qn = TqN (7.1.13-1)

T = To _ T_ cos fit + T, sin fit (7.1.13-2)
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and qn is a set of generalized coordinates in the rotating subsystem that corresponds to a

set of qN generalized coordinates in the nonrotating subsystem.

In order to make the transformation equations independent of time, let T = To and

6qR T -- Tu_qN. This eliminates any generalized forces of the lateral (cosine or sine) type.

Then, the virtual work is

$W = -q_ Q R = qT TT Q R (7.1.13-3)

Dynamic. In the rotating system, the virtual work can be written as

(7.1.13-4)

whcre
qR =T(tN

_R =TqN A-T_N (7.1.13-5)

qn =T(1N + 2_'qN + Tqg

Substituting these relations into equation (7.1.13-4), the virtual work can be obtained in

terms of the generalized coordinates of the nonrotating system.

_SYV -- _TNTT [MRTq N + (CltT + 2MnSb)qN + (KRT + CRT + M/tT)_N] (7.1.13-6)

Thus, the CN coefficient matrix (in the nonrotating system) depends on CR and Mn, and

It'N depends on Kt¢, Ca, and M1¢.

7.1.14. Rotating Air Mass

The rotating air mass constraint transforms the air node generalized coordinates and

their associated generalized forces between a rotating subsystem and a nonrotating sub-

system. As in the other air mass constraints, the air node generalized coordinates are not

transformed out of the inertial frame of reference. The rotating air mass constraint is not

available throught the user interface in GRASP.

Steady-State. _ince only _A and _A are valid coordinates in the steady-state prob-

lem, and both are rotationally symmetric, they are treated in exactly the same manner as

in the copy air mass constraint.

Dynamic. For a set of dynamically perturbed air node generalized coordinates, let

_13R
{ 6PAR }

; Sqn = _¢_R (7.1.14-1)
A

_¢laR
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a,nd

Then

ON= 6_2N ;
q_13N

4n =TON

q,, =T_N

qR-=T_N+ T_N

The virtual work for the rotating subsystem is

@N = _¢¢2N
_¢AN

(7.1.14-2)

(7.1.14-3)

5}42 = O_i(Mqn + Cq,) (7.1.14-4)

which, when transformed into the nonrotating subsystem, becomes

: 0_r T [(M_N + (C_ + M_)_ 1_W (7.1.14-5)

Tile C coefficient matrix for the transformed (nonrotating) subsystem therefore depends

on the/1I and C coefficient matrices from the original (rotating) subsystem.

7.2. Composite Constraints

In general, a composite constraint is a constraint that is built up out of one or more of

the primitive constraints that have been described in the previous sections. The bundling

of primitive constraints into a single constraint is primarily done for the convenience of the

user. There are many times that sets of constraints must be used together, and it makes

sense to combine them internally. In the following sections, the composite constra.ints that

have been constructed from the set of primitive constraints in GRASP will be described.

All of the composite constraints are available from the GRASP user interface.

7.2.1. Aeroelastic Beam Connectivity

The purpose of the aeroelastic beam connectivity constraint is to provide a mea, ns for

attaching an aeroelastic beam element to a GRASP model. The element subsystem fi_r

the aeroelastic beam consists of a frame of reference, a root node, a tip node, and an air

node, all of which must be connected to their counterparts in the existing portion of the

model. Therefore, the aeroelastic beam connectivity constraint must contain a fixed-frame

constraint (for the frame), two structural node demotion constraints (for the root and tip

nodes), and a copy air mass constraint (for the air node).

In the definition of the aeroelastic beam connectivity constraint, the position and

orientation of the dependent, element root node R relative to an existing, independent node

In must be provided. The position and orientation of In relative to its subsystem frame of
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reference(the superordinate frame SR) is known from the definition of In. Therefore, the

position and orientation of the dependent, root node relative to the superordinate frame
can be calculated.

cRSR =cRIRcIRSR

(7.2.1-1)
RRSR cSaln RRIR•9R ---- IR + RIS_ sa

After h)eating the parent subsystem of the element subsystem in the system organization

tree, the position and orientation of the parent frame relative to the superordinate frame

can be calculated. Since the element frame and the element root node are coincident,

the position and orientation of the element frame relative to its parent frame can then be
determined.

C FP =cRP = CRSRCSR P

(7.2.1-2)

R_P=RRpP ps, RSR S,P: c (Rs;, + Rs. )

With this information, the fixed-frame constraint can be defined. In addition, all of the
position and orientation information is available to define the structural node demotion

constraint fi:)r the element root node. In those cases where the superordinate frame is

m_t the same as the parent frame, it is necessary to create copies of the independent and

element root nodes in each of the subsystems leading to their nearest common ancestor.

These nodes are chained together by a series of structural node demotion constraints.

The position of the element tip node T relative to the root node is defined as R TR =

g ba , and the orientation C 7'/¢ is defined as an Euler rotation of magnitude O'g about _.

After the 1)osition and orientation of the root node relative to the indel)endent tip node

IT has been calculated, the offset of the element tip node from the independent tip node
can be determined.

RRSr l:llr ST"_lrl:lTIr =CITST(CSTRR_ R _- Sa" -- _ST )

cTIT =cTRcRST cSTIT

(7.2.1-3)

At this point, the structural node demotion constraint for the element tip node can be

define(1. In those cases where the superordinate frame is not the same as the parent

frame, it is necess_.,y to create copies of the independent and element tip nodes in each ()f

the subsystems leading to their nearest common ancestor. This creates another chain of

structural nodes, all connected together by structural node demotion constraints.

If the beam element is to be connected to an air mass element, the position and

orientation of the element subsystem relative to the corresponding air node is calculated.

Then, the copy air mass constraint is defined. In those cases where the air node is not

(lefined in the parent frame, it is necessary to create copies of the independent attd element

air nodes in each of the subsystems leading to their nearest common ancestor. This creates

a chain of air nodes, all connected together by copy air mass constraints. If, however, the

beam element is not to be connected to an air mass element, the four nodal air mass

degrees of freedom are constrained out using prescribed constraints.

7O



7.2.2. Air Mass Connectivity

The purpose of the air mass connectivity constraint is to provide a means for attaching

a.n air mass element to a GRASP model. The air mass element subsystem is unusual ill

that the frame serves only to establish the position and orientation of the element relative

to the remainder of the model. Therefore, while the frame does exist and does need a

frame constraint, it has no frame degrees of freedom. The air mass connectivity constraint

is then made up of a fixed-frame constraint, a copy air mass constraint, and one or more

prescribed constraints.

In the air mass connectivity constraint it is assumed that the independent air node 1,

the dependent (element) air node A, and the element frame F are all coincident.

C rA =C AF = A

____IA_=RAF = 0

(7.2.2-1)

After locating the parent of the element subsystem, the position and orientation of the

parent frame relative to the superordinate frame can be calculated. Since the position and

_,rientation of the independent air node relative to its subsystem frame (the superordinate

frame S) is known, the position and orientation of the element frame relative to the parent
frame can also be calculated.

cFP =CtP = CxsC sp

(7.2.2-2)

These expressions provide the information necessary to define the fixed-frame con-

straint. In addition, the copy air mass c,,nstraint can be defined at this time. In those

cases where the superordinate frame is not the same as the parent frame, it is necessary to

create copies of the independent and element air nodes in each of the subsystems leading

to their nearest common ancestor. These additional air nodes are also connected together

using copy air mass constraints.

If the model containing tim air mass connectivity constraint is tc be used in a steady-

state problem, the two cyclic air node degrees of freedom are meaningless. Therefore, they

must be eliminated by defining two prescribed constraints in the superordinate subsystem.

If, on the other hand, the model is to be used in an eigensolution, the gradient degree of

freedom is meaningless. A single prescribed constraint is then defined in the superordinate

subsystem.
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7.2.3. Periodic Structure

Tile purpose of the periodic structure constraint is to provide a simple means for

creating an axially symmetric structure. This is accomplished by replicating a single branch

of the model n.t equal azimuth angles about an axis of symmetry. For this constraint, the

parent subsystem represents the assembled periodic structure and the child subsystenl

represents a single component. The periodic structure constraint consists of one or more

of the following: a periodic node demotion constraint, a periodic generalized coordinate

c()nstraint, and n periodic air mass constraint. Note that the periodic frame constraint

must be defined separately.

When there are nodes in the component, periodic re)de demoti(m constraints are

needed to transform them into tt, e assembled structure. If tile independent node corre-

sponding to a dependent node (in the component) does not exist in the parent subsystem,

_ string of images of the independent node are created in the intervening subsystems and

chained t,)gether with structural node demotion constraints. Similarly, if tile dependent

node do,:s not exist in the child subsystem, a string of images of that node are created

and chained together. Since the independent node (or its image) nov,- exists in the parent

subsystem and the dependent node (or its image) exists in the child subsystem, a peri(,dic
node dem(>ti()n constra.int can l)e defined.

One or more periodic generalized coordinate constraints are needed if there are gen-

eralized coordinates in the child subsystem. Similarly, one or more periodic air mass

constraints are needed if there are air nodes in the component. A process identical to that

used t,) connect structural nodes is used if the dependent and independent air n()des are

not ill tile child and parent subsystems, respectively.

7.2.4. Rigid-body Convection

The purpose of the rigid-body connection constraint is to provide a simple means for

commcting two nodes together rigidly. It is actually a special case of the screw constraint

in which the translation and rotation degrees of freedom are both locked.

7.2.5. Rigid-body Mass Connectivity

The purpose of the rigid-body mass connectivity constraint is to provide a means

fi)r attaching a rigid-body mass element to a GRASP model. The element subsystem

c(msists ()f a frame ¢)1reference and a center-of-mass node, both of which must be connected

to their counterparts in the existing portion of the model. Therefore, the rigid-body

mass commetivity constraint is made up of a fixed-frame constraint and a structural node
dem(,ti(m c(mstraint.

In the definition of tile rigid-body mass connectivity constraint, tile position and

orientation of the dependent, element center-of-mass node C relative to an independent,

existing node I is provided. The position and orientation of the independent node relative

to its subsystem frame of reference (the superordinate frame S) is also known. Then, the
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position and orientation of the center-of-massnoderelative to the superordinate frame can
be written.

cOS =CciCiS

(7.2.5-1)
_cs, nT, + n7

After locating the parent subsystem of the element subsystem in the system organization

tree, the position and orientation of the parent frame relative to the superordinate frame

can be calculated. Since the element frame and the element center-of-mass node are

coincident, tile position and orientation of the element frame relative to its parent frame

can then be determined.

C FP =C Cp = cCSc SP

: +
(7.2.5 2)

With this information, the fixed-frame constraint can be defined. In addition, Rll of the

position and orientation information is available to define the structural node demotion

constraint for the center-of-mass nude. In those cases where the superordinate frame is

not the same as the parent frame, it is necessary to create copies of the independent and

element center-of-mass nodes in each of the subsystems leading to their nearest common

ancestor. These nodes are chained together using a series of structural node demotion

constraints.

7.2.6. Rotating Structure

The purpose of the rotating structure constraint is to provide a simple means for allow-

ing one subsystem to rotate relative to another. For this constraint, the parent subsystem

represents the n_mrotating structure, while the chihl subsystem represents a rotating struc-

ture. The rotating structure constraint consists of one or more of the following: a rotating

node demotion constraint, a rotating generalized coordinate constraint, and a rotating air

mass constraint. Note that the rotating frame constraint must be defined separately.

