

	· · · · ·			
	in the second second second			
				· · · · · · · · · · · · · · · · ·
		CONTRACTOR CONTRACTOR CONTRACTON CONTRACTON CONTRACTON CONTRACTON CONTRACTON		
			· · · · · · · · · · · · · ·	
La construit de la construit de La construit de la construit de La construit de la construit de				
				· · · · ·
				· · · · · · · · · · · · · · · · · · ·
And the second s				
	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			
	·····			
	· ··· ··· ····························			
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	,			

NASA Contractor Report 4343

Hypervelocity Impact Physics

Willam P. Schonberg, Alan J. Bean, and Kent Darzi University of Alabama-Huntsville Huntsville, Alabama

Prepared for George C. Marshall Space Flight Center under Contract NAS8-36955

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Division

Acknowledgments

The authors are grateful for support from the NASA/Marshall Space Flight Center under contract NAS8-36955/D.O.16. The authors would like to acknowledge the assistance and guidance provided by the NASA/MSFC Technical Contracting Officers, Mr. Roy Taylor and Dr. Ann Whitaker, and are grateful for the assistance of Mr. Russ Lakin during the data acquisition phase of this investigation. The authors would like to express their appreciation to Mssrs. Hubert Smith and Joe Lambert of the NASA/Marshall Space Flight Center Laboratory Support Branch, Mssrs. Phillip Petty and Robert Stowell of the Martin Marietta Corporation, and Mssrs. Ben Ramsey and Earl Shirley of the Boeing Corporation for conducting the impact testing that made this investigation possible. Finally, the authors are also grateful to Mr. Sherman Avans and Ms. Jennifer Horn of NASA/MSFC for reviewing this document in the various stages of its preparation and for making helpful suggestions and comments regarding its content.

Notation

d	projectile diameter
^d h	equivalent single hole diameter of pressure wall plate holes
d ₁ ,d ₂ ,d ₃	corrugated bumper repeating element distances
h	corrugation height in corrugated bumper
t _.	inner-pane thickness in glass windows system
t	mid-pane thickness in glass window system
t _o	outer-pane thickness in glass window system
t	bumper plate thickness
t _w	pressure wall plate thickness; Lexgard panel thickness
t ₁ ,t ₂ ,t ₃	corrugated bumper panel thicknesses
A _d	damage area on pressure wall plate when $\theta = 0^{\circ}$; internal Lexgard panel damage area
A _{d1} ,A _{d2}	normal, in-line pressure wall plate damage areas
A _p	presented area of impacting projectile
A _s	rear-side pressure wall plate spall area
C	material speed of sound
D	circular hole diameter
D _{min}	elliptical hole minor diameter
D	elliptical hole major diameter
Ε	material modulus of elasticity
E ₁ , E ₂	uni-directional ply tensile moduli
G ₁₂	uni-directional ply shear modulus
S	stand-off distance between bumper plate and pressure wall plate
s _i	stand-off distance between inner and middle panes in a triple-pane glass test specimen

t – militar – Militaria Unitaria Militaria III da visita international da Militaria da Constantina da Constanti

Table of Contents

ACKNOWLEDGMENTS	ii
NOTATION	iii
SECTION ONE INTRODUCTION	
1.1 Background Information	1
1.2 Program Objectives	3
1.3 References	5
SECTION TWO AN OVERVIEW OF THE HYPERVELOCITY IMPACT TESTING AT THE NASA/MARSHALL SPACE FLIGHT CENTER	
2.1 NASA/MSFC Hypervelocity Impact Testing	7
2.2 MSFC/Boeing Hypervelocity Impact Test Database Summaries	8
2.3 Summary and Conclusions	12
2.4 References	13
2.5 Database Summaries	16
2.5.1 MSFC/Boeing Hypervelocity Impact Test Database as of March 2, 1989	16
2.5.2 Summary of NASA/MSFC Hypervelocity Impact Test Shot	
Distribution as of March 2, 1989	28
2.5.3 Detailed NASA/MSFC Hypervelocity Impact Test Shot	

Distribution as of March 2, 1989	31
2.5.4 Gaps in NASA/MSFC Hypervelocity Impact Test Database as	
of March 2, 1989	61
SECTION THREE HYPERVELOCITY IMPACT OF DUAL-WALL STRUCTURES	-
3.1 Introduction	69
3.2 Penetration Phenomena Associated With Normal Hypervelocity	
Impacts	71
3.2.1 Effect of Bumper Thickness	75
3.2.2 Effect of Pressure Wall Thickness	75
3.2.3 Effect of Stand-Off Distance	76
3.2.4 Effect of MLI	77
3.3 Penetration Phenomena Associated With Oblique Hypervelocity	
Impacts	78
3.3.1 Response of Bumper Plate Under Oblique Impact	79
3.3.2 Response of Pressure Wall Under Oblique Impact	80
3.3.2.1 Effect of Impact Obliquity	80
3.3.2.2 Effect of Bumper Thickness	81
3.3.2.3 Effect of Pressure Wall Thickness	83

seminarial processors and an and a series

3.3.2.4 Effect of Stand-Off Distance	83
3.3.2.5 Effect of MLI	83
3.3.3 Analysis of Ricochet Debris	83
3.4 Regression Analysis of Damage Data	84
3.4.1 Bumper Plate Hole Dimensions	84
3.4.2 Debris Cloud Trajectories and Cone Angles	86
3.4.3 Pressure Wall Damage Areas	87
3.4.4 Pressure Wall Hole Diameters	8 8
3.4.5 Additional Comments	89
3.5 References	90
SECTION FOUR HYPERVELOCITY IMPACT OF DUAL-WALL STRUCTURES WITH	
CONTOSTIE AND CERRITO BOMPER TERTES	
4.1 Introduction	117
4.2 Hypervelocity Impact Test Parameters	118
4.3 Hypervelocity Impact Response of Kevlar Systems	120
4.3.1 Bumper Plate Damage Analysis	120
4.3.2 Pressure Wall Plate Damage Analysis	120
4.3.3 Regression Analysis of Damage Data	122

vii

••

.

4.4 Hypervelocity Impact Response of Graphite/Epoxy Systems 124	ŀ
4.5 Hypervelocity Impact Response of Alumina Systems	\$
4.6 Summary and Conclusions 127	7
4.7 References 127	,
SECTION FIVE HYPERVELOCITY IMPACT RESPONSE OF SPACECRAFT WINDOW	
MATERIALS	
5.1 Introduction 138	5
5.2 Hypervelocity Impact Test Parameters)
5.3 Hypervelocity Impact Response of Lexgard)
5.3.1 Qualitative Damage Analysis)
5.3.2 Regression Analysis of Damage Data	•
5.4 Hypervelocity Impact Response of Glass Systems	ŀ
5.5 Summary and Conclusions 146	
5.6 References	,
SECTION SIX HYPERVELOCITY IMPACT OF DUAL-WALL SYSTEMS WITH CORRUGATED	
BUMPERS	
6.1 Introduction 156	I
6.2 Hypervelocity Impact Test Parameters	

•

viii

6.3 Hypervelocity Impact Response of Dual-Wall Systems With	
Corrugated Bumpers	160
6.3.1 Bumper Damage Analysis	160
6.3.2 Pressure Wall Plate Damage Analysis	161
6.4 Summary and Conclusions	164
6.5 References	165
SECTION SEVEN PROJECTILE SHAPE AND MATERIAL EFFECTS IN HYPERVELOCITY	
IMPACT OF DUAL-WALL STRUCTURES	
7.1 Introduction	176
7.2 Hypervelocity Impact Test Parameters	178
7.3 Effect of Projectile Shape on Impact Response	181
7.3.1 Bumper Plate Damage Analysis	181
7.3.2 Pressure Wall Plate Damage Analysis	182
7.4 Effect of Projectile Material on Impact Response	189
7.5 Summary and Conclusions	191
7.6 References	192

SECTION EIGHT HYPERVELOCITY IMPACT RESPONSE OF MULTI-BUMPER SYSTEMS
8.1 Introduction
8.2 Hypervelocity Impact Test Parameters 204
8.3 Hypervelocity Impact Response of Multi-Bumper Systems 208
8.3.1 Bumper Plate Damage Analysis 208
8.3.2 Pressure Wall Plate Damage Analysis
8.4 Summary and Conclusions 215
8.5 References
SECTION NINE CONCLUSIONS AND RECOMMENDATIONS
9.1 Conclusions 235
9.2 Recommendations
APPENDIX HYPERVELOCITY IMPACT DAMAGE DATABASE

x

ndelingen (delingen andel en al delingen andelingen andelingen andelingen andelen andel andelen andelen andelen Andelen andelen andelen andelingen andelen andelen andelen andelen andelen andelen andelen andelen andelen andel

Printer (1981) 1 Track of 1 Track 1981

n 1911 - De la Constantina de la 1961 de la Constantina de la Constantina de la Constantina de la Constantina d

SECTION ONE -- INTRODUCTION

1.1 Background Information

All large spacecraft are susceptible to impacts by meteoroids and pieces of orbiting space debris. These impacts occur at extremely high speeds and can damage flight-critical systems, which can in turn lead to catastrophic failure of the spacecraft. To date twenty-six impact craters have been found on Space Shuttle Orbiter windows [1.1]. Other impact craters have been found on the Shuttle's heat resistant tiles. A preliminary examination of the recently recovered LDEF satellite revealed hundreds of craters, pits, and holes. While it is not precisely known how many of these are due to orbital debris impacts and how many are due to meteoroid impacts, the susceptibility of earth-orbiting spacecraft to high-speed impacts is clearly evident. Naturally, the susceptibility of such spacecraft increases with increased mission duration. Therefore, the design of a spacecraft for a long-duration mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components.

In order to successfully design a spacecraft for a mission into the meteoroid and space debris environment, it is necessary to be able to characterize the response of a variety of structural materials under such high speed impact loadings. With the advent of many new high-strength composite and ceramic materials and their proliferation in aircraft applications, it has become necessary to evaluate their potential for use in longduration space and aerospace structural systems. In addition, with the installation of windows for viewing and scientific purposes, the suitability of various window materials for use in long-duration spacecraft must be

evaluated. One aspect of this evaluation is the analysis of their response to hypervelocity projectile impact loadings.

A spacecraft developed for a mission into the meteoroid and space debris environment must include adequate protection against penetration of habitable spacecraft components by such impacts. Traditional penetrationresistant wall design for long-duration spacecraft consists of a bumper plate that is placed at a small distance away from the main pressure wall of the compartment or module. This concept was first proposed by Whipple [1.2] and has been studied extensively in the last three decades as a means of reducing the penetration threat of hypervelocity projectiles [1.3-1.18]. Dualwall configurations were repeatedly shown to provide significant increases in protection against penetration by small high-speed projectiles over equivalent single-wall structures. However, the recent proliferation of large pieces of orbiting space debris has made it necessary to modify such systems so that they can resist penetration by projectiles with much higher impact energies. Novel design concepts that will possess increased levels of protection must be developed for spacecraft that are to be launched into the meteoroid and space debris environment. Design concepts that can increase the protection afforded a long-duration spacecraft include corrugated bumpers and multiple-bumper systems.

It has become evident that meteoroids and pieces of orbital space debris are far from spherical in shape. The densities of the various kinds of meteoroids (icy, stony, iron) are also significantly different from the densities of the various kind of orbital debris that exist in near-earth orbit (plastic, metallic, etc.). Additionally, the speeds at which meteoroids will impact a spacecraft (upward of 30 km/sec) are significantly dif-

10100

111

143 NUM1

10.100 B.

A DEMONSTRATION OF THE PARTY OF

- 2020 III (* * 1. standal primta and in view (0. 1000) (0. 1000)

ferent from the impact velocities of pieces of orbital debris (10 to 12 km/sec). Thus, the wall of a spacecraft destined for the meteoroid and space debris environment must be versatile and must be able to resist penetration under a wide variety of impact conditions.

1.2 Program Objectives

The work performed under the contract consisted of applied research in the area of Environmental Effects with specific regard to the effects of the particulate space environment on the candidate materials, design configurations, and support mechanisms of long-term space flight vehicles. Research was performed in the area of hypervelocity impact physics to analyze the damage that occurs when a space vehicle is impacted by a micro-meteoroid or a space debris particle.

Specifically, an impact analysis of over 500 test specimens was performed to generate a Hypervelocity Impact Damage Database. The analysis included the characterization of the effects of oblique impacts as compared to normal impacts, the characterization of rear-side pressure wall spall potential, the characterization of the effects of secondary debris generation, the characterization of the effects of non-spherical particle impacts, and, where possible, the development of regression equations based on the test data to predict hypervelocity impact damage. The Hypervelocity Impact Damage Database developed as a result of the analyses performed during the course of this investigation consists of the following information:

1. Test number;

- 2. Bumper plate hole dimensions;
- 3. Pressure wall penetrated? spalled?

- 4. Equivalent pressure wall single hole diameter (if applicable);
- 5. Diameter of the three largest penetrated holes in the pressure wall plate (if applicable);
- Depth of the three deepest craters on the pressure wall plate and corresponding surface diameters;
- 7. Total area of front-surface pressure wall plate damage;
- 8. Total area of rear-side pressure wall spall (if applicable);

9. Magnitudes of penetrating and ricochet debris cloud angles. A complete print-out of the Hypervelocity Impact Damage Database can be found in the Appendix at the end of this report.

It is noted that the Hypervelocity Impact Damage Database developed in this study must be used in conjunction with the MSFC/Boeing Phase B Test Parameter Database. The MSFC/Boeing Database contains the material, geometric, and impact parameters for each test in the Hypervelocity Impact Damage Database. Specifically, the MSFC/Boeing Database contains the following parameter information:

1. Test number and date performed;

- 2. Particle velocity, diameter, material, and shape;
- 3. Angle of obliquity (impact angle);
- 4. Bumper plate material and thickness;
- 5. Pressure wall plate material and thickness;
- 6. Presence of MLI;

1

A DISTANCE I AND A

7. Stand-off distance.

This Final Report is divided into several sections. The next section, Section Two, gives an overview of hypervelocity impact testing that has been done at NASA/MSFC. Section Three discusses the phenomena associated with the

hypervelocity impact of dual-wall structures. A comparison of the effects of hypervelocity impact on dual-wall structures made from different materials is discussed in Section Four. In Section Five, the response of spacecraft window materials to hypervelocity impact is considered. Section Six deals with the response of dual-wall systems with corrugated bumpers, while Section Seven considers the effects of projectile shape and materials on hypervelocity impact response. The response of multi-bumper systems is discussed in Section Eight. Conclusions and recommendations for future work are presented in Section Nine. Finally, the Appendix at the end of this report contains a discussion and a print-out of the Hypervelocity Impact Damage Database developed during the course of this investigation.

1.3 References

- 1.1 K. Edelstein, <u>Orbiter Windshield</u> <u>Impact Testing</u> and <u>Analysis</u> <u>Meeting</u>, NASA/Johnson Space Center, July 11, 1989.
- 1.2 F.L. Whipple, "Meteorites and Space Travel", Astonomical Journal, Vol. 52, p. 137 (1947).
- 1.3 R.F. Rolsten, H.H. Hunt, and J.N. Wellnitz, <u>Study of Principles of</u> <u>Meteoroid Protection</u>, General Dynamics, Report No. AE62-0413, Contract NAS8-875, April (1962).
- 1.4 C.J. Maiden, J.W. Gehring, and A.R. McMillan, <u>Investigation of</u> <u>Fundamental Mechanism of Damage to Thin Targets by Hypervelocity</u> <u>Projectiles</u>, General Motors Defense Research Laboratory, Report No. <u>TR63-225</u>, Santa Barbara, California, September (1963).
- 1.5 C.J. Maiden, A.R. McMillan, R.E. Sennett, and J.W. Gehring, <u>Experimental</u> <u>Investigation of Simulated Meteoroid Damage to Various Spacecraft Struc-</u> <u>tures</u>, General Motors Defense Research Laboratory, Report No. TR65-48, Sanata Barabara, California, July (1965).
- 1.6 A.R. McMillan, <u>Experimental Investigations of Simulated Meteoroid Damage</u> to <u>Various</u> <u>Spacecraft Structures</u>, NASA CR-915, Washington, D.C., January (1965).
- 1.7 D.P. Hickey, <u>An Experimental Study of High Velocity Impact at Normal and Oblique Incidence on Multiple Space 2024-T3 Aluminum Plates</u>, Douglas Aircraft Company, Inc., Missile and Space Systems Division, Report No. SM-47873, Santa Monica, California, June (1965).

- 1.8 J.F. Lundeberg, P.H. Stern, and J.R. Bristow, <u>Meteoroid</u> <u>Protection</u> for Spacecraft <u>Structures</u>, NASA CR-54201, Washington, D.C., October (1965).
- 1.9 W.H. Friend, C.L. Murphy, and I. Shanfield, <u>Review of Meteoroid-Bumper</u> <u>Interaction Studies at McGill University</u>, NASA CR-54847, Washington, D.C., August (1966).
- 1.10 G.T. Burch, <u>Multiplate</u> <u>Damage</u> <u>Study</u>, Air Force Armament Laboratory, Report No. AFATL-TR-67-116, Eglin AFB, Florida, September (1967).
- 1.11 J.R. Powers, <u>Structural Design for Meteoroid Protection</u>, Brown Engineering Company, Report No. TD-C1-SAA-054, Contract NAS8-20073, March (1967).
- 1.12 D.W. Cornett, and W.H. Armstrong, <u>Study of Structural-Thermal Insula-</u> <u>tion-Meteoroid Protection Integration</u>, The Boeing Company, Aerospace Group, Report No. D5-17525, Contract NAS8-21430, May (1969).
- 1.13 A.P. Fraas, <u>Protection of Spacecraft from Meteoroids and Orbital</u> <u>Debris</u>, Oak Ridge National Laboratory, Report No. TM-9904, Knoxville, Tennessee, March (1986).
- 1.14 A.R. Coronado, M.N. Gibbins, M.A. Wright, and P.H. Stern, <u>Space Station</u> <u>Integrated Wall Design and Penetration Damage Control</u>, Boeing Aerospace Company, Report No. D180-30550-4, Final Report, Contract NAS8-36426, Seattle, Washington, May (1987).

THE DEVELOPMENT OF THE REPORT OF THE POLY OF THE POLY

- 1.15 E. Christiansen, <u>Evaluation of Space Station Meteoroid/Debris Shielding</u> <u>Materials</u>, Eagle Engineering, Report No.87-163, Contract NAS9-15800, September (1987).
- 1.16 E.D. Brewer, W.R. Hendrich, D.G. Thomas, and J.E. Smith, <u>Effects of</u> <u>Oblique Impact on Hypervelocity</u> <u>Shield Performance</u>, Oak Ridge National Laboratory, Report No. TM-11390, Knoxville, Tennessee, January (1990).

Ē

÷

(a) Constraints in the second seco

NAME (AND A DOMESSION OF A DOMESSION

- 1.17 E.D. Brewer, W.R. Hendrich, D.G. Thomas, and J.E. Smith, <u>Shield Design</u>, <u>Analysis</u>, <u>and Testing to Survice Stainless Steel Projectiles</u>, Oak Ridge National Laboratory, Report No. TM-11381, Knoxville, Tennessee, January (1990).
- 1.18 E.D. Brewer, W.R. Hendrich, D.G. Thomas, and J.E. Smith, <u>Shield Design</u>, <u>Analysis</u>, <u>and Testing Against a 3 km/sec Projectile</u>, Oak Ridge National Laboratory, Report No. TM-11382, Knoxville, Tennessee, January (1990).

SECTION TWO -- AN OVERVIEW OF THE HYPERVELOCITY IMPACT TESTING AT THE NASA/MARSHALL SPACE FLIGHT CENTER

2.1 NASA/MSFC Hypervelocity Impact Testing

Hypervelocity impact testing began at the NASA/Marshall Space Flight Center in 1964 with the installation of a light gas gun in what is now known as the Materials and Processes Laboratory. The initial need and function of the facility was to provide a means of simulating meteoroid impacts on spacecraft and to provide the data required to determine the penetration probability of candidate spacecraft wall designs by such impacts. In the 1970's, the interest in testing for protection against meteoroid impacts declined. However, because of increased launch activity in recent years, a new threat to the safety of earth-orbiting spacecraft has arisen -- the threat of orbital debris impact.

Orbital debris impact testing began at NASA/MSFC in July, 1985 at the Space Debris Simulation Facility of the Materials and Processes Laboratory at the NASA/Marshall Space Flight Center. The facility consists of an instrumented two-stage light gas gun capable of launching 2.5 mm to 12.7 mm projectiles at velocities of 2 to 8 km/sec. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. For a detailed description of the gun and its instrumentation, the reader is referred to Reference 2.1.

As of March 2, 1989, over 500 impact tests have been performed using the NASA/MSFC light gas gun. Testing has been focused primarily on multiple wall structures consisting of 'bumper', 'pressure wall', and 'witness' plates that were designed to simulate possible Space Station wall configurations. Projectiles of aluminum, steel, lexan, and cadmium ranging

in diameter from 3.175 mm to 12.7 mm have been fired at velocities ranging from 2 to 8 km/sec. Test sample configurations have included single and multiple bumper specimens employing a variety of engineering materials, including aluminum, Kevlar, graphite/epoxy, cadmium, and alumina, of various thicknesses and spaced at various distances apart. Tests were performed with and without multi-layer insulation (MLI) within the spacing between the sacrificial bumper plates and the pressure wall plates in the test specimens. Hypervelocity impact testing of window materials, such as Lexgard and glass, and testing of simulated pressure bottles have also been performed. Although the majority of the testing has been performed normal to the plane of the test specimen, a significant number of oblique impact tests have been performed as well.

This Section contains a series of tables and charts that summarize the orbital debris impact testing performed at NASA/MSFC since 1985. The information contained in these tables and charts is based on the MSFC/Boeing Hypervelocity Impact Test Database dated March 2, 1989. This database contains a detailed summary of test parameters and results for 540 hypervelocity impact test firings. The parameters of the 540 test shots in the database are presented in Section 2.5.1. A review of the NASA/MSFC Database revealed that there were several errors in the values of certain impact and geometric parameters. These errors are summarized in Table 2.1. The summary tables and charts are presented in Sections 2.5.2 through 2.5.4 and are described in the following Section.

2.2 MSFC/Boeing Hypervelocity Impact Test Database Summaries

A general summary according to impact test and configuration parameters

is presented in Section 2.5.2. The test shots are grouped in broad categories such as Impact Obliquity, Configuration, and Stand-off Distance. Examination of these tables reveals several interesting features about NASA/MSFC hypervelocity impact testing through March, 1989.

1) Very few shots have been fired above 7 km/sec. While this velocity is near the upper limit of the velocities attainable by the light gas gun, it is clear that more testing must be performed at these high velocities in order to be able to even come close to duplicating the anticipated on-orbit speeds of impact.

2) Only a few shots have been fired using very large projectiles. Although impacts by smaller pieces of orbital debris are more probable than impacts by excessively large pieces, the effects of large particle impact must be fully understood in order to decide whether or not such impacts can be withstood by existing or newly-developed protective measures.

3) Of the 540 test shots in the MSFC/Boeing database, approximately two-thirds were fired normal to the plane of the test specimen. With the increasing concern for the pollution of the orbital environment by the secondary ricochet debris particles that are formed in an oblique hypervelocity impact, additional oblique impact testing is necessary, especially in the high obliquity regime (ie. obliquities greater than 60°), to fully understand the damage potential of these secondary debris particles.

4) Nearly three-quarters of previous impact testing has been performed on dual-wall (ie. single bumper) specimens with different kinds of aluminum as the bumper and pressure wall plate materials. With the recent development of many new high-strength materials, it is imperative that additional test-

ing be performed with bumper plates made from materials other than aluminum. Additionally, alternative configurations, such as double or triple bumpers at stand-off distances other than 4 inches, should be performed in combination with bumper plates made from these new materials. The results from these tests should aid in the selection of the materials and the geometric configuration for the final Space Station structural wall design.

5) With the desire to install windows for viewing as well as for scientific purposes in the Space Station Freedom, the need has arisen to conduct more hypervelocity impact testing of window materials. Although some preliminary testing of Lexgard and glass has been performed, more tests are needed in order to fully understand the response of a variety of window materials to hypervelocity impact loadings. This information can be used to determine the protection level required to ensure the safe operation of the windows that are installed in the Space Station Freedom.

6) Although a large number of tests have been performed with MLI between the bumper and pressure wall plate, there still exists an uncertainty as to whether or not the advantages of using MLI outweigh the disadvantages, from a hypervelocity impact response viewpoint. Additional tests must be performed to determine the effects of MLI under the full range of particle sizes and impact velocities. 7) All but thirteen of the tests listed in the MSFC/Boeing Database have been performed using spherical projectiles. While this has been done mainly for reasons of consistency and repeatability, it is clear that orbital debris particles are not round, but are rather jagged with varying length-to-diameter ratios. Additional testing must be performed using non-

spherical projectiles in order to be able to extrapolate the response of a structure under spherical projectile impact to a structure that is impacted by a non-spherical projectile.

Section 2.5.3 contains a series of charts that detail the distribution of the single bumper test shots. Only single bumper testing was considered in the development of these charts and tables because of the relative scarcity of multi-bumper testing and the increased number and complexity of test parameters that describe such test shots. The test and configuration parameters for the single bumper shots are defined on the first page of Section 2.5.3. Any deviations from these baseline parameters are signified with a footnote. A footnote legend is provided on the first page in Section 2.5.3.

The charts categorize the test shots according to the presence of MLI, the projectile diameter D, the impact velocity V, and the thickness of the bumper plate. The number in the upper right hand corner of these charts is a number that identifies the impact obliquity, velocity range, and spacing for the test shots in a particular chart. For example, the number 45V23S4implies that the test shots in that chart were all fired at 45 degrees with velocities between 2 and 3 km/sec and that the target was a single bumper specimen with a stand-off distance of 4 inches. A series of tables that summarize the gaps in the hypervelocity impact testing of single bumper specimens is presented in Section 2.5.4 D based on the detailed charts in Section 2.5.3.

The information provided in these charts and tables is intended as a guide in the selection of impact parameters for future hypervelocity impact test firings. From Sections 2.5.3 and 2.5.4, it is evident that a large

number of test shots are required to close the gaps in the existing test database. The suggestions made earlier in this section should serve to fill in a number of these gaps and greatly improve the practical applicability of the existing test database.

2.3 Summary and Conclusions

An extensive program of spacecraft materials testing and evaluation under hypervelocity projectile impact has been underway at the NASA/Marshall Space Flight Center since its inception over two decades ago. Recent efforts have focused on the evaluation of structural wall configurations for the Space Station Freedom. Although an extensive test database has been established, additional testing is still required to fully understand the phenomena associated with the hypervelocity impact response of the metallic and non-metallic materials that will be exposed to the meteoroid and space debris environment. Specifically, the following recommendations are made for inclusion in a future test program to address this need.

- 1) Perform additional testing at higher impact velocities.
- 2) Perform additional testing using larger projectiles.
- 3) Perform additional testing at higher impact obliquities.
- Perform additional testing of alternate bumper plate materials and alternate wall configurations.

THE PARTY PARTY AND A THE

NUMER OF THE OFFICE AND A DESCRIPTION OFFICE AND A DESCRIPTION OF THE OFFICE AND A DESCRIPTION OF THE OFFICE AND A DESCRIPTION OFFICIAL AND A DESCRIPTION OFFICAL AND A DESCRIPTION OFFICIAL AND A DESCRIPTION OFFICAL AND A DESCRIPTION OFFICIAL AND A DESCRIPTIONO

- 5) Perform additional testing of different types of glass.
- 6) Perform additional testing to determine the effects of MLI under the full range of particle sizes and impact velocities.
- 7) Perform additional tests using non-spherical projectiles.
- 8) Perform additional tests with different density projectiles.

- 9) Perform tests to determine the effects of internal pressure and wall curvature on module wall response.
- Perform tests to define the conditions for pressure wall spallation without penetration.

The test data produced by such a test program will complement the existing test database and, together with the existing data, will serve to establish a new, more comprehensive, more versatile hypervelocity impact test database.

2.4 References

2.1 Taylor, R.A., "A Space Debris Simulation Facility for Spacecraft Materials Evaluation", SAMPE Quarterly, Vol. 18, No. 2, 1987, pp. 28-34.

Test No.	Parameter	Current Value	Correct Value
EH4B	MLI?	No	Yes
107 107A 107B	Back Wall Thickness	0.125 0.125 0.125	0.175 0.200 0.225
121-1	Velocity	6.82	6.04
144A 144B 144C	Back Wall Thickness	0.250 0.250 0.250	0.125 0.125 0.125
145A 145B 145C	Test Article Type	COMP - BMPR COMP - BMPR COMP - BMPR	CORR - BMPR CORR - BMPR CORR - BMPR
148A 148B 148C	BMPR 1 Material	6061-T6 6061-T6 6061-T6	CPR CPR CPR CPR
158A	Impact Angle	65°	00
163A 163B	BMPR 1 Standoff	4 4	7 7
163A 163B	BMPR 2 Standoff	1 1	4 4
167B	BMPR 1 Standoff	8	6
178A 178B	Test Article Type	COMP - BMPR	BOTTLE
190B	Test Article Type	SNGL-BMPR	TRPL-BMPR
190B	BMPR 1 Standoff	4	12
190B	BMPR 2 Material	N/A	6061-T6
190B	BMPR 2 Thickness	N/A	0.040

=

I DE LA DIVERSION DE LA LA DIVERSION DE LA DIVERSI

Table 3.1 Corrections to MSFC/Boeing Hypervelocity Impact Test Database

÷

190B	BMPR 2 Standoff	N/A	8
190B	BMPR 3 Material	N/A	6061-T6
190B	BMPR 3 Material	N/A	0.040
190B	BMPR 3 Material	N/A	4
214A 214B 214C 214D	BMPR 1 Standoff	4 4 4 4	8 8 8 8
301	Back Wall Thickness	0.125	0.160
303A	Back Wall Thickness	0.125	0.160
P18-5	Projectile Diameter	0.150	0.125
P33B P33B1 P33C	MLI?	No	Yes
P34 P34B P34C P34C1 P34C2	Back Wall Thickness	0.125 0.125 0.125 0.125 0.125 0.125	0.100 0.100 0.100 0.100 0.100 0.100
P34 P34C P34C1	BMPR 1 Thickness	0.040 0.040 0.040	0.063 0.063 0.063
P35C	BMPR 1 Thickness	0.080	0.063

Section 2.5.1

MSFC/Boeing Hypervelocity Impact Test Database as of March 2, 1989

0476: U2-Har-99

,

Sence station neteokolo/debais jest database

AVERAGE /ELOCITY	(KM/SEC)	5.5 2	8.9	.t5	14.4	59	1.69	4.82	2.76	N .	7.06	5.67	4. 4	8 . .	6.61	4.13	4.76	5		1.11	1.56	7.63	5.0	7.34	38 - 1	4. 42	6. Já	88 / 88 /			b. 78	6.9		2	5.26	4.28	6.55	b. b .	b.4t	b.40	20.7	2.15	1.95
INPACT	(966)	8.0	3.0	0.0	0.00	8.8	0.0	0.0	8.0	3 8	8.0	0.00	8 8	8 9	0.0	0.0	8	8 9 9 9	3 2 3 2 3 2	10.00	65.00	8.9 5.8	8 B B	55.00	0.0 2	8 8	0.0	0.0 9.0	8.8	20.05	45.00	2 S	8.5	25.00	65.00	45.00	9 .0	0.00	0.0	45.00	15.00	9. C	0.00
ר/ם ר/ם שטובכנורב	KA 118																																										
PROJECTILE F DIANETER	(W.)	0.313	12.0	0.239	0.238	817 B	ù.216	0.216	9.23	212.0	0.315	0.113	0.515	0.313	0.115	0.315	0.513	0.515	0.313	0.250	0.250	0.250	0.187	0.187	0.250	0.250	0.250	0.250	97. o	0.250	0.250	0.230	0.250	0.250	0.250	0.250	0.513	0.513	6.313	0.313	0.313	22.0	0.213
MAJECTILE Material		1100-M	Cabalun	CABILIAN	CADMILIN		CAMIUN	CAMIUN	CAMPILIN	1100-AL	1100-AL	1100-AL	1100-AL	100-M	1100-11	1100-N	1100-AL	1100-M	1100-11	1100-AL	11(0-11	N-9011	N-0011	1100-01	1100-AL	1100-11	1100-AL	1100-01	14-0011	100-1	1100-AL	10-0011	N-9011	1100-M	1100-AL	1100-AL	1100-N	1100-AL	L200-AL	11-0011	100-W	#-31	10-91
MICCHESS THTCCHESS	(1 .1 .) 	0.125	51.0	0.125	0.125		0.125	0.125	21.9	0.125	0.125	0.125	0.125	0.125	9.125	0.125	2.5		0.125	0.125	0.125	0.12 X	1.125	0.125	0.12	51.9 521.0	0.125	571.0 31.0	21.0	0.125	0.125			0.125	521-0	0. IZS	0.125	0.125	C.125	0.125	0.12	010.0	0.513
BACK HALL		7719-TOT	2219-187	2219-787	2219-187	101-1122	2219-187	2219-187	191-6162	2219-107	2219-107	2219-18/	791-4122 791-9162	(B)-6122	2219-187	2219-187	2219-187		355	5454	5456	5454 7218-107	2219-187	2219-187	5454	9545 9545	2219-187	2219-187		2219-187	202F	ę j	135	5454	5454	5454	5456	5456	2319-167	5456	9535 7737	9 7 5 2	6-19
AL F		2 5	2	ÛN	2 9	2 3	Q	2	2 9	3 3	YES	51	22 24	5 Q	¥	YES	2 3	2 9	2	01	₽	2 2	2 2	7	2 1	2 2	2	2 9	7	2	2	2 5	2 2	꾶	2	9	2	9	2	7	2 3	2 2	9
BRIPR] Standoff (1m.)																																											
BMPR 3 THICKNESS TIM.)																																											
MPM 3 MATCHIAL			N/N	W/W	N/A	Į	N.N	N/N		N/N	N/A	W/W		N/N	N/N	V	5	55	NN N	N/N	N/N			N/N	N/N	5				M/N	5		5	N/N	M	N/N	N/N	N/N	W/W	N/N			N/N
anda 2 Standoff (IN.)																																											
IMPN 2 THICKNESS (10.)																																											
MPN 2 Mieria.	T/A	5	W	A/A			N/N	4 /#		T.	N.	23															_			_					-		N.	5		N.		5	N/N
BNPR 1 Standoff 1 (JA.)	AL M	8	8	9	• •						_		2 7	S	1 /K	S				N/N		5	5	X		1	5	22	1 2	Ň	ž		5	N/N	ž	-							
PR 1 CKNESS (ji ji		-		33	8	4.0	88	33	7.00	3.	83	88	4.00 N/A	4.00 X/A	4.80 B/A			4.00 M/A	4.00 N/A	VII 00.1	4.00 II/4	4.00	4.00 N/N	- 00 	4.8 4.8	8.4 8.4		8.7	1.00 N/	8.4		4.00 N/A	4.00 N/A	/N	8.7	6.8	8:	8	8.	84	8.4	
幕훈ィ	0.175	0.040	0.040 4.	0.040 4.0	0.046 4.0	0.040 4.00	ê.040 4.00	0.040 4.00	0.040 4.00	0.063 7.00	0.041 4.00	0.063 4.00	0.663 4.00 11	U. 043 4. 00 N/A	0.043 4.09 %/#	0.063 4.90 A/A	0.063 9.00 II/II 0.012 4.00 II/II	1.065 (1.06 K/A	0.043 4.00 8/4	0.043 4.00 N/A	9.043 4.00 H/A	0.045 4.00 11/0 8.043 4.06 11/1	U.065 4.00 N/A	0.045 4.00 N/A	1/16 00°4 590°0	0.043 4.06 M/A	0.043 4.00 N/A	0.043 4.00 M/	0.063 4.00 11/	170 011 1100 11/1	0.043 4.06 M/		0.063 4.00 N/A	0.063 4.00 N/A	01065 (4106 M/	0.043 4.00	0.043 4.00	0.043 4.00	0.045 4.00	0.063 4.00	0.042 4.00	0.040 4.00	
BANCPA I BAN Material Thi	2219-197 A.175	CAMPIUM 0.040	CADMIUN 0.040 4.	CABHTUN 0.040 4.0	LADMIUN 0.040 4.(n Fanninin a AAA a A	CAMBEUN 0.040 4.00	CADMEUN 0.040 4.00	CAMPIUN 0.040 4.00 CAMPIUN 0.040 4.00	CADMILLIN 0.040 4.00	c041-16 0.063 7.00	6041-T6 9.043 4.00	5061-76 0.063 4.00 1	6061-16 0.665 4.00 M/	6061-16 0.043 4.04 M/A	5061-T6 0.063 4.00 %/A	5041-TE 0.063 4.40 A/A	8441-15 9.063 9.96 8/8 -041-11 0.417 4.45 815	174 ACT 1790 1790 1790 1790 1790 1790 1790 1790	6061-T6 0.043 4.00 M/A	4041-16 0.063 4.00 N/A	6061-75 07043 4.00 M/A	8001-15 8.043 4.00 11/4 4041-14 8.043 4.06 11/4	6061-T6 U:063 4.00 N/A	6041-T6 0.043 4.00 N/A	CUAL-FA 0.065 4.00 3/4	4.00 M/A	6061-T6 0.043 4.00 M/A	174 0.001-10 0.043 4.041 14/4	5061-Th 0.063 4.00 N	/N 0011 1010 1010 1010 1010 1010 1010 10	6041-75 0.045 4.06 H/I	1/11 00.14 500.10 91-1000 1/11 00.14 500.10 91-1000	6041-16 0.043 4.00 M/A	6061-T4 0.043 4.00 N/A	6061-T6 0.065 3.00° N/	6041-TA 0.043 4.00 H	6041-T6 0.043 4.00	6061-TA 0.045 6.00	6061-T6 0.063 4.00	6061-T6 0.063 1.00		Er-NI 0.040 4.00	R/A
TEST BANPA I BAN ARTICLE ANTEALAL THI TYPE (Suci Supp. 2219-197 0.175	SWEL-BAPPR CADATILIA 0.040	SNEL-BIPPR CADINIUN 0.046 4.	SNGL-BUPR CAMPIUM 0.040 4.0	SHAL-BHPH LADNILLA 0.040 4.6 Shei - Bhee fadhille à AAA - A	SHEL-BHPR CAMILUN 0.040 4.00	SWEL-EWPR CADMIUN 0.040 4.00	SMEL-BAPPA EADANIUM 0.040 4.00 Chest-Babpa Eadanium 0.040 4.00	SWEL-SHPR CADATLER 0.040 4.00	SHEL-SHPR c041-T6 0.063 7.00	SHGL_BHPR & 6041-76 0.043 4.00	SWGL-BMPH 5061-16 0.043 4.00 1 SWGL-BMPP 4741-14 0.043 4.00 1	сильтанти сментта и и из 1.00 М/ SM62-BMPR 6061-76 0.0A3 4.00 M/	SNEL-ENPR 6061-16 0.063 4.00 N/A	SMGL-BMPR 5061-16 0.063 4.00 3/A	Suct_Bird's Sola1-T6 0.063 4.00 4/A	20045007.0 6041-16 9.043 9.040 8/4 20032006 4.441-11 6.447 4.45 4.44	2001-2010 0001-10 V.003 1.00 N.M. 2001-2010 6041-16 0.065 1.00 N.M.	SNGL-BHPR 6061-T6 0.063 4.00 M/A	SHEL-BHPR 4041-16 0.043 4.00 N/A	SMEL-BHPR 6061-T6 97063 4700 H/A	SML-BIFF 6061-16 9.065 4.00 1/4 SML-BIFF 6041-14 8.043 4.06 1/4	SWEL-BHPR 60461-T6 0:043 4.00 N/A	SMEL-BMPR 6041-T6 0.063 4.00 N/A	2004-2004 CONTEND 0.003 4.00 3/4 2003 -2004 2.01-15 3:047 2:06 1/4	SKGL-BHPR 6061-16 0.043 4.00 M/A	SNRL-BNPR 6061-15 0.063 4.00 N/A	20002017.11 0.001-10 0.003 1.00 101 200320099 6041-16 0.043 1.00 101	SHEL-BHPR 5061-76 0.063 4.00 N/	/N 0011 10101 . 01012 . 1100 . N/	SHEL-BAPP. 6041-16 0.043 4.06 H/I SHEL-BAPP. 5041-16 0.043 4.06 H/I	name-many source all too and the source of t	SHEL-BHPR 6061-16 0.063 4.00 N/A	SHEL-BHPR 6441-T4 0.063 4.00 N/R	Suga-biring 6061-16 10,065 14,00 N/	SHEL-MAPR 6041-TA 0.043 4.00 H	SHEL-BHPR 6041-16 0.043 4.00	5462-54776 6061-16 0.063 4.00	SHERPUPPE 6061-16 0.063 4.00	SAME MAPR 6061-16 0.063 1.00	200200771. 6061-T6 70.063 4.00 5062-8099 4441-T4 6.01 4.4	00-0 00-0 00-04 00-040	P-DDTTLE M/A
TEST TEST BAPPA I BAN Date Article Material Hi Type (10/20/86 Suci -54498 2219-197 0.175	08/13/86 SNGL-BNPR CAMILUN 0.040	08/14/86 SNEL-BNPR CADNIUN 0.046 4.	08/15/86 SNGL-INPR CAMIUN 0.040 4.0	08/13/26 SM9L-1977-11 LAUNILLA 0.040 4.0 A8/10/94 SMS - 1940-0 CANNILLA 0.040 4.0	08/19/86 SWEL-BHER CAMILUM 0.040 4.00	06/20/84 SMGL-BMPR CADMBUN 0.040 4.00	08/21/84 SMEL-BAPPA CABATION 0.040 4.00 CB/21/84 SMEL-BAPPA CABATION 0.040 4.00	UR/12/86 SWGL-6MPPR CARMIUN 0.040 4.00	10/07/85 SWGL-5NPR c061-T6 9.063 7.00	00/02/67 SMGL-BMPR 6041-76 0.043 4.00	08/14/8/ SNGL-BINPE 5061-16 0.063 4.00 1 (APTS:03 SNCL-AMPS 4.44-14 0.043 4.44	190/23/87 2002-3002-304-10 0.063 9.00 N/ 06/26/87 5062-80099 6061-16 0.663 9.00 40	UB/27/87 SWEL-EMP9 6061-16 0.043 4.04 M/A	09/21/37 SMGL-BMPR 5061-T6 0.063 4.00 9/A	12/01/87 SHGL-DHPPE 5041-TE 0.065 4.00 A/A	12/11/21/2010/01/2001/2001/21/21/21/21/21/21/21/21/21/21/21/21/21	04/23/28 Statt - 2001 -14 0.1023 41.00 14/4	04/30/88 SMGL-BMPR 6061-T6 0.043 4.00 M/A	07/15/88 SINCE - MIPPR 6061-76 0.063 4.00 M/A	07/18/88 SMBL-BMPR - 6061-75 97043 4700 H/A	9//17/08 SMML-90171 5041-16 9.045 4.00 1/4 07/25/88 SMML-BHPP AA41-14 8.043 4.06 1/4	07/28/89 SWGL-BHPR 604[-T6 0.065 4.00 M/A	07/29/98 SMEL-BMPR 6/41-76 0.063 4.00 N/A		02/24/88 SMGL-BHPR 4061-16 0.043 4.00 M/A	03/02/88 SML-BMPR 6061-15 0.063 4.00 M/A	1/13/1012/1012/1012/1012/1012/1012/1012/	03/30/86 SMGL-BMPR 5061-76 0.063 4.00 M/	//II 0011 19010. 11-1909 Laure-Tons 00/51/00	04/61/85 SMCL-DMPR 6041-15 0.043 4.00 M/I	na ana ang ang ang ang ang ang ang ang a	04/07/08 SWGL-DWPR 6661-16 0.043 4.00 N/A	04/12/86 Sw8L-BNP9 6461-T4 0.063 4.00 N/A	04/20/00 SMG_BMPR 6061-T6 0.065 7.00 M/	04/23/88 SNGL-BUPP 6061-T4 0.043 4.00 1	05/02/88 SMGL-BMPR 6041-T6 0.043 4.00	03/07/88 5MSL-BMPR 6061-16 0.043 6.00	04/07/118 SHGL-BMPR 6061-16 0.063 4.00	00/11/28 SNGL-BNPP 6061-16 0.065 1.00	0,71/1/20 2001-5009	04/05/87 COMP-DMPR 54-A1 0.040 4.00	11/19/87 P-BOTTLE N/A
IMTA TEST TEST IMPORT I AM Source Date Article Material Hi ivpe (NSEC 10/20/86 Sec6409 2219-787 0.175	MSFC 08/13/84 SWAL-BAPPR CABMILIN 0.040	RSFC OR/14/BA SNEL-BNPR CAMILUN 0.046 4.	NSFC 08/15/86 SNGL-BUPR CAMIUM 0.040 4.0	155°L UV/13786 SMBL-MATH LAUMIUM 0.046 4.0 NGFF AB/10/94 SMGL-MADE FAMINIM A AAA A O	RSFC 04/19/66 SNGL-BNPR CANNIUM 0.040 4.00	NSFC 08/20/84 SMEL-BMPR CADMILUM 0.040 4.00	NGFC 08/21/84 SMEL-BHPPR CABNIUM 0.040 4.00 NGFT C9/71/94 CMEL-BHPPR CANTUM A AAA A AA	NSFC 06/12/86 SMGL-6MPR CAMPILIER 0.040 4.00	MSFC 10/07/84 SNGL-6MPR 6041-T6 0.063 7.00	NSFC 08/05/67 SMGL-BMPR 6041-76 0.043 4.00	RSFC 08/14/8/ SNGL-BNPN 5061-T6 0.063 4.00 1 NGCC (AD75.03 CNULAND 1/11-T2 0.043 4.00 1	пакт. 1987.237.87. Зладтении 6004-10 0.063 9.00 М/ 1956. 06/26/87 SM64-БМРР 6064-16 0.663 4.00 м/	MSFC U8/27/87 SWGL-6MPPR 6061-16 U.043 4.04 M/A	MSFC 09/21/97 SMGL-BMPR 5061-T6 0.063 4.00 3/A	RSFC 12/01/87 SMGL-DMPP 5041-16 0.063 4.90 A/A	1121-1 12/11/24/2000-2007-2007-10 0/001-10 0/002 4/00 0//1 NGCF 01/20100-2002-2000-2017-11 0.471 4.40	121.C 097.24.00 2007-2014 0091-19 0091-10 0.002 12.00 17.1	MSFC 06/30/88 SMGL-BNPR 6061-T6 0.063 4.00 8/A	NSFC 07/15/88 SNGL-BAPPR 6061-16 0.063 4.00 N/A	NGFC 07/18/88 SNGL-BNPN 6461-76 07.043 47.00 N/A	759°L 07/17/581 SMML-11974 5061-15 0.04.5 4.00 11/4 NGFC 07/25/88 SMGL-18998 AA414 8.04.3 4.04 11/4	NSFC 07/28/88 SWGL-BHPR 6065-76 0:065 4:00 N/A	NSFC 07/29/98 SMS_BWPR 6/41-76 0.043 4.00 N/A	1341, 02/10/30 5061-1014, 5061-16 9.062 9.00 9/1 - 4951, 17777-168 5061-10096 5.051-175 31047 12.06	INSEC 02/24/88 SMGL-BMPR 6061-16 0.043 4.00 M/A	HISEC 03/02/88 SMCL-DMPR 6061-15 0.063 4.00 HUA	1121-1 03/14/108 2001-1011 000-118 0.003 1.00 1/1/ 10555 01/17/108 5001-2009 5041-15 0.043 4.00 10/1	HEFE 03/30/86 SHEL-BHPR 5061-16 0.063 4.00 HV	NUL 04/12/48 2007-0444 0991-14 01092 4/200 00/	MEFC 04/61/68 SMCL-BMPR 6061-16 0.043 4.06 M/1 MEFC A1/44/PB SMCL-BMPR 5041-16 0.043 4.06 M/1	ark ooth tearn alltear waartaan antaana 1999 alse	NSEC 04/07/00 SINGL-DNPR 6/161-[6 0.043 4.00 N/A	MSFC 04/12/00 SMBL-DHPR 6/41-T4 0.045 4.00 N/A	NSFC 04/29/00 SMGL-BHPR 6061-16 0.065 3.00 N/	NSFC 04/23/00 SNGL-DNPP 6041-T4 0.043 4.00 H	NSFC 05/02/08 SNGL-BNPR 6041-T6 0.043 4.00	HEFE 05/07/98 SMG-DMPR 6041-T6 0.043 4.00	TTSFC 04/07/28 SMGL-PMPR 6061-16 0.663 4.00	TSPUL 05/11/88 SNBL-BINPR 6061-16 0.063 1.00	100.1 10.01.1/108 5001-9000 1001-10 10.01.1 100 1001 1001 1001 1	MSFC 04/03/87 COMP-DAPPA 67-A1 0.040 4.00	MSFC 11/19/87 P-DOTTLE M/A

ORIGINAL PAGE IS OF POOR QUALITY

BAKE: 02-Mar-89

SPACE STATION NETEDROID/DEBRIS JEST DATABASE

.

