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A DISCREPANCY WITHIN PRIMATE SPATIAL VISION AND
ITS BEARING ON THE DEFINITION OF EDGE DETECTION

PROCESSES IN MACHINE VISION

by Daniel J. Jobson

Abstract

The visual perception of form information is considered to be based on the function-
ing of simple and complex neurons in the primate striate cortex. However, a review of
the physiological data on these brain cells cannot be harmonized with either the per-
ceptual spatial frequency performance of primates or the performance which is neces-
sary for form perception in humans. This discrepancy together with recent interest in
cortical-like and perceptual-like processing in image coding and machine vision
prompted a series of image processing experiments intended to provide some defini-
tion of the selection of image operators. The experiments were aimed at determining
operators which could be used to detect edges in a computational manner consistent
with the visual perception of structure in images. Fundamental issues were the selec-
tion of size and circular versus oriented operators (or some combination). In a
previous study, circular difference-of-Gaussian (DOG) operators, with peak spatial
frequency responses at about 11 and 33 cyc/deg, were found to capture the primary
structural information in images. Here larger scale circular DOG operators were
explored and led to severe loss of image structure and introduced spatial dislocations
in structure which is not consistent with visual perception. Orientation sensitive
operators (akin to one class of simple cortical neurons) introduced ambiguities of edge
extent regardless of the scale of the operator. For machine vision schemes which are
functionally similar to natural vision form perception, two circularly symmetric very high
spatial frequency channels appear to be necessary and sufficient for a wide range of
natural images. Such a machine vision scheme is most similar to the physiological
performance of the primate lateral geniculate nucleus rather than the striate cortex.

Introduction

Vision is central to most human activity and the visual perception of form is the most
central of visual skills. There is an interest in the development of a machine vision
system which is functionally similar to natural vision. This system would have to
include image acquisition, extraction of form information, "visual learning and mem-
ory", and recognition and interpretation. This paper is concerned only with the first two
elements in this system and the use of natural vision concepts to influence the design
of this subsystem.

The perception of form is widely considered to be based in the functioning of the
simple and complex neurons of the striate cortex. For the design of a machine vision
system, the spatial responses of these cells are of considerable interest, both for
image coding and information extraction. Here a review of physiological data on cor-
tical neurons and perceptual data provides a starting point for examining fundamental
issues of the type(s) and size(s) of edge detection operators that are necessary and
sufficient for extracting form information from arbitrary images. Equivalently for linear
systems this amounts to a definition of the spatial frequency channels necessary for



edge detection performance that is consistent with the visual perception of primary
structure in images. This can be thought of as a question of what spatial frequency
channels carry the most important form information. Here the selection of edge detec-
tion operators is limited to those occurring in early primate spatial vision and specific
configurations which produce zero crossings and, more specifically, only one zero
crossing per edge event. Within these limitations, a variety of edge detection
operators are applied to determine consistency with visual perception.

_Physiological and Perceptual S0atial Freouency
Performance of Foveal Primate Vision

A review of primate physiological and perceptual data was conducted in order to
provide insight into natural vision mechanisms of form perception. A significant dis-
crepancy emerged when the collective spatial frequency response of foveal striate
cortical neurons (Ref. 1) is compared to the perceptual spatial frequency response
(Ref. 2) of the same primate (Fig. 1). The perceptual curve is also representative of the
human response to luminance sine wave gratings (Ref. 1). With respect to form per-
ception, this discrepancy is particularly disturbing because of the rather coarse spatial
resolution of the bulk of the cortical units. The degree of the discrepancy at high spa-
tial frequencies was masked by the original data being plotted on log-log scales (a
convention in natural vision science) which heavily compress the high spatial fre-
quency portion of the scale. Further cortical data was assembled (Fig. 2 and Ref. 3-7)
in hopes of finding higher spatial frequency units. This did not prove to be the case. In
terms of spatial resolution and coverage of the retinal image, high spatial frequency
units should not only be present but also occur in populations that should increase as
the square of spatial frequency. This persistent discrepancy led to a retreat backward
in the visual pathway to examine the physiology of the lateral geniculate nucleus
(Fig. 3 and Ref. 8). Here the high spatial frequency units are indeed present. This
encourages the belief that any omission of high acuity channels in the striate cortex
data is not due to experimental measurement limitations. However, there is still a
paucity of numbers of units peaking at a spatial frequency near the limit set by.the
retinal mosaic of photoreceptors (-=33 cyc/deg). Subsequently, I will illustrate that this
channel at 33 cyc/deg does seem to be necessary for human form perception. For
now it is sufficient to state that the thinness or complete absence of high spatial
frequency units raises serious questions about how to use physiology as a source for
defining machine vision methods aimed at computational form perception. The edge
detection operations necessary for this are now explored via image processing
experiments which will shift through low spatial frequencies to high and examine the
issue of one circular operator per scale versus multiple orientation sensitive operators
per scale.