When there are nodes in the rotating subsystem, rotating node demotion constraints

are needed to transform them into the nonrotating subsystem. If the independent node

corresponding to a dependent node (in the rotating subsystem) does not exist in the parent

subsystem, a string of images of the independent node are created in the intervening

subsystems and chained together with structural node demotion constraints. Similarly, if

the dependent node does not exist in the rotating subsystem, a string of images of that

node are created and chained together. Since the independent node (or its image) now

exists in the parent subsystem and the dependent node (or its image) exists in tile child

subsystem, a rotating node demotion constraint can be defined.

One or more rotating generalized coordinate constraints are needed if there are gen-

eralized coordinates in the child subsystem. Similarly, one or more rotating air mass

constraints are needed if there are air nodes in the component. A process identical t,, that
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used to connect structural nodesis usedif the dependent and independent air nodesare
n_)tin the child and parent subsystems,respectively.
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8. ELEMENTS

The GRASP element library currently contains three elements, the aeroelastic beam,

the air mass, and the rigid-body mass.

8.1. Rigld-Body Mass

In GRASP, rigid bodies are modeled as being influenced only by inertial and gravita-

tional forces.

For the purposes of modeling the motion of a rigid body in an inertial and (possibly)

gravitational field, consider a rlgid-body mass element B that has an inertia dyadic I.

Steady-State. The rigid-body mass element (fig. 14) has a body-fixed node N and a

frame of reference F. Node N is initially coincident with the deformed frame F _ (R_ F'N = O0-

and C F'N = A). The virtual work at the deformed node N _ is

$W = F N' • I_RN'I + 2_'IN' • b_bN'I (8.1-1)

from which nodal forces and moments can be derived. The nodal virtual displaement and

rotation variables for this element are 6R N'N and 6¢NN'N, respectively.

The inertial virtual displacement and rotation of the deformed node N _ are

_¢N'I =_¢N'N __ _¢NF' q_ _¢F'I

The force acting on the body at N' is

F__N' = -mA N't +mg

where the inertial acceleration of N r is

AN'I = A F' I + fl_F'_ x (fl_F',_
\

(8.1-3)

(8.1-4)

Substituting equation (8.1-4) into equation (8.1-3), and transforming from the body-fixed

(N) coordinate system into the deformed-frame (F) system,

FNW'=m(gN A_'I aF'IaF',oN'N_-- -- _*N a_N "ttN ]

(8.1-5)
=m(gr, A_',_ -F'_ar'_oN'N_

75



N'

-2

Figure 14. Rigid-body mass element.

The moment acting on the body at N' is

M_M_N' = tt N'! x _N' /

where the inertial angular momentum at N' is

H N'I = I. fl N'x

and the inertial angular velocity at N j is

Substituting,

= c_N'Iwhere H N'I IN',,N, .

____N'I = ____N'N + ___NF' + ____F'I

_N N' _N'IoN'I

(8.1-7)

(8.1-9)
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The frame force and moment components can be derived in a similar manner. If the

frame virtual displacements and rotations are 6R_I F and 6¢_i F, respectively,

_N' N _N'M;; = M_' +.._ .,N

_ MNN ' £-,N'r_N'N-- -- "_ N aLN

(8.1-10)

Dynamics.

state position (fig. 14), the virtual work at the node may be expressed as

Assuming that tile rigid-body mass node is perturbed frolil its steady-

N"I T N" N"I T N"
,_W = 6R N F_ at- _¢N _IN

where the force and moment are

F_"

M N''

roAN"1= -- + mgN

r N'I - N*'I N*'I
=-- lNaN + HN QN

N" I N" I
HN = INf_N

the angular momentum is

.4_), N(IN''N' _t_ CF"F'[_F: I

and the inertial angular velocity is

N" I F" F'

(8.1-11)

(8.1-12)

(8.1-13)

(8.1-14)

Tile virtual displacement is then

_--N"I F"F' N"N' _F"F'
H N -: ,_RF,, + 6R N + 6¢F,,

aud the virtual rotation is

_",

-N"N RNN'N][_::v' + RN +

tt e tt tN N= _¢_,,F + _¢N

(8.1 -15)

(8.1-16)
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The inertial accelerationof tile node is

N",_.,F', -F',h_',,Rg'N ..F"F'__N, NaF"F' ..N"WAN --"-"F' -_- __F' 4- RF .... N "F" -4- A N

• F"F'
[bN'N_F'I [_F'IDN'N - F'I_N'NI[_

• N'N'

•"°°r' -'_N _ °°V' °°F' RF" +

-r' - r' R_'N) - r'[AF, I (_F, 1 .._~ I _ ()F'I fN'N_F'II_F"-- _F' arF' "ttN a'F' ]"F ''F'-_-

" I () F ' I " N " N '
F' "'F' RN

and the components of the gravitational acceleration are

gN : g," + tF'#ff::r'

96F, I ___F''F'

(8.1-17)

(8.1-18)

The components of the inertia dyadic in the nodal basis can be expressed in matrix

form as

~N"N' -N"N _

IN=(_+0N )CNN'-rw,CWN(_--ON ) (S.>19)

Finally, the angular acceleration is

N"N' ..F"F'. .:N"N' (-)F'I_'F'F' . F_ .N"N'
aN = _F" -_- 0N _- a'F' VF" -_ _F'ION (8.1-20)

The force and moment can then be obtained from the substitution of equations (8.1-

12) through (8.1-20) into (8.1-11). When the virtual work is calculated, it consists of the

same steady-state residuals {Q} as were obtained in the previous section, in addition to

the virtual work associated with the coefficient matrices [M], [C], and [K].

(8.1-21)
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where tile 31 coefficient matrix is defined to be

_R;;',F' row:
•: F" F'

RF,, column: m

FI' F'

OF,, column: _ mR N N (8.I-22a)

•- N"N'

R N column: m

_¢F"V',, row:

..N"N

0 N column: 0

•. F" F'

/_F" colunln: '111¢_ N'N

.. F" F'

OF,, column:
__ _-_N'N _-_N'N cNN'

-- rttlt N -tt N 4- IN" cN'N (8.1-22b)

•.N"N' mk_,N/_N column:

_R N''N' row:

..N"N
tvNN'r ,,cN'N

ON column: t_ _N

•. F" F'

RF,, column: m

.. F" F' - ,

0F,, column: _ mR N N (8.1-22c)

• . N'N'

/_N column: m

..N"N

0 N column: 0
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N" N'
_N row:

•- F" F'

RF,, column: 0

•-F" F'

0F,, column: C NN'IN,,C N'N

•. N"N'

/_N column: 0

(8.1-22d)

":N"N

8 N column: cNN'IN,,C N'N

the C coefficient matrix is defined to be

row:
•_ F"F'

RF,, column: 2m_Fi I

• F" F'

eZF" column: ,, _-_F'I_.-_N'N-- A/TtltF, It N

• N"N'

/_N column: 2m_Fi I

(8.1-23a)

. row:

.N'N

0 N column: 0

• F"F'

RF,, column:
*_ ,-,N N,-,F I
zmlt N It F,

-F" F'

OF,, column:

- N"N'

R N column:

-N'N- F',k 'N _- 2tuRN _F'

cNN'IN"CN'NfiFF:t + fiFF:tCNN'IN"CN'N (8.1-23b)

- ¢ - sn nN N.',F I
zmlt N _tF,

".N"N

O N column: fiF: I cNN'IN,,CN'N

cNN'IN ,, cN'N _FF: I

__ (cNN'IN,,CN'NaF: I)- +
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_R_ ''N' row:

: F" F'

RF,, column: 2m_Fi I

". F" F'

OF,, column: _ 2,,,fi_:'k_'_

• N"N'

A N column: 2m_lF: x

(8._-23c)

_¢Z,, ,N row:

:N"N

0 N column: 0

: F" F'

RE,, column: 0

: F" F'

OF,, co|umn: cNN'r ,¢.N'N-F'I QF:IcNN'IN,,CN' N_

(C_lV'IN"_N'_V"F'_)-'__F,

: N" N'

R N column: 0

(S.1 23d)

..N"N

0 N column: _FF',IcNN'IN,,cN'N

cN N'IN,,CN'N fiFF: !

and the K coefficient matrix is defined to be

n_::'_' row:
F,, F t

RF,, column: _(_F' I(_F' I
,t_a_Ft a_Ff

(cNN'r _N'NnF'I_"-- _N"w at F, ) +

oF" F'
F" cohlmn: -,[A[:' - 0_' - .0F,'r'F""_"N)-a_:'--"-N

- F'I_;_N'N_F'I]
_-_F t .it N _F t ] (8.1-24a)

" N"N' - ' ~ _'
R N column: _oF In/_ I

-Ntt N
ON column: 0
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r pt V t

5_F,, row:

_R N''N' row:

t_N N''N' row:

F" F'
RFO, column:

{_F °' F' column:
fla

" N"N'
RN column:

-N" N'
ON column:

- F"F'
RE,, column:

"F" F'
0F,, column:

.RN" N' column:

VN,, N
0 N column: 0

" F'F'
RE,, column: 0

-F" F'
OF,, column:

- F,I_)F,II_N,N -

._N' N _F' I _F' I]
N _F' _tF' ]

--k,,_F, _tt N J _tF' --

(-_F'I fiN'N(_F_I] _-)F'IpNN' • r.,NrNAF,I
F_ at N atl;.f j _t_ _"F _ tJ .tN.t _, _$Fa __

oNN'r oN'N._F'I)~b;:IIN,,tF It F,

_ )-
N'N¢'}F'h':_F'II
N _tF' at F' ]

- F'
_-_ F' I cN N"[N" cN' N _'_F: I

F --

_'IF' It c_NN'r ¢_
F' _" _N" _N'Na_:') -

___r_F lnF I
7rt,_ _/;,, _ _ i,_,

_F' a"lV ,1 at F, --

-_F' I fiN'NtZ_F' I1
F' "ttN _t F' J

_F'I;*.F'I
mltF' _$F'

F' t., aN.

cNN'I. ,,cN'NctF' I_- _F'I

" N'N'
RN column: 0

-N"N
0_ column: fiF'If_NN'r (yN'N_F'I

F' _ -tN"v ar F, --

-r )-I'_F,I(cN'NIN,,
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8.2. Air Mass

The air mass element models the momentum flow of air through a helicopter rotor

disk. For this element, the rotor is assumed to be an actuator disk, and tile flow field a

cylindrical region surrounding the disk (fig. 15). The state vector for the air mass element

is made up of the generalized coordinates for a single air node.

Actuator

disk plane

t _ _.,_

\

Figure 15. Air mass element flow field.

Steady-State. Consider the air flowing steadily through a rotor. Reference 22 shows

that tile thrust dT acting on a differential annulus of the rotor (fig. 16) is related to the

induced velocity v via a momentum balance such that

dT = 47rp_rv IV + v I dr (8.2-1)

where v is the radial coordinate of the rotor and V is the velocity of the rotor relative to

still air (1/" is positive when the rotor is moving in the positive zl direction). The use of
the absolute value of the sum of the velocities V + v assures that the differential thrust dT

has the proper sign uuder all operating conditions. Integrating, the total rotor thrust is

R

T=4npa f vIV+v Ird," (8.2-2)
E
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Figure 16. Air masselementdifferential annulus.

The virtual work doneby the thrust on the air is

RifW = 4:rp. vgR IV + v[ r dr (8.2-3)

where 6R is the virtual displacement of the air. The right-hand side of the equation for

the virtual work can be discretized by letting v = OA + _jArv and _R = 6pA + r6_bA. Then

R

jfc R=_P_4_rpa (_r_ + _rr)] V + aA + _/_r vdr+

R

6dA_47ro. _ (U A + _/_rr) IV + _rn + _P,r I r 2 dr

(8.2-4)

Note that while tl:c coefficient of 6P f in equation (8.2-4) is equal to the rotor thrust, the

coefficient of _ba,. has the dimensions of moment but no clear physical significance.