=

-

a constant a serie of the

ISI	MIN	IESI	1531	1 Bring	BINPR	1 RYMG	BMPR 2	BHPR 7	MIPR 2	T See	7 OCM	1 0010	i							
NURDE K	SOUNCE	DATE	ANTICLE	MATERIAL	THICKORESS	STANDOFF	MATERIAL	THICKNESS	STANDOFF	MIERIAL	THICKNESS	STANDOFF	ł	NATERIAL NATERIAL	BACK HALL I THIERMESS	PROJECTILE Nateria	PROJECTILE P	ROJECTILE	IPACT A	VERAGE
2.11日年年年月1日日					(.N.) 	(1))		(IN.)	(18.)		(1987)	(10.)	(N/A)		(IN.)		([N.)	L/U Rafio	CIPES OF	LDCTTY
HPWC-X	ISC.	11/20/87	P-DUTLE																	
NOAC-11	L MSFC	11/17/87	P-B017LE	6061-T6	0.060	6.00							2	55-Cb	0.000	11:00-AL	0.313		0.0	5.76
	HISFC	11/18/87	P-NOTTLE	6061-16	0.060	8.							2 1	58-EP-AL	0.112	11:00-AL	0.375		0.00	1.52
	HSFC	11/18/87	P-BOTTLE	91-1909	01010	6.8	N/A						2 9		0.112	1100-AL	0.575		0.0	6.59
Munu-1		11/2//8/		5061-T6	0.063	1.00	N/A			W/W			5 3	SM-EF CB-FD-DD	0.000	1100-M	0.375		0.0	6.58
		/9/42/10		91-190 9	0.063	8. 1	W/W.			N/N			, it	7219-197	000.0	14-M11	0.515		8.9	2.82
-1531-ON		18/12/110	SHEL-BURN	91-1909	0.063	8	N/N			N/N			: 5	2219-187	521-0	100-011	/B1-0		83	2.15
PR-EHI		18/10/150		01-1000	0.065	8	S			N/N			YES	2219-187	0.125	1100-41	101.0		8.8	2.45
TR-EH2		18/02/20		101-1177	200.0	8	5			N/N			YES	2219-187	0.125	100-01	111 0		3 8	3.7
100-55	L RSFC	02/10/87	Sug- and	11-14H		33				N/A			YES	2219-187	0.125	1100-41	0.313		88	5
1100-55	L RSFC	02/10/87	SNGL-Bringe	6061-TA		88							9	2219-187	0.125	11:00-AL	0.313		15.00	2 - 7 7 - 7
1200-SS	C REFC	02/12/87	StellBHPP	91-1909	1.00.0	88							YES	2219-187	0.125	11.00-11	0.313		45.00	15.9
200-55		02/12/87	SHOL-BIPPE	6061-76	0.065	8							2	2219-187	0.125	1100-AL	0.313		45.00	95.9
1200-22		03/25/87	SNBL-BMPR	où61-16	0.040	9.4							ង្	2219-187	621.0	100-01	0.313		45.00	6.45
700-SS	L MBFC	03/26/87	SHOL-BHPR	6061-16	0.080	00.1	N/N				<u>.</u>		5	2219-187	6.125	1100-41	0.313		45.00	6.54
101-SS		01/14/86	SHEL-BHPR	6061-16	0.080	8							2 i	181-6122	9.125	オーショニ	v. 313		65.00	6. 28
101-SS	MARTIN	01/11/10	SINGL-BIND	1-1909	0.080	8					:		2 :	(B1-6122	0.125	1100-4	0.187		0.00	3.09
1101-55		01/21/86		6061-16	01000	8							2 9	/B J-612Z	0.125	1100-AL	0.187		ð, (fil	5.70
52-102	NUTAN	01/21/86		- 6061-Th	0.080	8							2 9	(B1-6122	521 .0	100-AL	0.187		9 .00	4.27
55-102	NART EX	01/22/86	Steel - Berry	11-1909	0.000	8							2 5	101-6122	0.125	1100-AL	0.300		0.00	7.20
1201-15		01/23/86		6061-16	00010	8							5	(B)-61ZZ	0.125	100-91	0.300		0.0	5.35
201-55		01/23/84	SHOL-INPR	bubl-16	0.080	8.	V.W.						2	101-11 22	0.125	N-0011	0.300		0.0	5.96
2 5 5 18	A MARTIN	01/24/84	Suel - Bring	6061-T6	0.080	8.4							2	(81-4122	0.125	1100-M	0.300		0.0	4.74
101- 1 5	INNAL TIN	01/24/86		LEWIN	080.10	8.							2 1	/81-4122	0.125	1100-AL	0.300		0.0	3.85
707-55	IN MARTIN	98/82/10	COMP-BHPR	KENAN	0.150	8.7							2 9	/B1-6122	0.125	1100-AL	3. 187		0.0	4.62
101-55	I NARTICK	02/03/84	Nam-mus	KENAR	0.150	8.7							2 3	/B1-4122	0.125	1100-AL	0.487		0.00	1.52
101-55		02/04/86	CONP-BIAPR	KENM	0.150	90.1	V/N				-		2 1	/BI-4377	57 F	100-1	0.187		0.0	3.43
-101-55	WI LIVE	01/27/86	CONF-BAPP	KENLAR	0.150	9.	N/N						2 1	/AI-4177	6. IS	1100-11	0.187		0.0	1. B.
HOI-55	NU LUN	02/04/84	COP-MPR	KENLAR	0.150	4 .8	W/W						2 5	/51-1177		1100-41	9.187		0.0(4.24
		02/06/86		KENM	051:0	191	W/N			5			2 9	101-1122 101-0120		16-1011	0.300		9.0	4.74
53		18/50/50		KEN	0.150	8 ' 1	N/N			N/N			2 5	791-945C	171 A		0.50		8.0	6.4S
		98/99/20		6061-Tá	0.000	8.	W/W			N/N	_		1	101-01-01	571-0 541-0	14-M11	97.9 9		8.9	10.7
53		98//0/Z0		6061-T6	0.080	8	W/W			NA			1	181-9177	501.0		001.0		8 : 8 :	3.51
COL-50		MA/11/20		0061-16 0	0.080	8	N/A			N/A			2	2219-187	21.0	1100-01	0.150		8.9	.
10-55		18/17/70 88/17/70			0.000	8	< X			R/A			2	2219-787	0.125	10011	0110		8.8	
		70/22/20		81-1900						N/N			2	191-6122	0.125	1100-01	0.375		8 8	6.0
-104-1	NI TAM	02/24/96		6041-TA		3 8							뮾	101-9122	0.125	JA-0011	0.375		8.5	ž
-101-53	MITAN	02/25/86		4041-1404	0.060								2	2219-687	0, 125	1100-M	0.350		60.00	6.9
201-55	NART IN	02/19/86	SHGL-BHPR	6061-Ta	0.000	8							2	2219-787	0.125	1100-AL	0.350		75.00	6.65
101-55	NART IN	02/20/84	SNGL-BAPR	6061-16	0.080	8							물	2219-187	0.125	1100-AL	0.350		0.00	A.8 0
101-55	T MARTIN	02/28/64		6 6061-76	0.080	8.							2	221 9- 707	0.125	1100-AL	0.350		0.0	6.74
801-SS	WI LWW	02/18/84		6061-T4	0,080	12.00	N/N								0.125	1100-AL	0.350		0.0	6.8 2
601-55	MART BM	01/14/86	Sam- Dans	91-1909	080.0	0.0	N/N						2 1	/81-4127	6.125	1100-AL	0.350		0.0	6. 8 5
52-10 0	A MARTEN	03/03/86		6061-T6	080.0	1.0	N/N						2 9	/81-4177	0.125	100-91	(, IBI		0,0	7.39
32-10 0 1	TART EN	03/03/86	SNGL-BIPR	91-1909	0.080	1.00	N/A						2 9	/AI - 4122	67.125	100-11	0.187		6. DQ	4.06
1401-55	. NARTIN	03/04/86	SHELL-BIPPE	6061-T6	0.080	90.4	N/A						2 9	/AI -4127	0.125	1100-AL	0.187		0.0	3.61
1401-55 (Prinklin	03/04/86	Stat - Days	6061-15	0.080	8	N/N						2 9	201-N22	6.135	1100-01), 187		0° 00	2.56
011-55	MARTEN	02/12/84	SWGL BIPPR	6061-16	0.000	8	W/W							(BI-61ZZ	521.0	1100-AL	0. 187		0.00	2.00
SII-55	MARTEN	03/10/84	SNGL -BMPR	6041-16	0.043	4.00	N/A			N/N			2 9	/A1-4127	0.12	91-1909	G. 300		0.0	7.113
¥11-55	A MARTIN	03/10/E5	Hand Tons	5061-16	0.063	1 .00	A/A			N/N			5 3	101-4177	<u>1</u> 8	51-19ú9	. 250		£J. D:J	1.18
										:			2		0.1.0	cub1-16	5. 256		45. (e)	1, 20

ORIGINAL PAGE IS OF POOR QUALITY

The state state is the second s

Ī

ներներներներին են ներել են են ներերերուներ է։ Բեն էն են որ երելուտաններություներու են են են որություներությունե

DATE: 02-Nar-89

SPACE STATION NETEOROTO/DEBAIS TEST DATABASE

TEST	MIA	1651 Note	TEST APTICIE	BMPR 1	BNPR 1 TUTTENEE	BMPR 1	BINPR 2	BNPR 2	INPR 2	BMPR 3	BINPR 3	BARPR 3	Ĩ	BACK HALL	BACK WALL F	ROJECTILE P	ROJECTILE PR	alectice in	PACT AV	ERAGE
			TYPE				HICKIN					STRNUCE		MATERIAL	THICKNESS	MATERIAL	DIANETER	5	MGLE VEL	DC11Y
	***********					1.M. / 1222222222		1.64.1	118,/ 11853522111	********	/ .W1) =========	.((1/4)		(1 N.)		(IN.)	RATIO	0EG) (KI	1/SEC)
111-SS	NUTINE	03/11/80	NAME-JONZ	6061-76	0.063	4.00	A/A			N/A			9	2219-187	0.125	6061-16	0. X00		40 00	M 1
W11-55	NART LA	iiiii	NAM- 1985	6061-T6	0.063	4.8	N/N			N/N			ş	2219-187	0.125	5/61-16	6.300		45.00	
€+11-5S	MART EN	03/12/04	SHEL-IMPR	91-1909	0.032	4.0	N/N			W/W			2	2219-187	0.125	1100-4	0.390		45.00	3.51
52-112-1	NS LIGHT	04/27/84	DBL-BMPR	91-1909	0.032	8.4	6063-76	0.032	3.00	N/N			Ð	2219-187	0.125	11-0011	0.250		0.00	4.40
22-112-2 50 - 15 - 2		04/30/86	DBL-BHPR	6041-T4	0.032	8	9041-14	0.032	8.1	N/N			Ŧ	2219-787	0.125	1100-AL	0.250		0.00	4.06
5-011-55		90/10/00	Cill - MUY	6061-16 2011-16	6.02	8	6061-16 1211-16	0.012	8				2	2219-107	0.125	1100-AL	0.250		0.00	3.82
1-911-95		10/11/CA	N - MU	61-1900 7071-177	760.0 CTA A	3 3	61-1005 1011-11	7(N.V	8 2				2 9	781-4122	0.125	1100-AL	0.187		8:0	10.1
1-11-55		N0/CU/SU		01-1000	210.0	3 8	0/-1900 7/11-127	0.034	3 8				2 9	101-A177	21.0	100-M	0.18/		83	2.57
2-111-55	NART IN	98/02/50	DRDAPH	6061-TG	0.012	8 9	6061-Tb	ò.012	2.00				2 9	2014-107	0 175	14-0011			8.8	5
SS-118-1	HART (N	05/05/84	DDL-DHPR	6061-T6	0.032	4.00	5061-16	U.032	00.1	N/N			9	2219-787	0.125	1100-AL	0.250		98.0	04.4
2-811-55	NART IN	05/05/86	DBI, - DHPR	6061-16	0.032	4.0	6061-16	0.032	1.00	N/A			쿺	7219-787	0.125	1106-AL	0.250		0.00	4.49
E-811-55	MELIN	05/06/86		6061-T6	0.052	8 :	5061-16	9.032	8.1	N/N			7	2219-187	0.125	1100-AL	0.250		ú. Đù	1.52
1-611-55	MARTIN	02/01/04 101/07/20		6061-Tb	0.032	8	6041-14 1011-14	0.072	8				7	2219-187	0.080	100-91	0.250		8 : 8 :	4.76
7-411-55	NALITY N	98/80/C0	AN - MAR	6061-16 4041-14	0.065	8	6061-16 4041-14	0.052	8.8				2 3	7219-18) 191-01-01-01	0.080 2 200	1100-AL	0.750		8.0	2.2
1-411-55		NO/BA/PA		11-160E	170 V	3 2	01_1000	0.034 0.000	8 9				2 9	191-6122		16-0011	0.230 A 760		88	8
2-021-55		98/21/50	COMP-MPR	bubl-Tá	0.043	8 8	NEVLAK	0.080	8-1 1-0				2	2219-187	0.080	11.00-Ai	0.250 0.250		8.8	•
55-120-3	MART IN	05/14/84	CONP-DNPR	6061-Tá	0.063	(.0	KEVLAR	080.0	1.00	A/N			2	181-6122	0.080	100-11	0.250		0.0	2.84
53-121-1	MART LA	05/21/84		4041-Tá	9, 0 9 0	97.9	N/N			N/N			몿	2219-787	0.125	1100-AL	0.300		0.0	6.82
55-121-55	MARTIN	05/22/96	SHEL-BHPA	91~1909	0.080	8 9	N/N			N/A			몿	2214-187	0.125	1100-AL	0.300		0.0	6.55
1-22-155	MARTIN	02/28/84	COR-MAN	rewore ^p	11:0	P. 9	N/N			N/N			2	2019-0122	0.125	1100-AL	0.300		0.0	7.15
2-122-2	NAME IN	05/28/04	CONP-BINPR	KEV49/EP	0.115	6.8	N/N			A/A			웊	2219-187	0.125	1100-AL	0.300		0.0	7.29
SS-123-1	MATIN	05/30/84	NOGNIN	S			N/N			N/N			2	LETIGARD	0.750	101-91	6.125		0.0	5.40
2-121-55		98/20/90		5									2	LETIGARD	0.750	11-00-II	6.13		9.6	2 .8 0
		MB/28/90		5 3			5						2 9		2	10-14 11-00-14	0.13		8.0	6 .40
1-121-86				5									2 9	LEKIDING	0.1.0	100-H	/Al .0		8.8	3.3
1-121-35		00/00/00											2 9		17. V	- M- M-	V. 10/		8.8	
55-124-4	MATIN	98/10/89	N NON	N/N			N.			N/N			2	LEIIGARD	0.750	1160-11	(0.187		0.0	
NCZ1-SS	ALL TANK	04/11/84	N1KBON	-11/A			N/N			R/A			2	LEXIGARD	0.750	1100-AL	0.250		0.0	5.27
52-125	MART [N	06/11/84	N INDON	W/W			N/N			W/W			2	LETIGARD	0.750	1100-AL	0.250		0.00	3.78
22-1250		04/12/04								5			율	LETIGARD	0.750	1100-AL	0.250		0.0	3.23
55-1260 51 - 1260		04/10/89											2	LEXIGARD	ភ្	1100-AL	0.187		0.00	8.4
55-120 ((21-32		48/A1/40											2 9	LEALDAND	2.2	100-W	0.18/		8.8	
55 -1270		04/23/84								N.			2	LEXIGARD	0.2.1	1100-011	0.250		8 8	1
55-120M	MATEN	04/27/84	14-14U	6061-76	0.032	1.00	6061-T6	0.032	3.00	N/N			YES	2219-187	0.125	1100-AL	0.250		0.0	4.10
1021-55	NUTION N	06/30/84	DNMM	606L-T6	0.032	4.8	6061-16	0.032	1.00	N/N			YES	2219-787	0.125	1100-AL	0.250		0.00	3.53
55-12M		07/03/04	NDON I H	S									2	LEXIGARD	1.250	1100-AL	0.300		0.0	6.76
1621-SS	NANT LA	07/07/94								W/W			2 9	LETIGARD	1.26	1100-ML	0.300		() () () () () () () () () () () () () () (6. J
1171-66				LALL-TL		2	N/N	110.0	4 F				5 3		907''		002.0		3	74.0
	NU TAAN	0771710		91-1900 1-1707	750.0	3 8	01-3900	750.0	3 8				5 8	101-4177	0.125		002.0		8.2	2.4
JO1 1-55		98/01/20		91-1000 707-170	269.9	88	6061-18 6041-14	200.0	3 5					701-4177	521.0	1100-Ai	007.0		8.8	
VI [1-55	TART IN	07/11/86		6061-16	140.0	90.9	6061-T6	0.052	87				; 7	181-6122	0.125	14-30E	6.750		3	. 40
5S-1318	MARTIN	08/22/89	DINDNPR	6061-16	0.063	4.00	6061-16	0.032	1.00	N/N			9	2219-187	0.125	1100-61	J. 250		0.0	4.31
55-13HC	NART LN	08/29/89	DBL-ENPR	5061-76	0.063	1 .00	91-1909	0.032	1 .00	N/N			Ð	2219-187	0.125	11-1011	0.250		9.00	4.64
NS1-55	NART (N	08/29/89	1000 - FILM	6061-T6	0.063	9 . 1	N/N			N/N			¥	2219-187	0.125	1100-AL	0.250		90.0°	5.95
B 211-22	HI TANH	08/27/89	Single-Bingle	6041-T6	0.063	8:	A/N			N/N			£	2219-187	0.125	11(-0- A .	0.250		30.00	7.18
1531-55 1931 - 55	NULLANN.	98/12/180		6)-1-19(9	0.065	8.8	4 / N			4/H			2 9	101-6127	0.125	1160-iii	6.250 250		10.01	6.6 <i>]</i>
mrt1_cc		90 / 07 / D/.	1 CTOL BIER	01_18AC	CDU-7	3.5							₽	201-A177	0.1.0	14-0011	ă, ș		N. VI	cH.¢

•
- 68
<u>ہ</u>
-
Ŧ
- 61
- 20
-
- 114
i an
- 22

with a submitted of a distribution of a submitted

SPACE STATION NETEONOLO/DEBNIS TEST DATABASE

_

÷

1651 Mindere	MIA Criefe	TEST	1631	I NAM	BHPR 1	1 HYM		BNRPQ 2	BHPR 2	Same	BMPR 3	E Prime		BACK MALI	S I NAN AJEN	ON JETT 14 E	000101110			
		5	TYPE	MILKIN.	THUCKNESS	STANDOFF	MATERIAL	THICKNESS	STANDOFF 1	MATERIAL	THICKNESS	SIANDOFF		MATERIAL	THICKNESS	MATERIA	FINALLETER			NEKAGE
****						(18.)		(1)((111.)		(IN.)	(1 N,)	(N/A)		(10.)		(IN.)	AATID AATID		LUC: IY
3011-55	IMATEN.	08/17/80	SHEL-BIPP	6061-16	6.063	90.9	K/A		***		***									
SS-1344	INNT IN	98/22/100	SHEL-BIPP	6061-16	0.043	8							21	2219-187	0.125	100-W	0.25.0		30.00	7.21
		04/02/86	SHEL-BUPP	6061-T6	0.063	94.4	ş			5			2 9	(81-A122	6. IS	1100-91	0.250		55.00	¥.75
		98/20/60	ILLUA- TONS	91-1909	0.063	8.	N/A						2 9	101-4177	CI.0	₩-00-1	0.250		55.00	7.24
		09/00/60	Par-Jan	61-1900	0.032	1.00	6061-76	0.u 32	3.00	N/N			2 9	101-1177	21.0	1100-M	22.0		22.00	b.b.
		98/10/60		: 91-1909 :	0.032	- 8 .4	6041-Ta	0.032	3.60	V/N			2	7219-107	121.0	10-0011			1 2.00	4.8k
Se-util		101/40		91-1909	0.012	8	61-1308	0.012	1.8		-		2 2	2219-197	51.5	1100-AL	007.0		5.8 5.8	5.65
		19/10/20		- 1909 - 19	0.012	8.7	1-149	0.032	3.0	N.			2	2219-187			077.0		8 3 9 3	9 .19
		12171774		- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	0.012	8.	1-1999 1-1999	0.032	3.00	N/N			2	2219-187	27.0	1100-AL	0.7.4 D. 700		6 X	SU-1
		10/12/00		1). 0. 101 Total and	210.0	8 1 -	91-1909	0.052	3.5	N.N			ŧ	2219-187	6.125	N-0011	6. 100		3 8 7 4	70-8
- 114		00/07/00		101-1117	91.4	8	5			N/N			2	2219-187	9.125	M-0011	0.250		33	
-55		10/01		THE M	11 A	33				W/W			2	2219-187	0.125	11-001	6.20		2	
1011-55	NSIC.	10/01/94			1 0 V			C'9'0		N. 207	0.075		2	2219-187	0.125	11:00-41	0.250		0.00	
2011-55	ž	10/02/84	CON-INPR	N 201	0.075	8	202 1	2/0-0 2/0 4		1071	0.075		- 	2219-107	0.125	1100-AL	0.25.0		0.0	7.15
1 VIN-65	HSFC.	10/04/84		6061-76	0.063	1,000	4061-76	0.041		N/N	C/0*0		29	2219-107	0.12	1100-AL	0.25		0.00	6.8 2
-22-1410 (B)-1-55	INSEC	10/01/96	DBL-DAPR	5061-16	0.063	3.7	4041-1K		3 2				.:. ₽ !	2219-187	0.125	731	0.312		0°.0	5.63
55-14 IC	HSFC.	10/07/86	DBU-BHPR	6061-16	0.043	8.2	6641-14	0.64 1	3 3				:: 2 9	2219-187	9. IS	11-0011	0.513		0.0	4.29
S-1410	INSPC	10/00/84	M-M	91-1909	0.043	7.00	6041-14	0, 043					5	781-6122	9.125	1100-M	11E.0		0.0	4.93
SS-142M		10/07/94	Stell - Birth	2219-187	. 121		N/N						2 9	201-6122	0.125	1100-11	0.313		0. 0	1 .11
W11-55	RSFC	10/10/84	SHEL-BURN	219-187	0.125	8.8	S						2	181-9122	0.70	1100-11	0.250		0.0	3.40
S-117		10/10/87	SHEL-MPR	181-1122	121-1	8	5						2 9	/01-4127	2	1100-M	0. 313		0.0	3.84
S-144	INSFC	10/22/84	SHEL-BRPR	219-107	9.125	100 T	N/N			5			2 9	/91-4177		W-9011	0.315		0.0	2.85
IWI-55	SFC.	10/23/Bh	SHEL-BUPP	2219-187	0.125	8. 10. 1	N/N						2 9	/B1-4122	0.70	1100-4	0.730		0.00	4.93
29-1440	HSFC.	10/23/B4	SHEL-BIPP	- 181-9122	<u>177</u>	8	N/N						2 9	/01-4177		1-011	0.250		0.0	4.52
WSH-55	12LC	11/03/86	CONP-BNPR	2024-13	0.750	8.4	-						2 9	181-4177		1100-11	0.20		0.0	3.97
S-121-SS	RSFC	11/03/84	COMP-DAPR	2024-113	0.750	8	•			 			2 9	/9/ -4/77		1100-41	9. X		0.0	5.47
23-142C	LISE .	11/04/84	COT-MPB	21-1202	0.750	8	-						2 3	191-4177	0.00	100-M	2 2		0.0	1. 38
VI1-55	SFC.	11/07/84	SNGL-BHPR	6061-TG	0.063	8.4	N/N			N/A			2 9	101-4127		1100-1	97. 1		0.0	5.79
22-11 40	225	11/07/84	SNGL-INPR	- 19/9	0.063	87	N/N	:		N N			2 9	101-012	01.0 XI 4				9.00	26.1
¥.1-35		12/16/04			1.000	00.0				S.			2 9	181-0166		21 CEL			8.9	5
		12/17/04	CON- MPR		1, 00	8	W			, AVM				7219-107					8.	17 - F
141-55		12/18/84			8	8	W/W			S			1	2219-187	51.2	1944	571-2		8.5	
		12/22/21	Ball- Bac	91-1909	0.045	8	N			V.N			2	2219-187	21.0	1.06-04	0.750		3	
		18/20/10		91-1909	0.065	8				N/A			2	2219-187	0.125	1100-M	0.250		3 8	- 9
5-140		CU/ CU/ CU/			C. W.	33							모	191-9122	0.125	1100-M	0.250		8	141
1611-55	132	18/10/10				3 8							2	2219-187	0.125	1100-M	0.125		45.00	5.15
55-149C	MSFC.	01/00/10	CONP-BUPR	CPRABIL	000	3 8				Š			2. 2	2219-787	0.125	100-W	0.125		45.00	5.40
55-150M	NSFC	01/2//8/	SINGL-BUPP	6061-76	0.063	8							29	(B1-61 22	0.125	1100-AL	0.125		45.00	6.45
55-151A	- USFC	02/09/87	SNGL-BIPPR	6061-T6	0.080	8.	N/N		· .				ين 12	/01-4122	9. IN	14-93 II	0.250		45.00	7.00
V251-55	HSFC.	02/13/87	Per-mu	a041-16	0.040	90 . +	91-1909.	0.020	2.00				2 9	101-1127	C71.6	100-yr	2		1 5, 00	6.6B
	HSFC	02/17/87		6061-T&	01010	8	P091-19	0.020	2.00				2 5			₩ : 1	PC		9.0	4.62
	ESFC.	03/31/87	Der - MPR	6061-16	0.080	00.1	6061-T6	0.043	00.0	N/N			2 5	101-1107 101-101/L	()) 	100-H	92. i		¢.0	1. 55
851-SS	INSFC	18/10/10	PAN-JAG	6061-Tá	0-080	0,1	6041-14	0.063	0.0				2 9	101-4177	(71.) 21.)		5/2.0		0.00	5. 58
55-154M		04/02/87	SHEL-BINPR	6061-76	01010	871	A/N						2 9	191-4177	21.9	₩-001	0.150		v.00	6 .92
- 1241-55	MSFC	04/02/87	SHGL-BHPR	6041-16	0,040	4.00	N/N			N/N			2 9	101 -4127	9	# 2011	0.187		45.00	ė. 83
NCI-SS	HSFC.	04/04/87	SHEL-BHPK	6041-Tb	0.063	8.4	N/N			N/N			2 9				0.187		5 .0	1.95
		04/15/8/	SWEL-BURN	6061-76	0.043	4 .00	N/N		11 4 0 × - 2- 1	NN -	1	۰. ج	2 9	101-1172		#-2011	, 187 187		1 5.00	7.42
	HSFC	(B/51/10	SHEL-BIRPR	6061-76	0.063	1.0	N/N			WW	•		2 9	101-1177		16-0011	0.18/		45, 00	7.10
19C1-55		04/19/8/	SMGL -BMPR	606L-16	0.063	6 .8	N/A			AVA			2	2219-187		1100-11	V. 18/		8). 8	5
W/CI-55	146	04/14/8/	MANUT- TEMS	6061-Tå	G. 063	8. 1	N/A			ê/N			ş	191-6122	n. 135	H-(5):	u. 187		N. 60	4, 12 7, 4 0

ORIGINAL PAGE IS OF POOR QUALITY ŝ

11100-1000

l

MIE: 02-Nar-49

SPACE STATION NETEOROID/DEDRIS TEST DATADASE

	SOUNCE	DATE		NATERIAL	THICKNESS	STANADEF	MATERIA	THIRDESS	TAMANET	ATERIAL	TUICHNESS		F	DACK HALL	BACK NALL P	MOJECTILE	ROJECTILLE PR	DIECTILE	PACT	FRAGE
			344.1		(10)	(IM.)		CIN.	(.)		(101)	(111)	(N/A)		(1ML)	TALENIAL	n In.) (In.)	E/II Build	NICE VE	U/SED
N CI-55	NSFC	78/11/M	DAL-MAP	11-1909	0.032	8.	2061-16	0.032	J. 00	N/A				7719-197			A 76.			
8951-SS		04/20/87	NAL-DHPR	606E-T&	0.032	6.0	91-1409	0.032	5.00	W/W			2 9	2019-187	51.0 K. 0	100-4	0.27.V		8.6	17. T
N651-55		04/21/87	Den -Barpa	91-1909	0.072	6.00	61-1606	0.032	5.00	N/N			묥	2219-187	0.125	1100-AL	0.313		8.0	17 T
071-SS		18/27/60 08/22/80	DGL-BHLM AGL-AUPO	91-1909	0.032	83	6061-16 101	0.032	83	V.N			£	2219-187	0.125	1100-91	0.313		0.00	6.18
55-142A	ing c	05/26/87	544-1985	6061-TA	0.041	38		760.0	3				2 9	2219-787 787-9122	0.12	1100-AL	0.375		0.00	6.50
8291-55	HSFC	18/12/20		6061-16	0.063	10.1	Ņ							/81-A177		1:00-AL	0.187		29.00	1.51
55-163A	RSFC	05/27/07	DDL-DNPR	6061-16	0.080	4.00	6061-76	0.080	1.00	N.N			2 2	2219-187	51.0	10-91	/RI '0		8.9 8.9	
55-1630	RSFC	05/28/87	DBL-LINPA	41-1404	080.0	1 .00	6061-T <u>6</u>	0.080	1.00	N/N			2 2	2219-187	0.175	100-01	112 0		38	00 P
55-1678	Ц.	LB/90/80	DBL-BHPR	6061-16	6.043	8.00	6061-Tá	Ú. 063	4.00	N/A			2	2219-187	. 13 21.9	1100-AL	272.0		8 8	
82-1479 55-1479	Line in the second seco	08/01/B0	201 - EMPR	91-1909	0.063	8° 00	\$041-T4	0.063	4.00	N/N			P	2219-187	0.125	1100-AL	0.375		0.0	47.9
N991-55		/8/01/80	DHL-INPR	91-1909	0.032	8	4041-fb	0.072	3.718	A/A			2	2219-787	671.0	1100-AL	0.250		45.00	15.5
30-1-05		18/11/80	DBL-BNPF	6061-16 4041-14	0.012	8.8	6041-T6 4041-T4	0.012	3.718	N/N			9 :	2219-187	0.125	1100-AL	0.250		45.00	5.98
5S-1680		00/11/B2	Did - MAPS	Anal-TA	0.012	3 3	01-100	750"0 110 0	3./tB				2 3	7219-187	0.125	N-0011	0.250		45.00	6.67
N91-65		18/11/80	DOK - DWPR	91-1909 9091-19	210.0	3 3	61-1900 1-1909	2CU.U 0TO.Ú	7 947				2 9	2219-197 7319-107	0.12	1100-AL	0.250		45.00 55.00	7.02
8641-22	NSFC	08/18/87	DBL-BMPR	6061-16	0.072	9.0	4041-14	0.077	1.841	A/A			2 9	101-1122	11.1	14-0011	057.0		8.4 8.4	/8.9
NOV1-22	HSFC	08/20/87	DBL-ENPA	evel-To	0.032	4 .0	6061-Tá	0.032	3.468	N/A			2 9	2219-187	521.0	14-0011	0.250		8 8	2 S
1 0/1- 55	MSFC	06/24/87	DOL-DHPA	60&C-T6	1.037	. 9	6061-76	0.032	3.468	N/A			2	2219-187	0.125	1100-01	0.250		8 W	
SS-1714	MSFC	18/82/80	NUMBON	N/N			N/N			N/A			2	LEXIGNID	1.300	100-41	0.375		15.00	6-61
WZ/1-95		06/12/10/					N/N			N/N			¥	LEALGARD	1.300	1100-AL	0.175		45.00	6.71
		19/10/10								N/N			2	LEUIGARD	0.750	1100-AL	0.315		\$5.00	6.99
		18/20/40				:	B/N			W/W			2	LEXIGNO	0.750	1100-AL	0.313		65.00	6.92
10/1-00	110	18/50/40	DIRL - BHTH	91-1909	250.0	8	91-1909	0.032	1468 1468	N/N			Q	2219-187	0.125	1100-11	0.250		0.00	6.9
541-35		10/00/00		91-1909 1011-111	710.0	8 8	6061-16	0.052	5,468	N/N			¥	2219-187	0.125	1100-AL	0.250		0.00	7.34
17/1-00		18/00/00	NPL - PHER	41-1107	710.0	3 3 -	91-1909	0.052	5.468	N/N			£	2219-187	0.125	1100-N	0.250		0.0	7.30
171-66		04/10/87		91-1909 71-1707	7EN'N	8 8	0001-10	0.052	2,000				2	2219-187	0.125	1100-AL	0.250		0.0	4.61
22-1760		18/11/80	DBU-BUPS	11-1409	210 e	38	91-1909 91-1909	20.0	000 ×				2 !	2219-787	S. 1.5	1100-AL	0.250		0,00	5.89
SS-1760	1 Se	09/11/87	BOL-BIPA	6041-16	0.032	88	4041-TA	200'N					2 9	181-4122	6.1 2	11:00-AL	0.250		0.00	5.07
6171-65	HSFC.	18/51/60	CONP-DHPR		0.150	8.4	N/N						2 9	191-4127		1100-AL	ñ		0. 8	4.33
8771-82	HSFC	09/16/87	CONP-BINPR	5- 7- 75	0.150	8							2 9	101-6122		14-0011			0.0	6.92
W8/1-55	ESFC	LB/11/60	CONP-BMPR	¥-83	0.315	16.00	N/N			M/A			2	2219-187	0.080	100-01	N77-0		8 8	47.1
53-1/8 8		18/B1/40		¥-26	0.715	16.00	N/N			N/A			9	201-6122	0.080	1100-11	111.0		38	1 15
WL/1-55		/R/77/AA		6041-1604	0.040	8.7	6041-14 1	040.0	1 .8	N/H			Z	2219-187	0.125	1100-AL	0.375		0.00	4.4
20-10W		18/67/14		01-100 CALL-TC	0.040	81	6061-16 111 11	040.0	3	N/A			묥	2219-187	0.125	1100-AL	0.375		0.0	b.70
0084-55		18/52/60		01-1000 71-17V	0 0 0 0	8.8	91-1909	010.0	8.4	6061-T6	0.040	8.	물	2219-787	0.125	1100-AL	0.375		0.00	6.41
SS-181A	12 C	09/28/87	DAL-BAPA	2219-187	51.0	8.2	6041-1404	0.040	3 8	01-1900 M/A	0.040	8	2 3	/B1-6127	6. 12 2	11 (00 - M	55.0		0.00	5.53
1191-55	USFC	09/221/B7	DBL-BNPR	791-4122	52L-0	1.00	6061-16	0.040	90.1	W/W			2 9	101-6102	21.9	1100-W	C/C.U		8.8	
55-182A	NSFC	09/30/87	OUND-BIPP	6061-16	0.040	2.00	6061-76	0.040	5.00	P1-1905	0.0	3,00	ŧ	2219-187	5.1.2	100-011	212.0		3 8	
V181-55	ISEC	10/01/8/	201 - BMP9	91-1909	6.032	1.00	91-1909	0.032	3.00	A/A			¥	2219-187	6.125	STEEL	21.0		30.0	N - 2
551-55 51 - 52 - 52 - 52 - 52 - 52 - 52 - 52 -		/B/20/01		91-1909	0.032	8. 4	6061-T6	0.032	3.00	A/N			Ŧ	2219-787	0.125	13312	0.125		0.00	5.5
1487-55		18/10/01		/81-4122	0.187	12.00	N/N			N/A			ł	2219-787	0.187	6061-AL	0.500		0.0	5.7
1401-55		10/00/01		/81-4177	0.16/	12.00				W/W			웊	7219-187	0.187	5161-AL	0.500		0.00	5.28
1781-55		10/15/01	DRI-DUP	701-107	/81.0 A 1.0	3 8	R/R						Q	181-9122	0.187	6061-AL	0.500		0.0	5.99
SS-1848		10/11/01	National and a	101-10166	771-2	8.71	01-1000 7V11-110		8.8				9	181-6122	6. IZ	aliel-la	0.500		0.0	5.U]
A1-22		10/11/01		181-6122	21.9		61-1909 71-179	1990 P	33				3	181-6122	0.12	a]-]d/ic	0.500		0.0	5.36
SS-1878	MSFC	10/20/87	DAL-BUPR	2219-107	0.125	9.9	6061-16	0.080	8				2 9	101-1122		91-1900	002-0		3.6	6 6
V881-55	NSFC	10/21/87	10101171	181-9122	0.125	12.00	6061-16	0.080	8.4	N/N			; ;	181-6122		-10/0 -1-10/0	0.500		8 2	71.0 5
8891-55	HSFC	10/22/81		5061 - F6	060.0	12.00	6061-16	0.080	4.60	M/A			Q	(81-6122	0.125	cubl-16	0.500		(). (K	6.2l

3
1
8
BIN

2 · 2. ·

The fact a definition for the second second

SPACE STATION NETEOROID/DEDRIS TEST DATABASE

- 4	IEST MIF		I MILLI WATCHING	INPR 1 THICKNEED	BNPR 1 CTAURDOCT	BURN 2	MPR 2	MPR 2		E Mada	E NAM	7	INCK UNLL	BACK HALL F	MOJECTILE	PROJECTILE F	I STULISTOR	1 Mart	AUCDACC
		TVPC				THILKIN.			INTERIAL	THICKNESS	STANDOFF		MATERIAL	THICKNESS	MIGUN	DIANETER			
				1.14.1			(1)	(IN.)		(IN.)	CIN.1	CIN/A)		(III.)		(IN.)	(ATTD	1930)	
	123/27		7714-1117	XJ	ana	TALL'YE		*******											
	129/87		101_1177	01.V			0.040		S			2	281-7125	0.125	1100-AL	0.100		9 Q	14
	179/07	NA - DAP	11-1404		3 2	01-1900	010-0	8	91-1909	010	8.4	2	781-187	0.125	1100-M	0.500		00.0	
	130/87	2007 - 1905	2214-707		N. 61	01_16M	010.0	8.	5			Ż	2219-187	0.125	. 1100-AL	0.500		0.00	
_	18/20/1	SNGL-BNPR	2219-187	0.125	12.00							₽	2219-18/	0.125	1100-AL	0.500		0.0	6.17
_	(04/8)	SII-WPR	2024-13	0.020	12.00	2024-13	0.020	1				2 1	(8)-6122	0.125	1100-AL	0.500		0.0	ė. 10
_	1/05/87	TRPL-BUP	91-1909	01.040	12.06	6061-16	040	8	A161-14			2 1	(8)-41ZZ	0.12	1100-41	0.500		6.00	5.87
_	/8/01/1	TRPL-BUPR	\$1-T408	0.040	12.00	4041-14	040		11-110		8	2 9	/BI-4127	0.125	1100-AL	0.200		0.0	8 .7
_	112/07	SHEL-BHPR	6061-76	0.040						ALA * A	8.1	5 3	/81-4127	0.125	1100-11	0.175		0.0	3.20
_	1/13/87	DAC-DAPA	6061-15	010	100 J	4041-14	0.040	10				3 9	181-4122	0,125	160-11	572.9 .		0.0	4.47
_	1/30/87	00L-0NPR	6041-76	080.0	7.00	6041-TA	0.080	3 3				5 1	181-4122	0.125	¥-8=	0.375		0.0 8	4.57
1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	7/17/96	SWEL-BURG	:6Ŭ61-T6	0.040	1.00	W/W							/81-4122	0.125	100-1	0.313		9.0	1.20
	11170	SHEL-JUPP	6061-16	0.040	3							2 5	101-6122	0.125	N-8:	20		. 45.00	1 1 1
	7/18/84		6061-76	0.040	8							23	/01-6122	0.125	1100-A	0.250		5 .8	15.2
	7/21/186	248-1955	91-140¢	0.040	8							52	191-6122	0.125	W-9911	0.230		45.00	1.21
	AF12014		6061-T6	010.0	8	N.						2 9	201-6122	0.125	100-41	e. 26		1 5.00	1.59
_	6/05/8 5	SHOL-BINPR	41-1404	0.040	8							2 9	181-4122	0.125	下るこ	0.187		45.00	1.52
_	1/11/08	SHEL-INPR	4041-14	0.0	8							2 :	2219-TB7	0.125	100-AL	0.187		45.00	3.24
_	WINDR		11-1909									2 :	2219-187	0.125	1100-M	0.187		45.00	27
_	1/15/04		6061-T6									2 :	2219-107	0.125	1100-M	0.187		45.00	11-11
_	115/84		4041-TA						5			2	2219-167	•.125	1100-M	0.187		15 .00	7.19
	/00/34		6041-75	0.046								2	2219-107	6.12	1100-M	(B1 'ê		5 .00	1.51
_	/00/89	SIIG MPR	6061-16	0.040								TES I	22119-107	0.125	1100-M	0.300		65.00	6 . J
- 52	/04/89	SHEL-MPR	4041-16	0.040	8							2	181-6122	0.125	100-W	0.300		65.00	3.45
	10/10/	SHEL-INT	6061-75	DHO.1	8								/8)-6122	0.175	1100-AL	0.300		65.00	2.12
	1/21/04	SHGL-IMPR	6061-Tá	0.040	10.1	5						<u> </u>	/01-4177	21	1100-VL	9.70 9		65.00	5.59
_	B/01/B4	8484-1835	11-1404	0-040	8.1	N.						<u> </u>	/81-4177					6 2.00	4.72
-	1/01/84	SHEL-DHPR	6061-T6	OHL:D		N/N			5			Ĩ			W-0011			15. 8	5.5
_	6/30/84	SHEL-INPR	6061-16	9.040	8. 1	N/N						1	181-01CC		-M-M11			3	4.64
-	1/10//84	Sect-leave	6061-T6	0.040	8.4	V.						19	701-01-01					8.3	
-	11/10//1		91-1909			N/N			N/N			2	2219-187					8.6	
_	17/16/94		11-1904	0.040	3 7	W/H			N/N			2	2219-787	0.125	10-811	0.7.0 0.750		88	9
_ 4	6/24/BA		6061-T6	0.063	8	V.			N/N			YES	2219-787	0.125	I I W-W				
_		CHCI PHONE	01-1900	2.44	3				N.			YES	2219-107	0.125	1100-AL	0.250		1 2	
			01-1000	0.065					N.			YES	2219-187	0.125	1100-AL	0.250			9
			01-18A0	0.000	B				S,			765	181-9122	0.125	1100-AL	0.250		1	; 9 ; 4
	1.06/101		01-10-0						N/N			YES	2219-187	0.125	100-M	0.250		8	1
	100/07				88							2	2219-787	0.125	1100-M.	0.187		45.00	11.1
	4/01/10		AAKT-TE	LTPL U					S			2	2219-187	0.125	11:00-AL	0.187		(S. 00	5.09
_	4/10/Bh	SHGL-IMPR	4041-TA	0.047	3							₽ :	2219-107	0.125	1100-AL	0.187		1 5.00	5.40
_	4/1//BH	SHGBHPR	6061-T6	0.043	8.4		-					9	2219-187	0.125	1100-AL	0.187		45.00	3.69
_			6041-TE	111.8	8							2	281-4122	0.125	78-97	0.187		45.8	J. 24
	7/03/84	SigInPl	6061-16	0.043	8							2	2219-187	0.125	1100-AL	0.187		45.00	6. 15
_	7/23/94	SNGL-IMPR	6061-74	0.063	3							2	(BI-6177	0.125	1100-W	0.300		45.00	5.74
-	7124/86	SHBL-INPR	6041-16	0.043	- 00 - 1								2219-787	0.125	1100-M	0.300		45.00	6.22
_	6/13/84	SHG- BHS	6061-16	140.0	8							YES	2219-107	0.125	1100-AL	0.300		65.00	7.03
	6/13/86	Bring- Long	61-164-0	0.041	8							2	2219-187	0.125	100-11	0.250		65.00	8 , 98
_	6/16/ 8 6	SHE - INPR	91-1909	0.043								2 9	2219-187	0.125	1100-AL	0.750		65. (G)	4.29
-	V6/17/86	SNG. BHPP	6041-16	0.063	4.0	W/W						2 5	191-4177 191-6164	6.5	12-10-12 12-10-12	0.20		52.90 52	1.12
	77/16/86	SHELL-THES	9J-1909	0.063	4.00	ALA					-	2 9	181-4127 /81-4127			និរី		8.3	5.63
	93/52/10	ANG- JONS	6061-76	0.063	9.4	A/N			W/W			2 2 2	281-6122	0.135	14-261	0.250 0.256		88	
												ł		::::	!			5.52	