Basic Spatial Responses of Primate Foveal Vision
,forUse in Zero Crossina Edoe Detection

Since neither the spatial layout of primate receptive fields nor other fundamental
aspects of edge detection in primates are known, the liberty must be taken of "playing"
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with what is known in image processing experiments. The intent here is not to perform
an exact simulation of natural vision but rather to gain insight into computational meth-
ods which can produce a result consistent with visual perception. In no way can this
definition of methods be considered to be a scientific model for natural vision pro-
cesses because primate vision could use an entirely different means of achieving the
same end. We can only attempt to start out in some reasonable "physiological"
manner and end up with some reasonable "perceptual" result.

The perception of visual structure is predominantly accurate Iocational determina-
tions of edge boundaries. Locational accuracy is paramount because such high acuity
tasks as reading require Iocational accuracies approximately equivalent to the original
image sampling grid of the photoreceptor mosaic (= 0.015 degree sample cells). A
direct and computationally concise method of detecting edge locations is a zero
crossing determination (Ref. 9). Not all of the spatial responses found in early primate
vision are useful for this. Retinal receptive fields do not eliminate the zero spatial fre-
quency response and therefore don't produce exact zero crossings locations that are
independent of the actual image intensity values. Complex cortical neuron responses
are apparently highly multilobed and introduce a correspondence problem, i.e.
multiple zero crossings for one edge event. At the other extreme, one class of simple
cortical neurons, one ridge and one valley, produces no zero crossing at all. This
process of elimination narrows the types of spatial responses to the two shown (Fig. 4).
Details of the specifics of edge detection methods are provided in Ref. 10 and 11.
For visual comparisons throughout this paper, image size on the printed page is
selected to make the size of each image element equal to the visual acuity limit
(= 0.015 degrees) for a comfortable reading distance of about 20 inches. This in effect
spatially calibrates visual perception to computational processes. Contrast rendition of
these images as published is not particularly accurate; however, most of the percep-
tual content of the images is retained and most of the defects in edge detection are
sufficiently glaring that highly accurate contrast rendition is unnecessary.

Edge Detection at 3 Cycles/Degree

The spatial frequency range centered on 3 cycles/degree is the collective operating
range of the bulk of measured cortical neurons considered to be responsible for form
perception and is therefore of initial interest in comparing edge detection experiments
with visual perception.

A. Circular DOG Operator

With the calibration of computation to perception of one image element corre-
sponding to 0.015 degrees (= 33 cycles/deg), a DOG operator at 3 cycles per degree
has a center diameter of 11 image elements. The visual effect of this amount of blur is
illustrated by convolving an original image with a Gaussian blur function whose circu-
lar full width at half of maximum value is 11 image elements (Fig. 5). Examples of
edge representations for the 3 cycle/degree DOG operator (Fig. 6) consistently show
little or no form information left after this amount of blurring. Cases where an impres-
sion of some form information is given, suffer from serious spatial dislocation from true
edge locations in original image space. These results do not convey any convincing
feeling that edge detection at 3 cyc/deg is the basis for form perception.
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B. Oriented Operators at 3 Cycles/Degree

Before shifting from 3 cyc/deg to higher spatial frequency operators, we can exam-
ine operators with an orientation axis to see if this very cortical character for an opera-
tor provides some better representation than the circular case. One vertical and one
horizontal ridge-with-valleys operator are used. The merged results (Fig. 7) illustrate a
problem which may be fundamental to oriented operators, i.e., an ambiguity in edge
extent and location for edges with geometrical shape at the scale of the operator. This
problem appears to arise from the Iocational uncertainty introduced along the orienta-
tion axis simply by making the operator have an oriented response. This ambiguity
will reappear at higher spatial frequencies when oriented operators are used. In any
event, there seems to be no pathway to the capture of form information using either
type of operator at 3 cycles/degree.