The contributions to the 6)'V (applied loads) side of equation (8.2-4) are determined

from blade element theory, and are obtained by summing the contributions from each of

tile aeroelastie beam elements that make up the rotor.

Dynamic. Simple models for the induced inflow dynamics, such as the one introduced

in reference 23, have been shown to improve the accuracy of mathematical models of heli-

copter rotor dynamics. The velocity of the air mass is idealized as consisting of a spatially

and temporally uniform freestream velocity V, which is augmented within a cylindrical

region by the steady-state inflow U1a induced by the rotor steady-state thrust, and by the
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infinitesimal dynamic perturbations to the inflow induced by dynamic perturbatioi, s to the

thrust, roll moment, and pitch moment of the rotor.

For a differential annulus of a rotor disk through which air is flowing unsteadily,

the momentum balance can be expressed as a system of first-order, integro-differential

equations.
R 2_r

(S.2
f f f avo, 
ve_

In order to intermix the air mass terms with the structural generalized coordinates in

a single set of second-order equations, the perturbed air mass generalized velocities are

expressed as the time derivatives of generalized coordinates.

• A .A .A

(8.2-6)

.A

where Pl is the vertical component of the perturbation of the induced inflow velocity
• A ,A

component at the center of flow, q512 and q_13 are the flow gradients at the center of flow

in the x2 and x3 directions, respectively, and _b is the azimuthal coordinate of the r,:,tor,

measured as a right handed rotation about tim X 1 axis from the za axis. The flow direction

is assumed to be positive along the azl axis.

In addition, virtual displacement of the air inside the cylindrical flow field is assumed

to be

tSlP = _iP( -- _1A2 r sin _b +/_¢lasr cos_b (8.2-7)

where 6pA is the vertical virtual displacement of the air at the center of flow, and _5_ba2

and a4_°s are the cyclic virtual displacement components at the center of flow.

Now, consider the expression vlV + vl, where v = 9 + _)(t). In seeking the linearized

perturbation of such an expression, if V + 9 = 0 then v]V + v[ = (_ + _))[_)1. Since there is

no linear contribution in this expression, it may be 8,ssumed to be zero. Now, define

+1 for a>0
sgn(a) = 0 for a=0

-1 for a <0

(8.2-8)

Then,

vIV+v I = [(V+_)O _ (V+29)7)]sgn(V+_) (8.2-9)
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Sinceonly the linear perturbation dynamics are pertinent to this problem, the contri-

bution of the change in momentum per unit area term from equation (8.2-5) is

fR _027r • A
2par(V + 2i))sgn(V + 0)(t61

-A .A
- ¢12rsin ¢ + ¢13rcos _)(_fP A +

R • A A r 2 -A A - A A
t

(8.2-10)

• A -A A fR

2,_p_(¢,#¢,_ + ¢,3_¢,3) j_ (v + 20)sgn(V + _)_3d_

The contribution of the volume term from equation (8.2-5) is the virtual mass-virtual

iuertia effect as calculated in reference 23.

8pa(R3 - ,3)blA p A -[- 16. p_a_a(R5 ..A .-A A
3 'io

(s.2-11)

From this development, the coefficient matrix for the generalized accelerations may

be defined to be

8par 3
M-

3

,)31 -(_ 0 0

0 _R2(1 #-_-) o
0 0 2 2 #

(8.2-12)

and the coefficient matrix for the generalized velocities may be defined to be

C = 27rp_

2 /f g_dr o o ]
0 f? gr 3 dr 0 J0 0 f n gr3 dr

(8.2-13)

where g :-: (V + 20)sglt(V + _) and 0 = [7# + v_,..

To eliminate all periodic coefficients in the equations of motion, and to assure the

existence of a steady-state solution, the air mass element degrees of freedom must be

inertial. In addition, the flow direction must be coincident with the steady-state spin axis

of the rotor and the gravity vector, if gravity is included in the model.

86



8.3. Aeroelastic Beam

The aeroelastic beam element is designed to model a beam undergoing small strains

attd large rotations, and for which shear deformation and warping rigidity may be ignored.

A model of this type is developed in reference 24, which formulates the nonlinear beam

kinematics and applies them to the dynamic analysis of a pretwisted, rotating beam el-

ement. The kinematic relations that describe the orientation of the cross section during

deformation are simplified by systematically ignoring the extensional strain compared to

unity. The only restriction on the magnitudes of the orientation angles used in describing

the cross section orientation is that they remain less than 90 ° . All influences of warp other

than warping rigidity are retained. The 1Jeam cross section is not alh_wed to deform in its

_)wn plane. The static equations frt,m reference 24 are used without simplification; the dy-

namical equations are linearized relative to static equilibrium. One noteworthy feature of

the derivation of the equations in reference 24 is that the common practice of using an or-

dering scheme has been abandoned. Titus, all higher-order terms (within the assumptions

above) are retained.

In the following sections, the details of the derivation of the equations for the aeroelas-

tic beam element are presented. First, a synopsis of the basis under which the governing

equations of the beam are derived is given. Next, the equations of motion for the beam

element are derived in terms of the frame, air, bending, extension, and torsion degrees of

freedc, m. These equations include cc,ntributions from beam elasticity, inertial and gravi-

tational forces, and aerodynamic forces. Then, the discretization of the beam degrees of

freedom is presented to show how the beam displacements are transformed into the beam

generalized coordinates. The final two sections describe the transformation from root and

tip re, de degrees of freed,ml to beam generalized coordinates, and the transfc_rmation from

beam generalized forces to root and tip node forces and moments.

8.3.1. Basis of the Governing Equations

Consider the beam element shown in figure 17. The element frame is denoted by

F, and the root and tip nodes are denoted by R and T, respectively. The addition of

primes and d¢_uble-primes signifies the static and perturbed dynanfic states, respectively.
It should be noted that F" and R are coincident with each other and that their coordinates

line up with the principal axes of the root end of the undeformed beam element with the
^//

undeformed beam lying along _b3 . Similarly, T is at the tip of the _ndeformed beam

element and its coordinate directions lie along the principal axes for the tip cross section.

The air node, denoted by A, must be included in the problem so that the influence of

aerodynamic forces on the air node generalized forces can be determined and so that the

influence of perturbations of the air node generalized coordinates can be determined for the

generalized coordinates of both the beam and the air node. The position and orientation

of A are inertially fixed.
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Figure 17. Aeroelastic beam element (undeformed with pretwist).

Interior displacements of the beam are represented by four fimctions of tile axial

coordiuate *a: ui and 03. Bending is described by ul and u2, axial displacement by u._,

and torsion by Oa. These functions are discretized in terms of standard cubic and linear

polynomials so that the generalized coordinates at the root and tip of the beam can be

related to the nodal displacements and rotations. In addition, however, there are also

generalized coordinates, called internal degrees of freedom, associated with higher-order

polynomials.

8.3.2. Beam Elasticity

The derivation of the equations to calculate contributions of the elastic deformations

of a straight, pretwisted beam follows the derivation presented in reference 24.

Steady-State. The elastic beam equations for a beam in equilibrium are derived from

tim variation of the strain energy

t

$U = _ (Cea_&3_ + Eeaa,_ea3)dx_ (8.3.2-1)

where

,_, =(A=+ 6)(_, -o')

1 (6' + 6') (_, -e') ' +(63, - 6A=)(_, - e') e'

(8.3.2-2)
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where 0(x3)is the pretwist angle (fig. 17), with 0(0) = 0, and ( )' = d( )/dxa. The

generalized strains are

_33 =Or -- 1

t2 t2

t_, =(C,2u_ - C,,u'2')/C33 (8.3.2-3)

[ ¢_ 7.tH itK'2 =tt'_22 1 -- C21u2)/C33

('_ 2C u" C u '''_,-,31 32 1+ 3, 2]/C33_3 =0_ - 1 -- C312

where C = C p'F', the direction cosines of local principal axes relative to the static frame

orientation. The elements of C may be expressed in terms of Tait-Bryan orientation angles

(orientatit, n angles of type body-three: 1-2-3) as

ell =C2C3

C12 =g2Cl -_- 8182C3 (8.3.2-4a)

C13 --=_,93,91 -- C182C3

C21 _ -- C283

C22 =c3c1 - -q182s3

C23 _-_c331 -_-c182,q 3

C31 =Utl

I
C32 ='t/, 2

t2 12
C33=(1-ul -u2)_'

(8.3.2-4b)
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whcrc
,_)-_

s3 = sin 03

cl =(1 - _12)}
(8.3.2-5)

c2 =(1 - ,22)_

C3 _-- COS 03

After integrating over the cross-sectional area, the variation of the strain energy is

obtained in terms of the stress resultants F3, M1, M2, and M_.

l6U --- (F363' + 21]16t_l + M26t¢2 -t- Jl'I36t_3) dz3 (8.3.2-6)

where

13 2

F3 =Eoe33 + E_tq - E1_2 -1- _-r3 + DoO'r3

_I1 =E2ff33 + I1/_1 nt- --
]_2 T3 2

2
+ D20r3

/$I2 = -- Ele33 -1- I2t¢2
Bit3 2

D I O'T3 (8.3.2-7)

BaT.3_"2113 = J -1- I3_33 q- B21¢1 -- Blt¢2 4- --_

(Do_aa + D_tq - Dlt_2)O'

3D30' )+ --------_7":3 + D4O '2 _+
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where "r3 = _a - O' and the section integrals are defined as

tt

Eu = ] J EdA

=//E_,El dA

=//E_2E2 dA

I1 =//E_2 2dA

I2 =//E_I2dA

I3 :/1 +/2

J

B_ =//E6(6 _+ _)da

=irE(f, +B3 (22)_dA

=//E(_2A1 - _IA2)dADo
dd

+ (A_ + (,)2]dA

D, =/,/E(,(_A, - _,A_)dA

D_ =/f E(6 _+ 6_)((_, - 6A_)dA
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Here, E0 is the axial rigidity; E1 and E2 are the first flexual moments about the local

_1 anti _2 axes, respectively; I1 and/2 are second moments (bending rigidities) about the

local _] and _, axes, respectively; and J is the Saint-Venant torsional rigidity.

The variations of generalized strains can be expressed in terms of the fundamental

variables as

01£i - t
,_t_i - 01£i _u_ + ,_3igO'3 + --._u,_ + ¢3i_,1£_,,_03

Ou " Ou ,_

and the variation of strain energy as

(s.3.2-s)

_U=

01£i . ]MiF..6u _ + M3$O_ d_3
Ou a

(511,.,,
(8.3.2-9)

where
Os' _3i + u_

Ou_ s'

01£1 Cl_

Ou_ C33

01£j C11

Ou'i C33

0_, C,,

Ou_' C33

01£2 C,]

Ou_' C33

(8.3.2-10a)

C31'C32

C33(1 - C31')

01£ 3 C31

Ou'2' C3_

01£1 tt_t ( 622C32 el,C31 ) ut2°CllC31C_,o,, -c-i,' i- c%q,' + - (i --b--j,')
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o.; -c. _ ki --K_,-_+ c,_ c._(_ - c. _)

C _ Ha_a _ -- 31,.,a2u___L
C 3(1_C3_)_(2C- ,+C- _-C3,4)-'4'(1-c" _)C._Ou '1

(8.3.2-10b)

Ogl _--Cil (UlC31,, -_ u 2''C32]\

a,,i c_33

Dynamic. Since the explicit, analytical derivation of the elastic stiffness matrix

would be exceptionally tedious and lengthy, GRASP generates it numerically. This is

accomplished by taking the Jacobian of the function that calculates the steady-state elastic

loads. Because of the necessity of calculating an accurate stiffness matrix, the algorithm

used to calculate the Jacobian uses a two-point central difference scheme plus a generalized

formulation t,f Richardson extrapolation.