ORIGINAL PACE IS OF POOR QUALITY

Ē

Boot I in the Boot of the second seco

l

Î

1440-1-1410-1400-1400-1-

DATE: 02-Nar-89

SPACE STATION NETEONOID/DEDRIS TEST DATABASE

AVERAGE	VELOCI 1Y		27.4	5.69	6.95	18.4	12-9 12-9	1.4	5.82	1.43	5.13	5.61	5 -	BZ		19.4	₹ 	17.9	16 T	6.5t	6 .91	6.59	7.10	6. 45 2		5.82	6.10	6.82	4 93 7	1.27	6. 4 -	2. X	4.42	5.93	8.9	2.60	5.03	1.11	6.5 8	- 15			5.67	5.67	5.67 9.49 9.49
I UNUL	ANGLE (DEB)		8 5	62.00	8.5 8	8 8 6 4	45.00	9.6	0.0	8.0	0.00	8.6	8.5	8.6	8.8	B 6	3 2	3.5	90.51 00.51	45.00	45.00	45.00	55.00	8.5	12.0u	45.60	15. 0) 1	9.5 9	88	0.00	8.6	8 8 0 8 8	5 .2	5 .8	3.5	5.8 8	45. D0	45.00	45.00	45.00			8 () 7 ()	65.60 19	5.6 9.5
BURCTILE	L/D Ratio																																						1.00	1.00	1.00	42.1	•	1.00	93
ROJECTILE PI	DLANETER (IN.)		0.250	0.350	0.150	0.150	0.300	0.313	0.313	0.220			1 1 1 1 1			0. 150 0. 150	0.750	052.0	0.350	0.350	0.313	0.511	0.513	077.0	0.250	0.350	0.150	0000 0	0.315	0.313	0.515	0.113	0.187	0.187	0.187	0.125	0.125	0.125	0.262	0.262	0.262	V. 444		0.262	0.262 0.262
ROJECTILE P	MATERIAL	1100-M	100-M	100-AL	1100-41	1100-91	1100-AL	1100-AL	1100-11	1100-11	11:00-00					100-91	N-NII	100-M	1100-AL	11:00-14	11:00-M	1100-AL	W-0311	1100-41	1100-11	1;00-M	100-AL	100-011	₩-0011	1100-AL	100-8	1160-N	1100-AL	100-M	1100-1	1100-M	1100-M	1100-AL	6061-Ta	6061-16	5061-16		·	eu61-15	61-15 541-16 541-16
BACK WALL F	INICKNESS (fn.)	č1.0	0.125	0.125	0.125	0.125	6.175	0.168	0, 106	0.188	N01 ' 0	0.180			1980 - S	0.120	0.180	0.108	0.188	0.168	0.188	0.188		60	0.186	0.188			0.125	0.12	51.0	0.125	0.125	51.9	0.125	0.125	0.125	0.125	0. 125	0.125	0.125	 ; ;		21.0 21.0	51.9 51.9
EACK WALL	MATERIAL	2219-787	2219-187	Z219-187	201-9122 101-9122	1219-187	2219-187	2219-107	2219-187	/BJ-4127	701-1177 7010-101	191-1122	701-0107	2210-507	2019-187	2219-787	1219-187	2219-187	2219-797	2219-187	2219-187	2219-187	191-4177	2219-187	2219-187	181-4122	181-9122	7919-187	2219-187	781-9122	2219-187	2219-187	2219-787	201-4122 181-4122	2219-767	2219-787	2219-797	2219-787	2219-787	2219-187	2019-187	1110-011		101-1177	701-1177 2219-197 101-0101
Ĩ	(N/A)		AS	¥65	res YFS	¥ES	TE3	₽	2 9	2 9	2 9	2 2	2 5	3	55	XES	ų S	153	¥	2	2	<u> </u>	2 2	2 2	2	2 <u>1</u>	1 1 1	ġ	2	문역	2 9	윷	53.4	res YES	YES	¥	¥	æ	YES	YES	YES			i i	5 £ š
BHPR 3 CTAMPRE	5 (MULT																																												
BMPR 3 THIFYNESS	(IN.)																																												
BNPR 3 Mategial		NA	N/A			N/A	N/N					5		N/N	N/N	N/N	N/N	N/N	N/N	5			5	N/N	N/A			N/N	NN		N/N	V/H		5	N/A	N/N	N/N		W/W	W/W	M/A	A/A		W/W	
BINPR 2 Standoff	(()))																																												
BNPR 2 THICKNESS	(IN.)												-																																
BNPA 2 Naterial		¥/¥	S.			N/N					W/W	N/N	N/A	N/A	N/A	N/N	W/W	N/N	5				N/N	N/A	A/A		A/A	N/A			¥/¥	e/N		N/N	N/6	N/A		N/N	N/N	8/N		N/N		A/N	5
BMPR 1 Takingef	(IN.)	1,60	8	8 8	4.8	8. 1	8.3	3 2		8	4.0	£.8	1.00	1.0	80.3	4.00	4 .00	90.1	8	88	3 8	88	B	4 .8	8	82	8.4	1.00	88	88	4.8	8	38	8.7	90.'s	8.	8		83	88	B :	9 .4		0 .4	8.4
INPR 1 THECKNESS 5	(IN.)	0.05	0,043	0. DAT	0.063	0.065	0.063			0.000	0.040	01013	0.040	0.040	01040	0.040	0.040	01010	9.080 9.080	190.0		0.00	01411	0.040	0.00	0.040	ù.040	0.1463	0.063	07.045	0.063	0.063	040.9	0.040	040.0	0.040	040.0	040.0	010.0	040.U	010 C	0.040		0.040	0.040 0.040
BNPR 1 HATERIAL		91-1909	11-1909	91-1409 907-170	61-16U	6061-16	1-1109	91-1900	4061-T6	6051-T6	6061-T6	6061-T6	6061-Tá	6U61-T6	6061-75	b061-T6	6ubl-76	6061-TG	11-1909	ount-te	91-1000	evel-16	91-1909	6461-76	91-1909	61-1000 5061-16	6061-16	17-76	≓ ₹₹		051C	05IC	6061-16	41-1709	6061-76	5061-T6	6061-15 	51-1909	41-1400	6061-16 4041-74	P1-1909	6061-16		61-160a	61-1808 61-1608
		Ĩ			igir-Binpa	SHEL-BHPR				SNGL-BUPP	5461-BHPR	SHELL-BHER		5407-FILO	SHGL-BHPR						1	SHGL-BHPR		Side - Birpe		ALLE TONS	SNGL-ENFR	CONP-BIEL			CONP-BIPP			144-198S								SHGL-BMPR		SHEL-BHPR	SHEL-BHPR
TEST ARTICLE	1YPE			18	3	_				6	8	3	3	18	8	3	8	3			22/06	23/04	21/07	12740	122/11	9/19/84	A/22/24	0/15/84	/17/87	117/04	/21/84	- 78/ 644	N02/84	103/B4	/06/84		14/11					28/84		73.64	/29.84 /27/84
TEST TEST DATE ARTICLE	3971	01/31/84 5461	07/31/166 506		08/02/BP 21	38/90/80	08/90/80	00/25/80	01/16/	07/20/	09/03/	001031	10/60	56/65	ē.	0,60	2,6	1		ŝ	38	ŝ	ŝ	5	5 Ţ	0	ę	-	22	2	2 :	2 9	: =	Ξ	-		23	ÈÈ		2.0		2		ē	2 2
DATA TEST TEST Sounce Date Anticle	179E	1001 07/31/86 SNG	INNLE 07/31/84 SWG		ENALL 06/05/84 SI	104/17 08/09/86	100/10 08/09/10		THALL _01/16/	BINUL 01/20/	INULL 09/03/	INNLL 09/03/	1111 09/04/	11111 (9/02	INNI 04/64	INALL 09/00	1111 04/1					INNLL 09/	TIMEL DI	THALL 01			ENNLL (-INNL -	INNUL 10	INNLL 10	INALL TO			INNE			1844.1 10/ 1144.4 10/					INNLL [0/		INNLL 10/	INNLL 10

SPACE STATION NETEOROIS/DEDRIS TEST DAIADASE

AVERAGE	ELOCITY Kn/sec)		6.4 7	4 	6.73	65 : 7	A 1 * 1	2. A	6.9 6	6. 58 1	33	5	Ŧ	1.23	5.18	57.7	15.4		4 .7	10.0	19.5	4.65	3.72	4.42	6.35	3.00		1.0	18.4	4.62	5.80	5.84 7	i 4		2.99	1.00	1.01	4.12	1.25	4.25	2.93	1.46	4,12	15.4	5.76	6.9Ù	7.02	CC.0
INPACT	INGLE V		8 S	45.00	45.00	1 5.00	3 8	8.0	0.00	3.0	8.0	8.0	45.00	45.00	45.00	45.00	3 .8	8.9 9	3.3	8.6	15.00	1 5.00	45.00	45.00	1 5.00	5.5 8 :	8.4 1	99 FF	15.00	45.00	45.00	42.89 4	8 8	8 S	45.00	15.00	45.00	45.00	45.00	45.00	45.60	45.00	45.00	45.06	45.00	45.00	15.0 0	9°0
BUJECTILE 1	L/D Ratio	. M	N .																																													
OJECTILE P	LAMETER (10.)	711 V	02.0	0.250	0.250		0.515	0.313	0.250	0.250	111.0	0.113	0.187	0.187	0.250	0.250		/81.0		2112.0	0.250	0.313	0.313	0.313	272.0			111 0	0.313	0.313	0.313	0.515	50.0	0.375	0.513	0.315	0.513	0.313	0.313	0.313	0.187	9.187	0.250	0.250	0.750	0.313	0.313	576.7
DECTILE 28	NERIAL D	1.FYM	100-W	1100-AL	1100-AL	1100-00	1100-AL	1100-AL	100-AL	1100-01	1100-61	1100-NL	1:00-91	1100-AL	100-AL	100-AL	1100-AL	1100-AL	1100-01	1100-01	11.00-AL	1100-11	1100-AL	1100-AL	1100-ML	100-91	11/11-AL	1100-01	1100-01	1100-AL	1100-AL	1100-AL	100-M	100-01	1100-11	1100-41	1:00-AL	11-00-11	1100-AL	1100-AL	1100-AL	1100-AL	11 vo-AL	1100-AL	:100-M	1100-11	1100-HL	1 w-w
NCK HMIT PR	(ICKNESS N (IN.)	0.175	0.100	0.100	0.100	10.04	0.063	0.043	0, 188	0.188	0.186	0.188	0.125	0.125	6.125	9.125			0 175	51.9	0.125	0.160	0.125	0.160	0.160	0.125	21.0	2	0.125	0.125	0.125	(71.) (71.)	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	e. 125	0.125	0.125	0, 125	071 YA
ACK WALL B	ALENIA	219-187	219-187	219-187	219-187 Due 167	181-61-0	219-187	219-187	2219-107 220-107	(B)-4177	2219-187	181-6122	21 9-1 87	2219-187	2219-597	781-9122	101-1127	701-1177 7010-1177	701-107	2219-187	2219-107	2219-187	2019-187	181-6122	181-6122	191-4122	2219-TA7	2219-187	219-187	(81-612)	181-612	719-187	219-187	21-9-1-87	219-187	219-197	219-787	21 9 -187	(81-61 2)	219-787	2149-187	219-187	181-612	219-187	181-187	181-112	191-197	181-417:
יי שרו ערו	(N/A)	. 0	si Si	YES 2	ង		3	7	9 9		រដ្	XES	SI YES	534	모	2 9	2 1	2 9	1 9	1 2	ង	537	S	LES I	51		5	YES	YES.	YES 2	5	ALC: N		YES 2	YES 2	Say	YES 2	7ES	4C 2	TES 2	7 ES	មួ	59	YES	YES 3	YES 2	51 (2
MPR 3 Cambre	(IN.)																					,								*																		
BIPPA J	(11.)																																															
	1		_	_																											_													_				_
			ş	S			N/N	V.N				N/N	N	N/N							N/N	N/N	N/N	S				N/N	N/N	N/N				N/N	A/A	K/A	N/A	Ň	ž	N/A	A/A	N/N	A/A	Ň	N/N	Ň	N/N	
PR 2 BAPA Ware Materi	(11.)	// /	N			N/N	N/N	W/W			4/8	A/H	N/N	W/N					NA.	N/N	R/N	N/N	W/W		A/M 00 1	1.00 N/A	1.00 N/A	1.00 N/A	1.00 N/A	1.00 N/A	1.00 N/N	1.00 N/A	1.00 N/A	1.00 N/A	A/N	N/N	₹/N	N/N	W/W	N/N	A/A	N/N	A/N	I/N	A/N	4/N	A/N	
BAPR Z BAPR Z BAPR Hickness standief Materi	(JN.) (JN.)	// /				V/N	N/N				4/8	N/N	N/A	N/N-					W	N/N	8/8	N/N			A/A Aiki+Tk 1 A0 444	5061-16 1.00 N/A.	E041-16 1.00 N/A	6061-T6 1.00 N/A	AVA 00.1 6041-1406	6061-74 1.00 N/A	6061-15 1.00 N/A	6061-T6 1.00 N/A	6061-16 1.00 N/A	6061-F4 1.00 N/A	V/N	A/A		N/N .	N/N	NA	A/A	N/A	₫/N	1/N	A/A	N/N		
MPR 2 SMPR 2 BMPR 2 SMPR Affraga Haickness standare Matria	(10.) (10.)	//W	N/6 N/			N/N N/N	N/A N/A				N/A N/A	W/A H/A	N/A N/A						N/N	N/A N/A	N/A N/A	N/N	N/A N/A		или мин мин мин мин мин мин мин мин мин ми	6061-T6 5061-T6 1.00 N/A.	4061-T6 c061-i6 i.00 M/A	6041-T4 6041-T6 1.00 N/M	6041-T6 6041-T6 1.00 N/A	6061-16 6061-16 1.00 M/A	0001-10 5051-10 1.00 N/A	5001-10 5001-10 1.00 1.00 1.00	6061-T6 6061-T6 1.00 N/A	6041-14 6061-14 1.00 N/A	N/N N/N	N/A N/A	R/A	N/N	R/A	N/A N/A	R/A 8/4	N/A N/A	N/A N/A	N/N N/1	N/N N/N	N/A N/A		
MPR I GWPR 2 SMPR 2 GWPR 2 SMPR GNibble Materia Inickness stammer Materi	(1N.) (1N.) (1N.)		4.00 M/A M/A	4.00 N/A N/A		4.00 N/A N/A	4.00 N/A N/A	4.90 N/A N/A	4.00 N/A N/A N/A	4.00 N/A N/A	4.00 N/A N/A	N/N N/N	4.00 N/A N/A	4.00 N/A					4.00 N/A	A/A A/A	4.00 M/A M/A	4.00 N/A	A.M A.A		4/10 4041-14 4041-14 1 00 444	4.00 6061-16 5061-16 1.00 N/A	4.00 6061-T6 E061-16 1.00 M/A	4:00 6041-TA 6041-TA 1.00 N/M	4.00 6061-Tá 6061-Tá 1.00 N/A	1.00 6061-Tá 6061-Tá 1.00 N/A	4.00 6061-10 6061-16 1.00 N/A	4.00 6061-15 6061-16 1.00 M/A	4.00 6061-76 6061-76 1.00 N/A	1.00 6041-14 6041-14 1.00 N/A	4.00 N/A N/A	4.00 N/A N/A	4.00 N/A N/A	4.00 N/A	F.00 B/A	4.00 N/A N/A	4.00 N/A N/A	4.00 N/A N/A	4.00 M/A M/A	4.00 N/A N/I	4.00 M/A	4.00 M/A N/A	4.00 M/A M/A	
MPR I DNPR I DNPR 2 SNPR 2 BNPR 2 BNPR 2 SIM Alconess Strandoff Materia Initicaess strandoff Materi	(IN.) (IN.) (IN.) (IN.)	0.040 4.00 N/A N/	0.032 4.00 N/A N/A	0.032 4.00 N/A N/A N/A	0.032 4.00 M/A M/A M/A	0.032 4.00 N/A N/A	0.032 4.00 N/A N/A		0.052 4.00 N/A // 1/2	0.080 4.00 N/A	0.080 4.00 N/A W/A	5:000 4.00 N/A	0.043 4.00 N/A N/A	0.063 4.00 M/A		или мил соло 1.00 0.05 1.		0.043 4.00 M/A	0.043 4.00 N/A	0:063 "4:00 N/A N/A	0.063 4.00 M/A M/A	0.063 4.00 N/A	U-063 T.00 N/A N/A	0.045 4.00 M/A M/A M/A	или мот таки мин мот село или или от 20.027 г. 1.00 мля или	0.032 4.00 6061-16 5061-16 1.00 N/A	0.032 4.00 6061-16 c041-i6 1.00 M/A	0.012 4.00 6041-T6 6061-T6 1.00 N/M	0.032 4.00 6061-Tá 6041-Tá 1.00 N/A	9.020 4.00 6041-14 6061-14 1.00 N/A	U.432 4.00 6061-16 6061-16 1.00 N/A	V.V.V. 1.00 CUBI-TB BUBI-TB 1.00 M/M 0.032 4.00 6061-TA 6061-TA 1.00 M/M	0.037 4.00 6041-76 6041-16 1.00 N/A	0.032 1.00 6041-14 6061-14 1.00 M/A	0.040 4.00 N/A N/A	0.063 4.00 N/A N/A	0.080 4.00 N/A	0.040 4.00 M/A	9.063 F.00 N/A	0.080 4.00 N/A	0.040 4.00 N/A	0.040 4.00 N/A W/A	0.040 4.00 M/A M/A	0.040 4.00 N/A N/A	0.040 4.00 M/A M/A	9.040 4.00 N/A N/A	0.046 4.00 N/A N/A	
MAPR I MAPR I MAPR I ANNA 2 ANNA 2 BAPA 2 BAPA Ateria. Thickness standarf mitria. Thickness standarf matrai		6861-T6 0.040 4.00 N/A N/A	6041-T6 0.032 4.00 N/A N/A	6061-16 0.032 4.00 N/A N/A N/A N/A		5061-T6 0.032 4.00 N/A N/A	6061-T6 0.032 4.00 N/A N/A	bubl-f6 0.052 0.00 N/A N/A N/A	606[-76 0.032 4.00 M/A	5061-T6 0.080 4.00 N/A N/A	6061-75 0.080 4.00 N/A M/A	5061-T6 5:000 4.60 W/A	6061-F6 0.043 4.00 N/A N/A	cidel-16 0.063 4.00 M/A	606[-16 0.965 9.00 378 AAA-15 0.A23 4.00 1.4	1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/1	6061-Ti 0.045 Time and Ala	6061-76 0.063 4.00 M/A	6061-T6 0.643 4.00 N/A	6061-76 0:063 "4:00 N/A N/A	6061-T6 0.063 4.00 M/A M/A	6041-T6 0.063 9.00 N/A N/A	6061-16 0.063 7.00 N/A N/A	6061-15 0.043 4.00 M/A M/A	6061-16 0.077 4.00 6041-14 AMAI-14 1 A0 442	6061-16 0.032 4.00 6061-16 5061-16 1.00 N/A	cobi-Té 0.032 4.00 6061-Té cubi-Té 1.00 M/A	6041-TE 0.012 4.00 6041-TE 6061-TE 1.00 N/A	6041-T6 0.012 4.00 6061-T6 6061-T6 1.00 N/A	6061-75 0.020 1.00 6041-75 6061-76 1.00 N/A	. 0.001-16 0.032 4.00 0.001-10 0.001-10 1.00 N/A	6061-16 0.012 4.00 6061-15 6061-16 1.00 M/A	5061-15 0.03Z 4.06 6061-16 6061-16 1.00 N/A	6061-T6 0.032 4.00 6041-T6 6061-T6 1.00 N/A	6061-T6 0.040 4.00 N/A N/A	6061-TA 0.063 9.063 8.00 N/A	16061-T6 0.000 4.00 N/A N/A	6061-76 0.040 4.00 M/A	5061-76 9.063 4.00 N/A	6061-T6 0.080 4.00 N/A N/A	6061-T6 0.040 4.00 N/A M/A	6061-75 0.040 4.00 N/A K/A	6061-T6 0.040 4.00 N/A N/A	6041-14 0.040 4.00 M/A	6061-76 0.046 4.00 M/A 4/A	6061-16 0.040 4.00 N/A N/A	6061-16 0.040 4.00 N/A N/A	
11557 BAPPR I MAPR I BAPPR I BAPPR 2 SAMPR 2 SAMPR 2 SAMPR Afticle Material Tracinges Strandoff Materia	14PE (JN.) (JN.) (JN.) (JN.)	56-50PT 666[-T6 0.640 4.00 N/A N/A	61-9497 : 6041-76 0.032 4.00 N/A N/A	ML-HFF 6061-16 0.012 4.00 N/A KI-HFF 10 N/A	01-00-00 10 10 10 10 10 10 10 10 10 10 10 10 1	IGL-BMPR 6061-16 0.032 4.00 N/A	164 - BHPPP 6061-76 0.632 4.00 N/A	NA	NA 100 100 100 100 100 100 100 100 100 10	GL BHPR 5061-76 0.080 4.00 N/A	KGL-BMPR 6061-T5 0.080 4.00 N/A M/A	NGL-EMPR 5061-T6 5.090 4.00 N/A		NGL-GHPPR CUBI-16 0.063 4.00 M/A	NGL-CHYY 6061-16 9.065 9.00 3./N NGL-BADE AA1-14 8.A47 4.AA 8.A	MCL - BPPPPP - 6441 - 76 0.047 4.00 N/A N/A N/A	AVA	MGL-BMPPR 6041-76 0.043 4.00 M/A	HEL-BANDR 60061-T6 0.0643 4.00 N/A	NGL-BAPPE 6061-76 0.063 "4.00 N/A	WGL-BHPR 6061-16 0.063 4.00 N/A	MGL-BNDR 6041-T6 0.063 9.00 N/A N/A	MAL-1977 6061-16 0.063 7.00 N/A	MGL-5MFK 50641-16 0.043 4.00 N/A N	1000-1000 100 100 100 100 100 100 100 10	CORPBMPK 6061-16 0.012 4.00 6061-16 5061-16 1.00 N/A	CRAP-BHMM cubi-Ta 0.032 4.00 6061-Ta cubi-Ta 1.00 N/A	CORA-BAPR 6041-TE 0.032 4.00 6041-TE 6061-TE 1.00 N/A	DRR-BHPR 6041-T6 0.032 4.00 6041-T6 6041-T6 1.00 N/A	D081-BHPR 6041-15 9.020 4.00 6041-15 6041-16 1.00 M/A	2011-2017 0-001-10 0.922 4.00 0-001-10 0-01-10 1.00 N/A DB_20000 2414-74 A.A.A. 4.A. 4.A. 4.A. 4.A. 4.A.	AN DEP (6061-16 0.012 4.00 6061-15 6061-16 1.00 M/A	004-00097 5061-T6 0.032 4.00 6361-T6 6041-T6 1.00 N/A	MR-BHPR 6061-16 0.032 1.00 6041-16 6041-16 1.00 N/A	16L-BHPR 6061-T6 0.040 4.00 N/A	101-211PT 6041-76 0.043 1.00 X/A	IGL-BHPP 56061-T6 0.080 4.00 N/A	ML-BHPR 6061-16 0.040 4.00 M/A	NA 5061-15 9.063 4.00 N/A	GGL-BHPPR 6061-T6 0.080 4.00 N/A	HGL-BHPR 6061-T6 0.040 4.00 N/A	162BHPR 6061-76 0.040 4.00 N/A	161314PR 6061-16 0.040 4.00 N/A	404BMPR budl-16 0.040 4.00 N/A	HEL-BHPR 6041-T6 51046 41.00 M/A	MEL-BMPR 6061-16 0.040 4.00 M/A	NGL-BNPPR 6061-16 0.040 4.00 N/A N/A	
1657 1657 nepr i nepri nepri nepri ane ri zine z sena 2 sena Date anticle material tatiches stabilise nateria. Thickness standorf materi	1995. (JM.) (JM.) (JM.) (JM.)	1/06/86 SAGE-MPT 606[-T6 0.040 4.06 N/A	1/24/06 SWGL-6MPR 6041-76 0.032 4.00 N/A	2/01/34 SABL-BAPT 6041-15 0.012 4.00 N/A 7/07/34 Sabt - Made AA1-75' A.A73 A.A33	2/04/88 SMGL-BMPR , 5061-16 0.032 4.00 H/A	2/12/86 SWGL-BMPR 6061-16 0.032 4.00 N/A	Z/11/86 SW6-BWPR 6061-76 0.022 4.00 M/A	12/11/03 SMBL-THTM DUBL-16 0.022 (.00 N/A / / / / / / / / / / / / / / / / / /		2/18/86 SNGL-BHPR 5061-16 0.080 4.00 N/A	12/19/86 SWGL-BWPR 6061-16 0.080 4.00 N/A	12/19/84 SNGL-EMPR 6061-TG 5.080 4.00 N/A	11/02/86 5/441-177714 [6/06]-15 0.043 4.00 N/A	11/06/86 SMEL-ENTRY EUGI-16 0.063 4.00 M/A	02/03/87 SMGL-EMPYK 6/061-15 0.0085 6.00 7/M 32/11/87 SMGL-EMPYK 6/061-15 8.ALX 4.AA 11/8	72/05/87 SMG-BHPPP 6(6)-15 0.067 4.00 M/A MA	M/08/87 SWEL-BMPR 6061-76 6-265 0-266 1-4	04/09/87 SMGL-BHPR 6041-76 6.043 4.00 M/A	04/10/87 SHEL-BHPR 6061-T6 0.043 4.00 N/A	04/13/87 SWEL-BROR 6061-76 7:063 -4:00 N/A	07/03/87 SMGL-BMPR 6061-16 0.063 4.00 M/A	07/22/87 SHEL-BHPR 6041-F6 0.063 4.00 H/A	0//2//8/ SHEAL-PUPT 6061-16 U.063 T.D0 N/A	9//31/8/ SMBL-BMFK 6041-16 0.043 4.00 N/A A. 37. 3. 4.00 N/A	07/15/67 CD68-B9797 6661-16 0.077 4.00 A641-74 A141-74 1.00 44	07/16/07 CORP.DMPK 6061-16 0.032 0.00 6061-16 5061-16 1.00 M/A	07/16/87 CDAR-BNCA 6061-16 0.032 4.00 6061-16 0.01	07/30/87 CDB01-BHPR," 6041-TE 0.032 4.00 6041-TE 6061-TE 1.00 N/A	77/29/87 COOR-BAPPR 6041-T6 0.032 4.00 6041-T6 6041-T6 1.00 N/A	77/28/87 C008-BMPR 6041-T6 0.020 4.00 6041-T6 6041-T6 1.00 M/A	//////8/ (UNGITURY 6041-16 U.9)2 9.00 0001-16 0.00 N/A	7/20/87 CUMARENA SVALIS V.V.2 4.00 6061-15 6061-16 1.00 M/A	7/20/87 CO00-biePR 5061-16 0.032 4.06 6061-16 6.00 1/4	77/21/87 CORR-BHDR 6061-T6 0.032 1.00 6041-T6 6041-T6 1.00 N/A	14/24/87 SWGL-BMPR 6061-76 0.040 1.00 N/A	H/28/87 SMGL-BHPP 6641-76 0.063 4.00 X/A	H/28/87 SNGL-BMPR 8041-16 0.080 4.00 N/A	14/27/87 SWGL-BMPR 6061-T6 0.040 4.00 WA	12/01/67 SNGL BUPR 5061-15 0.063 4.00 K/A	15/01/87 SMBL-BMPR 6061-T6 0.080 4.00 A/A	15/11/87 SHSL-BHPR 6061-T6 0.040 4.00 H/A	15/07/87 SNBL-BMPR 6061-76 0.040 4.00 N/A	15/05/87 SHGL-BHPR 6061-76 0.040 4.00 N/A	15/06/87 SNGL-BNPR 6061-76 0.040 4.00 N/A	15/13/87 SNBL-DNPR 6041-76 0.048 4.00 N/A	15/18/87 SMBL-BMPR 6061-16 9.040 4.00 M/A	05/14/187 SW6L-BMPR 6061-16 0.040 4.00 N/A NA	NUN NUN AATA ALAATA BILISAD MEDELTSAA JOITTICA
DATA TEST TEST DAPR 1 DAPR 1 DAPR 1 DAPR 2 DAPR 2 DAPR 2 DAPR 2 DAPR Ounce date anticle material failomess standarf material thickness standarf materi	199E (JM.) (JM.) (JM.) (JM.)	11/00/10 2002-0047 6061-15 0.640 4.06 N/A	1404L 11/24/86 5962-5077 564-76 0.032 4.00 N/A X/	1000.L. 12/01/86 SABL-5877 6061-16 0.012 4.00 N/A 1001 17/07/76 SASL-5005 AAXL-77 A AT A AT A AT A A	IMALL 12704/186 SWGL-BMPR 6061-15 0.012 4.00 1/A	INALL 12/12/86 SWGL-BMPR 6061-16 0.032 4.00 N/A	TUMLE 12/11/86 STREE-DHPPP 6061-76 0.032 4.00 M/A	1944. 12/11/48 344 1777. 104.16 0.922 4.00 14.1		INALL 12/18/96 SHSL-BHPPP 5:061-76 0.000 4.00 H/A	INALL 12/19/86 SWGL-BHPR 5061-16 0.080 4.00 N/A	DIMUL 12/19/06 SHEL-EMPR 5061-16 5.000 4.00 N/A	AVM 00.0 0.00 0.00 0.00 0.00 0.00 0.00 0.	UNAL 11/06/86 SAME-GAPPA EUAL-16 0.063 4.00 M/A	INNALL 02/03/8/°5/NAL-51177 6061-16 0.065 9.065 9.00 3/A INNAL 02/11/87 54401-54405 5/41-14 5.447 4.66 14.6	11/1/1 02/05/87 SWE -BMPE 6/66-16 0.047 A.00 17.4	INNLE ON/OB/05/ SNEL-PAPE 60/1-76 0-045 0-040 M/A	TWALL 04/09/187 SWSL-BMPR 6061-T6 0.065 0.065 0.06 M/A	INNLL 04/10/07 SHGL-BMPR 6061-T6 0.063 4.00 N/A	IMMLL 04/13/87 SMBL-MAPR 6061-76 7:063 -4:00 N/A	MSFC 07/03/87 SMGL-BHPR 6061-16 0.063 4.00 N/A	HSFC 07/22/87 SWGL-BMPR 6041-T6 0.063 4.00 N/A	MARC 0//2//8/ SMBL-MPT 6061-16 7.065 7.065 7.06 N/A	TAPL, 9//21/18//SMBL-BMPR/ 6061-15 0.063 4.00 N/A NEEC' 57/74/87 CMS. AMBR/ 2441-71 A ALT 4.AA MAA	NUM AND	INSEC 07/16/87 CORR-BMPK 6061-16 0.032 4.00 6061-16 5061-16 1.00 M/A	NSFC 07/16/87 CDRA-BNRR 6061-16 0.032 4.00 6061-16 2061-16 1.00 N/A	HSFC 07/30/87 CDDDI-BHPR, 6041-76 0.032 4.00 6041-76 6061-76 1.00 N/A	MSFC 01/29/87 COOR-BMPR 6041-T6 0.032 9.00 6041-T6 0.00 N/A.	NSFC 07/28/87 C0066-NHPM 6041-16 0.020 4.00 6041-16 6041-16 1.00 H/A	TSPL V//1//2//LUKAT=BTTT =00=1-10 V.92/2 9.00 0001=10 0001=10 1.00 N/A Miccr A31/92/93 (CODE =0000 / 24/1=7/2 A A3A 2 AA 24/1=7/2 1 AA 44	MSEC 07/20/87 COM08-BMPR 6061-16 0.032 4.00 6061-16 0.00 MZA	NSEC 07/20/07 [COM-DNPR] 5061-16 0.037 4.00 6061-16 6061-16 1.00 N/A	INSEC 07/21/87 CORR-BHPR 6061-T6 0.032 4.00 6041-T6 6041-T6 1.00 M/A	MSFC 04/24/87 SWEL-BNPR 6061-16 0.040 4.00 N/A	NSFC 04/22/07 SNGL-BNPPF 6041-74 '0.043 F.00 N/A	MSFC 04/28/87 SMGL-BMPR 5061-16 0.080 4.00 N/A	MS-C 04/29/87 SMGL-BMPR 6061-16 0.040 4.00 N/A	NCFC 02/01/87 SNEL-BUPR 5061-76 9.063 4.00 N/A	NSFC 05/01/87 SNBL-BNPR 6041-76 0.080 4.00 N/A	MSFC 05/11/87 SMGL-BMPR 6061-16 0.040 4.00 N/A	HIGFC 05/07/07 SWGL-DMPPR 6061-76 0.040 4.00 N/A	MSFC 05/05/87 SMGL-BMPPR 6061-16 0.040 4.00 N/A	MSFC 05/06/87 SNEX-BNPR buil-16 0.040 4.00 M/A	MSFC 05/15/B7 SMBL-BMPR 6061-76 0.046 4.00 M/A	MSFC 05/18/87 SWRBMPR 6061-16 0.040 4.00 M/A	NSFC 05/14/87 SW6L-BMPR 6061-16 0.040 4.00 N/A N/A	אוש אייד אייד טויייט פורופטט אידאדער ופווטענע אוד אידער אידער אורא אידער אורא אידער אורא אידער אורא אידער אורא
EST DATA TEST TEST MAPA I MAPA I MAPA I ANAR 2 MAPA 2 MAPA 2 MAPA 2 MAPA 2 MAPA 2 MAPA Maber Sounce date Article Material Thickness standare materi	14PE (JN.) (JN.) (JN.)	2220-1 11ML 11/06/96 SNST-DMPT 6661-16 0.040 0.06 N/A	D-1264	7-2268 INNUL 12701786 2004-2007 6061-16 0.012 4.00 N/A 1-2266 INNU 17707784 2003 5003 601-16 0.012 4.45 4.65 4.00 N/A	7-227A IMMLL 127/04/86 SM81-8MPR 6061-16 0.032 4.00 1/A MA	5-2278 [IMALL 12/12/86 SNGL-BAPR 6061-16 0.022 4.00 N/A	5-2204 INAL 12/11/86 STAR BAR 6061-76 0.022 4.00 A/A	9-2204 TUBLE 12/11/08 2004-1074 BOAL-1074 BOAL-10 0.052 0.00 M/A 2.7204	5-2280 110ML 07/30/87 5MG - 9MS 6061-14 0.012 4.00 MA	5-229A [IMALL 12/18/86 SNGL-BHPPP SOA1-16 0.080 4.00 N/A	5-2295 IMALL 12/19/86 5461-5HPPR 5061-16 0.080 4.00 M/A	9-229C 10ML 12/19/86 SNGL-ENTR 5061-16 5.000 4.00 N/A	5-2104 11441L 11/02/85 514-1474 6051-15 0.065 4.00 H/A	5-2009 INMAL 11/06/06 SWEL-WARP EUAI-16 0.063 4.00 M/A	3-2.500 11 110001, 02/02/07/02/02/04/04000 6061-16 0.965 9.965 9.00 7.76 5-7300 11 11001, 02/11/02/0402-0402 6.001-16 0.041 0.041 0.042	5-2306 INMLE 02/05/87 SWE-BUPP 6/04/-16 0.047 4.00 H/A H/A H/A	5-231A [IML] 04/08/87 SHE-BITE 664-14 0.000 (10 0.000	5-2310 11MAL 04/07/87 5862-8878 6661-76 0.043 0.00 M/A	15-231C 1944L 04/10/87 5461-849R 6061-15 0-043 4.00 N/A KA	15-2318 INNL 04/13/87 SNGL-BRPR 6061-76 0:063 "4:00 N/A	15-201	15-203 HGFC 07/22/87 SHGL-BHPR 6041-F6 0.063 4.00 H/A	10-200 15-C 0/12/18/ SUBL-1871 6061-16 1.061 1.00 N/A	13-2028; TSFL 07/31/8/ 2018-5011-18 0.043 4.00 N/A	13-30) NSC 07/15/87 CORR-BARE 6661-16 0.077 0.06 6641-14 1.04 44	15-100 RSFC 07/16/07 CORR-BMPK 6061-16 0.072 4.00 6061-16 5.061-16 1.00 MJA	55-309 NSFC 07/16/87 CD00-BNMP cv61-76 0.022 4.00 6061-76 cv61-16 1.00 N/A	5-309-1 MSFC 07/30/87 CDBA-BNPRT 6041-16 0.012 4.00 6041-16 6041-16 1.00 N/A	5-2099 MSFC 07/29/87 CD8R-BMPR 6041-T6 0.032 4.00 6041-T6 6041-T6 1.00 N/A	5-1099 NSFC 07/26/87 C008-NHPN 6041-16 0.020 (.00 6041-16 6041-14 1.00 N/A	2-110 HSTL ULI/1241 (URI-1114 - 0401-14 ULI42) 4.100 6481-14 0411-14 1.00 MA Estado escre aliande tanto tanto tanto aliando tanto aliando esta aliando esta aliando esta aliando esta aliand	2 3144 1415 1717 141 1414 1414 1414 1415 1416 1416 1416	1-312 - MSEC 07/20/07 [COM0-IMPR: 5061-16 0.632 4.06 6861-16 6041-16 1.00 N/A	5-3128 3.128 3.121/87 5088-8448 36061-16 9.032 4.00 6041-16 6061-16 1.00 M/A	5-319 . HSFC 04/24/87 SM6L-BMPR 6061-16 0.040 4.00 N/A	9-320 MSFC 04/28/87 SM8L-BHPR 6061-T6 0.063 4.00 N/A	5-121 NSFC 04/28/87 SNGL-BMPR 6041-16 0.080 4.00 M/A M/A	5-324 MSFC 04/24/8/ SMGL-8494 6061-16 0.040 4.00 WA	1-125 NSFC 03/01/87 SNS-58FF 5061-16 0.063 4.00 N/A	5-326 MSFC 05/01/87 SM8L-BHPR 6061-76 0.080 4.00 M/A MA	5-111 HSFC 05/11/87 SNEL-DMPR 6061-15 0.040 4.00 N/A	5-334 HSFC 05/07/07 SWRBMPR 6061-76 0.040 4.00 N/A NA	S-335 RSFC 05/05/87 SHGL-BHPPR 6061-T6 0.040 4.00 N/A	S-334 mSFC 05/06//87 SNB4-BMPR 6041-14 0.040 4.00 N/A	S-354A RSFC 05/15/87 SMSL-BMPR 6041-T6 01046 4.00 M/A	5-337 MSFC 05/18/87 SM8BMPR 6061-16 0.040 4.00 M/A	15-138 NSTC 05/14/87 SNGL-BNPPC 6061-16 0.046 4.00 N/A N/A N/A	אוש אחין אראייא פוריפט אידמפייאטאל וטווניעט אות אידע דנגינו