Edge Detection - Cir(;:ular Versus Oriented O Derator_ at
33 Cycles/Degree in a High Acvity Visual Task

The reading of printed text is a high acuity visual task since the narrowest linewidths
of lettering for most print occupies a visual angle of ,- .015 degrees. Edge detection of
printed text is then a reasonable test for high spatial resolution comparison with visual
perception. The well defined finely detailed character of letters exposes flaws in edge
representations readily. For this experiment the operators used are shown in Table 1.
The operator for the circular DOG has been shown to produce the equivalent to a con-
volution of the original scene intensity distribution with a circular DOG by making use
of the Gaussian blur of the image forming optics (Ref. 10). The oriented operator is
intended to be a crude approximation to the smallest possible ridge with two valleys.
The actual continuous character of the operator in the scene domain has not been
investigated. A vertical and horizontal operator are again used for initial visual
assessment. Various contrast thresholds for edge detection are explored (Fig. 8). No
particular threshold can be found which eliminates the "cross stitch" artifacts while
retaining all edges whose orientation matches that of the operator. Perhaps a fuller
set of orientation would improve performance but fundamentally the oriented operators
confound edge extent with edge contrast in a manner which is not clearly resolvable.
This difficulty is not encountered with the circular DOG where Iocational uncertainties
are equal and can be minimized in all directions at once by choice of diameter. The
case of obtaining an accurate edge representation with the circular DOG in the printed
text case (Fig. 9) is obtainable over a wide range of edge detection contrast thresholds
while the best result with the oriented operator does not approach the accuracy of the
visual perception of printed text.

Recapitulation of previous Results - Edge Detection and Contour Information
Extraction at 11 and 33 Cycles/Deoree Using Circular DOG Ooeration

Experimental results of edge detection and contour information extraction (Ref. 11 )
are revisited to provide a more comprehensive perspective on the visual information
content of different spatial frequency channels within the overall human-primate
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spatial frequency response. In the previous work primary contour bearing information
channels (Fig. 10) were found to be the highest spatial frequency channels, 11 and 33
cycles/deg. Further, the 11 cyc/deg channel is a higher contrast subset of all image
phenomena visible at 11 cyc/deg. Contour extraction methods were based on the
combined visual significance of relatively high contrast, minimum degree of connec-
tivity, and limitations on maximum spatial density of edge events. The two channels
are merged by giving the 33 cyc/deg channel priority in any local rivalry. The resulting
contour images (Fig. 11) do differ in some particulars from those of Ref. 11. This
reflects some changes in contour extraction methods in the interim.

Perceptu_,l Evidence for a 33 Cycle/Degrees Channel

The idea, that two high spatial frequency channels with complementary spatial res-
olution and contrast sensitivity are necessary and sufficient basis for human-like form
perception in some machine implementation, is considered further. Clearly, the higher
contrast sensitivity - coarse spatial resolution channel is essential to capture lower
contrast phenomena that make up much of perceived structure in images. But the
need for the 33 cyc/deg channel is not so obvious. The geometrical fidelity of detected
edges at 11 cyc/deg and 33 cyc/deg for a image of printed text is now considered
(Fig. 12-14) in relation to visually perceived outlines of letters. The original image is
shown side by side with the original image blurred by an amount approximately equal
to the 11 cyc/deg channel. Below the images are the detected edge representations
for the 33 and 11 cyc/deg channels respectively. The 11 cyc/deg representation is rich
in geometrical defects not found in the visual perception of the original image. These
defects are especially obvious in the details (Fig. 13-14) of the edge representations.
Therefore, it is necessary to require a 33 cyc/deg channel in order to duplicate the
geometrical fidelity present in the visual perception of high contrast finely detailed
image phenomena.

Taken as a whole, the results herein prompt speculation about the role of oriented
response simple neurons in primate vision. Considering both the coarse spatial res-
olution and the extent ambiguities encountered in edge detection experiments, these
neurons seem more amenable to encoding shading information or perhaps connect-
ing shading information to contour information derived from other classes of neurons
(perhaps the parvocellular subsystem of the LGN). The apparent absence of high
visual acuity responses in the striate cortex is acutely disturbing since units of this type
should be present in very large numbers.

For machine vision, these results argue strongly against the use of oriented
responses especially when coupled with the unavoidable computational complexity of
such a family of operators. Further, the circular operator seems capable of producing
all information that oriented responses are capable of as well as accurate Iocational
definition of corners, tight loops, and other high acuity image phenomena which are
not captured easily or at all by oriented responses. Naturally the orientation of
extended straight or moderately curved edges can be computed if needed from the
detected edge loci of circular DOG operators.
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SMALLEST CIRCULAR DIFFERENCE-OF-GAUSSIAN (DOG)

-.0675 -.182 -.0675

-.182 1.0 -182

-.0675 -.182 -0675

SMALLEST DIRECTIONAL RIDGE-VALLEYS

-.002 -.125 -499 -125 -002

004 .249 1.0 .249 .004

-002 -.125 -.499 -125 -.002

HORIZONTAL (AND VERTICAL BY ROTATION)

Table 1. Operators for Edge Detection Experiments

at 33 Cycles/Degrees
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Figure 9. Performance Comparison of Circular and Oriented
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33 Cyc/deg

11 cyc/deg

Figure 13. Details of Printed Text Edge Detection Results
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Figure 14. Additional Details of Figure 12 a) & b)
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