8.3.3. Beam Inertial and Gravitational Forces

The generalized forces resulting from motion of the aeroelastic beam relative to an

inertial frame are also determined following reference 24. Warping dynamics are again

ignored. The derivation is based on the work done by inertial and gravitational forces

moving through a virtual displacement. The work is calculated by taking the scalar product

of the gravity minus the acceleration of a generic point P (fig. 17)in the beam interior

(ref. 24, eq. 32), with the virtual displacement of the same point (ref. 24, eq. 34), then

integrating the result over the beam length.

Steady-State. For a beam element in equilibrium, the virtual work is

fo P'
_w = (_uTF_,' + _¢_,M_,)d_,+

_! _f - P' F' P'

(8.3.3-1)
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where

and

f_,' :m(gF ' A_:I) -'°F'6F'IaF'_o'r''°F'-'r,

Mp_,'I =Tn2Gp'3 ilt_F'I°F'I_p, 2a_P,3

p'
Mp,_ = - m_Gp,3 + i2 nF'1°F'I_v,_oov'3

J_lg/a =mlGp,_ - rn2Gp,1 + (il - i2 _°F'l°F'lp,,P,l,_P,2

RMF' =m(_3_3i + ui) +mlCli +m2C21F,i

F' I 6F' I _F' I RPF',F'GF, =gF' -- AF, -- "'F' "'F'

u =RP', p

_u :_R_: _

OtCi I ' '
= _¢P,i

0u,_

m =//p,dA

m,1 =//Po_I dA

ms = .//p,_dA

,,=f f O'_JdA

The section integrals are

(8.3.3-2)

(8.3.3-3)

(8.3.3-4)
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Dynamic. For a linearized perturbation about the equilibrium solution, it is possible

to express the equations of motion in a matrix format such that the virtual work per unit

beam length is given by

{ _uF''i }

_Oa(*3)

[M]

uF,,i

OF"i I'l
tt F,, i

OF"i

-{-[C] 121(X3 ) + [gl
8p,,i /

6a( a) )

(8.s.s-5)
where the components of the generalized force vector Q are the same as the static general-

ized forces (see the previous section) and the coefficient matrices M, C, and K are defined

on the following pages. The _3I coefficient matrix is defined as

_ltF,, i row"

uF,,j column: m6ii

•" p_ F t ,
Or,,j column: ¢ijk(mRF, k + mjC P F')

uj column: m_ij (8.3.3-6a)

.. O_t

u'a column: ekt'mmC_'F' Ou_

Oa column: ¢kalmlCffi 'F'
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_F"i row:

•. tFW pIFI
UF,,j column: -- eljk(mRPF, k + mtCtk )

0F,,j column:
P' F' P' F _ P' F S P' F j

_i_(mRF, it RE, It + 2mtClit RE,It )-

" " " F' ' ' P' F' P' F' P' F _
mRS,( R_,j - mt(C F F RF, j + el j Rr,i )

"" P' F' P' F'
fij column: - eiik(rnRF, k + mi6'tk ) (8.3.3-6b)

°.l

fi_ column:
¢f,P'F'i',P'F' PIF' P'F' P'F' Ol_it

ml[tJit i t-:Ira -- Ckm Cli )RF, m _OU----_t-_

_IL i row:

" I I t t
[_."_P F f,P F

03 column: mk[t._ai L.,kl

ur,,j column: m_ij

P'F' P'F' P'F' i ¢_P'F'- Cat Citi )RE, t + a'.a,

": _ ' P_ F'
eijit(mRf, k + mlCIk )OF"j column: p F

°°

t_j column: m_ij (8.3.3-6c)

.. t Otgl

fi_ column: ekb"mmCitPi'F' Ou_

03 column: e_atm]C P'F'
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UF"J Column:

$P"J column:

ui Column:

u_ column:

eklrn l'rGn C'kPj' F' 0_..__1

07z tt
Ot

mt(Cf'p',-,p,F,
t%l "_ i trt

il -----__ f'P'F'

Ou" _lj
ot

-- ClP'F'CP'F't "P'r" 0¢¢k

k,,, ttt_.,_ Ou-_' +
• O_ 2 ,

+ t2 ----... t-,p F' i O_¢s p,..,
0%, "_2i + s_u,, c# .

O_

eklnt 7?1_ t"_ P' F ' 0%¢ i

OU"
Ot

Ou2 0u'_ + z2_ _ . 0,_s O,_s

i s 0_._2_
O_t t t

OL

uF,,, column:
_k31_ICkPjt F_

OF,,j column: mt.fcp,F, .,p,r, '

Ztj Colulnn: ek3ltrtlC_j, F,

V/

ua column: is

03 column: is

C..g'F'Cp, F, _,..p,_,,

, _j laF, f
+ i s c3Pj 'F'
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the C coemcient matrix is defined as

_UF,, i row:

" F'I
UF,,j column: -- 2eijkm_F, k

2_ijOF,_(mRv, k +OF,,j column: F'I P'F' mtCP F )_

F' I P' F' P' F'
2_'IF, j(mRF, i + mkCt_i )

uj column:
F'I

- 2eijkm_F, k

(8.3.3-7a)

uZ column: " nF'I¢f,P'F t f_P'F' P'F' P'F' Otcm
' ZmkanF'l _l"'ni Wkt -- Cki Cmt ) Ou_

_F"i row:

: ._ nF'II,.',P'F'r',P'F' P'F' P'F'
03 column: zmk_LF'l _wai _kl -- Cal Cki )

UF"j column:
F I / t i i--2_,¢nv,_(_Rr,,,v F + m,c_ _ )+

2,-_F'1_ nP' F' P' F'
attz, itm_tF, j + mkCk i )

OF"j column:
F'I P'F' P'F'

-- 2eiikm_F, ! RF, k RF, I --

Ft l p_ F t p_ F _ pr F_ p_ F _
2eijkmm_f,l(Cml RF, k +Cmk RF,I )--

I
2eij_ia flF',k

uj column: ,,c nF' l _ r,P' F' mICP' F '-- zoiiUF, k[rn_F,k + )+

2ftF: l , ,-,P' F' v' r'i[m_F'j + mkCkj )

(8.3.3-7b)

,!

fi_ column:
F'I P'F' (-_F'If, P'F' P'F' 0_i

2etdmmm(_F,i Cl=n - "*F'n'-'ki )RF'n Ou_

F'I • P'F' i t-'P'F'xcP'F' Ore!

2flF, m(ekl2tlC2m + ekll 2_lm } ki OU_

Oa column: m /nF'Ir_P'F' oF'I (_P'F' P_F'ekl3 l[atF, i t-_km -- _*F, mWki )RF, m +

2_F'I/. f_P'F'_-,P'F' • 'F' P'F __F,_t_l%k _1_ -- _2C_ C2_ )
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¢_U i row:

fiF,,j column:

OF,,j column: F' [ P' F t p' F f
26i.iftF, k(mRF, k +mtCtk )--

2_F' I t_ DP' F ' P' F'
F,j_,,tltF, i _- rnkCki )

uj column: - 2eiyt --nF'lrtta t F' k

(8.3.3-7c)

_t_ row:

.f

fi_ cohmm:

03 column:

t_F,,j column:

0F,,j column:

_j colunm:

2m _-]F'I/_,P'F' P'F' P'F' P'F' Ol_rn

k v,,t_m_ Cu -Ck_ Cmt )Ou--_

F' I P' F' P' F' P_ F' P' F'
2m_ftr't(Cai Ckl -- C_t Ctl )

F'I P'F' P' g._p'F'c..,p'F'_ Ol_m
_ 2m_flF, t(Cmj Ck i F' _ "_kj 'Jml :--;7

Ou a

2e m /r_F_I"_P'F' oF'l fvP'F' PfF' Ot_i
- ktm _[a_F, itJk. --'°F,.--_j )RF'. w-.+

CJUc_

2nF'l t • P'F' P'F' P'F' OtCl

ltF'rntfkl2_lC2m "4- eklli2Clm )CkJ Ott_

F' I W F t P_ F' Pr F' p' Ff ) O_rn

- 2mt_F,l(Cmj Ckl -- Ckj Cml ._u. a

(8.3.3-7¢1)

.t

"_ column:

03 column:

F'I • P'F' ')_ ,,
-- 2_F'rn(eki2$lC2rn "4- ¢klli2ClPm F Ot¢l

Out_

_'I • _,_,Ox_ _ 0_2
2f_r,_(_,c_ Ou. '_c_'_' _-.,, )

Ou,_
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_/83 row:

UF"j column: -- _Jm-_ F'I[,t_P'F'c'_P'F' P'F' P'F'
F,t _,-3j "_kJ - Cn C_1 )

L

OF,,j column:
"'F'm "'kj )._LF, m --

2r',F'I¢ • P'F' P'F' " P'F' PeF'

_cF, kttlC_k Cj¢ - z2Cik C_ 1 )

_j column: 2m [_F'Icr,,P'F' p,F I P'F' P'F'
- _ _',_t'-'sj Ckt - Cs t C_¢ )

51

u_ column: _" • p'F'O___ Z _ . vo_-,0_2

-mA(t,c,, o._ ,,c,, o-_ )

83 column: 0

and the K coe_cient matrix is defined as

_UF" row:

-r,h_I,UF" column: m_ F ,

(8.3.3-7e)

_F" column:
[6F'I6F'IDP'F'_ " 6F'I6F'I fP'F']m[A_:'--gF'+V°F' '°'_' "_F' :--"F' ",,, "_F, j+

"F' "F, ImF') ~ aF'IAF'I- (8.3.3-8a)-. _tF, ItF, 7TtF,

"r,h_I,fi column: m_F ,

Op, column: 6tF'IAF'I ~ ,,-,F'P'
--.rE, atF, mF, u
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_)F" row:

_u column:

_F,' column:

OF,, column:

coluinn:

v

Or, column:

'_F,, column:

_F" cohlIIln:

,i column:

Op, column:

[_F'I_F'IDP'F' "P'F'_F'I_F'I] _-_[¢i_:'-_" +_o,r ,,r-_, )--Rr .,r o,e, j

( (_F' I _F' ,:n ,_,F' : _,F' I_rF' _rF'ImF') ~ + F ltF' _t F,

"-_'r(A_:.m{Rr - Oe,)+
RP'F'FI_F'I&F'IDP'F'\- nF',_F'l fiP'e']i

F' [t'_e' _tF' "ttF' ] --'l"e' "_e' -tte, JJ+

_rt ,t_F'I [_F' Ii'_F' I DP'F' _~_
F [2tF, -- OF' + _F, _F' Jte, ]

hr'ar'k_:r]+F' _F'

-P'F' - e'l" F'I _}F'I_F'Re, [(he, he, me,)-- o._, .,_,',_e,]+

CrV' ([iv, fi_:_ fiv:l i ar'_,._v'F'-- p p at O, )_ (8.3.3-8b)

-e' - r,h_:,n_:r ","e'ae',ar,,- m[AF ,x - OF, + (fte, )- - RF, _'e, "'F' J

atF' atF' mF')" + F F F'

- prF'_F'I_F'I -
--R e, _t e, _t e, rrtF, C F'P'-

*_F' Z'F' ) -Ce'la'+

""F' I_F' ] cF'P'--

[,_,(A_: _ - _, )]-Cr_' + ,_,(_i_: _ - _, )ce'v'+

-- Mp_ Sp lip, ]

mJ_F'I_F'I
It F, ._t F,

_ar,ar,._'e' - "r,_:,Rf:r]m[_iff:'- or, + v°_' ..e, -e, ) - a_, +
(_F'I_F'I - F'I - '
a'_F' _te' mF,)---_F' 12_,lthF ' (8.3.3-8c)

m_F' I,Z,F' I
at F, _t F,

_r F, a_F, llZrtF,C F'P'
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_¢pt row:

l,,p,F w . r_-_F'I_F' IfiR" column: _ mv _t F, _t F,

0F w, column: C P'F' rhF'(A_, I-' -- gF') + cP'F' mF'I_,tF,-ftnF'I°F'IRP:F',rF, )---