ORIGINAL PAGE IS OF POOR QUALITY -i-more of a constant

-

-
SPACE STATION NETEOROID/BEBRIS TEST DATABASE

DATE: 02-Mar-89

1231 Minisco	DATA	1651 181	TEST Service	IMPR 1	TUTEVACCE C	DRPR 1	BNPR 2	BMPR 2 B	MPR 2 B	NPA 3	MPR 3	BMPR 3	ALI	BACK WALL	SACK MALL P	ROJECTILE	MOJECTILE PI	IT THE IN	PACT A	TERAGE
NUMBER	JUNKLE				(10.)		MIEKIM	(IN.)	MUUER IN	I FHINE I	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		(1//1)	MICHIN	INICONCESS (IN 1	NATERIAL	DI MMETER		MGLE VE	UCTTY VIEW
**********		***********		***********															ucos v.	ו אבריביני
SS-EHIA	NSFC	09/26/84	2007-1905	91-1909	0.063	1.06	N/N			A/A			Đ	2219-187	0.125	1100-AL	0.313		30.00	1.11
SS-ENID	ISFC	09/25/84	SHIGT, - BHPR	6061-16	0.063	8 .4	N/N			W/W			물	2219-787	0.125	1100-AL	0.313		45.00	7.01
SS-ENIC	HSFC	98/62/60	SNGL-BINPR	6041-T6	9.063	8	N/N			N/N			믗	2219-187	0.125	1100-AL	0.313		60.09	1.17
SS-EHI	HSFC	09/30/84	SNGL-BNPR	6041-T&	0.063	8.	W/W			N/N			몿	2219-187	0.125	H-0011	0.313		75.00	7.16
SS-P112A	USFI	12/05/86				:	A/N			V.			¥	2219-187	0.125	1160-AL	0.250		0.0	1.59
SS-PI4A		98/52/11	SNGL - BIPPI	5061-76	0.063	8	W/W			N/N			2	2219-187	0.125	1100-AL	0.250		0.00	3.64
		11/20/00		6061-18	0.063	8.2				5				2319-187 221 - 1187	0.12	1100-AL	0.250		0.00	4.24
	į	NU/AL/11		01-1909	0.040	8 2							2 9	/BJ-4122	0.12	11-00-11	0.313		8.	1 . 24
		Y8/16/11		CI-1900	(NI)	8.8							2 9	191-4177	01.9 41.9	11-1011	CIC.0		83	4 •
100-4-55		58/6//80		91-179	0.041	8 8							2 5	101-1177	541.0	11.00.1	0.750		33	, x r
56-4-007		04/20/85		Ail41-16	110 0								2 5	101-0144						88.6
20-4-55		20/22/00		5061-TA		8 8							2 5	7219-187	0 175	1100-41	952 0		33	06 T
100-1-55	ADP SHI	08/24/85	SINGL - ENER	6061-76	0.043	8	WN			W/W			2	2219-187	0.125	100-4	0.2.0		33	56.4
500-4-55		08/28/82	SNGL-BMPR	6061-76	0.063	4.00	N/N			N/A			9	2219-18 <i>7</i>	0.125	1100-AL	0.250		0.00	6.90
55-4-0064	ling day	50/05/80	SHELL-BHER	6061-T6	0,043	8.7	N/N			N/N			9	2219-187	0.125	1:00-41	0.250		0.0	6.95
55-0-02	ing an	28/10/62	SMGL-BMPR	6061-T6	0.063	8.4	N/N			R/A			YES	7 81-18 7	0.125	11:00-AL	0.250		0.00	2.93
800-4-55		28/20/60	SHEL-BHPP	6061-Tb	0.06J	9 .4	N/N			N/N			¥65	2219-187	0.125	11-001i	0.250		0.0	2.96
SS-P-009		58/90/60	SNBL-JMPR	6061-T6	0.043	87	N/N			N/A.			YES	2219-187	0.125	1100-AL	0.250		0.0	5.25
010-4-55		58/60/60	SHEL-BHPP	91-1909	0.043	8.4	N/N			N/N			YES	2219-187	0.125	1100-AL	0.250		0.00	5.0
110-4-33		58/11/60	SHEL-DHPR	91-1909	0.04J	8.7	N/N			N.			22	2219-187	0.125	1100-M	0.250		0.0	b. b.
121-1-55 0	ALP STIL	- 58/11/40		6061-T6	0.063	B	W/N.			N/N			YES	2019-187	0.125	1100-AL	0.250		0.0	6.83
22-P-012C		01/02/84	SUBL-ENPR	6061-T6	0.063	4.00	N/N			N/A			YES	2219-187	0.125	1100-AL	0.250		0.0	1.13
SS-P-0120	ARP SHI	01/03/84	SNGL-BHPR	6061-76	0.043	8 .4	A/A			N/A			YES	2219-187	0.125	1100-AL	0.250		0.00	5.96
SI-+35		501/11/60			576.4	8.4	JII/M			N/N			2	2219-187	0.125	1100-M	0.250		0 0 70	4.11
		CB/111/60		91-I90F	0.043	8.3	Ŋ			N.			皇	181-0122	0.125	100-11	0.250		0.0	6.15
22-P-013C		50/11/60	SHGL-BHPH	41-1409	0.063	8 : -9 :	N N			K.			2	2219-187	0.125	1100-N	0.250		0.0	5.7
		59/02/60		91-1909	2 6 7	8.9							ង	2219-187	0.125	18-18-1 1-18-1	0.150		0.8	2.98
310-4-55		CII/SO/21		91-1905	0.065	8.4							21.	761-6122	571°0	1190-AL	97.5		8.0	5
				91-19ng	- COO - D								2 1	/81-4177	91	-0011	191.0		3.5	21
		20/1/2/140		41-1409									2 9	/AI-4177	CI.9	10-0011	/RI 0		8.0	
		58/12/14		01_1000	2 M M	8 8							AEC.	101-1177		100-W	V.107		88	
N-4-55		50/00/01		51-1909	0.043	90.9							9	1219-187	521.0	1100-011	0.187		00.0	1.7
310-4-55		12/02/05	SHGL-BHPR	6061-14	0.043	6.00	N/N						YES	2219-187	0.125	1100-AL	0.187		3.0	2.77
310-4-SS		12/02/02		6041-T6	0.043	6.0	N/N			N/N			7ES	2219-187	0.125	1100-34	0.187		8.0 8	2.45
510-4-65		59/12/40		4061-T6	10.043	90.19	2/2			N/N			물	2219-18 <i>7</i>	0.125	1100-AL	0.125		0.00	2.85
		10/01/02		6061-Tá	0.043	8.4	W/W			N/N			K 23	2219-187	0.125	1100-M	0.125		0.0	2.11
SS-P-015C	5	50/20/0I		91-1909	0.065	8							물	2219-187	0.125	1100-M	6. LZ5		8:	3.01
		Ca/bo/ol		6041-76	200.0	83	5						2 1	/81-4122	0.12	0 - 19fr9	0.300		8	
		CB/40/01		41-1404	190.0	3 8							2 9	191-4177	CI.0	44-1900 11-1900	007.4		8 8	5.2
				61-1800 LACI-TC		8 8 0 9							2 3	101-1127 T01-7127	01.V	01-1000	00C.U		3 8	1.1.1
G				1041-144		88							2 9	101-0144	3 2	01-1000 91-1409			3	5.4
	15	50/51/01		4041-14		8							2	7219-187	0.175	5061-16	0.100		00.0	7.18
3048 A	5	10/11/02		61-16	9:063	9.9				NN N			S	2219-187	0.125	6061-16	0.300		0.0	7.13
1910-4-SS	ENP SHI	10/22/82	SHGL-DHPR	6061-76	0.063	6.0	A/A			A/A			YES	2219-787	0.125	5061-16	0.300		0.0	6.73
7910-455 P	ADP SHI	10/25/86	SHGL-BHPR	6061-16	0.065	6.0	M/A			N/N			res	2219-187	0.125	<u>5061-16</u>	0.300		0.00	b. 73
A SHAIN	55	12/03/83		6061 - T6	0°.063	6.00	N/N			M/A			YES	2219-187	0.125	6061-76	0.300		¢.0	4.82
1910-4-SS	APP SHI	12/04/05	2007 - BNP	6061-76	0.043	ę. 9	N/A			W/W			YES	2219-787	521.0	búbl-Ta	0.300		9.00	1.17
W910-4-55	ADP SMI	12/10/02	NAME- 1905	6U61-16	0.063	e. 8	W/W			N/N			53	2219-187	0.125	e1-1904	0.300		0.0	3.74
1917-1-55 IS		CB/11/21	NOL-BHP4	91-1909	9.043	6.9	N/A			N/N			<u>5</u> ;	2219-187	0.125	5-10-C	0.200		с. (£	4.23

ORIGINAL PAGE IS OF POUR QUALITY

ç	
•	٢
1	1
	ł
¢	5
ć	
Ē	Ē
è	1

SPACE STATION NETEONOLO/DEDICIS TEST DATADASE

	VIN .	TEST Mate	1651 ABTIME	MAPR 1		I BANK I	BIEFI 2	INPR 2	BNPR 2	S MAG	BINTR 3	Bring 3	Ĩ	BACK WALL	BACK NALL F	ANTELINE P	OA 3 UTTALIA	01601116	, The	T BACT
		Í	34AI				MIERIAL	THUCKNESS S	I MAGGE	MIERIAL	INICONCSS	STANDOFF		MERIAL	THICYNESS	MATERIAL	FIANETER			VENNOE
1272 22823		199 23 EX 29 2 F 2 1		** =======		34888882222		1 5 6 6 . 7 1 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(18.)		1.8.1		(11/2)		(IM.)		(18.)	SAT LO	(930) (ii	M/SEC)
10-4-55		58//11/01		91-1909	1901	1 .00				V /N	*	사진 전 이 이 아이가 있는 것이 같이 가 다 아이가					戸井 ぼうせい おこれ 古井 戸井 日			
		58/81/01		6041-76	0.043	é. 00							5 1	/91-4127	21.0	90 4 1-11909	0.300		0.00	10.7
17-1-55		03/17/04		5									2 3	/11-4/27	. 121	6061-16	0.262	.8	0 [.] 0	7.12
8-1-28		18/22/20	NOONIN	W			N/N			5			2 2				6.125		9 .8	6.50
		03/27/B4		N/W			W/W						1	20020					8	6. JJ
		03/27/86		×.			N/N			N/N			1	EL ASS	1.070	1100-1			8 2	3
		99/12/00					M			N/N			ę	GLASS	1.500	1100-11	0.150		8 8	39
				41-1400	190.0	8				Vii	-		2	2219-187	0.125	1100-M	0.100			
					190-0	83	S i			N/N			8	2219-187	0.125	1100-11	0.200		8	
				1-140		8.8							YES	2219-197	0.125	1100-M.	0. 300		3.0	4.4
X0-4-55		20/01/01		- TAAL-TA		88							£3)	1319-187	0.125	JN-0011	0.300		3.0	24
24-4-55		Y8/40/10											Ş	181-9122	4.125	N-0011	0.300		9.9	1. L
20-4-SS	IN AP SI	98/60/10		AUhi-TA									₽.	181-6122	0.125	1100-11	0.300		6 . Đũ	5.43
SS-P-021		01/10/84		-1404		8								2219-197	0.125	N-0	0.300		8.0	4 .4)
55-P-02	IC AR SN	PE/01/10		6061-T6	0,043	8							2 ¥	/B1-412:	21.		0.300		0.0	6. ġ
SS-1-92		01/13/94	SHEL-BHPR	bû61-16		00.4							<u> </u>	191-4177		-001F	0.300		8	6-60
20-4-55		01/14/86	SHEL-BHPR	50 61- 76	0.043	8.7	N/N						2 s	101-1122			0.50	:	8 .	2 . 82
10-十四		01/15/1 6		91-1909	1.045	100	N/N						Ĩ	101-0122			797 m	3 1	83	5.09
20-4-33		01/15/84	And-Jake	6061-16	0.043	4.0	N/N			N/N			3	701-01CC			797-0	8.3	8:	6. 16 2
20-1-33	5.5	11/13/82	SIGL-MPR	91-1909	0.043	8.3	N/N						2 5	101-1177			247.0	8 0''	8:	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		58/02/11	SHEL-BIPP	606E-TG	2791-0	83	N/N			5			2 2			01-1907			83	8.2
6	INS AN IS	59/12/11	SNGL-BHPR	6061-16	0.043	6.9	N/N						ž	7210-107		01_10n0	007-0		83	
SS-P-02	S ANP SAL	11/21/85	SHEL-BUPP	6061-76	0.045	÷.	N/N						<u>,</u>	101-0100	211-0	01-tonc	nc7-n		8.	
58-P-02		11/22/82	SHEL-BHPR	91-1909	290.°E	<u>5, 00</u>	.W/N			5			2 9			01-19/6	V.18/		33	
5		11/22/05	SHEL-BIPP	6061-76	0.043	6 .9	N/N			N/N			2 1	2219-187		51-1900	V. 107		N . 4	
St-1-02		S3/S2/11		91-1909	0.045	f. 8	M			N/N			12	2219-187	0.175	1-1900 1-1909	A 107		88	35
22-1-02		11/20/02		6/1-16/	INO.	6.00	N/A			N/N			۶Į	181-6122	15	6761-16	0.187		88	5
55-P-02	15.4	12/12/85	10-10-10-5 10-10-5	61-1609	0.063	4.00	A/A			N/N			Ş	2219-187	0.125	M-0011	0.197		3 3	15
SS-P-02	AN AN SH	12/13/65	SNGL-ENPR	6061-16	9.065	1.00	N/A			8/N			2	2219-187	0.125	1100-M	0.187		0.0	101
20-4- <i>1</i> 5		12/14/05	SHOL-BHPP	11-1909	0.045	8	N/N			R/N			2	201-1022	0.125	1600-40	0.187		0.0	11
0 		12/11/02		6061-Tb	0.663	9 :	Š			N/N			¥65	2219-187	0.125	11:00-ML	0.187		0.0	3.48
				6041-140 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	190.0	8							, TES	7219-187	0.125	1100-AL	0.187		0.0	3.08
			A PURCHANNE	01-1000	0.063	3 3							YES	181-4122	5. IZ	1 10 10	0.187		0.0	2.83
		50/0////	CHCL Durbh	01-1000	0.00.0	3							L.	2219-187	0.125	100-M	0.187		6 .0	2.54
		78/21/20		Anti-TE		3 5							2 1	/BI-4122	21.0	1100-W	0.125		8	8
10-4-55	5	MB/GC/20		4041-TA	0 DAD								2 9	101_1177		1			8	1.21
55-9-01		03/24/84	SHEL-BUPP	6061-16	0.040	8							2 1	101-0122	571-A		0. 20 A 76A		83	9 a -
10-4-55 C		03/24/84	BANG-TONS	6061-75	0,040	8 .7	R/A			W/W			1	7219-187		11011	027.0		3 5	9 7 7
D 55-P-03		03/12/89	HANG-TONS	6061-16	0, 040	, 9.	N/N			N/N			9	2219-187	0.125	100-11	0.750		8 8	
		03/13/86	SNGL-BHPR	6061-16	0.063	f. 8	N/N			N/N			Ŧ	2219-187	0.125	1100-AL	0-250		8	10.7
11: 2-1-52 11:	AL NA SH	03/13/84	Steel - Bight	91-1909	01:040	90 ⁻ F	N/N			N/N			105	2219-187	0.175	1100-01	2		00	
ar Stra JA	C-I ADP SHE	03/14/09	SHEL-BINP	6061-76	0,040	4.0	R/A			N/N			YES	2219-187	0.125	1100-4	0.250		8.0	ļ
10-1-55 -L	C-2 . APP 541	03/14/84	SNGL-BMPR	60 61- Tá	0.063	90.'¥	A/A	2		N/A	-		res	7219-187	0.125	1100-AL	0.250		0.00	5.17
SQ-4-25	INS ARY SIL	03/09/10	RIGL-BHER	6061-76	0.043	à. CO	M/M			N/A	_		ę	2219-187	0.125	1100-11	0.350		8.0	6-69
Б-1-55 Г/	ILS JOR IS	03/07/86	Bring- Janes	61-16UA	0.063	ę. 00	A/A			A/A			YES	2219-187	0.125	1100-91	0.350		0. 0	5.30
<u>اط</u>	SC	01/11/80	SWEL-BUPP	5061-Tá	0.080	6.9	N/A	-		A/A			YES	181-9122	6.125	і 10-М.	0.350		8	5.77
-21-55	1 NSFC	03/02/87	Balla - Toms	6061-TG	01010	8 7	N/N			N/N			53J	2219-187	0.125	1100-AL	0. 18 <i>1</i>		0.0	2.54
1-21-55	0 NSFC	02/20/83		N/A			N/N			W/W			2	191-6122	0. IZS	1100-01	0.125		0.00	3.65
1-Z1-SS (V)	L RSFC	18/4//20		N/A			A/A			A/A			155	(8)-6122	0.125	1100-AL	1.250		0.00	1.55
1-71-55	2 MiSFC	/A/41/20		N/N			N/A			N/A			9	181-4122		N-(0);	0°.220		90 °C	1.57

ORIGINAL PAGE IS OF POOR QUALITY

and and a second se

-

1.0

DATE: 02-Har-89

......

SPACE STATION NETEORDIB/DEMAIS TEST BATABASE

EINAGE DCTTY /SCD	3.03	5.09	5.02	3.41	1.43	5.05	1.09	3,00	24.5	1.30	4.73	3.06	4.32	3.95	1.42	1.61	3.26	3.26	3.39	3.49
ACT AV ALE VEL EG) LYA	0.0	0 .0	0.0	0.0	0.0	0.0	0.0	8.4	0.00	0.0	0 .0	0.00	0 .00	0.0	8.0	8.	0.0	e. 00	9.0	9.0
11/LE 110	8	8																		
E MOJEC L/B RATT		-	5	ŗ	'n	5	2	2	2	1		9	9	-	• 7	5		-1	1	c
PROJECTIC DLANETER (IN.)	60	9 .20	0.37	0.5	0.37	0.37	0.31	0.31	0.31	н. .	0.31	¢.25	0.7	0.31	9 .31	0.31	0.31	0.31	0.31	0.13
PROJECTILE NATERIAL	1100-4	1100-AL	1100-AL	1100-64	J1:00-M	1100-AL	1100-AL	1100-AL	11:00-NL	1100-M	11-00-11	1100-4	1100-M	1190-M	1100-00	11-0011	1100-11	1100-N	11.00-AL	W-0011
DACK NALL Thickness (In.)	0.125	0.125	0.175	0.125	0.125	0.125	0.175	9,125	ê. 125	0.135	0.135	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
BACK WALL MATERIAL	181-6122	781-4122	2219-107	7219-TB7	2219-187	2219-197	281-4122	101-4122	2219-187	2219-787	2219-787	2219-18?	7219-787	2219-107	2219-187	181-9122	2219-107	(11-4122	201-6122	201-107
NL1 (Y/N)	YES	53J	res	2	YES	2	YES	YE5	765	2	2	537	YES	.53L	9	율	YES	res	2	YES
MMPR 3 Standoff (1A.)																				
MPR 3 Thickess (IN.)																				
MATERIAL	N/N	N /N	N/N	N/N	A/A	N/N	N/N	M	N/N	N/N	N/N	N/N	N/N	N/N	N/N	N.	N/N	N/N	V	M
MAPR 2 Standoff (EN.)																				
INTO 2 Thickness (JN.)																				
IMPA 2 Hateria	W/W	N/N	N/N	N/A	N/N	N/N	W/W	N/N	N/N	N/N	N/N	A/A	N/N	N/N	A/A	A/N	N/A	N/N	NN.	N/A
BANNA 1 Standoff (EN.)	8.1	8. 1	8.4	9 .4	8. 4	4 .8	ę. 8	6.0	6 .9	9 .4	6. 0	8.4	8.7	8 , 4	8.1	8.1	8.4	8.7	9 1 1	
INICCONESS (IN.)	0.063	0.040	040.4	0.040	0.063	0.063	0.063	0.043	0.063	0.040	0.063	0.063	0.043	0.010	9-04	T-043	0.045	0.441		
Inden 1 Inden 1	6061-76	91-1909	6061-Tè	6061-Tb	6061-16	91-1909	6061-14	91-1909	6061-T4	41-190e	91-1909	6061-76	6061-TA	5061-T4	6061-T4	5041-1105	11-1904	11-1409	11-1909	W
TESI Meticle 14PE	SHEL-BHPR	SNGL - MPPR	SHEL-MARK	SHEL-BIPP	SNGL - BNPR	SHEL-BERR	Man- 1985		100 - 100 S		SHEL-MPR					1007-1005				
IESI Dare	28/40/20	03/10/87	03/10/07	03/11/87	03/09/B7	03/04/87	03/04/07	03/06/87	02/11/00	02/26/87	03/00/87	02/25/07	05/2/20	92/23/87	02/23/87	(B/20/20	02/24/87	78/29/20	10/02/20	02/20
BATA Source	NSFC	nsfC	NSFC	1954	MSFC	NSI I	USFC	RFC R	NSIC	ISFC	ISIC	INSEC	nsfC	RSFC	RFC FSFC			ISFC	15 15 15	
TEST Munder	SS-12-13	55-72-14	SI-12-15	55-12-16	55-12-17	55- 72-10	61-21-SS	SS-12-19A	82-12-19	55-1 2-2	02-21-SS	SS-17-3	1-21-55	5-11-55	9-21-55	55-12-6A	1-21- 55	55-12-7A	H-21-55	6-21-55

Section 2.5.2

Summary of NASA/MSFC Hypervelocity Impact Test Shot Distribution

as of March 2, 1989

ul de la constant Professe en en

То	otal number of shots: 540	
<u>Velocity (km/sec)</u>	$7.0 \le V < 8.0^{+}$ $6.0 \le V < 7.0$ $5.0 \le V < 6.0$ $4.0 \le V < 5.0$ $3.0 \le V < 4.0$ $2.0 \le V < 3.0$ $1.0 \le V < 2.0$	$ \begin{array}{r} 61\\ 165\\ 94\\ 103\\ 85\\ 31\\ -1\\ -540\\ \end{array} $
<u>Diameter (in.)</u>	$\begin{array}{l} 0.4 \leq D \leq 0.5 \\ 0.3 \leq D < 0.4 \\ 0.2 \leq D < 0.3 \\ 0.1 \leq D < 0.2 \end{array}$	16 218 200 <u>106</u> 540
<u>Obliquity (deg.)</u>	0° 15° 25° 30° 45° 55° 60° 65° 75°	$ \begin{array}{r} 337 \\ 1 \\ 11 \\ 128 \\ 3 \\ 10 \\ 44 \\ \underline{5} \\ 540 \end{array} $
<u>Configuration</u>	Single Wall 1 Bumper 2 Bumpers 3 Bumpers 4 Bumpers 6 Bumpers Windows Bottles	$ \begin{array}{r} 11 \\ 396 \\ 89 \\ 6 \\ 3 \\ 1 \\ 26 \\ \underline{8} \\ 540 \\ \end{array} $

DATA SUMMARY Date: March 2,1989 Fotal number of shots: 540

.

Stand-Off Distance	4	inches	334
(Single Bumper)	6	inches	52
	7	inches	1
	8	inches	3
	12	inches	5
	16	inches	1
			396

Miscellaneous	Cadmium Bumpers	10
	Cadmium Projectiles	10
	Composite Bumpers	27
	Corrugated Bumpers	11
	Non-1100 Projectiles	34
	Cylindrical Projectiles	11
	Non-2219 Walls	31

Section 2.5.3

Detailed NASA/MSFC Hypervelocity Impact Test Shot Distribution

as of March 2, 1989

BASELINE PARAMETERS

Pressure Wall Thickness ... 0.125 in. Stand-Off Distance 4.0 in. Number of Bumper Plates ... 1 Projectile Shape Sphere Projectile Material Al 1100 Bumper Plate Material Al 6061-T6 Pressure Wall Material Al 2219-T87

Footnotes

¹ Pressure Wall Material Al 5456-H116
² Projectile Material Al 6061-T6
³ Backwall Thickness 0.188 in.
⁴ Projectile Material Al 6061-T6; L/D = 1.0
⁵ Bumper Plate Material Al 2219-T87
⁶ Stand-Off Distance 12 in.
⁷ Stand-Off Distance 6 in.
⁸ Projectile Material Steel
⁹ Projectile Material Lexan
¹⁰ Stand-Off Distance 8 in.
¹¹ Cylindrical Projectile
¹² Backwall Thickness 0.175 in.
¹³ Backwall Thickness 0.200 in.
¹⁴ Backwall Thickness 0.225 in.
¹⁵ Backwall Thickness 0.160 in.
¹⁶ Backwall Thickness 0.100 in.
¹⁷ Backwall Thickness 0.063 in.

<u>0V23S4</u>

45V23S4

34

65V23S4

.

<u>45V34S4</u>

60V34S4

.

÷

.

-

· 1

<u>65V34S4</u>

75V34S4

and and a second s

Distance and

<u>0V45S4</u>

v45s4

. . .

60V45S4

V45S4

0V56S4

V56S4

	t _B = 0.080	t _B = 0.063	t _B = 0.040	$t_{B} = 0.032$	_
) < 0.4		211B	218A ³		w/MLI
0.3 < [216A ³				w/o MLI
) < 0.3		205C	201B 223C ⁴ 336A	226B ¹⁶ 227A ¹⁷	w/MLI
0.2 < D		EHSS-4C ¹ 230C 230D			w/o MLI
· < 0.2		-	221B		w/MLI
0.1 < D		206B 206C	154B 202C 222A 222B		w/o MLI

<u>65V56S4</u>

-

	t _B = 0.080	t _B = 0.063	t _B = 0.040	$t_{B} = 0.032$	_
) < 0.4		$\begin{array}{ccc} EH2-B & P-021B \\ EH2-C & P-021C \\ EH2-D & P-035B^7 \\ EH2-E & EH4-B \\ EH4-A \\ PR-EH2^5 \\ P-016J^7 \\ P-016K^7 \end{array}$	215C ³ 215D ³		w/MLI
0.3 < [107 ¹² 107A ¹³ 107B ¹⁴ 108 ⁶ 121-1 ⁷ 121-2 ⁷	EH3-A P-016E ⁷ EHSS-6A ¹ P-020B ⁷ EHSS-6B ¹ P-020C ⁷ EHSS-6C P-021 P-016A ⁷ P-021A P-016B ⁷ P-035 ⁷ P-016C ⁷	225D-1 ^{9,11}	228B ³	m/o MLI
) < 0.3		P-011 P-012B P-022A ¹¹			m/MLI
0.2 < [$\begin{array}{c} \text{EHSS-1A}^{1} & \text{P-034}^{16} \\ \text{EHSS-1B}^{1} \\ \text{EHSS-1C}^{1} \\ \text{EHSS-2A} \\ \text{P-005} \\ \text{P-006A} \\ \text{P-013B}^{7} \\ \text{P-022B}^{11} \end{array}$		228C ³ 228D ³	w/o MLI
) < 0.2					w/MLI
0.1 < C		146A ⁸			w/o MLI
•	·			•	-

:

. . . .

	t _B = 0.080	t _B = 0.063	t _B = 0.040	t _B = 0.032	
< 0.4	001B	002B 211D 212B 306 ¹⁵	003A 218B ³ 218C ³ 337 339		w/MLI
0.3 < D	106 216B ³ 216C ³	EHRP-3 ¹ EHSS-7A ¹ 002A	217A ³		w/o MLI
) < 0.3		205D	223A ⁴ 223B ⁴	226C ¹⁶	w/ML1
0.2 < D	151A	EHSS-4A ¹ EHSS-4B ¹ 230E	217C ³ 217D ³		w/o M⊔
) < 0.2			221A		w/MLI
0.1 < [206F	154A 202D		w/o MLI

.

that is a transformed of the state of the st

I b b b bid (11) an n-Andarianh donna i b d i bi

http://www.com

(and shall an an an and a state of a state of the state o

स्टिन्द्र सिंहित्य विद्यालयम् स्टन्त्र विद्यालय हे के तथन हे ति स्टन्त् का आग्रे के स्टन्त्

75V67S4

.

<u>30</u>v78s4

56

Ì

i

. . .

•

all red hardware should be an

÷

Section 2.5.4

Gaps in NASA/MSFC Hypervelocity Impact Test Database

as of March 2, 1989

61

.

NOTATION KEY

L) ... 0.3 < D < 0.4M) ... 0.2 < D < 0.3S) ... 0.1 < D < 0.2

VEL impact velocity range in km/sec NO SHOTS ... no tests have been performed in that velocity range at any bumper thickness X SHOTS AT t = .yyy x tests have been performed at bumper thickness t = .yyy in.; no other tests in that velocity range have been performed at any other bumper thicknessNO SHOTS AT t = .yyy ... no tests have been performed at bumper thickness t = .yyy in.; other thicknesses have been used in testing

.

XXXXX ... full range of testing performed in this velocity range for this projectile size

1

.

VEL	W/MLI	W/O MLI
2-3	L)1 SHOT AT $t = .063$ M)2 SHOTS AT $t = .063$ S)NO SHOTS AT $t = .080 \& 0.32$	L)NO SHOTS M)2 SHOTS AT t = .063 S)NO SHOTS AT t = .040 & .032
3-4	L)NO SHOTS AT $t = .032$ M)NO SHOTS AT $t = .080 \& .032$ S)3 SHOTS AT $t = .063$	L)1 SHOT AT t = $.063$ M)2 SHOTS AT t = $.063$ S)NO SHOTS AT t = $.032$
4 - 5	L)NO SHOTS AT t = $.032$ M)NO SHOTS AT t = $.080 \& .032$ S)NO SHOTS	L)NO SHOTS AT $t = .032$ M)NO SHOTS AT $t = .032$ S)NO SHOTS AT $t = .040$ & .032
5 - 6	L)NO SHOTS AT t = $.032$ M)NO SHOTS AT t = $.80 \& .032$ S)NO SHOTS	L) XXXXX M)NO SHOTS AT t032 S)NO SHOTS
6 - 7	L)NO SHOTS AT t = $.080 \& .032$ M)3 SHOTS AT t = $.063$ S)NO SHOTS	L) XXXXX M)NO SHOTS AT t080 S)1 SHOT AT t063
7 - 8	L)3 SHOTS AT t = .063 M)NO SHOTS S)NO SHOTS	L)NO SHOTS AT $t = .040 \& .032$ M)NO SHOTS AT $t = .080 \& .032$ S)NO SHOTS AT $t = .040 \& .032$

NORMAL SHOTS

-

VEL	W/M	I W/O MLI
2-3	L)NO SHOTS	L)NO SHOTS
	M)NO SHOTS	M)NO SHOTS
	S)NO SHOTS	S)NO SHOTS
3-4	L)NO SHOTS	L)NO SHOTS
	M)NO SHOTS	M)NO SHOTS
	S)NO SHOTS	S)NO SHOTS
4 - 5	L)NO SHOTS	L)NO SHOTS
	M)NO SHOTS	M)NO SHOTS
	S)NO SHOTS	S)NO SHOTS
5-6	L)NO SHOTS	L)NO SHOTS
	M)NO SHOTS	M)1 SHOT AT $t = .063$
	S)NO SHOTS	S)1 SHOT AT $t = .063$
6-7	L)NO SHOTS	L)NO SHOTS
	M)NO SHOTS	M)4 SHOTS AT $t = .063$
	S)NO SHOTS	S)1 SHOT At $t = .063$
7 - 8	L)NO SHOTS	L)1 SHOT AT $t = .063$
	M)NO SHOTS	M)3 SHOTS AT $t = .063$
	S)NO SHOTS	S)NO SHOTS

OBLIQUE SHOTS 30 DEG

ŝ

VEL	W/MLI	W/O MLI
2 - 3	L)1 SHOT AT $t = .040$	L)NO SHOTS
	M)1 SHOT AT $t = .063$ S)1 SHOT AT $t = .040$	M)NO SHOTS S)NO SHOTS
3-4	L)NO SHOTS AT $t = .040 \& .032$ M)1 SHOT AT $t = .063$ S)NO SHOTS AT $t = .080 \& .032$	L)NO SHOTS AT t = .040 M)1 SHOT AT t = .063 S)NO SHOTS AT t = .080 & .032
4-5	L)NO SHOTS AT $t = .032$ M)NO SHOTS AT $t = .080$ S)NO SHOTS AT $t = .080$ & .032	L)NO SHOTS M)1 SHOT AT $t = .063$ S)1 SHOT AT $t = .063$
5 - 6	L)NO SHOTS AT t = $.080 \& .032$ M)NO SHOTS AT t = $.080$ S)1 SHOT AT t = $.040$	L)1 SHOT AT t = .063 M)3 SHOTS AT t = .063 S)NO SHOTS AT t = .080 & .032
6 - 7	L)NO SHOTS AT $t = .032$ M)NO SHOTS AT $t = .080$ S)1 SHOT AT $t = .040$	L)NO SHOTS AT $t = .032$ M)NO SHOTS AT $t = .032$ S)NO SHOTS AT $t = .080$ & .032
7 - 8	L)1 SHOT AT $t = .040$ M)NO SHOTS AT $t = .080 \& .063$ S)NO SHOTS	L)NO SHOTS AT t = .080 & .032 M)NO SHOTS AT t = .080 & .032 S)NO SHOTS AT t = .080 & .032

OBLIQUE SHOTS 45 DEG

-

VEL	W/MLI	W/O MLI
2 - 3	L)NO SHOTS	L)NO SHOTS
	S)NO SHOTS	S)NO SHOTS
3-4	L)NO SHOTS M)NO SHOTS S)NO SHOTS	L)1 SHOT AT t = .063 M)1 SHOT AT t = .063 S)NO SHOTS
4 - 5	L)NO SHOTS M)NO SHOTS S)NO SHOTS	L)1 SHOT AT t = .080 M)NO SHOTS S)NO SHOTS
5 - 6	L)NO SHOTS M)NO SHOTS S)NO SHOTS	L)NO SHOTS M)NO SHOTS S)NO SHOTS
6-7	L)NO SHOTS M)NO SHOTS S)NO SHOTS	L)NO SHOTS AT t = .040 & .032 M)NO SHOTS S)NO SHOTS
7 - 8	L)NO SHOTS M)NO SHOTS S)NO SHOTS	L)1 SHOT AT $t = .063$ M)1 SHOT AT $t = .063$ S)2 SHOTS AT $t = .063$

OBLIQUE SHOTS 60 DEG

	OBLIQUE SH	IOTS 65 DEG
VEL	W/MLI	W/O MLI
2 - 3	L)1 SHOT AT t = .040 M)NO SHOTS S)NO SHOTS	L)NO SHOTS M)NO SHOTS S)1 SHOT AT t = .063
3-4	L)2 SHOTS AT $t = .040$ M)1 SHOT AT $t = .040$ S)NO SHOTS	L)NO SHOTS M)NO SHOTS AT t = .080 & .032 S)1 SHOT AT t = .063
4 - 5	L)2 SHOTS AT t = .040 M)NO SHOTS AT t = .080 & .032 S)NO SHOTS	L)NO SHOTS M)NO SHOTS AT t = .080 & .032 S)1 SHOT AT t = .063
5-6	L)NO SHOTS AT t = .080 & .032 M)NO SHOTS S)NO SHOTS	L)NO SHOTS M)NO SHOTS AT $t = .080 \& .032$ S)1 SHOT AT $t = .063$
6-7	L)NO SHOTS AT $t = .032$ M)NO SHOTS AT $t = .080$ & .032 S)NO SHOTS	L)2 SHOTS AT $t = .063$ M)1 SHOT AT $t = .063$ S)NO SHOTS
7 - 8	L)1 SHOT AT $t = .063$ M)1 SHOT AT $t = .063$ S)NO SHOTS	L)1 SHOT AT $t = .063$ M)1 SHOT AT $t = .063$ S)2 SHOTS AT $t = .063$

	_					
VEL		W/MLI	W/O MLI			
2 - 3	L)NO SHO	٢S	L)NO SHOTS			
	M)NO SHO	ſS	M)NO SHOTS			
	S)NO SHO	ſS	S)NO SHOTS			
3-4	L)NO SHOT	ſS	L)1 SHOT AT $t = .080$			
	M)NO SHOI	ſS	M)NO SHOTS			
	S)NO SHOT	rs	S)NO SHOTS			
4 - 5	L)NO SHOT	TS	L)NO SHOTS			
	M)NO SHOT	CS	M)NO SHOTS			
	S)NO SHOT	ls l	S)NO SHOTS			
5-6	L)NO SHOT	S	L)NO SHOTS			
	M)NO SHOT	'S	M)NO SHOTS			
	S)NO SHOT	S .	S)NO SHOTS			
6-7	L)NO SHOT	'S	L)2 SHOTS AT $t = .080$			
	M)NO SHOT	S	M)NO SHOTS			
	S)NO SHOT	'S	S)NO SHOTS			
7 - 8	L)NO SHOT	'S	L)2 SHOTS AT $t = .063$			
	M)NO SHOT	'S	M)NO SHOTS			
	S)NO SHOT	'S	S)NO SHOTS			

I NORMAL AND I I

Ξ

111 11 111

=

OBLIQUE SHOTS 75 DEG

SECTION THREE -- HYPERVELOCITY IMPACT OF DUAL-WALL STRUCTURES

3.1 Introduction

In this Section, an overview of the various processes associated with the normal and oblique hypervelocity impact of dual-wall structures is presented and discussed. Included in this discussion are the results of an in-depth investigation of the effects of geometric (e.g. plate thicknesses, and spacing) and impact (e.g. projectile diameter, trajectory, and velocity) parameters on the penetration resistance of dual-wall structures under highspeed projectile impact. This investigation was performed using the information contained in the Damage Mechanism Database described in the previous Section. For additional information on the effects of bumper thickness, spacing, pressure wall thickness, bumper material, pressure wall material, etc., the reader is referred to the References in Sections 1.3 and 3.4.

A total of 396 test specimens were analyzed in the study of dual-wall structures under normal and oblique hypervelocity impact. In all of the tests, the bumper plate and pressure wall plate materials were aluminum 6061-T6 and 2219-T87, respectively; projectile materials used in the testing were aluminum 1100-0 and 6061-T6. Projectile diameters ranged from 3.175 to 12.7 mm; impact velocities ranged from 2 to 8 km/sec. The thicknesses of the bumper plates used in the test program were 0.8, 1.016, 1.6, and 2.032 mm; the pressure wall thicknesses were 1.6, 2.54, 3.175, 4.064, and 4.775 mm. Two stand-off distances were used: 10.16 and 15.24 cm. In the oblique impact tests, projectiles were fired at trajectory obliquities of 30° , 45° , 55° , 60° , 65° , and 75° .

The results of the analyses performed are presented in two forms: penetration and spall functions, and empirical predictor equations that were

derived through a linear multiple regression analysis of the damage data. Figures 3.2 through 3.5, and Figures 3.6, 3.7 present penetration and spall functions, respectively, for dual-wall structures under normal hypervelocity impact. Figures 3.9 through 3.13 and Figures 3.14, 3.15 present penetration and spall functions, respectively, for oblique impacts. Finally, Figures 3.16 through 3.21 present a comparison of the predictions of the empirical equations with the experimental data.

While hypervelocity impact tests were performed with a variety of geometric and impact parameters, occasionally an insufficient number of tests were performed for a necessary range of parameter values. For example, if a series of tests was performed using a certain bumper thickness, standoff distance, pressure wall thickness, and trajectory obliquity, and if the pressure walls were perforated in all of the tests in the series over the range of projectile diameters and velocities considered, then, because it is not known what projectile diameter-velocity combinations would not perforate the pressure walls, it would be impossible to draw a penetration function for that test series. A specific example is Test Series No. 216 (t_{e} =1.6 mm, t =3.175 mm, S=10.16 cm, θ =45°) in which all three tests had perforated pressure wall plates. As a result, a complete set of penetration and spall functions for all the geometric configurations used during the test program could not be constructed; penetration and spall functions are presented only for data sets for which such curves could legitimately be drawn. In those cases where penetration and/or spall functions could not be drawn, test-bytest comparisons had to be performed. Although it would be impractical to present the details of each comparative analysis, observations made from such analyses of the data are included in the discussions of hypervelocity

impact phenomena that follow in this Section.

Regression analyses were performed on the following dual-wall system damage data: bumper plate hole dimensions, debris cloud trajectory angles, debris cloud cone angles, pressure wall front surface damage area, pressure wall rear surface spall area (in the event of spall), and pressure wall hole diameter (in the event of perforation). Empirical predictor equations are presented in this Section for these quantities for aluminum dual-wall systems under high-speed spherical projectile impact. The results of additional regression analyses for dual-wall systems with composite bumpers, window systems, dual-wall structures under cylindrical projectile impact, and impact of multi-bumper systems are presented in subsequent Sections of this Final Report. Furthermore, since normal impact is a special case of oblique impact, no equations were derived purely for normal impact. Equations for normal impact can be obtained simply by setting $\theta - 0^{\circ}$ in the oblique impact equations. As such, all of the regression equations are presented in the sub-section on oblique hypervelocity impact phenomena.

3.2 Penetration Phenomena Associated With Normal Hypervelocity Impacts

Consider the normal hypervelocity impact of a spherical projectile on the structure shown in Figure 3.1. The structure consists of two walls: a 'pressure wall plate', which is the main wall of the structure, and a protective 'bumper plate', which is traditionally a relatively thin layer of material that is placed at a relatively small distance away from the pressure wall plate. The protection of the pressure wall against perforation is afforded by the bumper plate through the disintegration of the impacting projectile and the creation of a diffuse debris particle cloud which, in the

velocity range tested, imparts a significantly lower impulse to the pressure wall. Previous investigations (see References in Section 1.3) have shown that the combined mass of the bumper plate and the pressure wall required to prevent pressure wall perforation is typically much less than that required for a pressure wall without a bumper plate. Although not shown in Figure 3.1, a blanket of multi-layer insulation is often placed on the pressure wall of the dual-wall structure for thermal protection purposes. Under certain impact conditions, this multi-layer insulation (MLI) can increase the protection afforded to the pressure wall plate by absorbing the kinetic energy of the smaller and slower particles of the debris particle cloud. However, for very large particles traveling at high speeds which the bumper is unable to shatter completely, the presence of MLI on the pressure wall can prove to be disastrous and can result in severe petalling of the pressure wall plate.

In the case of space debris particles and meteoroids, impact velocities are on the order of 10 and 20 km/sec, respectively. Upon impact at these velocities, strong shock waves are propagated through both the impacting particle and the impacted bumper plate. The pressures associated with these shocks typically exceed the strengths of the projectile and bumper plate materials, which causes them to fragment, melt, or vaporize, depending on material properties, geometric parameters, and the impact velocity. Geometric factors that can affect the response of a projectile/target system include the size and shape of the impacting projectile, the thickness of the bumper plate, and the angle of impact relative to the bumper plate surface normal. For each set of particle impact parameters, there exists an ideal bumper design that will efficiently break up the particle to prevent

72

-

penetration of the pressure wall. Because of the intense pressures generated in a hypervelocity impact, material strength ceases to be an important factor in determining material response. The resulting hole in the bumper plate is typically several times larger than the diameter of the impacting projectile.

As the shock waves propagate, the projectile and target materials are heated adiabatically and non-isentropically. However, the release of the shock pressures occurs isentropically through the action of rarefaction waves that are created as the shock waves interact with projectile and target free surfaces. This process leaves the projectile and target materials in high energy states which can cause either or both to melt or vaporize, partially or completely. As the velocity increases, the shock heating increases and, in turn, improves the performance of the bumper plate. This partially explains why micro-meteoroid impacts that occur at very high velocities (on the order of 20 to 50 km/sec) are potentially less lethal from a penetration standpoint than the space debris particle impacts, which occur at lower velocities (on the order of 10 to 12 km/sec). The lower average density of meteoroid particles also contributes to their lesser lethality (0.5 gm/cm³ as compared to 2.8 gm/cm³ for orbital debris particles).

When the projectile and a portion of the bumper shield are fragmented, melted, or vaporized, a secondary debris cloud is created. This debris cloud travels towards and impacts the pressure wall plate. However, the impacts of the debris particles will be distributed over a large area of the pressure wall which will result in a reduction of the pressure impulse on the pressure wall plate. The area over which the load impulse is distributed on

the pressure wall is governed by the manner in which the projectile and bumper plate fragment, melt, or vaporize, and by the spacing between the bumper plate and the pressure wall.

It is important to note that spallation of the rear surface of the pressure wall may occur with or without pressure wall penetration if the rarefaction stress near the rear surface exceeds the dynamic tensile fracture strength of the pressure wall material. This spallation could result in ejecta that can travel at high velocities and can damage internal spacecraft mission systems as well as life support systems. Although the depth of spall can be, theoretically, up to 50% of the plate thickness, the depths of spall in thin plates such as those used in dual-wall systems are typically 10% to 25% of the plate thickness.

In the following sub-sections, the effects of individual dual-wall system parameters on the response of the system under hypervelocity projectile impact are discussed in more detail. Unless otherwise noted, the MLI was taped to the side of the pressure wall facing the bumper plate and consisted of 30 layers of 0.5 mil kapton aluminized on one side and 29 layers of Dacron mesh, one layer between each kapton layer. Additionally, 1 layer of beta-cloth (coated s-glass) was added on the side nearest the bumper plate for durability. The areal density of this combination was calculated to be approximately 0.107 gm/cm² [3.38]. It is also noted that in Figures 3.2 through 3.7 and 3.9 through 3.15, the penetration and spall functions are simply lines of demarcation between regions of penetration or spall (above) and regions of no-penetration or no-spall (below). In addition, while penetrations functions are presented for dual-wall systems with

į

ī

and without MLI, spall functions are presented only for systems without MLI. It was found that placing MLI on the side of the pressure wall facing the bumper plate significantly reduced the tendency for rear-side spallation to occur. Out of the approximately 200 hypervelocity impact tests performed with MLI, rear-side spallation of the pressure wall plate was observed in only 9 of these tests.

3.2.1 Effect of Bumper Thickness

Under normal impact, dual-wall systems with thinner bumper plates $(t_s=1.016 \text{ mm or } t_s=0.8 \text{ mm})$ exhibited more frequent and more severe pressure wall plate perforations (ie. larger hole sizes) than did dual-wall systems with thicker bumper plates (ie. $t_s=1.6 \text{ mm or } t_s=2.032 \text{ mm}$). However, by comparing the penetration functions in Figure 3.2 and 3.3, it can be seen that changing the thickness of the bumper plate from 1.6 mm to 2.032 mm while keeping all other geometric parameters constant did not significantly affect the penetration function or level of protection afforded to the pressure wall plate. An examination of the spall functions in Figure 3.6 reveals that, for a spacing of 10.16 cm and a pressure wall thickness of 3.175 mm, the likelihood of rear-side spallation of dual-wall systems with a bumper thickness of 1.016 mm.

3.2.2 Effect of Pressure Wall Thickness

As expected, increasing the thickness of the pressure wall while keeping all other geometric parameters constant increased the penetration resistance of the dual-wall structure. This can be seen by noting the relative positions of the penetration functions in Figure 3.5 for the different pressure wall thicknesses. The higher position of the penetration function

for the thicker pressure wall plate indicates resistance to perforation by projectile diameter-velocity combinations that would perforate the thinner pressure wall. However, increasing the pressure wall thickness was found to increase the tendency of the rear side of the pressure wall to undergo spallation. As the pressure wall plate thickness is increased, past a certain thickness the debris cloud particles cannot penetrate deep enough into the pressure wall and connect with the rear-side spallations to cause perforation of the plate. As a result, the plate is cratered on the front surface and remains spalled on the rear surface. Naturally, if the pressure wall thickness were to continue to increase, the amount of rear-side spallation would decrease until only a dimple would remain on the rear surface of the plate.

3.2.3 Effect of Stand-Off Distance

It was found that increasing the stand-off distance resulted in an increase in the penetration resistance of the dual-wall structure (compare Figure 3.4 with Figure 3.3). This is also to be expected because the larger the stand-off distance, the more spread out the secondary debris cloud will become before it impacts the pressure wall plate. As a result, the impulsive loading it delivers to the pressure wall will be more diffuse and less likely to cause perforation. In the dual-wall systems without MLI, increasing the stand-off distance also increased the frequency with which pressure wall plates exhibited rear-side spallation with and without penetration. However, by comparing the spall function for t_s =1.6 mm in Figure 3.7 with that for t_s =1.6 mm in Figure 3.6 reveals that increasing the stand-off distance from 10.16 cm to 15.24 cm did not significantly affect the likelihood of rear-side spallation. This implies that there are certain

bumper thicknesses that possess similar levels of efficiency in fragmenting an impacting projectile and in creating secondary debris particles whose impacts on the pressure wall cannot induce significant damage in the way of rear-side spallation.