" F'ISF'I_:tpwF .... I - [)cP'F 'flF,-,w-*w ] + (He, ft,, ft_:'ip, -v'
- ap, (8.3.3-8d)

- (_F'I_F'Icolumn: cP'FWmF''*F' _*F'

. - , [_._F'I_._F'IDP'F w)-]cF'P'nk0p, column: C'P'F'r_IF'[A_, I -- gF' -t- _'*F' "'F' "eLF'

- Fw - ' - F'
ttp,[_p, I -- [tF,/ip, lip,1

where
" nF' I

Hp, =zp _p,

tp, _--- [!oo]i2 0

0 i3 (8.3.3-9)

7n ] /
mp, = m2

0

In the foregoing matrices, m is the running mass per unit length, and m,_ is the first

mass moment about the (,_ axis. The last block row associated with $¢pP:°P' is used to

obtain tile terms associated with _u_ and _03 by substitution from the equations

r'" P' .0tci 0 2_i _, 0 2tci

_¢p,, = _3_o_ + (_u"_ + Ou_,Ouo_'_ + 0_-503 03)_u_
(8.3.3-10)

and

"P" P' OtCi - t
Opsi --- _3i_ 3 _t- ---2_._!U,. _ (8.3.3-11)

The $¢p, row block matrices must then be pre-multiplied by R T and the 0p, column block

matrices must be post-multiplied by R, where

Ri_ - Ou_

Ri3 =_i3

(8.3.3-12)
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The geometric stiffnessmatrix K c" is added to the 6¢p, rows and 0p, colunms where

-G P' 02 t_i

Kc.G3 " .p, 02t¢i
= - ltlp, i Ou,_O03

(8.3.3-13)

=o

The matrix K c" comes from the last two terms iu equation (8.3.3-10), which are commouly

called the geometric stiffness terms.

8.3.4. Aerodynamic Forces

The aerodynaIrdc forces acting on tile Reroelastic beam element are determined from

a quasi-steady adaptation of Greenberg's thiu-alrfoil theory (ref. 29). Before the theory is

discussed ill detail, two new sets of axes must be introduced for the purposes of defining

the directions in which the lift and drag fi,rces and the pitching moment act. In figure 18,
_Z

the Z axes are associated with the zero-lift line for the airfoil section with the vector _b2
-Z

along the zero-lift line toward the trailing edge. The vector b 3 is along the beam axis but

in a direction such that a dextral rotation of the airfoil section al)out _fis vect,,r results
in an increase in the angle of attack. Then, being a dextral system, b 1 turns out to be

normal to the zero-lift line (and nominally in the direction of positive lift for the section).
W

The other set c_f axes is the so-called wind axes IV. For these axes the base vector _b3
^Z _Z

is identical to b3 . The base vector b 2 is located along the relative wind vector (in the
. W

direction of drag) and b1 is in the direction of lift.

Zero-lift line

Figure 18. Aeroelastic beam cross section.
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The Z basis and the P (principM axes) basis convect with the blade cross section, and

are related by the direction cosine array C zP = C z'P' --- C z''P''.

C ZP

cos Oz sin Oz ! ]
-o" sin O, o- cos O_

0 0
(8.3.4-1)

where a = +1 if a dextral rotation about _ results in an increase in the angle of attack

and _, = -1 if a dextral rotation about _ results in a decrease in the angle of attack.

Tile wind basis W is related to the Z basis by

C WZ =

cosa -sin_ 0

sin a cos c_ 0

0 0 1

(8.3.4-2)

where a is tile angle of attack. Then, C Wp = cWZc zp.

Point Q is the quarter-chord point of the cross section, about which the aerodynamic

forces and pitching moment are calculated. The offset position of Q relative to the origin

of the local principal axes P is _qPiZ
"_Z2 --_2 "

Consider the wind velocity vector at the perturbed position of the aerodynamic center

Q". H'_._[Q'' is calculated by subtracting the inertial structural velocity at Q" (V q''l) from

tile inertial air velocity at Q" _"I(U '¢ ), where

__ I:IQA_ A DQA_ A ,_A (8.3.4-3)

and

__ __ _F"F' __ ((__F'I __F"F'VQ, I .=(fiF'l + qt_ _PF)RQP + + ).R PF''

F"RPF" _F'IRF" F' F'RF"F' IRF'I_ + + _ + _

+

The relative wind velocity components in the Z" basis are then

.A
Z" A- c. (_a +,._a +pl

( c Z" F '' " - Z" P" : P" P'- + #F,,) + (C Op,

[(cZ"F"_FF',I)- + OF,,) ]C RF,,(cZ"F ''" ~ Z"F" P"F" _

"" F" " F' Ic "_ i, -[(cZ"r"_ F, )-]cZ"F"_F,,--

(cZ" _" _F,, )-cZ"F"_,F,, _ cZ"F"_,F,, _ cZ" F"vF' _

IrlQ" A _ A 17Q" A _kA
+"a2 v'12+"A3 v'13)-

(8.3.4-4)
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and the local air flow velocity gradient is

tl

,_AZ.QA ,_AZ,,Qa '_A_A c_$:)+= __ cZA( "-'22 "_A2 "q- --32 "_LA3 _'A @ "22 '+'12 q-
r

CZr'oZF' r, ZF"_ F VeT3j "°F'j +'_3i "j + C_ "

(8.3.4-5)

where

/,._QA 2 I:IQA 2
1" _-- VIfA2 _-"*A3

If the time derivatives in equations (8.3.4-4) and (8.3.4-5) are replaced with variations,

the relative virtual displacements and rotations of an element of air with respect to tile
structure are obtained.

_ Zt_i (?Z" A(,_pA DQ" A sA A l_= - "-'il _'_-, + tt_2 '_¢i42+ "'a_ ,,'e13j

t(cz"_"_¢_,,)- __(cZ",'"_;:,")-],,R_-
Z' ..... cZ"F '' P"F" cZ"F"_Uj(c ' ,_'F',)o jk Rr, k -

Z" F" _ ( c Z" F '' - Z" F '° F" F'Cij _UF,,j _¢F" ) C RF,,

Q'_ g"?Z"Ag'yZt'A_A I'-yZ"Ag'yZ"Aj_A f_ZttF"¢.L f_Zt'P"_hP"P '
bTz,,3 -_ -- _ll ""22 '_'¢'12 -- _11 v23 "WI3 _t_ tF3j OWFt,j + _.z3 j vWp,

(8.3.4-6)

The relative wind velocity magnitude and components are time-dependent quantities.

For the magnitude note that

tt II

w _= (wg,,)' + (wg,_)_ (8.3.4-7)

for which the static part is

and the dynamic part is

w_ = (,,v_',)_+ (u'_'_)=

- Q, - ,, _ q,
l,i" Wz, 1W q "r q"= z"_ + Wz'_B z,,2

W

(8.3.4-8)

(8.3.4-9)

Likewise, the angle of attack is a time-dependent quantity. In the equations written

below, it is necessary only to develop the static part and the linearized dynamic perturba-

tion part. These quantities are easily deternfined from the definition of c_.

It

tana- Wzq''l (8.3.4-10)

IYZ" 2
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The static part is simply

tan e) --

I

I&'_l (8.3.4-11)
lit O'

" Z'2

while the dynamic part is

-Q QVvQ ,zQ
a = --z,2"'z,,, - W?,,W},,,

W_

The applied force is assumed to be

^ W" ^ W" Z"
_F=£cb, +_b_ +£,.cb,

and the applied moment is

The equations governing the aerodynamic force components are

£c = paW2cc, + _p.c WGQz,,,_

IPa IV 2 cca

.A,4 = _ p ,, W _c ac ,, - --
..... 3c . Q,, .

16

_r _ __t,lrq" c • q,, ,
_nc =_pac _"Z"I + _Gz,,12)

(8.3.4-12)

(8.3.4-13)

(8.3.4-14)

(8.3.4-15)

Now, all of the quantities that are needed to define the virtual work are available.

$)/V = (-_fSQ;;,Fz,,, + _TQ:: ./_)d_e3 (8.3.4-16)Z 3

Steady-State. The static generalized forces can be removed from the expression for

tile virtual work and written in the form 6)'V = f: 6qTQdx3, where _fq is

_q = _UF,,i

_¢F"i

g$3

(8.3.4-17)
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attd the elements of Q are

_P1A:

_ltF, i :

_lt i :

Su':

603 :

£_c_ W' + :Dc_""

ri r" f_AIV'

0

0

toc,";'_' + vc2_'_' = F?

AAc3Z'F' -q'F'4- (R F, FA)i

r?

0_¢a

c_P(_ - _F,_) o,¢

( I_Q' A t.-y Z' A lpQ' A t.-, Z' A $
_'"A2 "-'22 4- JtA3 "'23 ]

(8.3.4-18)
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Dynamic. After removing the steady-state contribution to the virtual work, the

virtual work per unit of beam element length done by the aerodynamic forces and pitching

moment can be put into the following form:

-6W =

6/?
6¢5

6¢A
6UF,,i

I_F,,,

6ul

6u"

603

T

'va

[a], _ + [B} rvz_: + [n], ,_F,,j

I-
a$

_nc

X,t

;[E] { } :Q_z%= I _Q l
JZ12 (8.3.4-19)

44

uF"j

OF"j

f_j
_f

u/j

-A

P1
-A

elf

+I"1/;;:',/
/o.,,,,,

.a'o

This equation can then be rewritten in terms of aerodynamic M, C, and K matrices, where

M =AFH

C =AEH + AFG + BH

K =AEG + BG + D

(8.3.4-20)
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The elementsof A are

6P A row:

Z_ column:

7) column:

_nc column:

,¢_ _o_:

A_i column: 0

L_c column: 0

colunm: 0

_nc column: 0

6¢;_ row:

A_ column: 0

/_c column:

7) column:

£,_c column:

Ad column:

,Ca _ow:

_e co|utah:

_column:

_._ column:

._ column:

_ (TVV'ADQ'A
"11 "tLA2

_ (',IV'ADQ'A
"'21 ZCA2

__ cZ'AIy?Q'A
11 _A2

c Z' Ag'_Z' A
11 "'22

_ f'7tV'ADQ'A
"_11 -tLA3

_ C_'V'A DQ'A
_21 JtA3

Z'A- c,,

cZ' Ac',Z' A
[ 1 "_ 23

(8.3.4-21a)

(8.3.4-21b)

(8.3.4-21c)

(8.3.4-21d)
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_tF"i I'OW:

_F"i I'OW:

_-c column:

f> colum,a:

_'ne column:

ASf column: 0

-- C]iV' F'

CIV. 'F'

CZ'F,

_lti row:

£c column:

Z_ colu,,a,a:

Z_n_ column:

column:

++ij+ C._ .v'F' DO'F,
u "F'k

%+ C2*."P'_O'F,
+J .a15, k

eifl_CIZj' F'I_QF '['

_ cZ'F,
3i

_U: row:

_e co/utah:

f> column:

_'.cCOluma:

ASt Column:

C_' F'

cZ'F ,
Ji

_e coJt;,rln:

Z) column:

_ne Column:

¢Q column:

c]:"Z'cg,,
z20u-

O:

1,1"1_t
C++ C pRQp

.... Z2
01$ _t

CZ

CzP t, Qp 0,%
33 -_t2, 2

Ou;;

OU " 33

110
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_J rOW:

£_ column:

Z) cohtmn:

_nc cohlIIIIl:

A)[ column:

The elements of B are

_pA row:

I_rZql column:

colum.:

row:

GzQ12 column: 0

_l_, column: 0

cw' z' r', ZP oQP
11 "F33 _tZ2

cW' Z' t"*ZP DQP
21 v33 ltZ2

CZPoqv
33 acZ2

- C_ e

Zt A OC • _ OC
_ Wt_s wtgt

Iw l,

(8.3.4-21i)

(8.3.4-22a)

I_zZq2column: 0 (8.3.4-22b)

Gzql2 column: 0

l_lqj column:

l_'zq2 column:

GzQ,_ column: 0

__rQZ2_ilt_Zt A I_Q' A[ fa_A2_Ju'c _ -_ __ )o_w'z'aotvtz'

wI j[ I wilt

il _tA2 I'J"c O_

(8.3.4-22c)
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_¢,_row:

_ltF,, i row"

_;F"i row:

_Ui row:

WzQI coluIixn:

|_'2Q2 column:

G_12 column: 0

I_2Ql column:

I_ column:

(_ZQI2 column:

tVzQ1 column:

_zQ2 column:

67zQ12 column: 0

l_l column:

HzzQ2 column:

(_zQ_2 column: 0

-- s a WeZI
_W Q t'7.Z ADQ Air OC_ _ w'z'

-- W*_

- cf,'_(__+__)

8CWtZ t wlz,

_ji x--c 8<,

0

Ws21 e p

e" "I_vrQ t'_Z'F' DQF'f_"cSC_ _t_'-8"-'d_ 8cW z
t)" '" Z2""ij *tF, k + _):-_----)

__eijk_IQzI_Z'F' QF' 8C w'z' _SCw'z'

oc"" __)-_, c_'_'(_o=__ +

-- , . WS$ *

,_,_'_'(_o_+__)

(8.3.4-22d)

(8.3.4-22e)

(8.3.4-22f)

(8.3.4-22g)
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_U_ rOW:

_VgQ_column:

_VgQ2 colulIltl:

_03 row:

GzQ12 column: 0

1_1 column:

1_2 column:

{_Z_I2 column:

WtZ t

W z2ozP,',Qp"-'3s "_z2 _ + oa ,

_UvQ ¢',ZPr_qt'_j_/r m.w'z' 79_"" Z] _3a ""Z2 oug _'-'* _oa + )

Wtlg rITVQ ¢'TzPo_PI,,. ec:_, _ w'z'

Wt_t
_[rf/*(._ t"'ZP DQP / r 8Of; _ _ ,_,w'sl

" 21"_aa *_z2 t*"__ + 13 oa )

(8.3.4-22h)

(8.3.4-22i)
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The elements of D are

_pA row:

P_ column: 0

cA r column: 0

_lA2 column: 0

_,A3 column: 0

t_F,,j column: 0 (8.3.4-23a)

•T)fTW'F _ ]g",F' A
OF"1 column: ekij(£cCl W'F' + "_""21 I""_kl

"5i colunm: 0

_f
uz column:

03 column:

_ ,,. ,-,w'e' w'r,')C_'AO'_,,,
-- eklm(_ct'_lk + :DC_k Ou_

_£ cW'P ' ,,-,,-,w'p')d,_'d-- k13_, e lk + _'u2k
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row:
P( column: 0

¢_r column: 0

CA2 column: 0

(_A3 column: 0

t_F,, column: 0

(8.3.4-23b)

Or"j column: 0

_j column: 0

u_ column: 0

_3 column: 0
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row:
P_ column: 0

,_A column: 0

ca 2 column: 0

_'_3 column: 0

_t F,, j column:

OF"j column:

_2j column:

u_ column:

03 column:

W' A F °
- (£¢C,W'A + _C2, )Cj2A

•_I',]_ r'Z' \It-,Z' Aa",F'A -Q' F'
- ,jkl[(L:_C,"_z'+ '_2. JW._ "_n RF,k --

Z' F' t"_F'A _Q' A _A_
C.,! "_kl ""A2 J"

.A/f(cIZ'F't..-,F'A/'yZ'A -- t'-,Z'A[',F'A Z'F'"Wkl "'22 "Jll _"_12 C2k )]

_ (co w'a VC "a)C 'a"'11 +

eatm[(£,Cl_['g' "nc, w'z'_l,"z'ac'P'A,'-r gPoop"+- ""'_2i I_""il ""k2 "-'21 "LZ2 --

ciZP ¢",P' A pQ' A __I_

_(pZPf, P'A[-,Z'A t.-,Z'A[_P'At-,ZP_] OlCm

_l-'lk I'_ll 1"22 -- vl I "k2 _J21 ]J 01/,_

o, z3[(£cclW, Z, w'z'_,.-,z'a,-,,"ac, zv.o"+ _)C_i )V'-'ii "-'to2 --'_t "_Z2 --

cZP,.-,P'AoQ'A)+ik "Wll *"A2

d_4(C.-,Zpf..,P'At.-,Z'A t.',Z'At",P'A,",ZP%]
/""lk vii _"22 -- %';11 %"k2 "21 )]

(8.3.4-23c)
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_¢1A row:

pA column: 0

q_lA,,column: 0

cA 2 column: 0

¢(3 column: 0

UF"j column:

OF"j column:

_ (_,cf71,V'A q,._fvtV'A_fvF'AVll + L" "" 21 ]"'j3

[(F _W'Z' _)C2Bff Z"_[f,Z'Af, F'A f._Q'F '-- ejkit_"c'-_lm + ]_,t"%nl _13 -tI-F,k --

Z' F' F' A Q' A
C&t Cti RA3 )+

 (cfi - C, z'ACg'AC(;r )]
(8.3.4-23d)

1i i column:

r2_ column:

03 column:

•T_/'-y B" A _¢-y F' A
-- ('_¢C;t1 r'A "4- _'_ 21 ]'" 3 3

rli, f, IV'Z' B" Z' _[¢._ZI Ac-,PfAc-,ZPDQP
ekltn[[L, ct._li -_- _C2i ]['W'il "'"k3 "_21 _tZ2 --

'A
rZPe"P'ARQA3 )+"'ik "'ll

.]_IpZPw, P'AcZ_A f_Z'Af, P'Af_ZP_I O_m

\"-_lk "Jil -- _"_11 XJk3 _"z2l ]J (_/,_

[r_. Cl4_'g ' q-}fylV'Z' wf, Z'Af',P'Af",ZPDQP
k13 Lk c li + _'w2i ][t'il t'_k3 IJ21 _'tZ2 --

cZPw, P'A Q'A
ik _. RA3 )+

.A/ii f_ZP f, P' Ac_Z' A f,Z' A f_P' AI"_ZPI1
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_UF'I row:

/_ colunm: 0

q_A column: 0

¢_ column: 0

_A3 column: 0

_F"j column: 0 (8.3.4-23e)

_F"j column: 0

12j column: 0

-' column:u a

#3 colulnn:
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_I_F. ; row:

Pl a column: 0

_#,. column: 0

q_2 column: 0

(_3 column: 0

_2F,,j column:

v

OF,,j column: 0

_j column:

It, ,,', tV' Z'
mkl[l..,Ct_l, l

emkl( f I_Y._V' Z'
_C vl f_

" Z'F' Z'F'
+ z_c_Z')c, ck_

Z' Z'F' Z'F'+vc,_' )cd c_i

(8.3.4-23f)

* f column:

@s column:

Ill _W'Z' W'
e3/_t_,--e_ll .4_ _)021 Z')l_QP A,4167Zp_p, F, O_____kk

J'_Z2 -- "-'J-'as _li Ou'_ +

_)I_ IV' Z' Z P Z F I-_P' F'

CpZP _ZF ,-_P'F' _ r)P' F t O_q

i "-'ko t-'hi ]ltF'° OU_

_{ _ZP I_ZF _P'F'

cZPcZF,'_P'F ' P'F'
pl ko _.i )RE' o
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_u i row:

/blA column: 0

cA r column: 0

_2 column: 0

q_A3 column: 0

fiF"j column: 0 (8.3.4-23g)

OF"j column: 0

uj column: 0

vt
u_ column:

#n column:

eklrn(_eCl_'P' IV_t"_I_'P' P'F' Ot_m

_ (.,. i,_Vff_p e WJp _ pfF _
- tt,m,...c,-,l_ + DC2h )C,
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_U_ rOW:

/_A column: 0

¢_,. column: 0

cA2 column: 0

"A

¢13 column: 0

uF"j column: 0

8r"i column: 0

(8,3.4-23h)

fij column: 0

68a row:

Oa column: 0

p A column: 0

¢_,. column: 0

¢i4z column: 0

_s column: 0

fiF"j column: 0

OF"j column: 0

(8.a.4-2ai)

fij column: 0

u3'' column: 0

_ column: 0
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The elementsof E and F are determined from perturbations of Eqs. (8.3.4-15) which

govern the lift, drag, and pitching moment. Thus the E matrix may be defined as:

_c row:

_)row:

_rte rOW:

I_'ZQ1column:

tV_2 colunm:

GzQ12 column:

_VzOl column:

l_v_2 column:

GzQ12 column: 0

l_rzQ1 column: 0

I_rZQ2column: 0

G_,2 column: 0

1 dcl ,_,Q

WQ
1 c 2 Zl 7,0

7rpa _--_tr Z12

2 da

I 2WQz_Q

_ Trpac -_t. z, 2

_ xp,,c2lWI

1 dca .- 0
Va_calrVQzi+ _p_c-_--d vv_:2

1 dcd .- O

(8.3.4-24a)

(8.3.4-24b)

(8.3.4-24c)
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J_ rOW:

I_i column: 1 2dcm _ Q

16 w }l_rl "-'glz

I_ZZQ2column: 2 -.Q _pac 2 dcm -p,_c c., W z2 -- . _d.___flzQz1_

1 3 I_rZQ2 __
--rpac 4G '¢
16 IIVI Zl_

(8.3,4-24d)

G_12 column:

and for the elements of F

_c rOW:

:q
Wzl column: 0

:Q
IVz2 column: 0 (8.3.4-25a)

-Q
Gzl 2 column: 0

:q
Wz, column: 0

=q
W column: 0Z2

(8.3.4-25b)

_nc rOW:

=q
Gzl 2 column: 0

: Q 7rpaC 2
IYZl column:

4

:q
Wz2 column: 0 (8.3.4-25c)

=q rpac a
Gz12 column:

16
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.A_ row:

- Q 7rpa C 3
IVz1 column:

16

:Q
_Vz2 column: 0

(8.3.4-25d)

- Q 37rpa c4
Gzl _ column:

128

From the relations defining the relative velocity components and gradient, the elements of

G and H can be determined. The elements of G are defined as

/SA column: 0

¢_ column: 0

¢#2 column: 0

q_#s column: 0

tt F,, j colunln:
Z' F' o F' I f_ Z' F'

eaklClm ,_t,F,m ",./kj --

_ A fy Z' A [ fy F' A _-_Q'A f_ F' A _Q' A _

f _al _,'-_j2 -V-AS + "-'is""A3 I (8.3.4-26a)

v

OF,, j column: -Z'F' F'A-A _A)+vF'II]+- _jklC,_,, [Cn (U1 +

_F'l _tZ2 T

x,A , ' ' ' F'_ ! _Z A_Q F [f_F'AbQ A A -Q'A
ejkl--U-_al nF, l k_ .VLA2 +Cka RA3 )+