3.2.4 Effect of MLI

In dual-wall structures without MLI, the craters are contained in a circular area on the pressure wall plate directly below the hole in the bumper plate. Perforation of the pressure wall plate is usually in the form of a single central hole or several small holes scattered throughout the damage area. In the systems with MLI on the pressure wall in which pressure wall plate perforation does not occur, the pressure wall contains a central bulge with only a minimal amount of cratering. If perforation of the pressure wall does occur, it is usually in the form of a single hole that is accompanied by petals which, depending on the impact parameters, can be anywhere from 2 cm to 15 cm long.

The penetration functions for dual-wall systems with MLI always lay above those for dual-wall structures without MLI (see Figures 3.2 and 3.4). The area between the two curves represents those diameter-velocity combinations that would penetrate the pressure wall plates of dual-wall systems without MLI but not those of similar dual-wall systems with MLI. However, under normal impact, the holes in perforated pressure wall plates in dualwall systems with MLI against the pressure wall were often much larger than those in similar systems without MLI. This was found to be especially true in normal impacts by projectile with diameters exceeding 0.795 cm and traveling at speeds faster than 6.5 km/sec.

3.3 Penetration Phenomena Associated With Oblique Hypervelocity Impacts

It has become increasingly evident that most meteoroid or space debris impacts will not occur normal to the surface of a spacecraft [3.8]. The response of a dual-wall structure to oblique hypervelocity projectile impact can be significantly different from its response to normal hypervelocity impact. Unlike normal high-speed impacts, oblique impacts can produce a tremendous volume of ricochet debris particles. These ricochet particles can severely damage panels of instrumentation units located on the exterior of a structure. Obliquity effects, therefore, must be considered in the design of any space or aerospace structure structure that will be exposed to a hazardous debris environment.

Naturally, some of the response characteristics described in the previous sub-Section on normal hypervelocity impact apply to the case of oblique impact as well. These include the fragmentation, melt, or vaporization of the projectile and the bumper shield upon impact, the creation of secondary projectile and bumper fragments, the impact and possible perforation of the pressure wall by debris clouds containing these fragments, and the possibility of spallation occurring on the rear surface of the pressure wall plate. However, there are certain response characteristics that appear in an oblique impact that do not exist in a normal impact. For example, in the oblique impact of a dual-wall structure, some of the secondary debris fragments that are created during the impact of the projectile on the bumper are sprayed on the pressure wall while some fragments ricochet and travel away from the dual-wall structure. In Figure 3.8, the angles θ_1 and θ_2 denote the trajectories of the centers-of-mass of the 'normal' and 'in-line' penetration fragments, respectively; the angles γ_1 and γ_2 represent the

spread of these fragments. The angle α_c and α_{99} characterize the trajectory of the center-of-mass of the ricochet debris fragments and the spread of these fragments, respectively. The impacts of the secondary debris particles created 'normal' and 'in-line' damage areas A_{d1} and A_{d2} , respectively, on the front surface of the pressure wall. Occasionally, the impacts of the secondary bumper and projectile fragments resulted in the creation of thin spall fragments that are ejected from the rear side of the pressure wall plate. In these cases, the total area of rear-side spall is denoted by A_s . The following paragraphs summarize trends that were observed during the analysis of damaged and perforated dual-wall systems under oblique highspeed impact.

3.3.1 Response of Bumper Plate Under Oblique Impact

Consider a dual-wall structure that is impacted by a projectile that is traveling along a trajectory that is inclined with respect to the outward normal of the outer wall (Figure 3.8). As in the case of normal impact, the projectile and a portion of the bumper are shattered upon impact which creates a hole in the bumper plate. The size of the hole depends on the material and geometric parameters of the projectile and the bumper as well as the impact velocity and the trajectory obliquity. As the trajectory obliquity is increased from 0° (normal impact) to 90° (grazing impact), the hole in the bumper plate becomes increasingly elliptical. The major axis of the elliptical hole lies along the projection of the particle trajectory on the bumper plate. As the trajectory is increased above 60° or 65° , the leading edge of the hole becomes jagged. This indicates that some tearing and cracking of the bumper plate occurs at large trajectory obliquities.

3.3.2 Response of Pressure Wall Under Oblique Impact

3.3.2.1 Effect of Impact Obliquity

In the case of normal impacts, ie. when the impact obliquity was 0° , the 'normal' and 'in-line' debris clouds overlapped to form a single damage area on the pressure wall. As the trajectory obliquity began to deviate from 0° , three distinct impact regimes became apparent. In the 'low obliquity regime' (ie. $0^{\circ} < \theta < 45^{\circ}$), there was extensive damage to the pressure wall; only a minimal amount of ricochet debris was created in this impact regime. The pressure wall penetration and crater damage strongly resembled that which results from a normal impact, and the trajectories of the debris cloud fragments were very close to the original impact trajectory.

In the 'medium obliquity regime' (ie. $45^{\circ} < d < 60^{\circ}$), two distinct areas of damage became discernible on the pressure wall. The 'normal' damage area consisted of round holes and craters caused by bumper fragment impact and lay fairly close to the inward-pointing normal drawn from the center of impact to the pressure wall. The 'in-line' damage area contained oval holes and craters caused by projectile fragment impact and lay near the point of intersection of the original impact trajectory and the pressure wall plate. As the obliquity was increased, the locations of both damage areas moved closer to the inward-pointing bumper normal. Up to a certain 'critical angle of impact obliquity', the pressure wall exhibited significant penetration and perforation damage and a relatively small amount of ricochet debris was created. However, as the impact trajectory obliquity was increased past the critical angle, an increasing amount of ricochet debris was formed while the amount of damage sustained by the pressure wall decreased dramatically. This critical angle is estimated to have a value between 60° and 65° ; it

signifies the onset of the 'high obliquity regime'.

In the 'high obliquity regime' (ie. $65^{\circ} < \theta < 90^{\circ}$), a tremendous amount of ricochet debris was created while only a relatively small quantity of penetration debris was formed. It is also noted that there was a much lower tendency for rear-side spall of the pressure wall plate in this regime than in all the others. This can be seen by comparing the location of the spall function for $t_s=1.6mm$ in Figure 3.15 ($\theta=65^{\circ}$) with the location of the corresponding spall functions in Figure 3.14 ($\theta=45^{\circ}$) and in Figure 3.6 ($\theta=0^{\circ}$). It is seen that the location of the spall function for two, indicating an marked decrease in the occurrence of rearside spallation at high impact obliquities.

Finally, below 30° and above 65° there was significant overlapping of the 'normal' and 'in-line' secondary debris clouds. At intermediate obliquities, whether or not there was any separation of the debris clouds depended on the original impact parameters and the material and geometric parameters of the bumper plate. It is interesting to note that in the case of low trajectory obliquity, the overlapping of the debris clouds concentrated the debris into a much smaller volume and thereby increased the damage potential of the secondary debris particles. However, in the high obliquity regime, because so few penetration debris particles were created, the overlapping of the debris clouds did not contribute significantly to their damage potential.

3.3.2.2 Effect of Bumper Thickness

Examination of Figures 3.10 and 3.11 reveals that in the low obliquity impact regime, a thinner bumper plate (e.g. t_s =1.016 mm) provided less

protection to the pressure wall of the dual-wall systems than did a thicker bumper plate (e.g. t_s -1.6 mm). In contrast, in the high obliquity regime, thinner bumper plates provided more protection to the pressure wall of a dual-wall system than did thicker plates. Thus, it would appear that thicker bumper plates provide better perforation resistance at low impact angles (ie. $\theta < 60^{\circ}$) while thinner bumper plates provide better perforation resistance at high impact angles (ie. $\theta > 65^{\circ}$). It is interesting to note that the change in bumper thickness required for optimum performance of the bumper also occurs at the 'critical angle of impact obliquity', that is, between 60° and 65° .

The difference in the bumper thicknesses required for optimum performance at different impact angles is due to the fact that the phenomena involved in a hypervelocity impact are governed by the normal component of the particle impact velocity. For a given impact velocity, at a low impact angle, the normal component of the impact velocity is higher than that at a high impact angle. Therefore, for a given projectile diameter and impact velocity, the shock pressures generated at a low impact angle will be higher than those generated at a high impact angle. This implies that, at a low impact angle, the projectile must interact with the bumper plate for a longer period of time than at a high impact angle in order for it to be completely destroyed. At a low impact angle, if the bumper were too thin, then the projectile would pass through the bumper relatively unscathed. Conversely, at a high impact angle, if the bumper were too thick (but not thick enough to prevent perforation by the projectile), then it would simply fragment into several relatively large, slow moving fragments. These large, low-speed fragments pose more of a threat to the pressure wall plate than do

ł

the small, high-speed particles that are created in a high-obliquity impact.

3.3.2.3 Effect of Pressure Wall Thickness

As in the case of normal impact, increasing the thickness of the pressure wall while keeping all other geometric parameters constant increased the penetration resistance of the dual-wall structure. This can be seen by noting the relative positions of the penetration functions in Figure 3.13 for the different pressure wall thicknesses. The higher position of the penetration function for the thicker pressure wall plate indicates resistance to perforation by projectile diameter-velocity combinations that would perforate the thinner pressure wall.

3.3.2.4 Effect of Stand-Off Distance

Unfortunately, no oblique impact tests were conducted at stand-off distances other than 10.16 cm. However, it is expected that as in the case of normal impact, increasing the stand-off distance would result in an increase in the penetration resistance of a dual-wall structure.

3.3.2.5 Effect of MLI

An analysis of the obliquely-impact damaged dual-wall systems revealed that, as in the case of normal impact, placing MLI on the pressure wall plate increased the penetration resistance of the dual-wall structures (note and compare the penetration functions in Figure 3.10 and 3.11). This was found to be true for all three impact regimes. However, unlike normal impact, severe petalling did not accompany perforation of the pressure wall plate, even at velocities above 6.5 km/sec.

3.3.3 Analysis of Ricochet Debris

A statistical analysis of the extent of the damage on the ricochet

witness plates in the impacted dual-wall specimens revealed that, regardless of original projectile size, speed, and obliquity, 99% of the damage to the ricochet witness plates occurred within an angle of 30° with respect to the plane of the bumper plate, that is, $\alpha_{99} = 30^{\circ}$. The trajectory of the centerof-mass of the ricochet debris cloud was typically at an angle of 8° with respect to the plane of the bumper plate, that is, $\alpha_{c} = 8^{\circ}$. This indicates that the majority of the ricochet debris fragments are concentrated within an angle of approximately 15° with respect to the plane of the bumper plate. Such a strong concentration of high speed particles is extremely dangerous if critical external spacecraft subsystems happen to be located in the path of the ricochet debris cloud.

An analysis of ricochet witness plate crater damage revealed several interesting features of ricochet debris particles. First, high obliquity impacts and impacts by large projectiles produce larger ricochet debris particles than do impacts at low obliquities or impacts by spall projectiles. In other words, the severity of the ricochet damage is directly related to the trajectory obliquity and size of the original projectile. Second, an average ricochet debris particle can have a diameter as large as 40% of the original projectile diameter and can travel at speeds up to 36% of the original impact velocity. The details of the analyses performed to arrive at these conclusions may be found in Reference 3.39.

3.4 Regression Analysis of Damage Data

3.4.1 <u>Bumper Plate Hole Dimensions</u>

In order to be able to predict the damage potential of the secondary debris fragments, it is necessary to know the total volume of secondary

debris that is generated by the high-speed impact of a projectile on the bumper plate of a dual-wall structure. A good estimate of the volume of bumper plate fragments can be obtained by calculating the volume of the elliptical hole created in the bumper plate by the impact. For the case of spherical projectiles (cylindrical projectile impact is addressed in another Section of this Report), a regression analysis of the bumper plate hole dimensions resulted in the following pair of equations for the minimum and maximum hole dimensions:

$$D_{\min}/d = 2.698(V/C)^{0.689}(t_s/d)^{0.708}\cos^{0.021}\theta + 0.93$$
(3.1)

$$D_{max}/d = 2.252(V/C)^{0.622} (t_s/d)^{0.667} e^{0.815\theta} + 1.00$$
(3.2)

where $C = \sqrt{E/\rho}$ is the speed of sound in the bumper plate material, and θ is in radians. The averages and standard deviations of the prediction errors of these equations are presented in the first and second columns, respectively, of Table 3.1. A measure of the 'goodness of fit' of the regression equations, the correlation coefficient, is presented for each equation in the third column of Table 3.1. From the data in Table 3.1, it can be seen that equations (3.1) and (3.2) represent a good fit to the experimental bumper plate hole dimension data. The relatively large spread of the prediction errors for equation (3.2) is due to an inherent physical uncertainty in the maximum hole dimension, especially in holes produced by high obliquity impacts. As discussed previously, high obliquity impacts can tear, as well as perforate, the bumper plate. A set of curves comparing the predictions of equations (3.1) and (3.2) with experimental results is shown in Figure 3.16. From the close agreement between the predicted and experimental values seen in Figure 3.16, it is again concluded that equations (3.1) and (3.2) are a

good fit to the experimental hole dimensions data. However, it is noted that these equations are valid only for aluminum projectiles impacting thin aluminum plates, and for $0.064 < t_s/d < 0.684$, for $0^{\circ} < \theta < 75^{\circ}$, and for $2 < V < 8 \ km/sec$.

3.4.2 Debris Cloud Trajectories and Cone Angles

A regression analysis of the debris cloud trajectory and cone angle data obtained from an analysis of the test specimens without MLI resulted in the following empirical equations for θ_1, θ_2 , and for γ_1, γ_2 :

$$\theta_1/\theta = 0.471(V/C)^{-0.049}(t_s/d)^{-0.054}\cos^{1.134}\theta$$
, $30^{\circ} < \theta < 75^{\circ}$ (3.3)

$$\theta_2/\theta = 0.532(V/C)^{-0.086}(t_s/d)^{-0.478}\cos^{0.586}\theta$$
, $30^\circ < \theta < 75^\circ$ (3.4)

$$\tan \gamma_{1} = 1.318(V/C)^{0.907} (t_{s}/d)^{0.195} \cos^{0.394} \theta , \quad 0^{\circ} < \theta < 75^{\circ}$$
(3.5)

$$\tan \gamma_2 = 1.556 (V/C)^{1.096} (t_s/d)^{0.345} \cos^{0.738} \theta , \quad 0^{\circ} < \theta < 75^{\circ}$$
(3.6)

These equations were derived using data only from damaged test specimens without MLI because the MLI often absorbed a substantial portion of the debris cloud particles which, in some cases, resulted in smaller damage areas. Thus, using the data from the tests with MLI to develop equations to predict debris cloud cone angles would have resulted in equations that would under-estimate the size of the debris clouds.

The averages and standard deviations of the prediction errors and the correlation coefficients for each equation are presented in Table 3.2. The relatively large spread of the prediction errors and the low correlation coefficients for equations (3.5) and (3.6) is due to the fact that is was often difficult to determine the exact boundaries of the pressure wall plate

damage areas. The actual values of the debris cloud cone angles are therefore seen to be dependent on the person performing the analyses. In addition to the angular limitations already imposed, it is noted that these equations are valid only for aluminum projectiles impacting aluminum dual-wall structures, and for $0.064 < t_s/d < 0.684$, and 2 < V < 8 km/sec.

Typical plots of θ_1 and θ_2 as functions of θ are presented and compared against experimental values in Figure 3.17. It is seen that the 'in-line' trajectory angle, θ_2 , is not a single-valued function of trajectory obliquity. In fact, θ_2 varies directly with θ up to a critical value between 60° and 65° , and then decreases with further increases in θ . This reversal at the critical value of trajectory obliquity also corresponds to the sudden decrease in the penetration potential of an obliquely incident high speed projectile. This behavior is also seen in the plot of θ_1 , although to a lesser degree. Typical plots of the γ_1 and γ_2 as functions of θ are presented in Figure 3.18. From the agreement between the predicted and the experimental values seen in Figures 3.17 and 3.18, it is concluded that equations (3.5)-(3.8) are a fairly good fit to the experimental angle data.

3.4.3 Pressure Wall Damage Areas

A regression analysis of the pressure wall plate damage areas and the rear-surface spall areas was also performed. The following empirical predictor equations for total pressure wall damage area $A_d = A_{d1} + A_{d2}$ and rear-side spall area A_s were obtained:

Without MLI:

$$A_d/A_p = 39.91(V/C)^{0.828} (t_s/d)^{0.294} (S/d)^{0.814} cos^{0.127} \theta$$
 (3.7)

$$A_{s}/A_{p} = 201.48(V/C)^{0.714}(t_{s}/d)^{-0.609}(S/d)^{-1.248}(t_{w}/d)^{0.619}\cos^{3.188}\theta \quad (3.8)$$

With MLI:

$$A_{d}/A_{p} = 25.66(V/C)^{0.713}(t_{s}/d)^{-0.351}(S/d)^{0.327}\cos^{0.423}\theta$$
 (3.9)

No equation is provided for spall prediction in dual-wall specimens with MLI because of the scarcity with which rear-side spall occured in such systems. The averages and standard deviations of the prediction errors and the correlation coefficients for equations (3.7)-(3.9) are presented in Table 3.3. As in the regression of the cone angle data, the relatively large spread of the errors for the damage area predictor equations is due to the fact that is was often difficult to determine the exact boundaries of the pressure wall damage areas. Typical plots of ${\rm A}_{\rm d}$ as a function of θ for dual-wall systems with and without MLI are presented and compared against experimental results in Figure 3.19; a plot of A as a function of θ for dual-wall systems without MLI is shown in Figure 3.20. As is expected, Figure 3.19 shows that the damage areas on the front surfaces of the pressure wall plates are smaller in systems with MLI than in those systems without MLI. The agreement between the experimental results and the predicted values seen in Figures 3.19 and 3.20 indicates that equations (3.7)-(3.9) are a fairly good fit to the experimental data. It is again noted that these equations are valid for aluminum projectiles impacting aluminum dual-wall structures, and for $0.064 < t_c/d < 0.684$, for $0^{\circ} < \theta < 75^{\circ}$, and for 2 < V < 8 km/sec.

3.4.4 Pressure Wall Hole Diameters

Finally, empirical predictor equations were obtained for the equivalent single hole diameter in the event of pressure wall plate perforation:

Without MLI:

$$d_{h}/d = 2.820(V/C)^{0.490}(t_{s}/d)^{-0.421}(S/d)^{-0.457}(t_{w}/d)^{-0.726}\cos^{1.245}\theta$$
 (3.10)

With MLI:

$$d_{h}/d = 1.464(V/C)^{0.093}(t_{s}/d)^{-0.973}(S/d)^{-0.575}(t_{w}/d)^{-0.772}\cos^{1.701}\theta \quad (3.11)$$

The averages and standard deviations of the prediction errors and the correlation coefficients for equations (3.10) and (3.11) are presented in Table 3.3. Typical plots of the hole diameters in perforated pressure wall plates in dual-wall systems with and without MLI under low energy (d=0.795 cm, V=6.5 km/sec) and and high energy (d=1.27 cm, V=7.0 km/sec) projectile impacts are shown and compared against experimental results in Figure 3.21. The most notable feature of Figure 3.21 is that for high energy impacts, the hole in the perforated pressure wall plate in a dual-all system with MLI can, for impact obliquities less than 45°, significantly exceed the hole in the perforated pressure wall plate of a similar dual-wall system without MLI. However, as the trajectory obliquity is increased beyond 45°, the hole size in the system with MLI gets smaller, and eventually becomes smaller than those in similar systems without MLI.

3.4.5 Additional Comments

It is noted that before equations (3.8) and (3.10),(3.11) are used to estimate rear-side spall areas and equivalent single-hole diameters in a dual-wall system under the impact of a spherical projectile with a particular diameter, velocity, and obliquity, it must first be determined whether or not rear-side spall or pressure wall perforation will occur in the system under the specified impact conditions. This can be determined

using the appropriate penetration and spall functions for the particular geometric configuration of the dual-wall system and the specified conditions of impact. In addition, caution is urged when using equation (3.8) to predict rear-side spall areas in dual-wall configurations under impact conditions that lie close a spall function. In these 'border-line' cases, it was found that equation (3.8) has a tendency to over-predict the area of rearside spall. Likewise, caution is urged when applying equation (3.11) to predict the single-hole diameter in perforated pressure wall plates of dualwall systems with MLI that are impacted normally by large, high-speed projectiles (ie. diameter greater than 0.75 cm, velocity greater than 6.5 km/sec). In these cases, pressure wall penetration was accompanied by severe petalling which tremendously increased the size of the hole. Thus, in these cases of high energy impacts, while qualitative agreement will exist, equation (3.11) will under-predict the actual size of the pressure wall hole in the event of a perforation.

3.5 References

1

- 3.1 C.E. Anderson, T.G. Trucano, and S.A. Mullin, "Debris Cloud Dynamics", Int. J. Impact Engng., Vol. 9, No. 1, pp. 89-113 (1990).
- 3.2 R.W. Watson, "The Perforation of Thin Plates by High Velocity Fragments", <u>Proc. Fifth Hypervelocity Impact Symp.</u>, Vol. I, Pt. 2, pp. 581-592, Col. School of Mines, Denver, Col. (1961).
- 3.3 K.N. Kreyenhagen and L. Zernow, "Penetration of Thin Plates", <u>Proc.</u> <u>Fifth Hypervelocity Impact Symp.</u>, Vol. I, Pt. 2, pp. 611-624, Col. School of Mines, Denver, Col. (1961).
- 3.4 E. Schneider, "Velocity Dependencies of Some Impact Phenomena", <u>Proc.</u> <u>Comet Halley Micrometeoroid Hazard Workshop</u>, Longdon, N., ed., pp. 101-107, ESA SP-153, Paris, France (1979).
- 3.5 R.J. Arenz, "Projectile Size and Density Effects on Hypervelocity Penetration", J. Spacecraft, Vol. 6, No. 11, pp. 1319-1321, (1969).
- 3.6 B.G. Cour-Palais, "Space Vehicle Meteoroid Shielding Design", Proc.

Comet Halley Micrometeoroid Hazard Workshop, Longdon, N., ed., pp. 85-92, ESA SP-153, Paris, France (1979).

- 3.7 B.G. Cour-Palais, "Meteoroid Protection by Multiwall Structures", Paper No. 69-372, <u>Proc. AIAA Hypervelocity Impact Conference</u>, Cincinnati (1969).
- 3.8 B.G. Cour-Palais, "Hypervelocity Impact Investigations and Meteoroid Shielding Experience Related to Apollo and Skylab", <u>Orbital</u> <u>Debris</u>, NASA CP-2360 (1982).
- 3.9 P.J. D'Anna, "A Combined System Concept for Control of the Meteoroid Hazard to Space Vehicles", J. Spacecraft, Vol. 2, No. 1, pp. 33-37 (1965).
- 3.10 A.M. Rajendran and N. Elfer, "Debris-Impact Protection of Space Structures", pp. 41-78, <u>Structural</u> <u>Failure</u>, J. Wierzbicki, ed., John Wiley and Sons (1989).
- 3.11 J.W. Gehring, D.R. Christman, and A.R. McMillan, "Experimental Studies Concerning the Meteoroid Hazard to Aerospace Materials and Structures", J. Spacecraft, Vol. 2, No. 5, pp. 731-737 (1965).
- 3.12 D. Humes, "Meteoroid Protection for the Comet Halley Probe", <u>Proc.</u> <u>Comet Halley Micrometeoroid Hazard Workshop</u>, Longdon, N., ed., pp. 73-76, ESA SP-153, Paris, France (1979).
- 3.13 D. Humes, R.N. Hopko, and W.H. Kinard, "An Experimental Investigation of Single Aluminum 'Meteor Bumpers'", <u>Proc. Fifth Hypervelocity Impact</u> <u>Symp.</u>, Vol. I, Pt. 2, pp. 567-580, Col. School of Mines, Denver, Col. (1961).
- 3.14 R.R. Wallace, J.R. Vinson, and M. Kornhauser, "Effects of Hypervelocity Particles on Shielded Structures", ARS Journal, Vol. 32, No. 8, pp. 1231-1237 (1962).
- 3.15 A.J. Laderman and C.H. Lewis, "Particle Cloud Impingement Damage", J. Spacecraft, Vol. 6, No. 11, pp. 1327-1328 (1969).
- 3.16 C.H. Lewis and A.J. Laderman, "Effect of Debris Shielding on Energy Partition", J. Spacecraft, Vol. 6, No. 12, pp. 1470-1472 (1969).
- 3.17 L.L. Long and R.L. Hammitt, "Meteoroid Perforation Effects on Space Cabin Design", Paper No. 69-365, <u>Proc. AIAA Hypervelocity Impact Con-</u> ference, Cincinnati, Ohio (1969).
- 3.18 J.F. Lundeberg, D.H. Lee, and G.T. Burch Jr., "Impact Penetration of Manned Space Stations", J. Spacecraft, Vol. 3, No. 2, pp. 182-187 (1966).
- 3.19 J. F. Lundeberg, "Meteoroid Design Criteria", Paper No. 65-0786, <u>Proc.</u> <u>Natl. Aero. and Space Engrng. and Mfrng. Mtg.</u>, Los Angeles, CA (1965).

- 3.20 C.J. Maiden and A.R. McMillan, " An Investigation of the Protection Afforded a Spacecraft by a Thin Shield", AIAA Journal, Vol. 2, No. 11, pp. 1992-1998 (1964).
- 3.21 C. R. Nysmith, "An Experimental Impact Investigation of Aluminum Double-Sheet Structures", Paper No. 69-375, <u>AIAA Hypervelocity Impact</u> <u>Conference</u>, Cincinnati, Ohio (1969).
- 3.22 F.C. Posever, F.L. Rish, and C.N. Scully, "Impact Effects on Meteoroid Shielding Configurations for Velocities up to 60,000 fps", J. Spacecraft, Vol. 2, No. 5, pp. 738-741 (1965).
- 3.23 W.G. Reinecke, "Debris Shielding during High-Speed Erosion", AIAA Journal, Vol. 12, No. 11, pp. 1592-1594 (1974).
- 3.24 A.J. Richardson and J.P. Sanders, "Development of Dual Bumper Wall Construction for Advanced Spacecraft", J. Spacecraft, Vol. 9, No. 6, pp. 448-451 (1972).
- 3.25 A.J. Richardson, "Theoretical Penetration Mechanics of Multisheet Structures Based on Discrete Debris Particle Modeling", J. Spacecraft, Vol. 7, No. 4, pp. 486-489 (1970).
- 3.26 T.D. Riney and E.J. Halda, "Effectiveness of Meteoroid Bumpers Composed of Two Layers of Distinct Materials", AIAA Journal, Vol. 6, No. 2, pp. 338-344 (1968).
- 3.27 D. Rodriguez, "Meteoroid Shielding for Space Vehicles", Aerospace Engineering, pp.20-23, 55-66, December (1960).
- 3.28 R.F. Rolsten, J.N. Wellnitz, and H.H. Hunt, "An Example of Hole Diameter in Thin Plates Due to Hypervelocity Impact", J. Applied Physics, Vol. 33, No. 3, Pt. 1, pp. 556-559 (1964).
- 3.29 D.R. Sawle, "Hypervelocity Impact in Thin Sheets and Semi-Infinite Targets at 15 km/sec", AIAA Journal, Vol. 8, No. 7, pp. 1240-1244, (1970).
- 3.30 R.E. Sennett, "Effectiveness of Multisheet Structures for Meteoroid Impact Protection", AIAA Journal, Vol. 6, No. 5, pp. 942-944 (1968).
- 3.31 E. Schneider, A. Stilp, R. Bureo, and M. Lambert, "Micrometeorite and Space Debris Simulation for Columbus Hull Components", Int. J. Impact Engng., Vol. 10, in press (1990).
- 3.32 H. F. Swift, "Summary of Discussions in Group B (High Velocity Impacts/ Shield Design)", <u>Proc. Comet Halley Micrometeoroid Hazard Workshop</u>, Longdon, N., ed, ESA SP-153, pp. 141-142, Paris, France (1979).
- 3.33 A.K. Hopkins, T.W. Lee, and H.F. Swift, "Material Phase Transformation Effects upon Performance of Spaced Bumper Systems", J. Spacecraft, Vol. 9, No. 5, pp. 342-345 (1972).

I

- 3.34 H.F. Swift, D.D. Preonas, W.C. Turpin, and J.M. Carson, "Debris Clouds behind Plates Impacted by Hypervelocity Pellets", J. Spacecraft, Vol. 7, No. 3, pp. 313-318 (1970).
- 3.35 H.F. Swift and A.K. Hopkins, "Effects of Bumper Material Properties on the Operation of Spaced Meteoroid Shields", J. Spacecraft, Vol. 7, No. 1, pp. 73-77 (1970).
- 3.36 H.F. Swift and A.K. Hopkins, "The Effects of Bumper Plate Material Properties on the Operation of Spaced Hypervelocity Particle Shields", Paper No. 69-379, <u>Proc. AIAA</u> <u>Hypervelocity Impact</u> <u>Conference</u>, Cincinnati, Ohio (1969).
- 3.37 D.J. Weidman, "A Simplified Procedure for Determining the Perforation Limits for Thin Plates", AIAA Journal, Vol. 6, No. 8, pp. 1622-1623 (1968).
- 3.38 A.R. Coronado, M.N. Gibbins, M.A. Wright, and P.H. Stern, <u>Space Station</u> <u>Integrated Wall Design and Penetration Damage Control</u>, Boeing Aerospace Company, Report No. D180-30550-4, Final Report, Contract NAS8-36426, Seattle, Washington, May (1987).
- 3.39 W.P. Schonberg, "Characterizing the Damage Potential of Ricochet Debric Due to an Oblique Hypervelocity Impact", Paper No. 89-1410, <u>Proc.</u> <u>30th</u> <u>AIAA/ASME/ASCE/AHS/ASC SDM</u> <u>Conference</u>, Mobile, Alabama (1989).

Regression Function	۴ćavg	σ(%)	100R ²
D _{min} /d	-0.148	6.35	83.0
D_{max}/d	0.079	9.48	87.7

Table 3.1 Regression Analysis of Bumper Plate Dimension Data, Error Summary

Table 3.2 Regression Analysis of Cone Angle Data, Error Summary

Regression Function	۶. avg	σ(%)	100R ²
θ_{1}/θ	4.793	29.82	54.5
$\theta_{2}^{/\theta}$	1.385	17.02	61.6
tan γ_1	7.704	40.10	30.3
tan γ_2	9.729	43.89	40.9

Regression	€e	σ(%)	100R ²		
FUNCTION	avg				
	Without	MLI			
Ad/Ap	6.974	38.08	38.7		
A _s /A _p	16.250	67.67	73.1		
d _h ∕d	6.706	38.78	64.9		
With MLI					
Ad/Ap	9.801	43.77	21.0		
d _h /d	12.13	52.38	51.1		

Table 3.3 Regression Analysis of Pressure Wall Damage Area and Hole Diameter Data, Error Summary

Figure 3.1 Normal Impact of a Dual-Wall Structure [2.1]

Contractor water with the second

.

.....

.

Figure 3.8 Oblique Impact of a Dual-Wall Structure

constant by mobilizeness of application and applications of the constant of the c

- I N I N I

Figure 3.16 Comparison of Hole Dimension Data and Regression Equation Predictions, d=0.795 cm, V=6.5 km/sec

Figure 3.17 Comparison of Debris Cloud Trajectory Data and Regression Equation Predictions, d=0.795 cm, V=6.5 km/sec

Figure 3.18 Comparison of Debris Cloud Cone Angle Data and Regression Equation Predictions, d=0.795 cm, V=6.5 km/sec

-

÷

Figure 3.19 Comparison of Pressure Wall Damage Area Data and Regression Equation Predictions, d=0.795 cm, V=6.5 km/sec

Figure 3.20 Comparison of Pressure Wall Spall Area Data and Regression Equation Predictions, d=0.795 cm, V=6.5 km/sec

Figure 3.21 Comparison of Pressure Wall Hole Diameter Data and Regression Equation Predictions, Low Impact Energy (d=0.795 cm, V=6.5 km/sec) and High Impact Energy (d=1.27 cm, V=7.0 km/sec)

SECTION FOUR -- HYPERVELOCITY IMPACT OF DUAL-WALL STRUCTURES WITH CERAMIC AND COMPOSITE BUMPER PLATES

4.1 Introduction

In the majority of previous studies of the hypervelocity impact response of dual-wall, the bumper and structural wall were typically made from high-strength metallic materials, such as aluminum or steel. With the advent of many new high-strength composite and ceramic materials and their proliferation in aircraft applications, it has become necessary to evaluate their potential for use in long-duration space and aerospace structural systems. One aspect of materials evaluation for use in space and aerospace structural systems is the analysis of their response to hypervelocity impact loadings. Unfortunately, information on hypervelocity impact of composite and ceramic materials is scarce because work in this area has just begun [4,1]. A recent phenomenological investigation of the damage sustained by thick single-panel graphite/epoxy specimens under hypervelocity projectile impact showed that panel damage was a combination of multiple delamination and breakage of the fiber and matrix materials [4.2]. However, the use of composite and ceramic materials in multi-wall structural systems has yet to be addressed.

This Section presents the results of an investigation into the response of dual-wall systems with composite and ceramic bumpers under normal hypervelocity projectile impact loadings. Test results for dual-wall specimens employing three different fiber-reinforced composite materials and one ceramic material are reviewed qualitatively and quantitatively. Impact damage is characterized according to the extent of penetration, crater, and spall damage in the structural system. The analysis indicates that the

extent of damage can be written as a function of the geometric and material properties of the projectile/dual-wall structural system. These functions can be used to perform parameter sensitivity studies and to evaluate hypothetical design configurations. The damage in the composite and ceramic material specimens is also compared to the damage in geometrically similar aluminum specimens caused by hypervelocity projectiles with similar impact energies. This comparative analysis, together with the overall composite and ceramic system impact response analysis, is used to determine the advantages and disadvantages of employing composite and ceramic materials in structural wall systems for long-duration spacecraft.

4.2 Hypervelocity Impact Test Parameters

In each test, a projectile of diameter d and velocity V impacted a bumper plate of thickness t_g along a trajectory perpendicular to the plane of the bumper plate (see Figure 4.1). The projectile shattered upon impact and formed a hole of diameter D in the bumper plate. Secondary projectile and bumper plate debris fragments created during the impact were sprayed upon a pressure wall plate of thickness t_w located a distance S behind the bumper plate. These secondary debris impacts created an area of damage A_d on the pressure wall plate; the angle γ is the cone angle of the secondary debris fragment cloud and represents the spread of the debris fragments. Occasionally, the impacts of the secondary debris fragments resulted in the creation of spall fragments ejected from the rear side of the pressure wall plate. In these instances, the total spalled area on the rear surface is denoted by A_g .

The conditions of the impact tests were chosen to simulate space debris impact of light-weight space structures as closely as possible, and still

remain within the realm of experimental feasibility. Kessler [4.3] states that the average mass density for pieces of orbital debris less than 10 mm in diameter is approximately 2.8 gm/cm³, which is approximately the same as that of aluminum. Although it is anticipated that the shape of the impacting projectile will affect the formation and spread of secondary debris particles [4.4], spherical projectiles were used in the test program to maintain repeatability and consistency. Thus, the testing was conducted with solid spherical 1100 aluminum projectiles with diameters ranging from 4.75 mm to 8.89 mm. The velocities of the impacting projectiles ranged from 3.43 to 7.40 km/sec.

A total of 24 aluminum, 12 composite, and 3 ceramic structural systems were used to study and evaluate the penetration resistance of dual-wall systems with composite and ceramic bumpers. In the composite systems, the bumper plates were made of a fiber reinforced composite material while the pressure wall plates were made of 2219-T87 aluminum. The composite materials used as bumper plates were Kevlar 49 and IM6/3501-6 graphite/epoxy. In the ceramic systems, the bumper plates were made of 3 layers of 0.635 mm thick alumina (Al_2O_3) fastened together with Crest 7450 adhesive; the pressure wall plates were made of 2219-T87 aluminum. In the aluminum systems, the bumper and the pressure wall plates were made of 6061-T6 and 2219-T87 aluminum, respectively. The thicknesses of the aluminum bumper plates were chosen so that they would have approximately the same areal density as the composite and ceramic material plates, that is, for example,

t_{s'aluminum} - $(\rho_{composite}/\rho_{aluminum})$ t_{s'composite} (4.1) The mechanical properties and the laminae lay-up of the composite and ceramic material bumper plates are given in Tables 4.1 and 4.2, respectively.

Additional test parameters are given in Tables 4.3 and 4.4. The results of the hypervelocity impact test firings are given in Tables 4.5 and 4.6; column entries of '----' indicate that penetration and/or spall of the pressure wall plate did not occur. A complete set of photographs that show the differences in pressure wall response between the Kevlar, graphite/epoxy, and aluminum systems may be found in Reference 4.5. Detailed post-test analyses of the damaged test specimens revealed many interesting features and characteristics of composite materials hypervelocity impact response.

4.3 Hypervelocity Impact Response of Kevlar Systems

4.3.1 Bumper Plate Damage Analysis

The impact damage in the Kevlar bumper plates typically consisted of a circular hole and large areas of delamination on the front and rear surfaces of the plates. Although the edge of the hole was usually frayed, its roundness was evident nonetheless. The delamination area of the front surface extended far beyond the the vicinity of the hole and was approximately twice as large as the delamination area of the rear surface. On both surfaces, the delamination was generally restricted to the outer layers, with the peeling in the direction of the surface laminate fibers. These observations are similar to those made in a previous study of the hypervelocity impact response of thick graphite/epoxy panels [4.2].

4.3.2 Pressure Wall Plate Damage Analysis

In Tables 4.7 and 4.8, penetration characteristics are summarized for test shots grouped according to both geometric and impact energy similarity. Table 4.7 shows results for impact energies below 2,000 joules (the 'low impact energy regime') while Table 4.8 shows results for energies greater

than 10,000 joules (the 'high impact energy regime'). A penetration function for certain Kevlar systems in the low and high impact energy regimes and the corresponding aluminum systems is shown in Figure 4.2. Penetration functions for impact conditions and system geometries different than those for which the penetration function in Figure 4.2 was drawn can be constructed only after additional impact testing has been performed. Using Tables 4.7,4.8 and the detailed penetration data in Tables 4.5 and 4.6, a comparison of penetration response characteristics was performed.

In the low impact energy regime, the pressure wall plate damage areas of the Kevlar systems were highly concentrated and consisted of either a single hole (a penetrating impact) or a single crater (a non-penetrating impact). The damage areas in similar aluminum systems were more wide-spread and contained numerous small holes and/or craters. Among the high energy impacts, for a 101.6 mm stand-off distance, penetration of the pressure wall plates occurred in the Kevlar as well as in the aluminum systems. The damage areas on the pressure wall plates of both structural systems were observed to be similar in size (Tables 4.5,4.6). The similarity in penetration response of the Kevlar and aluminum systems is evident in Figure 4.2 where only one penetration function has been drawn for both, the Kevlar and aluminum system penetration data. However, when the wall spacing was increased to 152.4 mm, the Kevlar systems were penetrated while the corresponding aluminum systems were not. Furthermore, at this stand-off distance, pressure wall plate damage areas in the aluminum systems were significantly larger than those in the Kevlar systems.

These differences in response characteristics between the aluminum and

Kevlar systems indicate that aluminum bumpers are generally more effective in spreading out the secondary debris that is created by the initial projectile impact on the bumper plate, especially for impact energies above 10,000 joules. The concentration of the debris clouds and the resultant small damage areas on the pressure wall plates in the Kevlar systems can be explained in part by a mismatch in shock impedance between the Kevlar bumper plates and the aluminum projectiles [4.6]. The shock waves in the projectile and the bumper plate created by the initial impact interacted in a manner that prevented the complete break-up of the projectile. As a result, the dispersion of the secondary projectile and bumper plate fragments also decreased. An increased probability of pressure wall plate penetration also resulted from the increased concentration of the secondary debris fragment clouds.

It is interesting to note that the reverse sides of the pressure wall plates of the Kevlar systems did not exhibit any spall at either stand-off distance, while those of the aluminum systems exhibited significant spalling at both stand-off distances. This increased tendency for spall in the aluminum specimens is a direct consequence of the wider areal distribution of the impulse delivered by the secondary debris fragment cloud. The impulse delivered to the pressure wall plate in the Kevlar systems is more concentrated and therefore serves to penetrate the plate rather than cause spall. 4.3.3 <u>Regression Analysis of Damage Data</u>

A standard multiple linear regression analysis of the Kevlar 49 hole dimension data was performed to obtain an equation for hole diameter as a function the impact parameters and the material and geometric parameters of the bumper plate with the following result:

$$D/d = 1.923(V/C)^{0.968} (t_s/d)^{0.218} + 1.04$$
 (4.2)

where $C = \sqrt{E_1/\rho}$; E_1 is the uni-directional ply modulus in the fiber direction, and ρ is the mass density of the bumper plate material. The average error of this equation was calculated to be 0.001% with a standard deviation of 4.824% and a correlation coefficient $R^2 = 0.873$. These values imply that equation (4.2) is a fairly good fit to the experimental hole diameter data. It is interesting to note that the velocity dependence in equation (4.2) is approximately the same as that in the equation of hole diameter in aluminum plates subjected to normal hypervelocity projectile impact.

Using the data in Tables 4.5 and 4.6, the following equations were obtained for cone angle, pressure wall damage area, pressure wall hole diameter in the event of a penetration, and pressure wall rear side spall area if spall occurs, as functions of the geometric, material, and impact parameters of the Kevlar 49 dual-wall systems.

Cone Angle

$$\cos\gamma = 0.332(V/C)^{-1.053}(t_s/d)^{-0.599}$$
(4.3)

Pressure Wall Damage Area

$$A_d/A_p = 817.79(V/C)^{1.253}(t_s/d)^{0.679}(S/d)^{-0.158}$$
 (4.4)

Pressure Wall Hole Diameter

$$d_{h}/d = 5.836(V/C)^{2.171}(t_{s}/d)^{0.139}(S/d)^{0.155}$$
 (4.5)

where $A_p = \pi d^2/4$, and d_h is the equivalent hole diameter of the total penetrated area. The average errors, standard deviations, and correlation coefficients for equations (4.3-4.5) are given in Table 4.9. Based on the data in Table 4.9, it is evident that equations (4.3-4.5) fit the experimental data fairly well. It is noted that equations (4.2-4.5) are valid only for normal impacts of spherical aluminum projectiles on Kevlar 49 dual-wall specimens of similar lay-up and construction and for impact velocities between 3.4 and 7.4 km/sec.

It is also noted that a curve such as the one in Figure 4.2 must first be consulted to determine whether or not pressure wall penetration will occur in a dual-wall system with a Kevlar bumper plate as a result of a particular normal hypervelocity impact. If penetration will indeed occur, then equation (4.5) may be used to estimate the equivalent diameter of the resulting hole in the pressure wall. Additionally, since equations (4.2-4.5) are based on a relatively small number of tests, additional testing is recommended for further verification, or modification if necessary, of these equations.

4.4 Hypervelocity Impact of Graphite/Epoxy Systems

To determine if there would be a difference in resistance to pressure wall plate penetration between dual-wall specimens with bumper plates made of Kevlar 49, aluminum 6061-T6, and graphite/epoxy, two high energy impact tests were conducted with IM6/3501-6 graphite/epoxy as the bumper plate material. A summary of the resulting penetration and spall characteristics for the graphite/epoxy and corresponding aluminum tests is presented in Table 4.10.

An examination of the damaged graphite/epoxy bumper plates revealed that, unlike the delamination in the Kevlar bumper plates, the impactinduced delamination on the front and rear surfaces of the graphite/epoxy plates were not very extensive. However, the delamination was primarily restricted to the outer layers of both surfaces and were in the general direction of the outer laminate fibers. The holes in the graphite/epoxy

plates were also more clearly defined than those in the Kevlar plate impacts.

The damage areas on the pressure wall plates of the graphite/epoxy systems were more wide-spread diffuse than those of the Kevlar systems. Although the pressure wall plates in the graphite/epoxy systems were still penetrated by the secondary debris fragments, the penetrations consisted of several small holes or craters rather than a single large hole or crater as in the Kevlar systems. Additionally, even though pressure wall plate penetration occurred in both the graphite/epoxy and the corresponding aluminum systems, the equivalent hole diameters of the penetrated pressure wall plates of the graphite/epoxy systems were significantly larger than those in the corresponding aluminum systems. Thus, the penetrations in the graphite/epoxy systems were more 'critical' than those in similar aluminum systems. Had these been on-orbit impacts, the larger penetrated areas in the graphite/epoxy systems would have allowed air to escape from a pressurized module at a higher rate than would the penetrations in the corresponding aluminum systems.

It is also noted that the pressure wall plates in the aluminum systems also exhibited significant rear side spall whereas the pressure wall plates of the graphite/epoxy systems did not. As discussed previously, this response characteristic of aluminum dual-wall systems is a serious matter and deserves further investigation.