P

_ f_Z'F'c.Z'F'_F'InP'F'
¢olkrnenojtzkl tFmn _tF,o-rtF, I

_2j column:
oF'I f,Z'F'

ectklCi_n F' _F,m ,._ltj --

_A_z'A[fyF'Af-_Q'A fyF'A#Q'A_

- "_al X"j2 *'A2 + "_j3 _'A3 !
r
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72_column:

3 column:

P' F' F' I C_tCm

? + + c,. +-- eklm_c_ k It-ll

_al ¢31mC! p' F' cZP nF' I DQP Ot_m

-A
7 ' I" ' '= ,,'-YZPf',Z AI-)Q [f*P A_Q A ¢-_t:"AbQ'A OtCrn

F' f - I=" F' P' F' g'_ Z P g', Z' F'
eklme_noflF'pRF'q (Ctp ""ok "Jnq +

p, Flr_Zpr_Z,F ,_ O_rn

Clq "_ nk "" op ] _U--_

+

CZPfcP'AIuA A P'F' rF'I- kz3 ,_kt ct ,, _ +eS' )+Cm tF,.]+

ekl3_._no(ClPp'F'g'_Zl_f',Z'F ' P'F'pZIVpZ'F'_cIF'I_P'F 't'/ok t'_nq + Clq _Jrtk ""op /_t_F'p'ttF'q

_fAczPcZ'ARQP/c-_p'A_-)Q'A twp'A_q'A,_
ekl3 _- 2l _I Z2 _k2 ltA2 + _k3 _"A3 ]

r

GZQ12 row:

/SA column: 0

¢#_ column: 0

cA 2 column: 0

cA s column: 0

ltF,, j column: _ [ g-,Z'Ag'_F'A_AcZ'A (c2Z'Acff'2 'A +'_23 "'j3 )--
r

L{cZ'ADQ'A g._Z'ADQ'A'IIg.-,F'Ay-_Q'A f-vF'Af_Q'Al]

_2 _ 22 "'A2 + "-'23 "tA3 I_"_i2 ""A2 + "-_j2 ""A3 ]J

(8.3.4-26b)
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OF,, j column:

_j column:

u_ column:

0a column:

ag:.'+

_A f,Z, AKIQF, [¢t_Z'Af_F'A f_Z'Af_F'A

"11 "_F_ [_'-'_2 ".'k2 +"23 ".'ks )-

(C Z'A_Q'A _Z'Af_Q'Awf_F'A_Q'A + "Fk2 *'A3 /.]*"A2 + "'23 '_LA3 Jk'_k2 ""A2

,_A r Z'F' ""ll _,"22 *'_A2 + "23 ""A3
[elk t_F'ALg_Z'AI_Q'A f,Z'ADQ'A)+

r

fTF'A_Q'A_] }cIZI 'Af'Z'F'it_F'ADQ'A''2kk_"12 *"A2 at- "_13 "A3 ,']

_fA c_,A [if_Z, Af, F,A f_Z'Af_F'A'_

r

-_'_ ( c _' A [-_ _A'2A -_- C _ ' A _ Q ' A '_I (_' F ' A _L_ ' A."t.A , ] l, '. ' j 2 * t A 2 Jr- C j2"F"A ["{ _ ' A ) ]

_ZP_P'F' FIl Oqlf'm

_31mL_33 t..'lk _F,k--_t_ +

Z'A P' +C23 c_A) -_ _A cZ, Ar, VZ_QV [(C,.2 ckA Z'A

op' A I_ Q' A _1

_1"221[[TZ, A I2Q' A.,,.A2+"23[7_'AI_Q'A)(ckP_ARQA'2 A''A3 + "'k, "'A3 ,j -

_/A [_Zp_p,A/f_Z, ADQ, A f_Z, ADQ, A,tj._

[tFlk '-Ill _,_'-'22 *"A_t + _-/23 *'_A3 I-
t

11 "'2k k"12 *"A2 + O_t----_

_A f _Z'A_PZr_¢P [rcZ'AcP'A Z'AcPk3'A)--

1 {F_Z, ARQ' A _Z'ADQ'AIIg_P'AI_Q#A f,p'A_Q'A)]_
_\'/22 A2 + t-/23 -ttA3 ]t,_"k2 *"A2 + "_k3 _'_A3

cZPf'P'AIfTZ'A I_ Q'A + fYZ'A F$Q' A) =
Ik t" ! 1 _,"" 22 *"A2 "'23 *"A3

cIZI'Af_Zp(f_p'AI_Q'A F,p'A_Q'A_
_J2k _-'12 *"A2 + _J13 *"A3 /J

(8.3.4-26c)
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The elements of H are defined as:

row:
•. A ('yZ'A

P1 column: - ,-,,_

tA

CJr column: 0

• A I._yZ, A_Q, A
_12 colunm: -_, _LA2

_A _ Z'A#Q'A
¢13 column: - _1 "_A3

_tF,, j column:

Or,, j column:

Zt F t
- C,_j

Z' F I _ r ZS F ' Z' F' - P' F I
$,,,C3j RQZP 4-e,_ktwtj C_ RF, m

(8.3.4-27a)

• Z'F'

ui column: -Ca1

• ,,-,zPmQP 0_3

fi'_ column: 6at'-_33 "_z_

'" !; f'ZP DQ p
83 colunm: val_33 ltZ2
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G_12 row."

.A

Pl column: 0

-A

¢1,- column: 0

-A

¢12 column: - "-'11crZ'Ac'Z'A'-'2_

-A

¢1a column: - "-'II("Z'A["Z'A'2:I

"_F"j column: 0
(8.3.4-27b)

" Z'F'
OF,,j colunm: Caj

_2j column: 0

• ZP 0_3

ti'_ column: Can ffuu_

L

8a column: C zP

8.3.5• Spatial Discretization

The variables ui and 0a are expanded in a set of polynomials based on reference 30.

The "CO" functions (u3 and Oa) are expanded in terms of ¢i(r) where x = t3/l. The

functions used beyond the first two standard linear functions are orthonormalized. The

C1 functions (u,_) are expanded in terms of/3i(x). The functions used beyond the first
four standard cubic functions are orthonormalized. The details of the orthonormalization

procedure are specified below.

The expansions are given by

NQ

i----1

Ns

U3 = E qai¢i(X)

/=1

(8.3.5-1)

N4

03 = Z q4i¢i(z)
i=1
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The functions _bifor i > 2 and _ for i > 4 are constructed from the Ja.cobi polynortfials

g,,(x,) = G,_l(p, q; x) where p = 5 and q = 3 for the CO functions and where p = 9 and

q = 5 for tile C1 functions.

Letting :c = _, the CO shape functions are

_1 =1 - z

(8.3.5-2)

where 3 < i < N+I and N = N3 orN4.

polynomials are

The recursion relations used to compute tile

129



where

g,(=) =1

g_(=,)==_

g,(=) :g=(_,)g,_,(=) - gj_,(=)Aj_,

Ig,(=) =o

#
g2(z) =1

i t X Pgi(:_) --g_-,(_) + g,C_)gj_,( ) - gi_,C,_)Ai__

g_'(=)=o

g_'(=)=o

g_(x) ----2g__l(x ) + g2(x)g__,(x) - g_'_,Aj-,

Ai-i(i + q-1)(i + p-1)(i + p-q)
(2i + p- 2)(2i + p- 1)_(2i + p)

fn 2 --30

; p=5, q=3

(8.3.5-3)

(8.3.5-4)

2 A_
fi+ 1 =--

Ai

The derivatives of the shape functions are then

¢', =-1

¢',' =0

¢_' =o

¢; :[(1 - 2x)g,_, + z(1 - z)g[_z]fi_ 2

,, 1 .
¢,i :[-2gi-z(z) -4(x- _)g;_,(z)+ x(1 - z)g,_z(x)]f_-2

(8.3.5-5)
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Similarly, the C1 shapefimctions are

/31 =1 -- 3X 2 4- 2_ 3

/33 =z - 2z a + z s

/33=3x2 - 2x3 (8.3.5-6)

/34 _x3 -- x2

/3j=_(1- =)2g,_4(_)/,_4

where 5 < i < N + 1 and N = N1 or N2. The g's are tile same as above for the CO shape

functions, A, is evaluated for p = 9, q = 5, and f2 = 630. The higher derivatives are

v;"(*) =£'(,) = 0

g7'(_) -3_j_,(,) + g=_jgj_, - gj-,t_j*;-2
(s.3.5-7)

g',"'(_) =£"(_) = 0

ftf¢l _ _ let _ I _ HH fOtf I "_,t
gj Vzj (x) + -='tgj_ 1 y2_x)gj_] gj_2_,x)_j-2

and derivatives of the shape functions are

1 R'" f4""
/_',' = 12(x- 5) _, = 12 _., =0

/3_': 6(_ - _) /3_": 6 .=w'": o
/_' : - 12(x - _ ) _'aR"': -12 _'aW'"= 0

/3_'= 6(= - _) /37 : 6 /3_'": o

a', -=-G=(1 - .)
/3_ =33:2-4x4-1

/3_= 6_(1 - _)
/_ = 3._2 - 2,_

(8.3.5-8)

/3,'--{-4=(1 - _)(= - _)g,_,(=) + ="(1 - =)__,-,(=)lk-;

f¢ I _2(1 2 tit/3, :[12(=' - = + _)g,_,(=)-s=(1- =)(=- ' '2)gi--4 4- -- =) gi_4(z)lf,-,

1
_'" =[24(a: - _)gi_4(x) 4- 36(a: 2 - a: 4- _)g__4(x) - 12x(1 - ac)(x - ' "_)g,-,(*)+,"i

x2(1 - x)2g_" 4(x)]fi_4

3"" 96(x ' ' ' ", :[24gi-4(x) + -- _)gi_4(x) 4- 72(x 2 x 4- _)gi_4(x)-

16x(1 - x)(x 1 ',' 2 ,,,,

(8.3.5-9)

These formulas for shape functions, when substituted into expressions for virtual work

of either internal, inertial, or applied loads, produce integrands that depend only on x3.

These integrals can be evaluated to any accuracy desired by use of Gaussian quadrature.
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8.3.6. Transformation from Nodal Coordinates

In GRASP, a different set of generalizedcoordinates are used for the beam element
than those for the nodes. It is therefore necessaryto calculate the beam generalized
coordinates in terms of the nodal displacementsand rotatiorlal variables at both the root
and tip of the beam,so that the beam equations canbe written using a convenientset of
generalizedcoordinates.

The beam generalized coordinates qai for i = 1,2, 3,4 determine the ua displacements

at tile beam root and tip. Similarly, qaa determines the u3 displacement at the root and

tip, and q4_ determines the 03 rotation at tile root and tip. Tlle exact relations are

qil =_Ri

ql_ =C_ ' R

q14 =CI1 'R

q22 =C_ 'R

q24 =cT'R

qla /
q_a

qa2

=CRTuT (8.3.6-1)

q41 : sin-I

V/1_

q42 = sin -1

cT'R :cT'TcTR

The rotation expressions are derived from expressions for C P''F'' written in terms of

u" and 03 (see ref. 24, equations 4, 17, and 60-62) for which

P" F" t
C31 : sin O_ = u I

P" F"
C n = - cos 02 sin 0, = u_ (8.3.6-2)

c P" F"21 =-cosO_sin03 =- 1-u_2sin03
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8.3.7. Transformation to Forces and Moments

The generalized forces calculated for tile beam element root and tip correspond to

the beam generalized coordinates. These forces must now be transformed into forces and

moments at the root and tip nodes. The virtual work at the root can be written in terms of

the static residuals _/_ and tile linear coefficient matrices. In terms of the beam generalized

coordinates, this relation is

--_WR = 6qR T (-Qn + Ln(tn) (8.3.7-1)

where _qn T = l_q,, _q2, _q3, _q,2 _q22 6q4,] and AT = _qll q21 q31 q12 422 t_41J, and L R

is a linear operator representing (Mn _t" + Cn_i + KR). Note that this equation defines

the negative of the virtual work. The explanation for treating the virtual work in this

manner is that it is conventional for LR to be positive, and LR is normally considered to

be 1)ositive on the left-hand side of the equations of motion, while QR is positive on the

right-hand side.