4.5 Hypervelocity Impact Response of Alumina Systems

Three high energy impact tests were conducted with three-ply alumina bumper plates to determine if there would be a difference in resistance to pressure wall plate penetration between dual-wall specimens with alumina

bumper plate and dual-wall specimens with aluminum 6061-T6 bumper plates. A summary of the resulting penetration and spall characteristics for the alumina and corresponding aluminum tests is presented in Table 4.11. It is noted that although the pressure wall plate thickness in the aluminum tests 228C,D are greater than those of the alumina tests, the total areal densities of the alumina systems and the aluminum systems in tests 228C,D are within 2.5% of each other.

An examination of the alumina bumper plate holes revealed many irregularities in their size and shape. Although all three alumina test shots were similar in impact energy, the hole in one alumina bumper plate was round (140A), while the holes in the other two (140B,C) were jagged. This indicates that multi-ply alumina bumper plates have a tendency to fracture and tear near the site of impact as well as melt or fragment.

The damage areas on the pressure wall plates of the alumina systems were similar in magnitude to those of the aluminum systems. However, the equivalent hole diameters of the penetrated pressure wall plates of the alumina systems were significantly larger than those in the corresponding aluminum systems. Thus, in a manner similar to the Kevlar and graphite/epoxy system penetrations, the penetrations in the alumina systems were more 'critical' than those in corresponding aluminum systems. It is also noted that the pressure wall plates in both the alumina and the aluminum systems exhibited rear side spall whereas the pressure wall plates of the Kevlar and graphite/epoxy systems did not. As discussed previously, the tendency of aluminum dual-wall systems to exhibit rear side spall is a serious matter and is in need of further investigation.

4.6 Summary and Conclusions

Based on the observations made in the preceding sections, it is concluded that thin Kevlar 49 IM6/3501-6 graphite/epoxy, and alumina panels offer no advantage over equivalent aluminum 6061-T6 panels in reducing the penetration threat of hypervelocity projectiles. However, it must be noted that significant pressure wall plate spalling was observed in the alumina and the aluminum systems while no spalling was observed in either the Kevlar or the graphite/epoxy systems. It is becoming increasingly apparent that, because of the high speeds with which spall fragments can travel, impactinduced spall can be as deleterious to mission success and crew safety as an actual penetration. Naturally, the major difference between a spall event and a penetration event is the lack of a pressure leak in a spall event. However, the lethality of the high-speed spall fragments must not be overlooked.

4.7 References

- 4.1 B.G. Cour-Palais, "Hypervelocity Impact in Metals, Glass, and Composites", Int. J. Impact Engng., Vol. 5, pp. 221-237 (1987).
- 4.2 C.H. Yew, and R.B. Kendrick, "A Study of Damage in Composite Panels Produced by Hypervelocity Impact", Int. J. Impact Engng., Vol. 5, pp. 729-738 (1988).
- 4.3 D.J. Kessler, R.C. Reynolds, and P.D. Anz-Meador, <u>Orbital Debris Envi-</u> ronment for <u>Spacecraft Designed to Operate in Low Earth Orbit</u>, NASA TM-100471, Houston, Texas (1989).
- 4.4 R.H. Morrison, <u>A</u> <u>Preliminary</u> <u>Investigation</u> <u>of</u> <u>Projectile</u> <u>Shape</u> <u>Effects</u> <u>in</u> <u>Hypervelocity</u> <u>Impact</u> <u>of</u> <u>a</u> <u>Double</u> <u>Sheet</u> <u>Structure</u>, NASA TN D-6944, Washington, D.C. (1972)
- 4.5 W.P. Schonberg, "Hypervelocity Impact of Spaced Composite Material Structures", International Journal of Impact Engineering, Vol. 10, in press (1990).
- 4.6 A.R. Coronado, M.N. Gibbins, M.A. Wright, and P.H. Stern, <u>Space Station</u> <u>Integrated Wall Design and Penetration Damage Control</u>, D180-30550-1, Boeing Aerospace Co., Seattle, Washington (1987).

	Kevlar 49	IM6/3501-6	Alumina
E (x10 ⁹ N/m ²)			379.2
ν			. 317
E ₁ (x10 ⁹ N/m ²)	76.0	203.0	
E ₂ (x10 ⁹ N/m ²)	5.5	11.0	
G ₁₂ (x10 ⁹ N/m ²)	2.3	8.3	
ν ₁₂	. 340	. 320	
ν ₂₁	.025	.017	
ρ (kg/m ³)	1340	1541	3900

Table 4.1 Unidirectional Ply Properties of Kevlar 49 (67% fiber volume) IM6/3501-6 Graphite/Epoxy (63% fiber volume) and Alumina [courtesy of NASA/MSFC and MMA]

Panel ID Number	Material	Number of Plies	Thickness (mm)	Lamina Lay-up
C1	Kevlar 49	12	2.032	[0,±60,+60,0] _s
C2	Kevlar 49	18	2.921	(0,±60,+60,0) ₃
C3	Kevlar 49	24	3.810	[(0,±60,+60,0) ₂] _s
C4	Graphite/ Epoxy	24	3.810	[(0,±60,+60,0) ₂] _s
C5	Alumina	3	1.905	

Table 4.2 Geometric Properties of Composite and Ceramic Material Bumper Plates

Test Number	Bumper ID Number	V (km/s)	d (mm)	t (mm)	t (mm)	S (mm)
			Kevlar 4	¥9		
103	C1	4.62	4.75	2.032	3.175	101.6
103A	C3	3.52	4.75	3.810	3.175	101.6
103B	C3	3.43	4.75	3.810	3.175	101.6
103C	C3	3.84	4.75	3.810	3.175	101.6
1031	С3	4.24	4.75	3.810	3.175	101.6
104	С3	6.72	7,62	3,810	3.175	101.6
104A	C3	6.65	7.62	3.810	3.175	101.6
104B	C3	7.01	7.62	3.810	3.175	101.6
1221	C2	7.15	7.62	2.921	3.175	152.4
1222	C2	7.40	7.62	2.921	3.175	152.4
		IM6/3	501-6 Grapl	nite/Epoxy		
177A	C4	6.91	6.35	3.810	3.175	101.6
177B	C4	7.38	6.35	3.810	3.175	101.6
			Alumina	a .		
140A	C5	6.37	6.35	1.905	3.175	101.6
140B	C5	7.23	6.35	1.905	3.175	101.6
140C	C5	6.85	6.35	1.905	3.175	101.6

Table 4.3 Test Parameters for Composite and Ceramic Systems

Test Number	V (km/s)	d (mm)	t (mm)	t (mm)	S (mm)	
P05	6.90	6.35	1.600	3.175	101.6	
P06A	6.95	6.35	1.600	3.175	101.6	
P16E	6.78	7.62	1.600	3,175	152.4	
P16G	7.18	7.62	1,600	3,175	152.4	
P20B	6.98	7.62	1.600	3.175	152.4	
P20C	6.63	7.62	1.600	3.175	152.4	
P21	6.63	7.62	1.600	3.175	101.6	
P21A	6.47	7.62	1.600	3.175	101.6	
P27	4.53	4.75	1.600	3.175	101.6	
P27A	3.87	4.75	1.600	3.175	101.6	
P27B	4.15	4.75	1,600	3.175	101.6	
P33	7.21	6.35	1.016	3.175	101.6	
P34	6.80	6.35	1.600	2.540	101.6	
101	3.09	4.75	2.032	3.175	101.6	
101A	3.96	4.75	2.032	3.175	101.6	
101B	4.27	4.75	2.032	3.175	101.6	
107	6.80	8.89	2.032	4,445	101.6	
107A	6.74	8.89	2.032	5.080	101.6	
107B	6.82	8.89	2.032	5.715	101.6	
109B	3.61	4.75	2.032	3.175	101.6	
228C	6.96	6.35	0.813	4.775	101.6	
228D	6.95	6.35	0.813	4.775	101.6	
EH3A	6.64	7.95	1.600	3.175	101.6	
EH6C	6.58	7.95	1.600	3,175	101.6	

Table 4.4 Test Parameters for Aluminum Systems

Test Number	D (mm)	γ (deg)	A (cm ²)	dh (mm)	A (cm ²)	
		Ker	vlar 49			
103	9.271	37.9	31.68	13.538		
103A	9.677	34.1	30.39	8.103		
103B	9.423	30.7	24.52	8.103		
103C	9.271	26.7	26.71			
1031	9.093	43.6	51.87			
104	20.193	56.5	139.68	48.387		
104A	19.685	64.0	126.64	50.063		
104B	19.050	61.0	145.68	46.660		
1221	19.558	40.8	102.58	54.458		
1222	20.193	43.1	114.32	61.874		
		IM6/3501-6	Graphite/Ep	оху		
177A	15.596	49.4	81.03	11.075		
177B	15.191	55.4	85.16	13.716		
		A	lumina			
140A	22.301	45.60	57.72	7.645	0.619	
140B	33.096	57.31	97.21			
140C	35.712	53.10	81.07	7.010	0.832	

Table 4.5 Hypervelocity Impact Test Results for Composite and Ceramic Systems

Test Number	D (mm)	γ (deg)	A (cm ²)	գ (mm)	A (cm²)
P05	14,224	55.9	91.55	4.699	0.19
P06A	14.529	64.0	126.71		4.65
P16E	15.748	53.1	182.39	23.368	12.65
P16G	16.510	60.5	248.39		2.88
P20B	15.875	56.8	214.06		5,08
P20C	15,240	56.9	214.06	2.166	6.37
P21	15.875	63.9	126.64	28.804	5,29
P21A	14.300	58.1	102.58	33.782	
P27	10 668	40.9	45.61		
P27A	8 636	29.0	21.74	4,445	
P27R	10 033	34 6	31.68	3.048	
P33	13 005	64 0	126 64	crack	3.34
135 P34	14 122	64 0	153 29	10 363	2.68
101	10 135	28 1	20 25	6.655	
1014	9 398	31 3	25.61	4.347	
101R	14 224	52.8	81.03		
107	19 050	66 5	139.61	15.434	12.13
1074	18 288	69 1	154.97	9.018	15.48
107R	19 050	66 5	139.68	crack	13.68
109B	10 160	44 2	62 06		
2280	11 024	34 7	31 68		9.88
2280	11 201	33 4	29 16	2 642	2.86
220D FH34	15 138	75 4	206 19	49 835	
EH6C	17.475	63.7	126.64	31.979	

Table 4.6 Hypervelocity Impact Test Results for Aluminum Systems
Test	Bumper Plate	Impact	Impact	Pressure Wall Plate		
Number	Material	Energy (J)	Momentum (kg-m/s)	Penetrated?	Spalled?	
103A	Kevlar	924.9	0.536	yes	no	
109B	Aluminum	991.8	0.549	no	no	
103B	Kevlar	895.3	0.522	yes	no	
	A]	1120.0	0 500			
P2/A	Aluminum	1139.8	0.589	yes	no	
1030	Kevlar	1122.1	0.584	no	no	
101A	Aluminum	1041.8	0.563	yes	no	
D07B	۸luminum	1310 7	0 632	VAG	DO	
1021	Koulor	1360 1	0.645	yes	10	
1031	Keviar	1200.1	0.645	110	110	
1018	Aluminum	1387.5	0.650	no	no	
103	Keylar	1624 3	0 703	Ves	no	
105		1561 7	0.689	yes	no	
12/	ALUMITIUM	1201.1	0.007	110	110	

Table 4.7 Penetration Comparison of Kevlar and Aluminum Systems (Impact Energy < 2,000 joules)

Stand	Test	Bumper Plate	Impact	Impact	Pressure Wall Plate	
Off Dist.	Number	Material	Energy (J)	Momentum (kg-m/s)	Penetrated?	Spalled?
	104B EH6C/3A	Kevlar Aluminum	15,441 15,733	4.405 4.739	yes yes	no no
101.6 mm	P21 104 104A P21A	Aluminum Kevlar Kevlar Aluminum	13,812 14,274 13,896 13,154	4.166 4.236 4.179 4.066	yes yes yes yes	yes no no no
152.4 mm	1221 P20B P16G 1222	Kevlar Aluminum Aluminum Kevlar	16,064 15,309 16,199 16,699	4.493 4.386 4.512 4.581	yes no no yes	no yes yes no

Table 4.8 Penetration Comparison of Kevlar and Aluminum Systems (Impact Energy > 10,000 joules)

Regression Function	۶ [€] avg	σ(%)	R ²
$\cos \gamma$	1.067	15.669	0.624
Ad/Ap	1.052	14.950	0.750
d _h ∕d	0.134	5.603	0.933

Table 4.9 Regression Analysis of Kevlar System Cone Angle and Pressure Wall Plate Damage Data, Error Summary

Test	Bumper Plate	Impact	Impact	Pressure Wall Plate	
Number	Material	Energy (J)	Momentum (kg-m/s)	Penetrated?	Spalled?
P05	Aluminum	8657.4	2.509	yes	ves
177A	Graphite/Epoxy	8682.5	2.513	yes	no
177B	Graphite/Epoxy	9903.8	2.684	yes	no
P34	Aluminum	8408.2	2.473	yes	yes
P33	Aluminum	9452.7	2.622	crack	ves

Table 4.10 Penetration Comparison of Graphite/Epoxy and Aluminum Systems

Test Number	Bumper Plate Material	Impact	Impact	Pressure Wall Plate	
		Energy (J)	Momentum (kg-m/s)	Penetrated?	Spalled?
228C	Aluminum	8809	2.531	no	yes
228D	Aluminum	8041	2.418	yes	yes
140A	Alumina	7378	2.317	yes	yes
140B	Alumina	9505	2.629	no	no
140C	Alumina	8532	2.491	yes	yes
P05	Aluminum	8658	2.509	yes	yes
P06A	Aluminum	8783	2.528	no	yes

Table 4.11 Penetration Comparison of Alumina and Aluminum Systems

:

Figure 4.1 Normal Impact Test Configuration and Parameters

-

SECTION FIVE -- HYPERVELOCITY IMPACT RESPONSE OF SPACECRAFT WINDOW MATERIALS 5.1 Introduction

With the installation of windows for viewing as well as scientific purposes in spacecraft such as the Space Shuttle Orbiters and the Space Station Freedom, it has become necessary to study the response of window materials to hypervelocity projectile impact and to evaluate their degradation as a result of such impacts. Unfortunately, information on the hypervelocity impact response of window materials is relatively scarce (see, e.g. [5.1,5.2,5.3]).

This Section summarizes the results of an investigation into the response of window materials under hypervelocity projectile impact loadings. Two window materials of different hardness were considered in this study: Lexgard and glass. Several layers of Lexgard were glued together to form the single-panel Lexgard window test specimens. The glass window test specimens consisted of three panes separated by small distances. The impact damage to the Lexgard specimens is characterized according to the extent of surface damage, the extent of internal delamination, and the area of rear-side spall damage. The impact damage in the glass specimens is characterized according to the nature of the damage to each pane in the glass window system. A statistical analysis of the Lexgard impact test data indicates that the extent of the damage to the Lexgard specimens can be written as functions of the impact parameters of the original projectile and the geometric and material properties of the projectile/Lexgard window system. These empirical response functions can be used to perform parameter sensitivity studies and to evaluate hypothetical design applications and configurations.

5.2 Hypervelocity Impact Test Parameters

The conditions of the impact tests were chosen to simulate space debris impact of light-weight space structures as closely as possible, and still remain within the realm of experimental feasibility. Kessler, et.al., state that the average mass density for pieces of orbital debris less than 10 mm in diameter is approximately the same as that of aluminum [5.4]. Although it is anticipated that the shape of the impacting projectile will affect impact damage formation and propagation to some extent [5.5], spherical projectiles were used in the test program to maintain repeatability and consistency. Thus, the testing was conducted with solid spherical 1100 aluminum projectiles with diameters ranging from 3.175 mm to 9.525 mm. The velocities of the impacting projectiles ranged from 5.4 to 7.5 km/sec.

A total of 21 single-pane Lexgard specimens and 5 triple-pane glass specimens were used to study and evaluate the hypervelocity impact response of window materials. The Lexgard specimens were made from several 23 cm x 23 cm Lexgard sheets of varying thicknesses glued together (Figures 5.1a,b). The glass specimens consisted of three 15 cm x 15 cm panes separated by varying stand-off distances (Figure 5.2). In the glass specimens, the outer and inner panes were made from annealed soda lime and tempered Herculite II glass, respectively, while some middle panes were made from annealed soda lime glass and others from tempered Herculite II glass.

The mechanical properties of the window materials are given in Table 5.1; test parameters and configuration geometries for each window type are given in Tables 5.2, 5.3, and 5.4. The results of the hypervelocity impact test firings are given in Table 5.5 for the Lexgard specimens and in Table 5.7 for the glass specimens. Column entries of '----' in Table 5.5 indicate that

penetration and/or spall of the Lexgard specimen did not occur. Table 5.6 contains a summary of the differences between experimental response characteristics and the response characteristics predicted using empirical equations derived from the experimental data. A complete set of photographs showing various response features of the Lexgard and triple-pane glass systems under hypervelocity impact can be found in Reference 5.6. Detailed analyses of the damaged test specimens revealed many interesting features and response characteristics of window materials under hypervelocity projectile impact loadings.

5.3 Hypervelocity Impact Response of Lexgard

5.3.1 Qualitative Damage Analysis

Two different window constructions were used to evaluate the response of Lexgard windows to hypervelocity projectile impact. One consisted of a 12.7 mm layer of Lexgard sandwiched in between two 3.175 mm Lexgard layers for a total specimen thickness $t_w^{-19.05}$ mm (Figure 5.1a). The other contained an additional interior 12.7 mm layer for a total specimen thickness $t_w^{-31.75}$ mm (Figure 5.1b). In each test, a projectile of diameter d and velocity V impacted a Lexgard window specimen along a trajectory perpendicular to the plane of the window (Figures 5.1a,b). The projectile shattered upon impact and created a series of shock waves that created an internal area of damage. This internal damage area was typically a circular area of delamination between the Lexgard layers. In some instances, front and rear surface petalling, as well as rear surface spall, resulted from shock wave interaction at the interface between a thin surface layer and a thick interior layer. Occasionally, penetration of the window specimen occurred as well. In these cases, the material surrounding the hole was melted and torn through

the thickness of the specimen.

A summary of the damage to each of the Lexgard specimens can be found in Table 5.5 where D is the diameter of the hole in the specimen if penetration occured, A_d is the area of the internal damage region, and A_s is the area of rear surface spall if spall occured. Penetration functions for normal impact of both specimen types are shown in Figure 5.3 based on the penetration data in Table 5.5; a spall function for the normal impact of the thin Lexgard panels is shown in Figure 5.4. These curves can be used to determine if penetration or rear-surface spall will occur as a result of a particular high velocity impact. It is noted that the curves in Figures 5.3 and 5.4 are simply lines of demarcation between areas of penetration and no penetration and spall and no spall for the parameters indicated.

While rear surface spall occured frequently in the impact of the thin Lexgard specimens, it is interesting to note that rear surface spall did not occur in any of the thick specimens. Impact of the thick specimens resulted in either rear surface petalling without spall or in a 'ballooning' of the rear surface, also without spall. Additionally, the rear surface remained undamaged when a thick Lexgard specimen was impacted by the smaller projectiles; impact by the larger projectiles resulted in significant delamination between the two thick interior layers. Oblique impacts were observed to penetrate the thin specimens but not the thick specimens. At trajectory obliquities of 45° and 65° , the thin specimens were penetrated by 7.95 mm projectiles. However, the thick specimens were not penetrated at either trajectory obliquity, even though the projectile diameter was increased to 9.525 mm. Significant front and rear surface petalling and large areas of

internal delamination were also observed in Lexgard specimens impacted by large obliquely incident projectiles.

5.3.2 Regression Analysis of Damage Data

A standard multiple linear regression analysis of the data in Table 5.5 was performed to obtain equations for hole diameter in the event of a penetration, internal damage area, and rear surface spall area if spall occurs as functions of geometric, material, and impact parameters.

Hole Diameter

$$D/d = 1.043(V/C)^{1.389}(t_w/d)^{-1.201}, \theta = 0^{\circ}$$
 (5.1)

Rear Spall Area

$$A_{s}/A_{p} = 0.000505(V/C)^{6.909}(t_{w}/d)^{0.946}, \ \theta = 0^{\circ}$$
(5.2)

Damage Area

$$A_d/A_p = 39.04(V/C)^{1.390} \cos^{0.266} \theta(t_w/d)^{0.241}$$
 (5.3)

where C = $\sqrt{E/\rho}$ and A_p = $\pi d^2/4$. The average errors, standard deviations, and correlation coefficients for equations (5.1-5.3) are given in Table 5.6. Based on the data in Table 5.6, it is evident that equations (5.1-5.3) fit the experimental data fairly well. It is noted that equations (5.1-5.3) are valid only for impacts of aluminum projectiles on Lexgard panels of similar lay-up and construction, and for impact velocities between 5.4 and 7.5 km/sec. Additionally, equations (5.1,5.2) are valid only for normal impacts while equation (5.3) may be used to calculate internal damage areas for normal and oblique impacts. Furthermore, before using equations (5.1) and (5.2), Figures 5.3 and 5.4 must be consulted to determine whether or not penetration or spall will occur as a result of a particular impact.

5.4 Hypervelocity Impact Response of Glass Systems

Two different configurations were used to study the response of triplepane glass windows to hypervelocity projectile impact. The essential differences between the two systems were the thickness of the outer panes and the stand-off distance between the outer and middle panes (the 'outer standoff distance'). In one triple-pane system, the outer pane thickness was 6.4 mm and the outer stand-off distance was 12.7 mm. In the other, the outer pane was 16 mm thick and the distance between the outer and middle pane was 50.8 mm. In both systems, the thicknesses of the middle and inner panes were 16 mm each and the spacing between the middle and inner panes was 12.7 mm.

A summary of the resulting damage to each pane in each test is presented in Table 5.7. For the purposes of this investigation, a glass window specimen was considered to be penetrated if the inner pane was cracked or shattered. A shattered pane is defined as a pane that disintegrates into smaller pieces upon impact. A cracked pane has numerous fractures, but remains intact after impact. Due to the small number of tests performed, it would be impossible and inappropriate to perform a regression analysis of the glass system damage data presented in Table 5.7. However, a qualitative analysis of the damage revealed many interesting features and characteristics of multi-pane window systems under hypervelocity impact.

The hypervelocity impact response of the triple-pane glass specimens was significantly different from that of the Lexgard test specimens. The damage in the glass panes was much more extensive due to their brittleness and low tensile strength. This allowed the shock-related stresses to overwhelm the material strengths for a longer period of time in the glass specimens than in the Lexgard test specimens [5.2]. In four of the glass

tests, the outer pane was completely shattered and disintegrated. The thinner outer panes in Tests 18-1 and 18-2 were shattered into hundreds of pieces ranging from approximately 0.1 cm to 3 cm in diameter; the thicker outer panes in Tests 18-3 and 18-4 were shattered into several large chunks ranging from about 3.5 cm to 7.5 cm in diameter. In the fifth test, the outer pane was laminated and, as such, did not disintegrate upon impact. However, it was penetrated and sustained relatively large areas of spallation on both front and back surfaces. The middle panes in the specimens with the thick outer panes and the larger outer stand-off distance sustained no serious damage. The middle panes in the specimens with the thinner outer panes and the smaller outer stand-off distance were either cracked or shattered. The cracked middle panes contained numerous overlapping radial and concentric ring fractures. As such, their appearance strongly resembled that of a thick glass block subjected to a hypervelocity projectile impact [5.1]. The inner panes sustained no damage regardless of the thickness of the outer pane.

î

ŝ

1 1 -

Ę

A more detailed examination of the damage sustained by each pane in the triple-pane glass window systems revealed that the systems with laminated panes faired better overall than did those systems without laminated panes. For example, in Test 18-2, the middle pane was laminated while in Test 18-1 it was not. Accordingly, the middle pane in Test 18-1 cracked in half while the middle pane in Test 18-2 merely sustained some cracks on the front surface and was not penetrated. Furthermore, lamination of the outer pane in Test 18-5 prevented its complete disintegration whereas the otherwise identical outer panes in Tests 18-1 and 18-2 were completely shattered under similar impacts.

Finally, the observed failures of the outer glass panes were compared against the predictions of the window penetration equations developed during the Apollo/Skylab era [5.3]:

$$p = 0.53\rho_{p}^{0.5}d_{p}^{1.06}v_{p}^{0.67}$$

$$t_{c} = 0.14v_{p}^{1.28}p t_{s} = 7p (5a,b)$$

where ρ_p , d_p , V_p are the density (in gm/cm³), diameter (in cm) and velocity (in km/sec) of the impacting projectile, ρ is the depth of penetration (in cm), t_c is the minimum thickness necessary to prevent through-cracks (in cm), and t_s is the minimum thickness needed to prevent rear-side spallation (in cm). Using these equations and the projectile parameters in Table 5.3, it was found that thicknesses on the order of 14 mm would be required to prevent through-cracks while glass blocks on the order of 64 mm thick would be required to prevent rear-side spall. Thus, it is not surprising that the thinner outer panes (in Tests 18-1 and 18-2) broke apart into hundreds of pieces while the thickness required to prevent through-cracking, broke apart into a relatively small number of pieces.

From these results, it can be concluded that both triple-pane glass window systems can withstand impacts of 3.175 mm diameter aluminum particles traveling at speeds of up to 6.6 km/sec. If such systems were used for spacecraft windows, it is unlikely that a pressure leak would occur due to an on-orbit impact of similar magnitude. If such an impact were to occur on a window system containing a thin outer pane placed at a small distance away from the middle pane, only the inner pane would be left to maintain the

pressure seal. If the glass window system were to have a thin laminated outer pane or a thick outer pane placed at a relatively large distance from the middle plane, the middle pane would most likely remain undamaged and two window panes would be left to maintain the pressure seal. However, an onorbit impact of a triple-pane glass window system with a thick outer pane would create large chunks of secondary debris which could subsequently be more damaging than the smaller secondary debris pieces created by the impact of a triple-pane window system with a thin outer pane. Lamination of both the outer and middle panes would reduce the potential for the creation of any glass debris fragments. In any case, the window would be rendered useless for viewing and scientific purposes and would necessitate the replacement of at least one pane of the window system.

5.5 Conclusions

An investigation of the hypervelocity impact response of spacecraft window materials has revealed many interesting features and response characteristics. Multi-layer Lexgard windows were found to sustain high levels of internal, penetration, and rear side spall damage as a result of normal and oblique hypervelocity impacts. The tendency of the Lexgard window panels to spall as a result of a hypervelocity impact is an area of major concern. Because of the high speeds with which spall fragments can travel, impactinduced spall can be as deleterious to mission success and crew safety as an actual penetration. The lethality of the high-speed spall fragments must not be overlooked.

Triple-pane glass window systems were found to be rather resilient under hypervelocity projectile impact loadings and did not sustain any penetration or spall damage of the inner-most window pane. Increasing the

thickness of the outer pane served to reduce the number of fragments that formed when it shattered under impact; increasing the outer stand-off distance resulted in a significant decrease in the damage sustained by the middle window pane. Furthermore, it was found that laminating the outer and middle window panes prevented them from disintegrating upon impact. This is highly desirable in order that, in the event of an on-orbit glass window impact, the orbital environment does not become further contaminated by hundreds of glass debris fragments.

Based on the observations made during the course of this investigation, it is recommended that additional testing of multi-pane glass window systems be performed using large diameter projectiles and at oblique angles. Such testing would result in a more complete understanding of the growth of impact damage in glass window systems and in a more accurate prediction of the response of such systems in the event of an on-orbit impact.

5.6 References

- 5.1 R.E. Flaherty, "Impact Characteristics in Fused Silica", <u>Proceedings of</u> the <u>AIAA Hypervelocity Impact Conference</u>, AIAA Paper No. 69-367 (1969).
- 5.2 B.G. Cour-Palais, "Hypervelocity Impact in Metals, Glass, and Composites", Int. J. Impact Engng., Vol. 5, pp. 221-237 (1987).
- 5.3 B.G. Cour-Palais, "Hypervelocity Impact Investigations and Meteoroid Shielding Experience Related to Apollo and Skylab", <u>Orbital</u> <u>Debris</u>, NASA CP 2360, 1982, pp. 247-75.
- 5.4 D.J. Kessler, R.C. Reynolds, and P.D. Anz-Meador, <u>Orbital Debris Envi</u>noment for <u>Spacecraft Designed to Operate in Low Earth Orbit</u>, NASA TM 100471, Houston, Texas (1989).
- 5.5 R.H. Morrison, <u>A</u> <u>Preliminary Investigation of Projectile Shape Effects</u> <u>in Hypervelocity</u> <u>Impact of a Double Sheet Structure</u>, NASA TN D-6944, Washington, D.C. (1972)
- 5.6 W.P. Schonberg, "Response of Spacecraft Window Materials to Hypervelocity Projectile Impact", J. Spacecraft Rockets, Vol 27, in press (1990).

	Lexgard	Soda Lime Glass	Herculite II
$F_{\rm v109 ~ N/m^2}$	2.47	70.4	75.9
		0.22	0.21
ρ (kg/m ³)	1150	2410	2464

Table 5.1 Mechanical Properties of Window Materials

Test Number	V (km/s)	θ	d (mm)	t (mm)
123-1	5.40	0	3.175	19.05
123-2	5.80	0	3.175	19.05
123-3	6.40	0	3.175	19.05
124-1	6.30	0	4.750	19.05
124-2	5,86	0	4.750	19.05
124-3	5.50	0	4.750	19.05
124-4	4.66	0	4.750	19.05
125A	5.27	0	6.350	19.05
125B	3.78	0	6.350	19.05
1250	3.23	0	6.350	19.05
126A	7.24	0	4.750	31.75
126B	7.46	0	4.750	31.75
127A	7.16	0	6.350	31.75
127B	7.41	0	6.350	31.75
129A	6.86	0	7.620	31.75
129B	6.45	0	7.620	31.75
1290	6.00	0	7.620	31.75
171A	6,60	45	9.525	31.75
172A	6.65	65	9.525	31.75
1734	6.91	45	7.950	19.05
174A	6.94	65	7.950	19.05

Table 5.2 Lexgard Impact Test Parameters

Test Number	V (km/s)	d (mm)	t (mm)	t (mm)	t (mm)	S (mm)	S _i (mm)
18-1	6.50	3.175	6.4	16.0	16.0	12.7	12.7
18-2	6.33	3,175	6.4	16.0	16.0	12.7	12.7
18-3	6.50	3.175	16.0	16.0	16.0	50.8	12.7
18-4	6.63	3.175	16.0	16.0	16.0	50.8	12.7
18-5	6.50	3,175	6.4	16.0	16.0	12.7	12.7

Table 5.3 Glass Impact Test Parameters

Test Number	Outer Pane	Middle Pane	Inner Pane
18-1	Soda Lime	Herculite II	Herculite II
18-2	Soda Lime	Laminated Herculite II	Herculite II
18-3	Soda Lime	Soda Lime	Herculite II
18-4	Soda Lime	Laminated Soda Lime	Herculite II
18-5	Laminated Soda Lime	Laminated Soda Lime	Herculite II

Table 5.4 Glass Window Pane Materials

Test Number	D (mm)	A (cm ²)	A (cm ²)
123-1		24.45	2.787
123-2		20.26	1.510
123-3		33.48	0.806
124-1	7,493	64.71	
124-2	6.299	63.29	
124-3	5.791	49.81	
124-4		59.10	1.026
125A	10.414	113.42	
125B	6.756	60.32	
125C		51.81	
126A		135.03	
126B		109.42	
127A		182.06	
127B		188.39	
129A	6.629	230.84	
129B		159,61	
129C		186.32	
171A		387.93	
172A		230.52	
173A	45.7x53.3	153.29	
174A	31.750	167.55	

Table 5.5 Hypervelocity Impact Test Results for Lexgard Panels

Regression Function	%€ avg	σ(%)	R²
D/d	0.038	3.045	0.971
A _s /A _p	10.658	62.233	0.827
A _d /A _p	1.280	16.402	0.804

Table 5.6 Regression Analysis of Lexgard Damage Data Error Summary

Test Number	Outer Pane	Middle Pane	Inner Pane	Penetrated?
18-1	Shattered; ≃100 fragments 0.1 to 2.5 cm	Shattered	No Damage	No
18-2	Shattered; ≃100 fragments 0.1 to 3.2 cm	Cracked No Penetration	No Damage	No
18-3	Shattered; 19 fragments 3.5 to 7.5 cm	Minor Pitting	No Damage	No
18-4	Shattered; 6 fragments 3.5 to 5.1 cm	Minor Pitting	No Damage	No
18-5	3.25 mm hole; 4.3 cm dia. spall on both surfaces; No Disintegration	Cracked No Penetration	No Damage	No

Table 5.7 Hypervelocity Impact Test Results for Glass Systems

Figure 5.1a Thin Lexgard Window Test Specimen Configuration

1.10.41

Figure 5.1b Thick Lexgard Window Test Specimen Configuration

Figure 5.2 Triple Pane Glass Window Test Specimen Configuration

COMPANY TELE TITLE BEAM STRUCTURE

Figure 5.4 Spall Function for Thin Lexgard Window Systems

SECTION SIX -- HYPERVELOCITY IMPACT OF DUAL-WALL SYSTEMS WITH CORRUGATED BUMPERS

6.1 Introduction

In the majority of previous investigations of dual-wall structures under hypervelocity impact, the bumper plates were typically uniform in nature and made from a variety of metallic or composite materials. Dualwall configurations were repeatedly shown to provide significant increases in protection against penetration by small high-speed projectiles over equivalent single-wall structures. However, the recent proliferation of large pieces of orbiting space debris has made it necessary to modify such systems so that they can resist penetration by projectiles with much higher impact energies. Novel design concepts that will possess increased levels of protection must be developed for spacecraft that are to be launched into the meteoroid and space debris environment.

This Section summarizes the results of an investigation in which a modified dual-wall structural system was tested for penetration by hypervelocity projectiles. In this modified system, the traditional uniform bumper was replaced by a corrugated bumper of equal weight. Impact test results for two different types of corrugated bumpers are reviewed qualitatively and quantitatively. Impact damage in the structural systems is characterized according to the extent of penetration, crater, and spall damage in the pressure wall plate as a result of the impact loadings. The impact damage in the specimens with corrugated bumper plates is compared to impact damage in specimens with uniform, monolithic bumpers of similar weight. This comparative analysis is used to determine the advantages and disadvantages of employing corrugated bumpers in structural wall systems for

long-duration spacecraft.

6.2 Hypervelocity Impact Test Parameters

In each test, a projectile of diameter d and velocity V impacted a dual-wall test specimen along a trajectory inclined at an angle θ with respect to the outward normal of the test specimen bumper plate. Figure 6.1 illustrates the oblique impact of a dual-wall test specimen with a mono-lithic bumper plate (a 'monolithic bumper system') while Figure 6.2 shows the oblique impact of a dual-wall system with a corrugated bumper (a 'corrugated bumper system'). In Figure 6.2, the corrugated bumper is seen to consist of a series of corrugations sandwiched in between flat 'front' and 'rear' bumper plates, where the 'front' plate is that plate which is first struck by an incoming projectile.

In the monolithic bumper system impacts, the projectile was shattered and created a hole in the bumper plate. In the corrugated system impacts, a series of holes were created in the corrugations as the debris cloud containing projectile and bumper plate fragments spread out and moved through the corrugations. In both cases, the secondary debris fragments were sprayed upon a pressure wall plate of thickness t_w located a distance S behind the bumper. In the corrugated bumper systems, the distance S is measured from the pressure wall plate to the 'rear' plate of the corrugated bumper. In Figures 6.1 and 6.2, the angles θ_1 and θ_2 denote the trajectories of the centers of mass of the 'normal' and 'in-line' secondary debris fragments, respectively; the angles γ_1 and γ_2 represent the spread of these fragments. It is noted that the spread of the secondary debris clouds in the corrugated bumper systems began immediately so that by the time the debris cloud exited the rear of the bumper, a fair amount of spreading had already occured.

Therefore, the angles θ_1, θ_2 and γ_1, γ_2 for the corrugated bumper systems are measured from the impact site on the front plate and not from the debris cloud exit site on the rear plate. The impact of the secondary debris particles created 'normal' and 'in-line' areas of damage A_{d1} and A_{d2} , respectively, on the front surface of the pressure wall plate. In those tests where the path of the projectile was normal to the surface of the bumper plate (ie. $\theta=0^{\circ}$), the 'normal' and 'in-line' debris clouds overlapped in a single debris cloud whose center-of-mass trajectory was close to the inward normal of the test specimen bumper plate (ie. $\gamma_1 \simeq \gamma_2 = \gamma_n$ and $\theta_1 \simeq \theta_2 = \theta_n$). The damage areas also overlapped and combined to form a single area of damage A_d on the front surface of the pressure wall plate. Occasionally, the impacts of the secondary projectile and bumper plate fragments resulted in the creation of thin spall fragments ejected from the rear side of the pressure wall plate. In these cases, for both the normal and oblique impacts, the total spalled area on the rear surface is denoted by A_a .

The conditions of the impact tests were chosen to simulate space debris impacts of light-weight space structures as closely as possible, and still remain within the realm of experimental feasibility. Kessler, et.al., state that the average mass density for pieces of orbital debris less than 10 mm in diameter is approximately the same as that of aluminum [6.1]. Although it is anticipated that the shape of the impacting projectile will affect impact damage formation and propagation to some extent [6.2], spherical projectiles were used in the test program to maintain repeatability and consistency. Thus, the testing was conducted with solid spherical 1100 aluminum projectiles with diameters ranging from 6.35 mm to 9.53 mm. The velocities of the impacting projectiles ranged from 2.9 to 7.0 km/sec. To study the effects

of trajectory obliquity on penetration, impact testing was performed at obliquities of 0° and 45° . Additionally, to simulate presence of thermal insulation in the spacecraft wall design, some of the tests were performed with MLI (multi-layer insulation) resting on the pressure wall plate.

A total of 18 structural systems with uniform monolithic bumper plates and 13 systems with corrugated bumper plates were used to study and evaluate the penetration resistance of dual-wall systems with corrugated bumpers. In both systems, the bumper and pressure wall plates were made from 6061-T6 and 2219-T87 aluminum, respectively. Two different types of corrugated bumper plates were used: one consisted of 'deep' corrugations with a rise angle $\alpha=53^{\circ}$; the other consisted of 'shallow' corrugations with a rise angle of $\alpha=20^{\circ}$ (see Figure 6.3). Detailed geometric parameter values for the corrugated bumpers are presented in Table 6.1. The parameters correspond to the dimensions of the repeating element of a corrugated bumper as shown in Figure 3. The thicknesses of the monolithic bumper plates were chosen such that the monolithic and corrugated bumper plates had similar areal densities. The corrugated bumper plates were calculated to have areal densities of approximately 0.456 gm/cm^2 ; therefore, dual-wall systems with monolithic bumper plates 1.6 mm thick were used for comparison. The MLI consisted of 30 layers of 0.5 mil kapton aluminized on one side and 29 layers of Dacron mesh between each kapton layer. Additionally, 1 layer of beta-cloth (coated sglass) was added on the side nearest the bumper plate for durability. The areal density of this combination was calculated to be approximately 0.107 gm/cm^2 [6.3]. Additional test parameters and configuration geometries are given in Tables 6.2 and 6.3 for the tests with corrugated and monolithic bumper plates, respectively.

The results of the hypervelocity impact test firings are given in Tables 6.4 and 6.5 for the systems with corrugated and monolithic bumper plates, respectively. In Tables 6.4 and 6.5, column entries of '----' indicate that certain phenomena, such as pressure wall plate penetration, front surface damage, or rear surface spall, did not occur. Additionally, in Tables 6.4 and 6.5, d_h is the equivalent hole diameter of all the holes in the pressure wall plate in the event of pressure wall plate penetration. Penetration characteristics are summarized in Tables 6.6 and 6.7 for test shots grouped according to both geometric and impact energy similarity. Table 6.6 presents response summaries for the normal shots; Table 6.7a presents a summary of response characteristics for oblique shots with low impact energy (ie. lower than 10,000 joules) while Table 6.7b presents a summary for oblique shots with high impact energy (ie. greater than 10,000 joules). In Tables 6.7a and 6.7b, the superscript 'l' indicates that the penetration or spall is in the 'normal' damage area while the superscript '2' indicates that 'in-line' penetration or spall has occured. Penetration functions for the structural systems under oblique impact are presented in Figure 6.4. Photographs showing the response of corrugated bumper systems to hypervelocity projectile impact can be found in Reference 6.4. Detailed analyses of the damaged test specimens revealed many interesting features and response characteristics of dual-wall structures with corrugated bumpers under hypervelocity projectile impact loadings.

6.3 <u>Hypervelocity Impact Response of Dual-Wall Systems With Corrugated</u> <u>Bumpers</u>

6.3.1 Bumper Damage Analysis

The impact damage in the monolithic bumper plates consisted of either a

circular or an elliptical hole, depending on the trajectory obliquity. As the trajectory obliquity was increased from 0° to 45°, the hole became noticeably elongated. In the tests with the corrugated bumper plates, as the debris cloud containing projectile and bumper fragments moved through the corrugations, a significant number of the debris fragments were trapped within the corrugations and did not exit the rear bumper panel. Therefore, the amount of energy imparted to the pressure wall plate by the debris fragment clouds in the tests with the corrugated bumpers was much lower than that imparted to the pressure wall by the debris clouds in the tests with monolithic bumper plates.

6.3.2 Pressure Wall Plate Damage Analysis

In Tables 6.6 and 6.7, penetration characteristics are summarized for test shots grouped according to geometric and impact energy similarity. Penetration functions for the structural systems with shallow corrugated bumpers and the corresponding systems with traditional monolithic bumper plates are shown in Figure 6.4. Using Tables 6.4 through 6.7 and the penetration functions in Figure 6.4, a comparison of penetration response characteristics is performed.

According to Tables 6.4a and 6.5a, in the normal impact tests, the pressure wall plate damage areas of the systems with monolithic bumper plates were much larger than those in the corresponding dual-wall systems with corrugated bumper plates. The secondary debris cloud cone angles in the monolithic bumper system impacts were also larger than those in the corresponding corrugated bumper system impacts. In Table 6.6, pressure wall plate penetration is seen to occur in all three corrugated bumper systems and in almost all of the systems with monolithic bumper plates. Although the like-

lihood of penetration under normal impact appears to be the same for both type of systems, it is important to note that the reverse sides of the pressure wall plates of the corrugated bumper systems did not exhibit any spall, while those of the monolithic bumper systems exhibited significant rear-side spalling. This increased tendency for spall in the monolithic bumper specimens is a direct consequence of the wider areal distribution of the impulse delivered by the secondary debris fragment cloud. While the impulse delivered to the pressure wall plate in the corrugated bumper systems appeared to be more concentrated, the smaller damage areas are actually due to the fewer number of debris particles in the secondary debris clouds. This resulted in a decreased tendency for rear-side spall in the corrugated bumper systems.

Under oblique impact in the presence of MLI, neither system exhibited rear-side spallation of the pressure wall plate. However, this is probably a function of the presence of the MLI rather than the obliquity of impact. In a previous investigation of oblique hypervelocity impact, it was found that rear-side pressure wall plate spall could occur in dual-wall systems under oblique as well as normal impact [6.3]. Penetration of the pressure wall plate was found to occur in all but three of the systems with monolithic bumpers. However, only three of the corrugated bumper systems sustained pressure wall plate penetration. Furthermore, the equivalent hole diameters of the pressure wall plates in the penetrated corrugated bumper systems were much smaller than the equivalent hole diameters of the pressure wall plates in the corresponding monolithic bumper systems. Thus, while pressure wall plate penetration under oblique impact was possible in both types of systems, it occured with a much lower frequency and was much less severe in

the systems with corrugated bumpers than in the monolithic bumper systems. In addition, in both types of systems, whenever pressure wall plate penetration occured under a 45° impact, it occured in the 'in-line' damage area. This is consistent with the results of a previous investigation of oblique hypervelocity impact phenomena [6.5] in which it was observed that the more severe damage to the pressure wall plate of a dual-wall system under a 45° impact was caused by the 'in-line' secondary debris fragments.

The increased protection against pressure wall plate penetration under oblique impact provided by the shallow corrugated bumpers as compared to the corresponding monolithic bumpers is also evident in Figure 6.4. The area between the two penetration functions represents those 45° impacts that would penetrate a pressure wall plate protected by a monolithic bumper but would not penetrate a pressure wall plate protected by a shallow corrugated bumper similar in design to the ones used in this study.

In Tables 6.4b and 6.5b it can be seen that the total damage on the front surfaces of the pressure wall plates in the corrugated bumper systems under oblique impact were also generally smaller than those in the corresponding systems with monolithic bumpers. However, it is again noted that the smaller damage areas in the corrugated bumper systems were not due to a concentration of the debris clouds, but rather, as discussed previously, were due to the decrease in the quantity of bumper and projectile debris fragments that constituted the debris cloud and eventually struck the pressure wall plate.

Finally, it is noted that in approximately half of the corrugated bumper systems under oblique impact, there was absolutely no damage to the pressure wall plate along the 'normal' debris trajectory. This phenomenon

occured only once in the dual-wall systems with monolithic bumpers. Since the MLI was present in both types of systems, it would appear that the corrugated bumpers absorbed a significant portion of 'normally' directed energy. This feature would serve to further lessen the likelihood of pressure wall plate penetration and would also reduce the magnitude of front surface damage on the pressure wall plates.

6.4 Summary and Conclusions

An investigation of the hypervelocity impact response of dual-wall structures with corrugated and monolithic bumpers has revealed many interesting response characteristics. Based on the observations made during the course of this study, it appears that a significant increase in protection against penetration by hypervelocity projectiles can be achieved if the traditional monolithic bumper in a dual-wall configuration is replaced with a corrugated bumper of equal or near-equal weight. In the specimens with corrugated bumpers, the frequency of pressure wall plate penetration was significantly lower than in corresponding specimens with monolithic bumper plates. Additionally, the damage area on the pressure wall plates was significantly decreased when a monolithic bumper plate was replaced with an equal-weight corrugated bumper plate. Use of corrugated bumper plates also decreased the possibility of pressure wall plate rearside spall, especially under normal impact. The tendency for pressure wall plates in dual-wall specimens with traditional, monolithic bumpers to exhibit rear-side spall is a major area of concern because of the high speeds with which spall fragments can travel.

6.5 References

- 6.1 D.J. Kessler, R.C. Reynolds, and P.D. Anz-Meador, <u>Orbital Debris Envi-</u> <u>ronment for Spacecraft Designed to Operate in Low Earth Orbit</u>, NASA TM-100471, Houston, Texas (1989).
- 6.2 R.H. Morrison, <u>A</u> <u>Preliminary</u> <u>Investigation of Projectile</u> <u>Shape</u> <u>Effects</u> <u>in Hypervelocity</u> <u>Impact of a Double</u> <u>Sheet</u> <u>Structure</u>, NASA TN D-6944, Washington, D.C. (1972).
- 6.3 A.R. Coronado, M.N. Gibbins, M.A. Wright, and P.H. Stern, <u>Space Station</u> <u>Integrated Wall Design and Penetration Damage Control</u>, D180-30550-1, Boeing Aerospace Co., Seattle, Washington (1987).
- 6.4 R.J. Tullos and W.P. Schonberg, "Spacecraft Wall Design for Increased Protection Against Penetration by Space Debris Impacts", AIAA Paper No. 90-3663, <u>Proc. Space Programs and Technologies Conference</u> 1990, Huntsville, Alabama, September (1990).
- 6.5 W.P. Schonberg and R.A. Taylor, "Penetration and Ricochet Phenomena in Oblique Hypervelocity Impact", AIAA Journal, Vol. 27, pp. 639-646 (1989).

	Corrugation Type No. l	Corrugation Type No. 2
	0	
2	53°	200
า	19.0	25.4
51	0.508	0.803
	0.508	0.508
-	0.508	0.508
3 1.	7,938	3.175
i.	44.450	146.050
i.	15.875	6,350

Table 6.1 Geometric Parameters for Corrugated Bumpers (all lengths and thicknesses in mm)

Test Number	Rise Angle	V (km/s)	θ (deg)	d (mm)	MLI?	t (mm)	S (mm)
145A	53°	5.40	0°	6.35	N	3.175	101.6
145B	53	4.38	00	6.35	N	3.175	101.6
145C	53	3.79	00	6.35	N	3.175	101.6
307	200	2.96	45	6.35	Y	3.175	101.6
308	200	4.42	45	6.35	Y	3.175	101.6
309	20	4.60	45	7.95	Y	3.175	101.6
309B	20 [°]	4.86	45	7.95	Y	3.175	101.6
309R	20	4.56	45 [°]	7.95	Y	3.175	101.6
310	20 [°]	5.73	45 [°]	7.95	Y	3.175	101.6
310R	20 ⁰	5.78	45 ⁰	7.95	Y	3.175	101.6
311	20 ⁰	5.29	45 ⁰	9.53	Y	3.175	101.6
312	20 ⁰	6.08	45 ⁰	9.53	Y	3.175	101.6
312B	20 ⁰	6.52	45 ⁰	9.53	Y	3.175	101.6

Table 6.2 Test Parameters for Corrugated Bumper Systems

i

Test	V	θ	d	MLI?	t	t	S
Number	(km/s)	(deg)	(mm)		(mm)	(mm)	(mm)
EHSS2B P03 P04 PT4A PT4B 002B 205A 205B 205C 205D 205E 211B 211D 212B 230A 230B 320 325	5.88 4.90 4.95 3.64 4.26 6.54 4.16 4.61 5.30 6.30 3.15 5.87 6.97 6.27 4.41 3.23 3.08 4.25	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 45 \\ 45 \\ 4$	6.35 6.35 6.35 6.35 6.35 6.35 6.35 6.35	N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	3.175 3.175	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6

Table 6.3 Test Parameters for Monolithic Bumper Systems

Test Number	θ (deg)	γ (deg)	A (cm ²)	dh (mm)	A (cm²)
145A	1.5	26.6	25.67	2.87	
145B	0.2	24.8	22.06	2.28	
145C	1.6	33.5	41.87	7.29	

Table 6.4a Impact Test Results for Corrugated Bumper Systems, Normal Impact

Test Number	$\theta_{(deg)}$	$\theta_{(deg)}$	γ_1 (deg)	γ ₂ (deg)	$\begin{pmatrix} A \\ (cm^2) \end{pmatrix}$	A (cm ²)	d (mm)	A (cm²)
307		40.7		3.3	0.0	1,29		
308	28.4	38.7	13.2	7.4	9.55	6.39		
309	20.3	37.6	13.7	13.0	7.94	17.81	2.98	
309B	13.5	33.8	5.5	12.8	1.29	13.36		
309R	16.7	38.7	15.3	5.3	11.42	2.84		
310		35.6		6.7	0.0	3.87		
310R	32.6	49.8	20.5	2.4	25.68	1.29		
311	12.0	39.7	22.1	8.7	20.25	7.94	18.67	
312		42.0		10.7	0.0	14.52		
312B		21.8		22.8	0.0	25.68	15.37	
			•••••••••••••••••••••••••••••••••••••••					

Table 6.4b Impact Test Results for Corrugated Bumper Systems, Oblique Impact

F

1

÷

Test Number	θ (deg)	γ _n (deg)	A (cm ²)	d (mm)	A (cm²)
EHSS2B	0.0	47.3	62.06	9 09	5.19
P03 P04	0.7	48.1	64.58	7.72	1.97
PT4A	6.9	49.1	64.58	16.01	3.94
PT4B	1.4	57.5	69.48	6.35	0.26

Table 6.5a Impact Test Results for Monolithic Bumper Systems, Normal Impact
Test Number	θ_1 (deg)	θ_{2} (deg)	γ_1 (deg)	γ ₂ (deg)	A (cm ²)	A (cm ²)	d (mm)	A (cm²)
	43	37 3	12 7	12.3	3.87	9.55	4,90	
2054	99	41 2	32.3	10.8	28.58	7.94	2.44	
205R	12 7	40.4	23.3	14.1	15.55	17.81	4.37	
2050	19 3	37.9	15.9	12.1	7.92	9.58	16.94	
2050	8.5	35.7	17.4	9.2	7.92	5.10	.	
205E	8 5	37.3	14.0	4.5	5,10	1.29	8.79	
203B 211B	7.1	40.2	22.6	16.2	13.35	22,83	21.21	
2110		40.2		11.8	0.0	11.42	38.18	
212B	5.4	38.0	14.1	15.9	5,10	17.80	15.75	
230A	5.7	42.5	20.9	3.0	11.42	0.71		
230B	7.1	40.1	7.1	6.8	1.29	3.87		
320	5.7	39.1	19.7	12.2	9.55	11.42	crack	
325	11.3	41.2	27.7	10.9	20.26	7.94	14.17	

Table 6.5b Impact Test Results for Monolithic Bumper Systems, Oblique Impact

Test	Bumper	Impact	Pressure Wal	l Plate
Number	Туре	Energy (J)	Penetrated?	Spalled?
145A	Corrugated	5302	yes	no
EHSS2B	Monolithic	6287	no	yes
145B	Corrugated	3489	yes	no
PT4B P-03 P-04	Monolithic Monolithic Monolithic	3300 4366 4456	yes yes yes	yes yes yes
145C	Corrugated	2612	yes	no
PT4A	Monolithic	2409	yes	yes

Table 6.6 Penetration Comparison of Corrugated and Monolithic Bumper Systems Under Normal Impact

Test	Bumper	Impact	Pressure Wall Plate		
Number	Туре	Energy (J)	Penetrated?	Spalled?	
307	Corrugated	1593	no	no	
205E	Monolithic	1804	yes ²	no	
308	Corrugated	3552	no	no	
205A 205B	Monolithic Monolithic	3147 3864	yes² yes²	no no	
309 309B 309R	Corrugated Corrugated Corrugated	7551 8429 7420	yes² no no	no no no	
325	Monolithic	6446	yes²	no	

Table 6.7a Penetration Comparison of Corrugated and Monolithic Bumper Systems Under Oblique Impact, Impact Energy < 10,000 joules

Ì

.

TO BE THE PROPERTY OF THE PROP

Test	Bumper	Impact	Pressure Wall Plate			
Number	Туре	Energy (J)	Penetrated?	Spalled?		
310	Corrugated	11,716	no	no		
310R	Corrugated	11,922	no	no		
002B	Monolithic	15,264	yes ²	no		
211B	Monolithic	17,193	yes ²	no		
212B	Monolithic	12,353	yes ²	no		
311	Corrugated	24,221	ves ²	no		
312	Corrugated	22,687	no	no		
312B	Corrugated	26,089	yes ²	no		
211D	Monolithic	24,240	yes ²	no		

Table 6.7b Penetration Comparison of Corrugated and Monolithic Bumper Systems Under Oblique Impact, Impact Energy > 10,000 joules

÷

Ξ

ALC: UNDER COMPANY

-

1100.0

Figure 6.2 Impact Test Configuration and Parameters, Corrugated Bumper System

Figure 6.3 Corrugated Bumper Repeating Element

SECTION SEVEN -- PROJECTILE SHAPE AND MATERIAL EFFECTS IN HYPERVELOCITY

IMPACT OF DUAL-WALL STRUCTURES

7.1 Introduction

In the majority of the previous investigations of dual-wall structures under hypervelocity impact, spherical aluminum projectiles have been used in order to maintain repeatability and consistency during the test program. However, it has become evident that meteoroids and pieces of orbital space debris are far from spherical in shape. In addition, the densities of the various kinds of meteoroids (icy, stony, iron) are also significantly different from the densities of the various kind of orbital debris that exist in near-earth orbit (plastic, metallic, etc.). Unfortunately, hypervelocity impact testing of dual-wall structures with non-spherical, nonaluminum projectiles has been very limited in scope and was often included as a small part of a much larger test program that, for the most part, employed spherical aluminum projectiles. The following paragraph summarizes the results obtained in recent non-spherical, non-aluminum projectile impact testing of dual-wall structures.

Wallace, Vinson, and Kornhauser [7.1] tested dual-wall structures under impact by cylindrical steel, aluminum, and titanium and found that the steel impacts were more damaging than the impacts by aluminum projectiles with similar impact energy. This was also found to be true for spherical steel and aluminum projectiles in a series of tests performed by Maiden and McMillan [7.2]. Lundeberg, Lee, and Burch [7.3] tested dual-wall structures against impact by spherical and cylindrical aluminum, pyrex, and lexan projectiles. However, their study was directed primarily towards the determination of an optimum filler material for a dual-wall structure under a

variety of impact conditions rather than comparing the effects of projectile shape and material on structural response. As such, the majority of their testing was performed with spherical projectiles with only a few cylindrical tests performed for comparison purposes. Arenz [7,4] found that the optimum total thickness required to prevent the penetration of an aluminum dual-wall structure impacted by lightweight syntactic foam projectiles was one-tenth of the optimum total thickness required when the same dual-wall structure was impacted by heavier aluminum projectiles. Gehring, Christman, and McMillan [7.5] used spherical aluminum, pyrex, and steel projectiles in their test program, but their main objective was to study the differences in target response caused by differences in target material properties and geometry. In a recent study of the effect of projectile properties on target cratering, Williams and Persechino [7.6] found that the effect of projectile density on shielded target damage was much higher than that on unshielded targets for equal mass projectiles. They reasoned that this was to be expected since the dense projectiles had a smaller cross-section and, as such, interacted with less shield material than did low density projectiles of equal mass. In addition, Williams and Persechino observed that spherical projectiles produced twice as much crater volume in shielded targets as did other projectiles with equal impact velocities and for equal values of encountered shield material.

Although it is impossible to design a spacecraft that will be resistant to impact penetration for all possible projectile shapes, velocities, and materials, in order to be able to design the best impact-resistant structure, it is important to understand the differences in impact response due to differences in projectile shape and material. This Section summarizes the

results of an investigation into the effects of projectile shape and material on the hypervelocity impact response of aluminum dual-wall structural systems. Impact test results for two different projectile geometries and three different projectile materials are reviewed qualitatively and quantitatively. Impact damage in the structural systems is characterized according to the extent of penetration, crater, and spall damage in the structure as a result of the impact loadings. These characteristics are used to gain an insight into the effects of projectile material and shape on the response of aluminum dual-wall structures.

7.2 Hypervelocity Impact Test Parameters

Spherical and cylindrical projectiles of equal mass were fired at various velocities at aluminum dual-wall test specimens along trajectories inclined at various angles with respect to the outward normal of the test specimen bumper plates (Figure 7.1 shows the impact of a shperical projectile). Upon impact, the projectile was shattered and created a hole in the bumper plate. The secondary debris fragments created were sprayed upon a pressure wall plate of thickness $t_{_{\rm H}}$ located a distance S behind the bumper. In Figure 7.1, the angles θ_1 and θ_2 denote the trajectories of the centers of mass of the 'normal' and 'in-line' secondary debris fragments, respectively; the angles γ_1 and γ_2 represent the spread of these fragments. The impact of the secondary debris particles created 'normal' and 'in-line' areas of damage A_{d1} and A_{d2} , respectively, on the front surface of the pressure wall plate. In those tests where the path of the projectile was normal to the surface of the bumper plate (ie. $\theta=0^{\circ}$), the 'normal' and 'inline' debris clouds overlapped in a single debris cloud whose center-of-mass trajectory was close to the inward normal of the test specimen bumper plate

(ie. $\gamma_1 \approx \gamma_2 = \gamma_n$ and $\theta_1 \approx \theta_2 = \theta_n$). The damage areas also overlapped and combined to form a single area of damage A_d on the front surface of the pressure wall plate. Occasionally, the impacts of the secondary projectile and bumper plate fragments resulted in the creation of thin spall fragments ejected from the rear side of the pressure wall plate. In these cases, for both the normal and oblique impacts, the total spalled area on the rear surface is denoted by A_s .

The conditions of the impact tests were chosen to simulate space debris impacts of light-weight space structures as closely as possible, and still remain within the realm of experimental feasibility. Two different projectile shapes (spherical and cylindrical) and three different materials of varying densities (lexan, aluminum, and steel) were used to examine the effect of projectile shape and material on the damage sustained by aluminum dual-wall systems under hypervelocity projectile impact. The length-todiameter (L/D) ratios of the cylindrical projectiles were kept constant and equal to one. As such, the impacts of the cylindrical and spherical projectiles can be said to model the impacts of 'chunky' pieces of orbital debris.

The average mass density of pieces of orbital debris less than 10 mm in diameter is nearly that of aluminum [7.1,7.7]; the average mass density of stony meteoroids is approximately 0.5 gm/cm³ [7.8]. In addition, iron meteoroids, which are much less numerous than stony meteoroids, are estimated to have a density of approximately 8.31 gm/cm³ [7.1,7.8]. Thus, a lexan projectile, with a density of 1.25 gm/cm³, could represent the impact of an icy meteoroid or a lighter piece of debris while a steel projectile, with a density of 7.83 gm/cm³, could represent an iron meteoroid or a heavier piece of debris. Additional material properties of the projectiles

used in the test program are provided in Table 7.1. The diameters of the spherical projectiles ranged from 6.35 mm to 9.525 mm; the diameters of the cylindrical projectiles ranged in value from 5.08 mm to 9.525 mm. The velocities of the impacting projectiles ranged from 2.9 to 7.4 km/sec. To study the effects of trajectory obliquity on penetration, impact testing was performed at obliquities of 0° , 45° , and 65° . Additionally, to simulate presence of thermal insulation in the spacecraft wall design, some of the tests were performed with MLI (multi-layer insulation) resting on the pressure wall plate.

A total of 40 tests were performed with a variety of dual-wall structural systems to study and evaluate the effects of projectile shape and material on hypervelocity impact response. Included in these tests were 13 tests with cylindrical projectiles, 22 tests with spherical projectiles, and 5 tests with non-aluminum projectiles; one of these tests was performed with a non-metallic (lexan) cylindrical projectile. In all of the tests, the bumper and pressure wall plates were made from 6061-T6 and 2219-T87 aluminum, respectively. Two bumper plate thicknesses were used in the test program: 1.016 mm and 1.6 mm. The thicknesses of the pressure wall plates were kept constant at 3.175 mm. With the exception of one test in which the spacing was 15.24 cm, the spacing between the bumper plate and the pressure wall plate was kept constant at 10.16 cm. The MLI consisted of 30 layers of 0.5 mil kapton aluminized on one side and 29 layers of Dacron mesh, one layer between each kapton layer. Additionally, 1 layer of beta-cloth (coated s-glass) was added on the side nearest the bumper plate for durability. The areal density of this combination was calculated to be approximately 0.107 gm/cm² [7.9]. Additional test parameters and configuration geometries are

given in Tables 7.2,7.3, and 7.4 for the tests with cylindrical, spherical, and non-aluminum projectiles, respectively.

The results of the hypervelocity impact test firings are given in Tables 7.5 through 7.10. Tables 7.5a,b and 7.6a,b present the results for the normal and oblique cylindrical and spherical projectile impact tests, respectively; Tables 7.7a,b present a summary of the penetration characteristics for the cylindrical and spherical impact tests. In Tables 7.7a,b, tests are grouped according to both geometric and impact energy similarity; the superscript '2' indicates that 'in-line' penetration or spall has occured. Table 7.8 presents the results for the non-aluminum projectile impact tests; penetration characteristics for the lexan and steel impact tests are summarized and compared against corresponding aluminum impact test results in Tables 7.9 and 7.10, respectively. The results of the test with the cylindrical lexan projectile are presented in Tables 7.5a,7.7a,7.8, and 7.9 to allow for comparison with other cylindrical and lexan test results. In Tables 7.5 through 7.10, column entries of '----' indicate that certain phenomena, such as pressure wall plate penetration, front surface damage, or rear surface spall, did not occur; additionally, d is the equivalent single hole diameter of all the holes in the pressure wall plate in the event of pressure wall plate penetration. Detailed analyses of the damaged test specimens revealed many interesting features and response characteristics of dual-wall structures under hypervelocity projectile impact loadings.

7.3 Effect of Projectile Shape on Impact Response

7.3.1 Bumper Plate Damage Analysis

The interaction of the impacting projectile with the bumper plate is an

important factor in predicting the extent of the damage sustained by the pressure wall plate due to secondary debris impact. The impact of spherical and cylindrical projectiles on the bumper plates produced well-defined holes. Normal impacts by spherical projectiles resulted in circular holes while oblique impacts produced elliptical holes. Cylindrical projectile impact resulted in elliptical holes, regardless of the impact angle. This was probably due to a slight pitch of the projectile during its flight through the gun barrel which prevented it from hitting the bumper end on. A multiple linear regression analysis of the minimum and maximum bumper plate hole dimension data for cylindrical projectile impact resulted in the following hole dimension predictor equations:

$$D_{\min}/d = 2.309(V/C)^{0.302} (t_s/d)^{0.561} \cos^{-0.177} \theta + 1.0$$
(7.1)

$$D_{\text{max}}/d = 8.323(V/C)^{0.617} (t_s/d)^{1.639} e^{1.664\theta} + 1.4$$
(7.2)

where $C=\sqrt{E/\rho}$ is the speed of sound in the bumper plate material and θ is in radians. Corresponding equations for spherical projectile impact were developed and presented previously in Section Three. The average errors, standard deviations, and correlation coefficients for these equations are given in the second, third, and fourth column, respectively, of Table 7.11. It can be seen from Table 7.11 that the equations are a fairly good fit to the experimental hole dimension data. However, it is noted that equations (7.1) and (7.2) are valid only for aluminum cylindrical projectiles with L/D=1, and for $0^{\circ} < \theta < 65^{\circ}$, 2.95<V<7.15 km/sec, and 0.152<t/p>

7.3.2 Pressure Wall Plate Damage Analysis

Examination of the damaged pressure wall plates revealed that certain

damage characteristics were common to both spherical and cylindrical projectile impact. These general observations are similar to the results described in several previous investigations of oblique hypervelocity impact [7.9-7.14]. The various kinds of pressure wall plate damage shown in the photographs in References 7.9-7.12 are typical of the damage sustained by the pressure wall plates in this investigation.

1) In the normal impact tests without MLI, regardless of the shape of the projectile, the pressure wall plate damage areas were usually centered in an oval pattern beneath the bumper plate impact site. The damage area consisted of numerous craters and scars from impacting aluminum debris particles and vapor.

2) In the oblique impact tests without MLI, there were usually two damage areas instead of the single one found in the normal impact tests. One area was along a trajectory that was close to the normal between the bumper plate and the pressure wall plate. This 'normal' damage area was typically smaller and more cratered than the 'in-line' damage area. The 'in-line' damage area was more disperse and contained craters that were oblong due to the oblique trajectories of the impacting debris.

3) In the normal tests with MLI, the pressure wall plate damage areas were much smaller than those in similar tests without MLI. However, the equivalent diameter of the pressure wall plate hole in the tests with MLI was sometimes much larger than the diameter of the pressure wall plate hole in the tests without MLI. In these cases, the remains of the MLI appeared as if the MLI had exploded when it was impacted by the secondary debris cloud. The pressure wall plate in these tests was typically cracked in half or severely petalled. This was especially true for the tests with large projectile diameters (ie. greater than 7.5 mm) and high speeds of

impact (ie. greater than 6 km/sec). This potential for intermediate insulating material to explode upon impact has also been observed in a previous investigation of hypervelocity impact [7.3]. It is evident that extreme care must be taken in the selection of an appropriate insulating material for the walls of a dual-wall space structure in order to ensure that is does not explode in the event of an on-orbit impact by a large meteoroid or a large piece of space debris.

4) In the oblique tests with MLI, for a projectile diameter and velocity that penetrated the pressure wall plate when the original angle of obliquity was $\theta=45^{\circ}$, the pressure wall plate was not penetrated when the obliquity was $\theta=65^{\circ}$. In all of the penetrated specimens, the penetration occured along the 'in-line' secondary debris trajectory.

The effects of different projectile shapes became apparent upon examination of the extent and severity of the damage sustained by the pressure wall plates. In the tests with spherical projectiles, the total pressure wall damage areas were, on the average, approximately two to three times as large as the damage areas caused by cylindrical projectiles with similar impact energies, especially when the impact energy exceeded 10,000 joules (see Tables 7.5a,b and 7.6a,b). This is not surprising since the debris clouds for cylindrical projectile impact have been shown to be concentrated near the flight axis while the debris clouds resulting from a spherical projectile impact have been shown to resemble a diverging bubble [7.15].

A comparison of pressure wall plate penetrations revealed that under normal and oblique impact of dual-wall aluminum structures with a stand-off distance of 10.16 cm, the cylindrical projectiles penetrated the pressure wall plate just as often as did spherical projectiles with similar impact energies (see Tables 7.7a,b). With the exception of Test No. EH4A in which the pressure wall plate was cracked in half, the equivalent single hole diameters of the multiple holes in the penetrated pressure wall plates were also approximately equal. Thus, it would appear that, for a 10.16 stand-off distance, the penetrating power of cylindrical projectiles with L/D=1 is similar to that of spherical projectiles with similar impact energies. When the stand-off distance was increased from 10.16 cm to 15.24 cm, the pressure wall plate was not penetrated in the spherical projectile impact test (P16G). In the test with the cylindrical projectile (P18RV), the pressure wall plate was still penetrated at the larger stand-off distance and the equivalent hole diameter was slightly larger than at the smaller stand-off distance. This indicates that the secondary debris cloud in the cylindrical projectile impact contained solid as well as melted fragments. Changing the stand-off distance from 10.16 cm to 15.24 cm would not be expected to decrease the penetration potential of the solid debris fragments. The standoff distance between the bumper plate and the pressure wall plate in an aluminum dual-wall structure would have to be increased significantly beyond 10.16 cm if the defeat of normally-incident non-spherical projectiles is of primary concern.

Because of the scarcity of pressure wall hole diameter, damage area, and spall area data for cylindrical projectile impact, a regression analysis was performed only for the debris cloud center-of-mass trajectory data. Corresponding equations for spherical projectile impact were presented previously in Section Three. Using the data in Tables 7.5a,b, the following equations were obtained for the trajectories of the centers-of-mass of the

'normal' and 'in-line' debris clouds under normal and oblique cylindrical projectile impact as functions of the geometric, material, and impact parameters of the dual-wall systems:

$$\tan \theta_{1} = 0.2216 \times 10^{-8} (V/C)^{-1.710} (t_{s}/d)^{-11.557} \cos^{3.318} \theta$$
(7.3)

$$\tan \theta_{2} = 0.2536 \times 10^{-7} (V/C)^{-2.570} (t_{s}/d)^{-9.952} \cos^{1.088} \theta$$
(7.4)

These equations can be used to estimate the locations of the 'normal' and 'in-line' pressure wall damage areas and can also be used to determine whether the debris clouds will overlap (if $\theta_1 \approx \theta_2$) or will separate (if $\theta_2 > \theta_1$). The average errors, standard deviations, and correlation coefficients for equations (7.3) and (7.4) are given in Table 7.11. Based on the data in Table 7.11, it is evident that equations (7.3) and (7.4) fit the data fairly well. It is again noted that equations (7.3) and (7.4) are valid only for aluminum cylindrical projectiles with L/D=1, and for $0^{\circ} < \theta < 65^{\circ}$, 2.95<V<6.90 km/sec, and 0.152<t / (d<0.315).

In previous investigations in which MLI was included in a dual-wall structural configuration, it was found that the magnitudes of the pressure wall damage areas decreased dramatically as compared to those in structural systems without MLI (see, e.g., [7.9]). A review of the damage area data in Table 7.5b shows that, in the 45° cylindrical projectile impact tests, the MLI was able to completely absorb the energy of the 'normal' debris particles, thereby preventing the formation of the 'normal' pressure wall plate damage areas (note the non-existence of A_{d1} in Tests 223A, B, C in Table 7.5b). The ability of the MLI to neutralize the 'normal' debris particles can be attributed to one of the factors that distinguishes oblique projectile impact from normal projectile impact. In the oblique impact of a

cylindrical projectile with a relatively small angle of obliquity, the shock pressures generated in the projectile exist for a shorter amount of time and are lower in magnitude than the shock pressures created in a spherical projectile under similar impact conditions. As a result, in the 45° cylindrical projectile impacts, relatively little projectile break-up occurred. Although a weaker 'normal' debris cloud was undoubtedly created, the majority of the debris particles were concentrated in the 'in-line' debris cloud. As a result, the particles in the 'in-line' debris cloud penetrated the protective MLI layer, created an area of damage on, and in some cases penetrated through, the pressure wall plate. However, in the 65° cylindrical impact tests, a larger portion of the projectile interacted with the bumper plate. This resulted in more projectile fragmentation and in a larger fraction of the debris particle energy being apportioned to the 'normal' debris cloud. As a result, each debris clouds possessed enough energy to penetrate the MLI and create 'normal' and 'in-line' pressure wall plate damage areas.

A comparison of the occurrence of spall on the reverse side of the pressure wall revealed the following.

1) Under normal impact conditions, spherical projectiles produced spall more frequently than normal impacts by cylindrical projectiles with similar impact energies, especially when the impact energies exceeded 10,000 joules (Table 7.7a). This can be explained by the fact the spherical projectiles produced larger damage areas on the pressure wall plates than did the cylindrical projectiles with similar impact energies. The more concentrated loads imparted to the pressure wall plates by the debris clouds created in cylindrical projectile impact served to penetrate the pressure wall plate rather than cause it to spall.

2) When the impact was normal and the impact energy was low, the presence of MLI served to diminish the size of the spall area. It would seem that in these cases the MLI absorbed a portion of the projectile and bumper plate debris particles and dissipated the associated impact energy. The weakened impulse was then unable to create internal stress waves with amplitudes high enough to cause the plate to spall.

3) Under oblique impact, a significant portion of the initial impact energy was diverted away from the pressure wall plate in the form of ricochet debris. In addition, the partitioning of the secondary debris clouds into two debris clouds further reduced the concentration of the energy directed towards the pressure wall plate. These two factors combined to significantly reduce the possibility of rear-side spall for oblique impacts, regardless of whether or not MLI was present in the structural system.

4) When the stand-off distance between the bumper plate and the pressure-wall plate was increased from 10.16 cm to 15.24 cm, under cylindrical projectile impact, spallation no longer accompanied pressure wall plate penetration. In addition, the pressure wall plate damage area and the equivalent hole diameter were similar in size (Table 7.5a). For spherical projectile impact, increasing the stand-off distance from 10.16 cm to 15.24 cm decreased the area of rear-side spall by a factor of two (Table 7.6a). Thus, the increase in the stand-off distance did not have a significant effect on structural response under cylindrical projectile impact; a much larger stand-off distance would be needed to mitigate the deleterious effects that accompany normal cylindrical projectile impact on aluminum dual-wall structures.

Finally, the impact of the cylindrical lexan projectile was found to be more damaging than the impact by a spherical aluminum projectile with similar impact energy. This agrees with results obtained previously [7.3] and is possibly due to the fact that the secondary debris cloud formed as a result of the cylindrical lexan projectile impact applied a stronger pressure pulse over a larger area of the pressure wall plate than did the debris cloud formed in the impact of the spherical projectile. In addition, this pressure pulse was applied over a larger area in the lexan projectile impact than in the aluminum projectile impact (note the relative magnitudes of γ_n and A_a for Test Nos. 225D and T2-16).

7.4 Effect of Projectile Material on Impact Response

An examination of the relative sizes of the pressure wall plate damage areas revealed that the lexan and aluminum projectiles produced the largest damage areas on the pressure wall plates while steel projectiles produced the smallest damage areas (Tables 7.6a,7.8). Although the lexan and aluminum projectiles produced damage areas of similar size, the major difference between the pressure wall plate damage due to lexan impact and the damage due to aluminum projectile impact lies in the number of pressure wall craters and holes. Lexan projectile impact resulted in sparse cratering of the pressure wall plate while the impact of aluminum projectiles with similar impact energies resulted in damage areas that were packed with deep overlapping craters and holes. This sparse pressure wall cratering under non-aluminum projectile impact using pyrex projectiles [7.3].

The damage areas created by steel projectile impacts were four to five

times as small as those created by aluminum impacts (Tables 7.6a,7.8). The fact that steel projectile impact produces more concentrated damage was also observed in a previous impact investigation [7.2]. This is probably due to the fact that the shock waves created in the steel projectiles as a result of the impact did not heat the steel to a temperature that would be high enough to cause it to melt and be dispersed over a large area. In addition, the secondary debris fragments formed by the steel projectile impacts penetrated deeper into the pressure wall plate than did those fragments formed by either aluminum or lexan projectile impact (see also [7.1]). This is to be expected since the debris clouds formed in steel projectile impact contained steel fragments as well as aluminum bumper fragments. Since penetration depth has been shown to be proportional to a positive power of particle density (see, e.g. [7.16]), the steel fragments formed during steel projectile impacts penetrated the pressure wall plate deeper than did the less dense debris fragments formed during aluminum or lexan projectile impact.

Penetration of the pressure wall plate did not occur in any of the lexan projectile impact tests; however, penetration did occur in all of the corresponding aluminum impact tests (Table 7.9). This would indicate that, for a given spacing, the ballistic limit thickness required for aluminum projectiles would be greater than that required for the lighter lexan projectiles. This qualitatively agrees with the results obtained in a previous investigation using non-aluminum projectiles [7.4]. The steel projectiles penetrated the pressure wall plates in both tests as did the corresponding aluminum projectiles (Table 7.10). The holes in the penetrated pressure wall plates for the steel and aluminum projectile impacts were similar in size and were accompanied by spallation of the material surrounding the holes on

the rear side of the pressure wall plate. However, it is noted that the spall areas due to aluminum projectile impact were significantly smaller than the spall areas due to steel projectile impact (Table 7.6a,7.8).

In two previous investigations of hypervelocity impact, it was found that the areas of spall under aluminum projectile impact were larger than the spall areas due to steel projectile impact and that the spallation occured without penetration of the pressure wall plates in the dual-wall test specimens [7.2,7.5]. However, in these previous studies, the stand-off distance between the bumper plate and the pressure wall plate was only 5.08 cm, which is half of the stand-off distance used in the tests for this portion of the current investigation. In addition, the bumper plate material in the previous study was nickel, whereas the bumper plate material in the current investigation is aluminum. Since the interaction of the projectile with the bumper plate determines the state of the material in the secondary debris cloud (ie. solid or melted fragments, vapor, etc.) and the stand-off distance determines how much time is available for the debris cloud to spread out before it impacts the pressure wall plate, these differences in test specimen bumper material and geometry can cause significant differences in structural response.

7.5 Summary and Conclusions

An investigation of the effects of projectile shape and material on the hypervelocity impact response of aluminum dual-wall structures has been successfully performed. It was found that spherical projectiles damaged a larger area of the pressure wall plate than did cylindrical projectiles with similar impact energies. Both types of projectiles were observed to possess a similar potential for pressure wall plate penetration under similar impact

conditions. This made it difficult to determine which shape was more lethal from a penetration standpoint. A moderate increase in the stand-off distance in a dual-wall structure did not appear to have a significant affect on structural response under cylindrical projectile impact. However, since only one test was performed at a larger stand-off distance, more testing is clearly needed to fully explore the effects of spacing on impact response under both, cylindrical and spherical projectile impact. The density of an impacting projectile was found to be directly related to the nature and extent of damage inflicted upon the pressure wall plate. The less dense projectiles produce larger damage areas with minimal penetration, while the more dense projectiles produce deeper and more concentrated damage. Based on the evidence obtained during the course of this investigation, it is recommended that more testing be performed for a larger variety of projectile shapes and materials at different velocities to more fully understand the effect of projectile shape and material on the impact damage in dualwall space structures.

7.6 References

- 7.1 R.R. Wallace, J.R. Vinson, and M. Kornhauser, "Effects of Hypervelocity Particles on Shielded Structures", ARS Journal, pp. 1231-1237 (1962).
- 7.2 C.J. Maiden and A.R. McMillan, "An Investigation of the Protection Afforded a Spacecraft by a Thin Shield", AIAA Journal, Vol. 2, pp. 1992-1998 (1964).
- 7.3 J.F. Lundeberg, D.H. Lee, and G.T. Burch, "Impact Penetration of Manned Space Stations", J. Spacecraft, Vol. 3, pp. 182-187 (1966).
- 7.4 R.J. Arenz, "Projectile Size and Density Effects on Hypervelocity Penetration", J. Spacecraft, Vol. 6, pp. 1319-1321 (1969).
- 7.5 J.W. Gehring, D.R. Christman, and A.R. McMillan, "Experimental Studies Concerning the Meteoroid Hazard to Aerospace Materials and Structures", J. Spacecraft, Vol. 2, pp. 731-737 (1965).

- 7.6 A.E. Williams and M.A. Persechino, "The Effect of Projectile Porperties on Target Cratering", Int. J. Impact Engng., Vol. 5, pp. 709-728 (1987).
- 7.7 D.J. Kessler, R.C. Reynolds, and P.D. Anz-Meador, <u>Orbital Debris Envi-</u> ronment for <u>Spacecraft Designed to Operate in Low Earth Orbit</u>, NASA TM 100471, Houston, Texas (1989).
- 7.8 D. Rodriguez, <u>Meteoroid Shielding for Space Vehicles</u>, Aerospace Engineering, 20-66, December (1960).
- 7.9 A.R. Coronado, M.N. Gibbins, M.A. Wright, and P.H. Stern, <u>Space Station</u> <u>Integrated Wall Design and Penetration Damage Control</u>, D180-30550-1, Boeing Aerospace Co., Seattle, Washington (1987).
- 7.10 W.P. Schonberg and R.A. Taylor, "Penetration and Ricochet Phenomena in Oblique Hypervelocity Impact", AIAA Journal, Vol. 2, pp. 639-646 (1989).
- 7.11 W.P. Schonberg, "Hypervelocity Impact Penetration Phenomena in Aluminum Space Structures", J. Aero. Engng., Vol. 5, in press (1990).
- 7.12 W.P. Schonberg, "Hypervelocity Impact Response of Spaced Composite Material Structures", Int. J. Impact Engng., Vol. 10, in press (1990).
- 7.13 C.J. Maiden, J.W. Gehring, and A.R. McMillan, <u>Investigation of Fun-</u> <u>damental Mechanism of Damage to Thin Targets by Hypervelocity Projec-</u> <u>tiles</u>, GM-DRL-TR-63-225, General Motors Defense Research Laboratory, Santa Barbara, California (1963).
- 7.14 J.F. Lundeberg, P.H. Stern, and R.J. Bristow, <u>Meteoroid Protection for</u> Spacecraft Structures, NASA CR-54201 (1065)
- 7.15 R.H. Morrison, <u>A</u> <u>Preliminary</u> <u>Investigation</u> <u>of</u> <u>Projectile</u> <u>Shape</u> <u>Effects</u> <u>in</u> <u>Hypervelocity</u> <u>Impact</u> <u>of</u> <u>a</u> <u>Double</u> <u>Sheet</u> <u>Structure</u>, NASA TN D-6944, Washington, D.C. (1972).
- 7.16 J.L. Summers, <u>Investigation of High Speed Impact</u> <u>Regions of Impact and</u> <u>Impact at Oblique Angles</u>, NASA D-94 (1959).

Property	Lexan	Aluminum	Steel
ρ (km/m ³) Ε (x10 ⁹ N/m ²) ν	1150 2.47	2768 68 0.35	7833 200 0.30

Table 7.1 Projectile Material Properties

Test No.	V (km/s)	d (mm)	θ (deg)	t (mm)	t (mm)	S (cm)	MLI
223A	6.58	6.655	45	1.016	3.175	10.16	Y
223B	6.75	6.655	45	1.016	3.175	10.16	Y
223C	5.67	6.655	45	1.016	3.175	10.16	Y
224A	6.49	6.655	65	1.016	3.175	10.16	Y
224B	4.80	6.655	65	1.016	3.175	10.16	Y
224C	3.70	6.655	65	1.016	3.175	10.16	Y
225D1	6.41	9.525	0	1.016	3.175	10.16	N
P18RV	7.12	6.655	0	1.600	3.175	15.24	N
P22	5.09	6.655	0	1.600	3.175	10.16	N
P22A	6.16	6.655	0	1.600	3.175	10.16	Y
P22B	6,89	6.655	0	1.600	3.175	10.16	N
T2-13	2.98	5.080	0	1,600	3.175	10.16	Y
T2-14	3.89	5.080	0	1.016	3.175	10.16	Y

¹Lexan Projectile

Table 7.2 Test Parameters for Cylindrical Projectile Tests

Test No.	V (km/s)	d (mm)	θ (deg)	t (mm)	t (mm)	S (cm)	MLI
003A	6.54	7.950	45	1.016	3.175	10.16	Y
203A	4.79	7.620	65	1.016	3.175	10.16	Y
203B	3.65	7.620	65	1.016	3.175	10.16	Y
203E	6.72	7.620	65	1.016	3.175	10.16	Y
203F	3.05	8.890	65	1.016	3.175	10.16	Y
337	6.90	7,950	45	1.016	3.175	10.16	Y
EH3A	6.64	7.950	0	1.600	3.175	10.16	N
EH4A	6.13	7.950	0	1.600	3.175	10.16	Y
EHSS6C	6.64	7.950	0	1.600	3.175	10.16	N
P03	4.90	6,350	0	1.600	3.175	10.16	N
P07	2.93	6.350	0	1.600	3.175	10.16	Y
P08	2.96	6.350	0	1.600	3.175	10.16	Y
P16G	7.18	7.620	0	1.600	3.175	15.24	N
P21	6.63	7.620	0	1.600	3.175	10.16	N
P21A	6.47	7.620	0	1.600	3.175	10.16	N
P21C	6.60	7.620	0	1.600	3.175	10.16	Y
P33B	4.85	6.350	0	1.016	3.175	10.16	Y
PT4B	4.26	6.350	0	1.600	3.175	10.16	N
PT6A	4.29	7.950	0	1.016	3.175	10.16	N
T2-6	4.62	7.950	0	1.016	3.175	10.16	N
T2-6A	4.64	7.950	0	1.600	3.175	10.16	N
T2-16	5.41	9.525	0	1.016	3.175	10.16	N

Table 7.3 Test Parameters for Spherical Projectile Tests

Test No.	V (km/s)	d (mm)	θ (deg)	t (mm)	t (mm)	S (cm)	MLI	Projectile Material
				1 010	0 175	10.16	NT	Lovan
225A	5,80	8.890	0	1.016	3.1/5	10.10	IN	Lexan
225B	4.85	8.890	0	1.016	3.175	10.16	Ν	Lexan
225C	4.28	8.890	0	1.016	3.175	10.16	N	Lexan
225D ¹	6.41	9.525	0	1.016	3.175	10.16	N	Lexan
146A	6.95	3.175	0	1.600	3.175	10.16	N	Steel
146B	7.35	3.175	0	1.600	3.175	10.16	N	Steel

¹Cylindrical Projectile

Table 7.4 Test Parameters for Non-Aluminum Projectile Tests

Test No.	D (cm)	D (cm)	θ (deg)	γ _n (deg)	A (cm²)	d (mm)	A (cm²)
225D1	1.750	1.750	3.6	73.7	182.58	56.4	
P18RV	1.367	1.626	0.2	37.3	82.29	29.7	
P22	1.450	1.478	2.9	40.6	44.84	39.1	21.35
P22A	1.369	1.529	1.4	27.3	19.23	44.2	
P22B	1.450	1.707	0.6	51.9	76.97	23.4	10.45
T2-13	1.019	1.100	9.0	24.6	15.55	3.8	
T2-14	0.955	0.991	5.3	26.9	20.25	3.6	

¹Lexan Projectile

Table 7.5a Test Results for Normal Cylindrical Impact Tests

Test No.	D (cm)	D (cm)	$(deg)^{\theta}$	θ (deg)	γ_1 (deg)	γ ₂ (deg)	$A_{(cm^2)}$	A (cm ²)	d (mm)	A (cm ²)
	1 000	1 000		10.1		0 1		1 7 7/	F 33	
223A	1.326	1.826		49.1		8.1		17.74	5.33	
223B	1.232	2.034		54.6		6.4		7.94	10.67	
223C	1.250	1.753		53.2		7.5		11.42	12.70	
224A	1.412	2.949	17.4	36.9	14.9	18.1	6.38	22.90		
224B	1.227	2.799	16.7	58.9	18.0	4.6	9.55	6.38		
224C	1.229	2.565	27.7	67.6	30.0	3.1	34.90	13.35		

Table 7.5b Test Results for Oblique Cylindrical Impact Tests

Test No.	D (cm)	θ (deg)	γ (deg)	A (cm²)	d (mm)	A (cm ²)
EH3A	1.514	3.3	76.9	206.19	49.78	7.09
EH4A	1.483	1.7	80.3	230.84	(1)	
EHSS6C	1.588	3.6	63.7	126.64	32.00	5.42
P03	1.247	1.4	53.1	81.09	9.14	3.42
P07	1.066	0.7	19.7	9.81	9.14	
P08	1.092	0.0	28.0	20.26	9.91	2.13
P16G	1.651	0.5	60.5	248.39		2.90
P21	1.032	1.9	63.9	126.64	28.63	5.29
P21A	1.430	1.7	58.1	102.58	33.78	1.23
P21C	1.529	0.3	17.5	7.68		
P33B	1.196	2.7	26.7	18.32	21.08	
PT4B	1.270	1.4	57.5	98.13	6.35	2.58
PT6A	1.278	3.6	50.2	61.74	27.18	0.65
T2-6	1.196	1.7	39.6	41.87	23.37	14.83
T2-6A	1.547	1.9	57.3	96.97	26.42	5.48
T2-16	1.278	8.9	24.7	66.58	41.15	

(1) Severe Pressure Wall Plate Cracking and Petalling

Table 7.6a Test Results for Normal Spherical Impact Tests

Test No.	D (cm)	D (cm)	$(deg)^{\theta}$	$\theta_{(deg)}$	γ_1 (deg)	γ ₂ (deg)	(cm^2)	A (cm ²)	d (mm)	A (cm²)
003A	1.321	1.897		41.6		25.5		62.06	34.29	
203A	1.283	2.383	11.3	56.8	22.8	6.6	15.55	13,35		
203B	1.212	2.189	21.8	60.3	30.2	1.8	31.68	1.29		
203E	1.481	2.964	14.0	56.3	30.9	13.9	27.68	57.74		
203F	1.273	2.408	18.9	55.2	26.5	6.4	22.90	9.54		
337	1.328	1.958		40.5		19.8		41.87	21.84	

Table 7.6b Test Results for Oblique Spherical Impact Tests

Test No.	Projectile Shape	Energy (J)	Pressure Wa Penetrated?	<u>ll Plate</u> Spalled?
	Impact E	nergy < 10,0	000 J	
T2-13	Cylindrical	1240	yes	no
P07 P08	Spherical Spherical	1561 1593	yes yes	no yes
T2-14	Cylindrical	2060	yes	no
P33B	Spherical	4270	yes	no
P22	Cylindrical	8134	yes	yes
T2-6A	Spherical	7650	yes	yes
	Impact En	nergy > 10,0	00 J	
P22A	Cylindrical	11913	yes	no
EH4A P21C	Spherical Spherical	13410 13687	yes no	no no
P22B	Cylindrical	14904	yes	yes
EH3A EHSS6C P21 P21A	Spherical Spherical Spherical Spherical	15734 15734 13812 13153	yes yes yes yes yes	yes yes yes yes yes
P18RV	Cylindrical	15916	yes	no
P16G	Spherical	16199	по	yes
225D1	Cylindrical	17368	yes	no
T2-16	Spherical	12371	yes	no

i

Ē

Table 7.7a Comparison of Cylindrical and Spherical Normal Test Results

¹Lexan Projectile

Test	Projectile	Energy	Pressure W	Pressure Wall Plate	
No.	Shape	(J)	Penetrated?	Spalled?	
	Obliqu	e Impact,	<i>θ</i> =45 [°]		
223A 223B 223C	Cylindrical Cylindrical Cylindrical	13593 14304 10093	yes² yes² yes²	no no no	
003A 337	Spherical Spherical	15263 16990	yes² yes²	no no	
	Oblique	e Impact,	<i>θ=</i> 65 [°]		
224A	Cylindrical	13224	no	no	
203E	Spherical	14189	no	no	
224B	Cylindrical	7233	no	no	
203A	Spherical	7210	no	no	
224C	Cylindrical	4298	no	no	
203B 203F	Spherical Spherical	4186 4641	no no	no no	

Table 7.7b Comparison of Cylindrical and Spherical Oblique Test Results

Ste	el Projec	ctiles		
76 0.6 89 3.4	28.9 29.9	21.48 22.58	32.93 7.11	7.61 11.61
Lex	an Proje	ctiles		
44 0.0	50.2	71.23		0.26
88 0.0	45.1	56.00		
73 1.9	44.2	53.54		
50 3.6	73.7	182.58	56.39	
	Ste 76 0.6 89 3.4 Lex 44 0.0 88 0.0 73 1.9 50 3.6	Steel Project 76 0.6 28.9 89 3.4 29.9 Lexan Project 44 0.0 50.2 88 0.0 45.1 73 1.9 44.2 50 3.6 73.7	Steel Projectiles 76 0.6 28.9 21.48 89 3.4 29.9 22.58 Lexan Projectiles 44 0.0 50.2 71.23 88 0.0 45.1 56.00 73 1.9 44.2 53.54 50 3.6 73.7 182.58	Steel Projectiles 76 0.6 28.9 21.48 32.93 89 3.4 29.9 22.58 7.11 Lexan Projectiles 44 0.0 50.2 71.23 88 0.0 45.1 56.00 73 1.9 44.2 53.54 50 3.6 73.7 182.58 56.39

Table 7.8 Test Results for Non-Aluminum Impact Tests

÷

Test No.	Projectile Material	Energy (J)	Pressure Wa Penetrated?	ll Plate Spalled?
225A	Lexan	7708	no	yes
T2-6	Aluminum	7617	yes	yes
225B 225C	Lexan Lexan	5390 4197	no no	no no
РТ6А	Aluminum	6567	yes	yes
225D	Lexan	17368	yes	no
T2-16	Aluminum	12371	yes	no

¹Cylindrical Projectile

Table 7.9 Comparison of Aluminum and Lexan Impact Test Results

Test No.	Projectile Material	Energy (J)	<u>Pressure Wall Plate</u> Penetrated? Spalled?	
146A	Steel	3174	yes	yes
PT4B	Aluminum	3299	yes	yes
146B	Steel	3549	yes	yes
P03	Aluminum	4366	yes	yes

Table 7.10 Comparison of Aluminum and Steel Results

.