The root node virtual displacements and rotations may be related to the beam virtual

generalized coordinates by the expression

6qj 1

_q21

_q3 i

6q_

, _q41 ,

A
3×3

0
3x3

0
3x3

Rn
3x3

{6un }

3x1

3xl

(8.3.7-2)

where the root node virtual displacements are 6un = 6R_ 'n, and the root node virtual

rotations are 6¢n = 6¢n'n The 6 × 6 coefficient matrix that premultiplics the root nodeR '

virtual displacement and rotation vector is called TH and matrix Rn (ref. 24, eq. 67) is

R R

o _c_ 'R -_c_ 'R

!

I - cfi'" o ec '"

"l}Tt

0 1-(c,"_'")" 1-(cE")'

(8.3.7-3)

Similarly, the perturbed root node displacements _2n and rotations 0R are related to

the perturbed element generalized co, ordinates qn through the expression

I
4n = TR

t OR I
(8.3.7-4)
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When the virtual work at the beam root is transformed into nodal coordinates by

the substitution of equations (8.3.7-2) and (8.3.7-4) into equation (8.3.7-1), the following

expression is obtained:

--_WR =[_uRT _¢RTJTRT {{--QR} + LRTR {_RR} }

=L unr  ¢nrJ {--TRTQR} + TnTLRTR OR

(8.3.7-5)

First consider the transformation of Ln, which contains the dynanfic matrices Mn,

Cn, and KR. The transformation of the element generalized coordinates into the nodal

generalized coordinates introduces the transformation matrix TR into the expression for the

virtuai work. Since Tn is a function of C n'n, which is a function of the nodal rotations,

it must also be perturbed to recover any additional perturbation contributions. In the

case of the linearized dynaufic matrices AIR, Cn, and KR, no new perturbation terms are

introduccd by the transformation, since any such contributions would be nonlinear.

The transformation of the static generalized force QR is, however, another matter. In

this ease, transformation does contribute an additional term, called the geometric stiffness

term K_, t(, the linearized dynamic equations. Geometric stiffness originates from the

perturbation of Tn.

-SqRQR:-L_ 6¢RTJTnT{Qn} (8.3.7-6)

When TR is perturbed,

OTR T

-_qRQn = - r &bnTj _qR_zn

OTnT

(8.3.7-7)

where

0
3×3

0
3x3

0
3×3

oR_ga
OqR
3x3

(8.3.7-8)

When equation (8.3.7-7) is multiplied out, only one of the 3 × 3 submatriees is nonzero.

This submatrix is called the root geometric stiffness matrix kGn, and it contains only terms

that are related to the nodal rotations.

K_OR - ORnTRRonQRo (8.3.7-9)
Oqn
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where
(8.3.7-1o)

Written in index notation to allow the isolation of kan, the root geometric stiffness is

ORnk, Rn. Oni Qno_
KGRo ORi -- OqR,

(8.3.7-11)

and

ORnk, Rnq Qnok (8.3.7-12)
kan,_ =- Oqnt

The geometric stiffness matrix used to transform all of the root nodal degrees of freedom

is then

0 0
3×3 3×3

0 kan
3×3 3×3

(8.3.7--13)

The virtual work at the root can now be written in the form

_n
-aWn=L,_unTSCnTJ{-TnTQn+TnTLnTn[#n}

(8.3.7-14)

where

Q*R=TRTQR

=TRT LRTR + TRT

(8.3.7-15)

The transformation of the generalized forces and moments at the tip of the clement

into nodal forces and moments is similar to that for the root. In beam dement generalized

coordinates, the virtual work at tile tip is

--(_'VVT = _q'l 'T (-QT -_ LTqT) (8.3.7-16)

where (SqTT = I_@,a 6q=a (5q32 bq,4 tSq24 @4=.] and @T : [@,3 (123 q32 q14 q24 _42l, and
a

LT is a linear operator representing (Mrd_= + CTai + KT) • Note the similarity with

equation (8.3.7-1).
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The equation that relates the tip node virtual displacements to the element virtual

generalized coordinates is

6q13 ]
6q2s

6q3_

_ql4 ]6q24

_q42

C RT 0

3x3 3x3

0 RT CRT
3x3 3x3

(8.3.7-17)

where tile tip node virtual displacements are _lt T = _R T'R, and the tip node virtual

rotations are 6¢T = 6¢T'n. The 6 x 6 coefficient matrix that premultiplies the tip node

virtual displacement and rotation vector is called TT and matrix RT is

r
/ o ,c 'R
I

RT = [ _C3_'n 0 _C_ 'R

I
, c T'R c;;'_

[

(8.3.7-18)

Similarly, the perturbed tip node displacements Zt T and rotations #T are related to

tile perturbed element generalized coordinates 4T through the expression

- TT (8.3.7-19)

Tile expression for the virtual work at the tip is similar to the expression for the

virtual work at the root.

(8.3.7-20)

As in the derivation of the transformation of LR, no additional terms result from the

transformation of LT. There are, however, geometric stiffness terms that result from the

transformation of QT. Following the derivation of the root geometric stiffness,

OTT T _

-'q'/'QT : - ['uw T "t/."l'TJ 0--_--T '-tT { _-: } QT (8.3.7-21)

where

0
3x3

0
3x3

0
3x3

_cRT
OqT

3×3

(8.3.7-22)
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When equation (8.3.7-21) is expanded, only one, nonzero 3 × 3 submatrix remains. It is

called the tip geometric stiffness matrix kcT, and

where

kGTO T = -C TR ORT TRTCTR_TQT 0
OqT

(8.3.7-23)

(8.3.7-24)
QT = 1. QTO J

Written ill index notation to allow the isolation of kGT , the tip geometric stiffness is

TR ORT, k RT

kGT'i = -C'k --OqT,, RT"_ CnJ QTO, (8.3.7-25)

or

wJlefe

Therefore,

kGT_j = (cTR[_cTCRT)i i (8.3.7-26)

ORTk, RT, j QTOh
kGT,_ - Oqn,

°°13x3 3×3

0 kGT

3×3 3x3

(8.3.7-27)

(8.3.7-28)

The virtual work at the tip can now be written in the form

=[_.T T _¢TT] -q_ + L_ 0T

where

q_ =Trrqr

L_r =TTT LTTT + TTT K_

(8.3.7-29)

(8.3.7-30)

For both the root and tip, derivatives of RR and RT with respect to the qlj are needed.

The only nonzero elements of these arrays may deterufined from

0 0

e__c_ 0 e

(1-Ca_ 1 Caa(l - Ca_t)--

OR
(8.3.7-31)
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0

OR l -_.

Ou'2
0

-_ -_

0 t

1 - Ca=

i--c,2_ c_s(1-c; I)

(8.3.7-32)

where
OR 1 OR

taco_O
Oq,2 _ Ou_
OR 1 OR

cOql 4 --_ OUWl [z,=/

OR 1 OR (8.3.7-33)

[za---_O

Oq2, _ Ou_

OR 1 OR

0q24 _. Olt_
iza_l

where C is C R'R at the root and C T'R at the tip and R is RR at the root and RT at tile

tip.
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9. CONCLUDING REMARKS

In response to the limitations of previous methods for analyzing rotorcraft, GRASP

has been developed. GRASP is a general-purI_ose program which treats the nonlinear static

and linearized dynamic behavior of rotorcraft represented by arbitrarily c_,mtected rigid-

body and beam elements. Large relative motions and deformation-induced displacements

and rotations are permitted (as long as the strains in the beam element are small). Periodic

coefficients are not treated, restricting the solutions to rotorcraft in axial flight and on the

ground.

GRASP uses a modern approach for modeling structures, incorporating the features

of several traditional methods. The basic approach which provides the foundation for

large relative motion kinematics is derived from "multibody" research with an expanded

emphasis on multiple levels of substructures. This is combined with the finite element

approach which provides flexible modeling through the use of libraries of elements, con-

straints, and nodes. The use of a variable-order polynomial beam element makes the finite

element approach more effective. The incorporation of aeroelastic effects, including inflow

dynamics and nonlinear aerodynamic coefficients for the beam element, further extends

the capabilities.

Due to the fact that GRASP was developed using structured, modular, software meth-

ods, changes to the code are relatively easy to perform. This makes it practical to modify

the code in order to enhance its flmctionality. Some of the many areas where possibilities

for enhancements exist are expanded solution procedures, improved aerodynamic models,

expanded modeling capabilities, new elements, and new constraints.

Existing solution procedures (steady-state and asymmetric eigenproblem) could easily

be expanded to include a symmetric eigensolution. This solution procedure would take the

symmetric part of the linearized, perturbed equations of motion, then calculate the eigen-

values and eigenvectors. The symmetric eigensolution would be to generate the modes for

another new solution procedure, the subspace reduction. The subspace reduction w_,uld

allow the user to solve for the asymmetric eigensolution using a reduced set of admissible

functions. A reference deformations solution procedure would allow a user to take any

steady-state solution and use it either arS an initial guess for another steady-state pr_,blem,

or as the state about which the linearization is performed for an eigensolution. The refer-
ence deformations solution would lift the restriction that the same m_,del must be used in

the the steady-state solution and the eigensolution. Another valuable enhancement would

be t_, extend GRASP to fi)rward flight using either a time-d_,main solution, a periodic

soluti_,n, or b_,th.

Enhancements to the aerodynamics could include adding the capability for table-

lookup for the aerodynanfic coefficients, and perhaps making those coefficients functions

of Mach number. Another possibility would be to incorporate a lifting-line or lifting surface

theory to calculate the aerodynamic forces. Wake geometry could also be included. Other

valuable enhancements to the aerodynamic model would be the inclusion of transonic and

dynamic stall effects.
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TILemodeling capabilities could also be improved with the addition of the ability to

model applied loads. It might be advantageous to include simple, dead loads (forces),

and geometrically nonlinear loads such as applied moments and nonconservative forces.

With the rapid growth of control theory, some sort of control representation should be

included in GRASP. This could be as simple as specifying the thrust level of the rotor, or

as complex as a complete control representation including sensors, actuators, and control

laws. In addition, it would be convenient to implement a "generic" node. Such a node

would be used to allow the user to define generalized coordinates not associated with any

_,f the predefined nodes.

GRASP would greatly benefit from the addition of a composite beam element and

a direct-input element. The composite beam element would be able to rigorously treat

the structurM couplings introduced by composite layups. This element might also include

the effects of shear deformation, initiM curvature, and warping rigidity. The direct-input

clement w_,uld be used in conjunction with the generic node to allow the user to define the

properties of elements that are not included in GRASP. An example of such a use would be

taking a set of modes from a NASTRAN analysis to represent the fuselage of a helicopter.

New constraints that would enhance the capabilities of GRASP include a moving-

frame constraint, a pin constraint, and a clamp constraint. The moving-frame constraint

would allow a frame to deform with the structure. Currently, frame motion is independent

of the structure. The pin constraint would allow a node to rotate arbitrarily about either

a frame or another node. Elinfinating M1 motion of a node would be accomplished using

the clamp constraint.

From this description of possible enhancements, it should be obvious that GRASP

has a great potential for growth. Because of its modular construction, GRASP has the

capability to handle expansion without requiring massive rewriting of the existing equations

and code. This framework makes GRASP a desirable platform for future development.
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