-	Eqn. No.	$\epsilon_{avg}^{()}$	σ(%)	100R ²
, –	D _{min} /d	0.001	3.75	67.3
	D _{max} /d	0.001	6.82	93.7
_	$\tan \theta_1$	4.745	35.05	96.9
	$\tan \theta_2$	3.052	27.93	98.5

Table 7.11 Regression Equations, Error Summary

Figure 7.1 Oblique Impact of a Spherical Projectile on a Dual-Wall Structure

SECTION EIGHT -- HYPERVELOCITY IMPACT RESPONSE OF MULTI-BUMPER STRUCTURES 8.1 Introduction

Interestingly enough, one of the first investigations into the effectiveness of multi-bumper structures in reducing the penetration threat of high-speed meteoroids concluded that, for a constant weight structure, the use of more than one bumper within a given total spacing will actually increase the vulnerability of the spacecraft wall to hypervelocity impacts [8.1-8.3]. However, the analytical technique used to arrive at this conclusion was predicated on the assumption that the projectile and bumper debris clouds were vaporous and, as such, delivered a blast-loading to the pressure wall of the multi-bumper structure. Therefore, the conclusion that more than one bumper decreases penetration resistance may only be valid for meteoroid impacts in which the impact velocity can exceed 30 km/sec and vaporization will undoubtedly occur. In the case of orbital debris, the impact velocities are much lower (on the order of 12 km/sec) and it is more likely that the resultant debris clouds will consist mainly of fragmented bumper and projectile material. As such, a blast loading analysis is inappropriate and the resulting conclusion is invalid for space debris impacts.

Richardson [8.4] showed that dual aluminum bumpers at relatively large stand-off distances, i.e. 30 cm and greater, were capable of reducing pressure wall damage by as much as 60% over single aluminum bumpers with equivalent overall thickness. Test were also performed on dual-bumper systems in which the outer and inner bumpers were an aluminum mesh and a solid aluminum plate, respectively [8.5]. Again these dual-bumper systems proved to be more efficient in reducing pressure wall damage than similar weight single-bumper systems. Cour-Palais showed that there is a distinct advantage in using two

<u>back-up</u> sheets instead of a single pressure wall of equal or greater weight in reducing the penetration threat of high speed projectiles [8.6,8.7].

This Section presents the results of an investigation into the response of single and multi-bumper structural systems under normal and oblique hypervelocity projectile impact loadings. Test results for multi-bumper specimens are reviewed for a variety of geometric configurations and impact parameters. Impact damage is characterized according to the nature and extent of penetration, crater, and spall damage in the structural system. The damage in the multi-bumper specimens is compared to the damage in similar weight single-bumper specimens caused by hypervelocity projectiles with similar impact energies. This comparative analysis is used to determine the advantages of employing multi-bumper structural systems as a means of increasing the protection of long-duration spacecraft against penetration by high speed meteoroid and space debris impacts.

8.2 Hypervelocity Impact Test Parameters

In each test, a projectile of diameter d and velocity V impacted one or more bumper plates along a trajectory inclined at an angle θ with respect to the outward normal of the test specimen bumper plate. Figure 8.1 illustrates the oblique impact of a single-bumper test specimen while Figure 8.2 shows the oblique impact of a dual-bumper system. In the single-bumper system tests, the projectile and a portion of the bumper plate surrounding the impact site shattered upon impact. In the multiple-bumper system tests, projectile and bumper plate fragments formed as a result of the impact on the first bumper plate moved through the remaining bumper plates creating additional secondary debris. In both cases, the projectile and bumper plate fragments eventually struck the pressure wall plate of thickness t_w located i.
a distance S behind the front bumper plate. The thicknesses of the bumper plates in the single-bumper systems, t_s , were chosen to have the same total thickness as the n bumper plates in the multi bumper systems, that is,

$$t_s = t_{s1} + t_{s2} + \dots + t_{sn}$$
 (8.1)

In addition, the total stand-off distances in the single-bumper systems were chosen to be equal to the sum of the intermediate stand-off distances in the corresponding multi-bumper systems, that is,

$$S = S_1 + S_2 + \dots + S_n$$
 (8.2)

In the multi-bumper systems, a subscript of 'l' refers to the bumper thickness or spacing that is farthest from the pressure wall plate while an 'n' refers to the bumper thickness or spacing that is closest. The impact of the secondary debris particles created 'normal' and 'in-line' areas of damage, A_{d1} and A_{d2} , respectively, on the front surface of the pressure wall plate. It is believed that the majority of the 'normal' secondary debris particles are bumper plate fragments while the majority of the 'in-line' debris particles are projectile fragments [8.8,8.9]. In those tests where the path of the projectile was normal to the surface of the bumper plate (ie. $\theta=0^{\circ}$), the damage areas overlapped and combined to form a single area of damage A_d on the front surface of the pressure wall plate. Occasionally, the impacts of the secondary projectile and bumper plate fragments resulted in the creation of thin spall fragments ejected from the rear side of the pressure wall plate. In these cases, for both the normal and oblique impacts, the total spalled area on the rear surface is denoted by A_s .

The conditions of the impact tests were chosen to simulate space debris

impact of light-weight space structures as closely as possible, and still remain within the realm of experimental feasibility. Kessler et.al. [8.10] state that the average mass density for pieces of orbital debris less than 10 mm in diameter is approximately 2.8 gm/cm³, which is approximately that of aluminum. Although it is known that the shape of the impacting projectile will affect the formation and spread of secondary debris particles [8.11], spherical projectiles were used in the test program to maintain repeatability and consistency. Thus, the testing was conducted with solid spherical 1100 aluminum projectiles with diameters ranging from 6.35 mm to 12.7 mm. The velocities of the impacting projectiles ranged from 3.2 to 7.34 km/sec. To study the effects of trajectory obliquity on penetration, impact testing was performed at obliquities of 0° and 45° . Additionally, to simulate the presence of thermal insulation in the spacecraft wall design, some tests were performed with MLI (multi-layer insulation) resting on the pressure wall plate. It is noted that the MLI was merely taped on to the pressure wall plate without being pulled taut. This enabled the layers within the MLI to act individually and not as a single unit.

A total of 61 structural systems with multiple bumpers and 19 singlebumper systems were used to study and evaluate the penetration resistance of multi-bumper systems. In both systems, the bumper and pressure wall plates were made from 6061-T6 and 2219-T87 aluminum, respectively; in all cases, the pressure wall plate thickness was kept constant at 3.175 mm. The MLI consisted of 30 layers of 0.5 mil kapton aluminized on one side and 29 layers of Dacron mesh, one layer between each kapton layer. Additionally, one layer of beta-cloth (coated s-glass) was added on the side nearest the bumper plate for durability. The areal density of this combination was

calculated to be approximately 0.107 gm/cm² [8.12]. Additional test parameters and configuration geometries are given in Tables 8.1 through 8.7. Table 8.1 gives the parameters for multi-walled configurations with more than 2 bumper plates. Tables 8.2 and 8.3 give the test parameters for normal impact tests on dual-bumper specimens with total stand-off distances equal to and greater than 10.16 cm, respectively. Table 8.4 gives the impact test parameters for normal impact tests on single-bumper specimens. Table 8.5 gives the impact test parameters for the normal impact tests for the dual- and single-bumper specimens in which MLI was included. The impact test parameters for oblique impact tests on dual- and single-bumper specimens are given in Tables 8.6 and 8.7, respectively.

The results of the normal hypervelocity impact tests are given in Tables 8.8-8.10 for the multi-bumper systems without MLI; Table 8.11 gives the results of the normal hypervelocity impact tests for systems with single bumpers without MLI. Table 8.12 gives the test results for dual-bumper and single-bumper systems with MLI. Table 8.13 gives the 'normal' and 'in-line' pressure wall damage for the oblique impact tests. It is noted that in Tables 8.8-8.13, entries of '----' indicate that certain phenomena, such as pressure wall penetration, front surface damage, or rear surface spall, did not occur. Additionally, d_h is the equivalent single hole diameter of all the holes in the pressure wall plate in the event of pressure wall penetration. Penetration characteristics for normal and oblique shots are summarized and compared in Tables 8.14-8.16 and in Table 8.18, respectively. In these tables, the test shots grouped according to both geometric and impact energy similarity. Table 8.17 presents a summary and a comparison of the penetration characteristics for the normal tests which contained MLI.

Detailed analysis of the damaged test specimens revealed many interesting features and response characteristics of multi-bumper structures under hypervelocity projectile impact loadings. Finally, Figure 8.3 presents a comparison of the penetration functions for some of the dual-bumper and single-bumper systems considered in this investigation.

8.3 <u>Hypervelocity Impact Response of Multi-Bumper Systems</u>

8.3.1 <u>Bumper Plate Damage Analysis</u>

In the normal impact tests, the impact damage in the outer-most bumper plate of the multi-bumper systems typically consisted of a circular hole with a diameter larger than that of the projectile which struck the plate. Under 45° impact, the impact damage in the outer-most bumper typically consisted of an elliptical hole whose maximum dimension was aligned with the projection of the flight path of the impacting projectile on the surface of the bumper plate. For both the normal and the 45° impacts, the remaining bumper plates consisted of jagged holes that were increasingly larger in each successive plate. Although the edges of these holes were usually frayed, their roundness was evident nonetheless. The jaggedness of the holes is probably the result of a clear penetration by vaporous and molten secondary debris particles being followed by impulsive loads from the slower moving solid and molten debris fragments.

8.3.2 Pressure Wall Plate Damage Analysis

In Tables 8.14-8.18, penetration characteristics for single- and multiple-bumper systems are summarized for tests grouped according to geometric and impact energy similarity. In general, for both normal and oblique impact, under similar impact conditions, the multi-bumper systems sustained

less damage than did corresponding single-bumper systems. Impact response characteristics for dual- and multi-bumper systems are described below and are compared to those in corresponding single-bumper systems first for normal impact and then for oblique impact.

In general, under normal impact, dual- and multi-bumper systems were more resistant to pressure wall plate penetration than corresponding singlebumper systems under similar impact conditions. For example, in Figure 8.3, the penetration function for normally impacted dual-bumper systems with $S_1=2.54$ cm, $S_2=7.62$ cm, t=1.6 mm, and S=10.16 cm is seen to be located above the penetration function for normally impacted single-bumper systems with the same total stand-off distance and bumper thickness, which is taken from Figure 3.2. The area between the two penetration functions represents projectile diameter and velocity combinations that would penetrate the single-bumper systems but would not penetrate the dual-bumper systems. It was also found that if pressure wall penetration occurred in a dual- or multi-bumper system and a corresponding single-bumper system, then the penetrated pressure wall plates in the single-bumper systems sustained larger equivalent single hole diameters than did the penetrated pressure wall plates in the corresponding multi-bumper systems (see Tables 8.9,8.10 and compare with Table 8.11). The increased penetration resistance of the dualbumper specimens is due to the fact that the material in the debris cloud created by the impact of the projectile on the outer-most bumper plate is still traveling at relatively high speeds and is shocked again as it impacts the intermediate bumper plate. This results in further fragmentation of the debris cloud particles and a subsequent reduction in their penetration potential.

The pressure wall plate damage areas in the single-bumper systems were two to three times as large as those in the corresponding multi-bumper systems. The pressure wall plates in the single-bumper systems also demonstrated a greater tendency to undergo rear-side spallation under normal impact than did those in the corresponding multi-bumper systems under similar impact conditions. This is evident in Tables 8.9 and 8.10 where only four of the multi-bumper systems exhibited spall while in Table 8.11 it is seen that all of the single-bumper systems underwent rear-side spallation of the pressure wall plate. If a multi-bumper system did exhibit spall, the spall area was small compared to that in the single-bumper system (e.g. $A_s=0.45 \text{ cm}^2$ for dual-bumper Test No. 175A while $A_s=8.65 \text{ cm}^2$ for singlebumper Test No. P34B). A multi-bumper system is less likely to spall because the debris cloud pressure pulse that causes the shock wave to move through the pressure wall plate has been significantly reduced by the successive shocking of the particles in the debris cloud by the intermediate bumper plates.

In low energy impacts (ie. less than 10,000 joules) of dual-bumper systems, it was found that the systems with $S_1 < S_2$ were less likely to be penetrated than otherwise equivalent systems in which $S_1 > S_2$ (Table 8.14a and Table 8.15). However, in high energy impacts (ie. greater than 25,000 joules) of dual-bumper systems, it was found that systems with $S_1 > S_2$ were less likely to be penetrated than otherwise equivalent systems in which $S_1 < S_2$ (Table 8.14b and Tables 8.15,8.16). Under a high energy impact, dual-bumper systems in which $S_1 < S_2$ (Table 8.14b and Tables 8.15,8.16). Under a high energy impact, dual-bumper systems in which $S_1 < S_2$ because if $S_1 > S_2$, then the debris cloud has sufficient time to spread out before its high-speed particles impact the intermediate bumper

plate and are shocked into further fragmentation. If the intermediate bumper plate is close to the outer-most bumper plate in a dual-bumper system under a high energy impact, then the debris cloud is still relatively concentrated when it impacts the intermediate bumper. Although some additional fragmentation will occur in this case, the debris cloud will still be in relatively concentrated when it leaves the intermediate bumper, which, in some systems, can result in an increased likelihood of pressure wall penetration.

Based on these observations, it would appear that there is an optimum location for the placement of the intermediate bumper plate depending on the energy of the impacting projectile, the geometry of the structural system (ie. t_s , S, and t_w), and the material properties of the bumper and pressure wall plates, and the energy of the impacting projectile. Because the optimum location depends on the energy of the the impacting projectile, a particular dual-bumper configuration may not be applicable over a wide range of impact conditions. The apparent difference in the optimum location of the intermediate bumper plate for low and high energy impacts is due to the action and interaction of two competing processes.

First, as the debris cloud moves toward the pressure wall plate, it spreads out radially. If $S_1 > S_2$, then when the debris cloud impacts the intermediate bumper, its impulsive loading is distributed over a much larger area than if $S_1 < S_2$. If $S_1 < S_2$, then when the debris cloud impacts the intermediate bumper, it is still in a relatively concentrated form. It also follows that if $S_1 > S_2$ and the debris cloud is diffuse when it impacts the intermediate bumper plate, then a larger portion of the debris particles

will be absorbed by the intermediate bumper plate than if $S_1 < S_2$ and the debris cloud were more condensed.

The second process is the shocking of the fragments in the debris cloud as they impact the intermediate bumper. The higher the stress levels in the intermediate bumper plate, the more shocking, and subsequently, the more debris cloud particle fragmentation and melting will occur. However, this additional fragmentation and melting can occur only if the stress levels are very high, that is, greater than the material strength of the intermediate bumper plate. According to the discussion in the preceding paragraph, if $S_1 > S_2$, then a more diffuse load is applied to the intermediate bumper plate than when $S_1 < S_2$. Thus, if $S_1 > S_2$, then it is reasonable to assume that the stress levels in the intermediate bumper plate are lower and that the debris cloud particles are shocked less than if $S_1 < S_2$, unless the debris cloud particles are traveling fast enough to individually create areas of high stress in the intermediate bumper plate.

This explains, in part, why fewer pressure wall plate penetrations occur in the high energy tests if $S_1 > S_2$ and why fewer penetrations occur in the low energy tests if $S_1 < S_2$. Apparently, in the high energy impacts, the debris particles are traveling fast enough so that they are individually shocked into fragmentation by the intermediate bumper plate. In these cases, the wider areal distributions of the debris clouds does not affect the shocking and fragmentation process. Furthermore, in the low velocity impacts, when $S_1 < S_2$, the impacts of the concentrated debris clouds cause stress levels to rise sufficiently high so as to cause additional fragmentation of the debris cloud particles. If $S_1 > S_2$ for a low energy impact, then the debris cloud would spread out and its particles, unless they were

traveling slow enough so as to be stopped by the intermediate bumper plate, would pass through the intermediate bumper plate relatively unscathed. Similarly, if $S_1 < S_2$ for a high energy impact, then the high-speed particles of the initial debris cloud would also pass through the intermediate bumper plate relatively undisturbed. In both of these alternative 'non-optimum' situations, penetration of the pressure wall plate would be possible.

As the stand-off distance was increased beyond 10.16 cm, it was found that the likelihood of pressure wall penetration in single-bumper systems steadily decreased. Only a few pressure wall penetrations occurred in single-bumper systems at stand-off distances greater than 20 cm, even at energy levels as high as 50,000 joules. When the stand-off distance was equal to 30.48 cm, the potential of pressure wall penetration in the singlebumper systems was roughly equal to that of similar dual-bumper systems with similar total stand-off distances (Table 8.14c). However, even at the large stand-off distances, the single-bumper systems exhibited significant amounts of rear-side pressure wall plate spallation whereas corresponding multibumper systems under similar impact conditions did not. The reason for this is that the multiple bumpers probably slow the fragments down to a velocity below the speed of sound in the pressure wall plate material. These slow moving fragments are less likely to cause spall than the faster fragments formed in single-bumper system impact.

It was also found that increasing the total stand-off distance by only 20% or 50% (e.g. from 10.16 cm to 15.24 cm) did not significantly affect the probability of pressure wall penetration in either the single- or the dualbumper systems. In order to achieve a significant decline in the probability

of pressure wall penetration, an increase in total stand-off distance on the order of 100% or 200% was needed (ie. from 10.16 cm to 20.32 cm or from 10.16 cm to 30.48 cm; see Table 8.15). Furthermore, it was found that increasing the number of intermediate bumper plates beyond two while maintaining the total stand-off distance S and the total bumper thickness t_s did not significantly affect the probability of pressure wall plate penetration in the multi-bumper systems at large stand-off distances (Table 8.16). This implies that not only is there an optimum location of an intermediate bumper within a given total spacing, but that there is also an optimum number of intermediate bumpers and an optimum total stand-off distance.

Although the number of tests with MLI was limited, certain trends were still evident. First, it was found that, under normal impact of single- and dual-bumper systems, the presence of MLI reduced the damage area on the pressure wall plate by as much as a factor of three or four (compare the values of A_d in Table 8.12 with those in Tables 8.9,8.11). Second, the presence of MLI also contributed to the reduction of the potential of pressure wall plates to undergo rear-side spallation.

Under oblique impact, the pressure wall plates in the single-bumper systems demonstrated a greater tendency to exhibit spall under the 'in-line' damage area than did the pressure wall plates in the corresponding dualbumper systems under similar impact conditions (see Table 8.13). It was also found that the likelihood of pressure wall penetration in dual-bumper systems under oblique impact was only slightly less than that in corresponding single-bumper systems under similar impact conditions (Table 8.18). This is due to the fact that in the 45[°] impacts, the normal velocity components of the initial debris cloud particles are decreased to the low end of the

hypervelocity regime. As a result of their lower velocities, the debris particles are not shocked to a pressure that is high enough to cause them to fragment as readily as the particles in a debris cloud that resulted from a normal impact. Since only minimal additional fragmentation occurs, the debris clouds move through the intermediate bumpers relatively undisturbed. However, since some additional fragmentation does occur, the probability of pressure wall penetration will decrease even if only by a small amount. In the event that pressure wall penetration occurred in both types of systems, the equivalent single hole diameter of the holes in the 'in-line' damage areas of pressure wall plates were, on the whole, larger in the singlebumper systems than in the multi-bumper systems (Table 13). Unlike normal impact, under oblique impact, the likelihood of pressure wall plate penetration in dual-bumper systems was approximately the same regardless of the position of the intermediate bumper relative to the outer bumper and the pressure wall plate (Table 8.18).

8.4 Summary and Conclusions

The recent proliferation of large pieces of orbital space debris has made it necessary to modify traditional penetration-resistant wall design for long-duration earth-orbiting spacecraft so that they can resist penetration by projectiles with much higher impact energies. One such modification is the replacement of a single bumper with two or more bumpers of equal weight. An investigation was performed to determine the advantages and disadvantages of using multi-bumper systems as a means of increasing the penetration resistance of long-duration spacecraft.

For normal impact, under similar impact conditions, multi-bumper sys-

tems were found to sustain less damage than corresponding single-bumper systems. The pressure wall plate damage areas and equivalent single-hole diameters in the single-bumper systems were significantly larger than those in corresponding multi-bumper systems. The pressure wall plates in normallyimpacted single-bumper systems also demonstrated a greater tendency to undergo rear-side spallation than did those in corresponding normallyimpacted dual- and multi-bumper systems. In high and low energy impacts of dual-bumper systems, it was found that pressure wall plate penetration was sensitive to the placement of the intermediate bumpers relative to the outer bumper plate and the pressure wall plate. Increasing the number of intermediate bumper plates beyond two while maintaining the total stand-off distance and the total bumper thickness of the structural system did not significantly alter pressure wall plate penetration. Under oblique impact, pressure wall penetration in dual-bumper systems was observed to be only slightly less than that in corresponding single-bumper systems under similar impact conditions. Unlike normal impact, under oblique impact, the likelihood of pressure wall plate penetration in dual-bumper systems was approximately the same regardless of the position of the intermediate bumper relative to the outer bumper and the pressure wall plate.

8.5 References

- 8.1 R.E. Sennett, "Effectiveness of Multisheet Structures for Meteroid Impact Protection", AIAA Journal, Vol. 6, pp. 942-943, 1968.
- 8.2 J.W. Gehring, "Engineering Considerations in Hypervelocity Impact", <u>High-Velocity Impact Phenomena</u>, R. Kinslow, ed., Academic Press (1970).
- 8.3 C.J. Maiden, J.W. Gehring, A.R. McMillan, and R.E. Sennett, <u>Experimental</u> <u>Investigation of Simulated Meteoroid Damage to Various Spacecraft</u> <u>Structures</u>, NASA TR 65-48 (1965).
- 8.4 A.J. Richardson and J.P. Sanders, "Development of Dual-Bumper Wall Construction for Advanced Spacecraft", J. Spacecraft, Vol. 9, pp. 448-

451 (1972).

- 8.5 E. Christiansen, <u>Evaluation of Space Station Meteoroid/Debris Shielding</u> Materials, Report No. 87-163, Eagle Engineering, Houston, Texas (1987).
- 8.6 B.G. Cour-Palais, "Space Vehicle Meteoroid Shielding Design", <u>Proceed-</u> <u>ings of the Comet Halley Micrometeorid Hazard Workshop</u>, N. Langdon, ed., ESA SP-153, Paris France, 85-92, 1979.
- 8.7 B.G. Cour-Palais, "Meteoriod Protection by Multi-Wall Structures", AIAA Paper No. 69-372, <u>Proceedings of the AIAA</u> <u>Hypervelocity Impact</u> Conference (1969).
- 8.8 W.P. Schonberg and R.A. Taylor, "Penetration and Ricochet Phenomena in Oblique Hypervelocity Impact", AIAA Journal, Vol. 27, pp. 639-646 (1989).
- 8.9 G.T. Burch, <u>Multi-Plate Damage Study</u>, AFATL-TR-67-116, Air Force Armament Laboratory, Eglin Air Force Base, Florida (1967).
- 8.10 D.J. Kessler, R.C. Reynolds, and P.D. Anz-Meador, <u>Orbital Debris Envi-</u> ronment for <u>Spacecraft Designed</u> to <u>Operate in Low Earth Orbit</u>, NASA TM 100471, Houston, Texas (1989).
- 8.11 R.H. Morrison, <u>A</u> <u>Preliminary Investigation of Projectile Shape Effects</u> <u>in Hypervelocity Impact of a Double Sheet Structure</u>, NASA TN D-6944, Washington, D.C. (1972).
- 8.12 A.R. Coronado, M.N. Gibbins, M.A. Wright, and P.H. Stern, <u>Space Station</u> <u>Integrated Wall Design and Penetration Damage Control</u>, D180-30550-1, Boeing Aerospace Co., Seattle, Washington (1987).

Test No.	V (km/s)	d (mm)	t (mm)	Number of Bumpers	S (cm)	Impact Energy (J)
180A	6.41	9,53	4.064	4	17.78	24,902
180B	5.53	9.53	4.064	4	17.78	18.229
182A	6.30	9.53	4.064	4	17.78	24,204
188D	6.12	12.70	3.048	3	30,48	54.130
189C	5.87	12.70	3.048	6	30.48	50,125

Table 8.1a Normal Impact Test Parameters, Multi-Bumper Systems, No MLI

Table 8.1b Intermediate Stand-off Distances, Multi-Bumper Systems

Test No.	s ₁	s ₂	s ₃	s ₄	s ₅	s ₆
1804	2 54	2 54	2 5 4	10 16	· ·	· ·
180A	2.54	2.54	2.54	10.16		
182A	5.08	5.08	5,08	2.54		
188D	10.16	10.16	10.16			
189C	5.08	5.08	5.08	5.08	5.08	5.08

Table 8.1c Intermediate Bumper Thicknesses, Multi-Bumper Systems

Test No.	t _{s1}	t s2	t _{s3}	t _{s4}	ts5	ts6
180A	1.016	1.016	1,016	1.016		
180B	1.016	1.106	1.016	1.016		
182A	1.106	1.016	1.106	1.016		
188D	1.016	1.016	1.016			
189C	0.508	0.508	0.508	0.508	0.508	0.508

÷

Test No.	V (km/s)	d (mm)	t (mm)	t (mm)	t (mm)	S (cm)	S ₁ (cm)	S ₂ (cm)	Impact Energy (J)
115-1	4,40	6.35	1.626	0.813	0.813	10.16	2.54	7.62	3,520
115-2	4.06	6.35	1.626	0.813	0.813	10.16	2.54	7.62	2,997
115-3	3.82	6.35	1,626	0.813	0.813	10.16	2.54	7.62	2,653
117-1	4.09	6.35	1.626	0.813	0.813	10.16	5,08	5.08	3,042
117-2	4.17	6.35	1.626	0.813	0.813	10.16	5.08	5.08	3,425
118-1	4 40	6.35	1.626	0.813	0.813	10.16	7.62	2.54	3,520
118-2	4.49	6.35	1.626	0.813	0.813	10.16	7.62	2.54	4,492
118-3	4 52	6.35	1.626	0.813	0.813	10.16	7.62	2.54	3,715
1304	3 60	7.62	1.626	0.813	0.813	10.16	2.54	7.62	4,072
130B	4 85	7 62	1.626	0.813	0.813	10.16	2.54	7.62	7,391
1300	5 25	7 62	1.626	0.813	0.813	10.16	2.54	7.62	8,826
1314	4 60	6.35	2.413	1.600	0.813	10.16	7.62	2.54	3,848
131R	4 31	6.35	2.413	1.600	0,813	10.16	7.62	2.54	3,778
1310	4 64	6.35	2.413	1.600	0.813	10.16	7.62	2.54	3,814
152A	4 62	6.35	1.524	1.016	0.508	10.16	5.08	5.08	3,798
152R	3 63	6.35	1.524	1.016	0.508	10.16	5.08	5.08	2,396
1534	6 58	9.53	3.632	2.032	1.600	10.16	7.62	2.54	25,531
153R	6 92	9.53	3.632	2.032	1,600	10.16	7.62	2.54	29,049
1584	3 20	6 35	1.626	0.813	0.813	10.16	2.54	7.62	1,816
1754	6 99	6.35	1.626	0.813	0.813	10.16	1.35	8.81	8,733
175B	7 34	6.35	1.626	0.813	0.813	10.16	1.35	8.81	9,611
175C	7.30	6.35	1.626	0.813	0.813	10.16	1.35	8.81	9,690

Table 8.2 Normal Impact Test Parameters, Dual-Bumper Systems, S=10.16 cm, No MLI

Test No.	V (km/s)	d (mm)	t (mm)	t (mm)	t (mm)	S (cm)	S ₁ (cm)	S (cm)	Impact Energy (J)
176C	5.07	6.35	1.626	0.813	0.813	12.70	5.08	7.62	4,619
158B 160	3.21 6.50	6.35 9.53	1.626 1.626	0.813 0.813	0.813 0.813	15.24 15.24	2.54 2.54	12.70 12.70	1,839 25,849
179A 179B 181A 181B	6.46 6.70 6.32 5.52	9.53 9.53 9.53 9.53 9.53	2.032 2.032 4.191 4.191	1.016 1.016 3.175 3.175	1.016 1.016 1.016 1.016 1.016	17.78 17.78 17.78 17.78 17.78	7.62 7.62 7.62 7.62 7.62	10.16 10.16 10.16 10.16	25,532 27,467 23,973 18,632
167A 167B 187A 187B 191A	6.58 6.66 6.36 6.02 6.57	9.53 9.53 12.70 12.70 9.53	3.200 3.200 5.207 5.207 2.032	1.600 1.600 3.175 3.175 1.016	1.600 1.600 2.032 2.032 1.016	20.32 20.32 20.32 20.32 20.32 20.32	10.16 10.16 10.16 10.16 10.16 10.16	10.16 10.16 10.16 10.16 10.16 10.16	26,410 26,895 58,105 52,021 26,249
186A 186B 188A 188B 188C 188C 188E	6.07 5.36 5.72 6.21 6.06 6.12	12.70 12.70 12.70 12.70 12.70 12.70 12.70	5.207 5.207 5.207 4.064 4.064 3.048	3.175 3.175 3.175 2.032 3.175 2.032	2.032 2.032 2.032 2.032 1.016 1.016	30.48 30.48 30.48 30.48 30.48 30.48 30.48	10.16 10.16 20.32 20.32 20.32 20.32 20.32	20.32 20.32 10.16 10.16 10.16 10.16	53,246 39,487 46,274 54,485 52,544 53,422

÷

÷

Table 8.3 Normal Impact Test Parameters, Dual-Bumper Systems, S>10.16 cm, No MLI

220

:••

Test	V	d	t	S	Impact
No.	(km/s)	(mm)	(mm)	(cm)	Energy (J)
213C	4.43	6.35	2.032	10.16	3,569
P03	4.90	6.35	1.600	10.16	4,366
P04	4.95	6.35	1.600	10.16	4,456
P34B	7.06	6.35	1.600	10.16	9,064
PT-4A	3.64	6.35	1.600	10.16	2,489
PT-4B	4.26	6.35	1.600	10.16	3,378
PT-8A	4.35	7.95	1.600	10.16	6,846
PT-8B	4.37	7.95	1.600	10.16	6,972
P35	6.69	8.89	1.600	15.24	22,332
184A 184B 189A 189B	5.70 5.28 6.13 6.10	12.70 12.70 12.70 12.70 12.70	4.750 4.750 3.175 3.175	30.48 30.48 30.48 30.48 30.48	47,264 41,793 53,599 54,130

Table 8.4 Normal Impact Test Parameters, Single Bumper Systems, No MLI

Table 8.5 Normal Impact Test Parameters, Dual- and Single-Bumper Systems With MLI

Test	V	d	No.	t	t	t	S	S ₁	S2	Impact
No.	(km/s)	(mm)	Bump.	(mm)	(mm)	(mm)	(cm)	(cm)	(cm)	Energy (J)
128A	4.10	6.35	2	1.626	0.813	0.813	10.16	2.54	7.62	3,441
128B	3.53	6.35	2	1.626	0.813	0.813	10.16	2.54	7.62	2,370
P12C P12D	4.33 3.96	6.35 6.35	1 1	1.600 1.600			10.16 10.16			3,409 2,852

Test No.	V (km/s)	d (mm)	t (mm)	t (mm)	t (mm)	S (cm)	S ₁ (cm)	S ₂ (cm)	Impact Energy (J)
137A	4.86	6 35	1.626	0.813	0.813	10.16	7.62	2.54	4 474
137B	5.65	6.35	1.626	0.813	0.813	10.16	7.62	2.54	5.805
137C	6.16	6.35	1.626	0.813	0.813	10.16	7.62	2.54	6,990
137D	7.03	6.35	1.626	0.813	0.813	10.16	7.62	2.54	8,809
138A	6.52	6.35	1,626	0.813	0,813	10.16	7.62	2.54	13,317
138B	7.15	7.62	1.626	0.813	0.813	10.16	7.62	2.54	16,380
168A	5.54	6.35	1.626	0.813	0.813	10.16	9.44	0.72	5,461
168B	5,98	6.35	1.626	0.813	0.813	10.16	9.44	0.72	6,373
168C	6.67	6.35	1.626	0.813	0.813	10.16	9.44	0.72	7,997
168D	7.02	6.35	1.626	0.813	0.813	10.16	9.44	0.72	8,961
169A	6.87	6.35	1.626	0.813	0.813	10.16	9.76	0.40	6,532
169B	6.55	6.35	1.626	0.813	0.813	10.16	9.76	0.40	7,778
170A	6.52	6.35	1.626	0.813	0.813	10.16	8.81	1.35	7,636
170B	6.85	6,35	1.626	0.813	0.813	10.16	8.81	1.35	8,359

Table 8.6 Oblique Impact Test Parameters, Dual-Bumper Systems, No MLI, θ =45 deg

Table 8.7 Oblique Impact Test Parameters, Single-Bumper Systems, No MLI, $\theta=45$ deg

Test No.	V (km/s)	d (mm)	t (mm)	S (cm)	Impact Energy (J)
002A	6.50	7.95	1.600	10.16	15,310
230C	5.18	6.35	1.600	10.16	4,842
230D	5,55	6.35	1.600	10.16	5,682
230E	6.57	6.35	1.600	10.16	7,969

Table 8.8 Test Results, Normal Impact, Multi-Bumper Systems, No MLI

Test No.	D (cm)	D (cm)	D (cm)	D (cm)	D ₅ (cm)	D (cm)	d _h (cm²)	A (cm)	A (cm ²)
180A	1,422	4,369	9.220	13.360				53.52	
180B	1.377	3.327	7.188	11,836				41.87	
182A	1,415	5.055	11.760	5.055				17.81	
188D	1.651	5,588	19.126					42.91	
189C	1.420	9.881	14.580	19.279	cracked	22.047	18.29	32.32	

Test No.	D (cm)	D ₂ (cm)	d (mm)	A (cm ²)	A (cm²)
115-1	0.978	2.583		38.06	
115-2	0.894	2.167		35.05	
115-3	0.907	1.953	4.85	38.29	
117-1	0.973	3.683		13.16	
117-2	0.925	2.700	1.02	14.28	
118-1	0.965	3,683	3.73	6.46	
118-2	0.942	3.480		38.32	
118-3	1.011	3.830	crack	6.99	
130A	1.026	2.217	10.72	25.81	
130B	1.087	2.946	2.29	34.38	
130C	1.123	3.462	3.56	34.78	
131A	1.245	5.108		24.30	
131B	1.130	3.345	10.24	20.47	
131C	1.151	3.119	14.45	19.82	
152A	1.069	3.475		16.24	
152B	0.935	2.675	5.36	9.37	
153A	1.905	1.270	60.96	93.68	
153B	2.032	2.794	12.70	36.94	
158A	0.782	1.824	5.21	13.61	
175A	1.041	2.570	6.10	45.61	0.45
175 B	1.052	2.433	2.05	30.41	0.06
175C	1.099	2.642		34.92	

Table 8.9 Test Results, Normal Impact, Dual-Bumper Systems, S-10.16 cm, No MLI

Test No.	D ₁ (cm)	D ₂ (cm)	d (mm)	A (cm²)	A (cm²)
176C	0.940	3.688		34.92	0.01
158B 160	0.810 1.346	1.829 4.813	7.81 45.72	25.87 98.06	
179A 179B 181A 181B	1.397 1.372 2.283 2.209	5.080 5.121 9.550 8.306	84.07 19.43	241.94 120.42 62.06 31.68	
167A 167B 187A 187B 191A	1.951 1.935 2.743 2.743 1.412	8.555 5.730 10.719 9.347 6.208	crack	36.13 61.72 21.32 36.33 53.48	0.06
186A 186B 188A 188B 188C 188E	2.667 2.675 2.743 2.184 2.746 2.261	10.160 9.093 11.463 10.973 16.535 14.681		61.35 53.87 46.52 70.13 114.32 90.24	

Table 8.10 Test Results, Normal Impact, Dual-Bumper Systems, S>10.16 cm, No MLI

Test	D	d _h	(cm^2)	A
No.	(cm)	(mm)		(cm²)
213C	1.217	6.86	71.23	3.19
P03	1.247	9.09	81.07	3.44
P04	1.247	7.72	64.58	1.97
P34B	1.448	25.65	80.97	8.65
PT-4A	1.016	16.00	69.48	3.94
PT-4B	1.270	6.35	98.13	2.58
PT-8A	1.244	46.99	81.42	6.19
PT-8B	1.270	37.34	85.23	1.42
P35	1.854	45.11	107.92	8.12
184A	3.200	23.88	622.26	0.13
184B	3.124		610.26	0.77
189A	2.946		394.19	1.30
189B	2.743		568.26	0.18

Table 8.11 Test Results, Normal Impact, Single-Bumper Systems, No MLI

Table 8.12 Test Results, Normal Impact, Dual- and Single-Bumper Systems With MLI

Test No.	D ₁ (cm)	D (cm)	d (mm)	A (cm ²)	A (cm²)
128A 128B	0.960 0.930	2.262 2.223	2.41	9.37 7.27	
P12C P12D	1.194 1.270			21.29 18.19	

.

	~		D	'Normal' Damage			'In-Line' Damage			
No.	lemin (emin	(cm)	02 (cm)	d (mm)	A (cm ²)	A (cm ²)	d (mm)	A (cm ²)	A (cm²)	
			Mult	i-Bumper	Systems	5				
137A	1.095	1.440	3.551		10.48		5.64	22.09		
137B	1.064	1.409	3.769		12.48		6.07	20.57		
137C	1.067	1.427	3.975		6.37		3.10	47.19		
137D	1.069	1.549	3.782		6.84		6.35	16.26	0.76	
138A	1.318	1.819	5.146		8.15		13.49	57.52		
138B	1.298	1.697	5.250		8.92		12.27	55.45		
168A	1.067	1.450	2.642		5.80		8.76	14.65		
168B	1.052	1.527	2.462		6.82		10.52	25.11		
168C	1.118	1.473	2.842		21.50		4.70	16.05		
168D	1.227	1.557	2.710		26.11			29.68		
169A	1.179	1.674	2.192		22.90			6.41		
169B	1.166	1.621	1.696		41.87		4.95	21.81		
170A	1.019	1.715	2.972		8.52		6.40	31.68		
170B	1.080	1.572	2.819	2.16	25.65			15.52		
			Singl	.e-Bumper	Systems	3	tur e			
0024	1 560	2 024			45 61		27.97	91.21	1.31	
2300	1 255	1 610			31.67		11.89	33.21		
2300	1 336	1 631		2 591	34 25		12 78	36 94	0 15	
2305	1 /17	1 770			29 19	0 27	11 94	53 85	0 27	
2006	1.41/	1.770			_ / /	V. LI	*** * * *		U. L.	

Table 8.13 Test Results, Oblique Impact, S=10.16 cm, No MLI

Test	Stand-off	Impact	Pressure	Wall
No.	Dist. (cm)	Energy (J)	Penetrated?	Spalled?
		$t_s \simeq 1.6 \text{ mm}$		
115-1	2.54 7.62	3,520	No	No
117-1	5.08 5.08	3,042	No	No
117-2	5.08 5.08	3,425	Yes	No
118-1	7.62 2.54	3,520	Yes	No
118-3	7.62 2.54	3,715	Yes	No
152A	5.08 5.08	3,798	No	No
PT-4B	10.16	3,378	Yes	Yes
118-2	7.62 2.54	4,492	No	No
130A	2.54 7.62	4,072	Yes	No
P03	10.16	4.366	Yes	Yes
P04	10.16	4,456	Yes	Yes
115-2	2.54 7.62	2.997	No	No
115-3	2.54 7.62	2,653	Yes	No
152B	5.08 5.08	2,396	Yes	No
158A	2.54 7.62	1,816	Yes	No
PT-4A	10.16	2,489	Yes	Yes
130B	2.54 7.62	7,391	Yes	No
PT-8A	10.16	6,846	Yes	Yes
PT - 8B	10.16	6,972	Yes	Yes
130C	2.54,7.62	8,826	Yes	No
175A	1.35,8.81	8,733	Yes	Yes
175B	1.35,8.81	9,611	Yes	Yes
175C	1.35,8.81	9,690	No	No
P34B	10.16	9,064	Yes	Yes
		t ≃ 2 mm s		
131A	7.62 2.54	3,848	No	No
131B	7.62 2.54	3,778	Yes	No
131C	7.62 2.54	3,814	Yes	No
213C	10.16	3,569	Yes	Yes

Table 8.14a Pressure Wall Damage Summary, Normal Impact, S=10.16 cm, Impact Energy < 10,000 Joules

Test	Stand-off	Impact	Pressure	Wall
No.	Dist. (cm)	Energy (J)	Penetrated?	Spalled?
	t ≃ s	1.6 mm, S = 1	15.4 cm	
160	2.54 12.70	25,849	Yes	No
P35	15.24	22,332	Yes	Yes
<u>.</u>	t ≃ s	3 mm, S = 30.	48 cm	
188E	20.32 10.16	53,422	No	No
189A	30.48	53,599	Yes	Yes
189B	30.48	54,130	No	Yes
	t ≃ 4 s	4.5 mm, S = 30).48 cm	
186A	10.16 20.34	53,246	No	No
186B	10.16 20.34	39,487	No	No
188A	20.32 10.16	46,274	No	No
188C	20.32 10.16	54,485 52 544	NO	NO
		JZ, J44		
184A	30.48	47,264	No	Yes
184B	30.48	41,793	No	Yes

Table 8.14bPressure Wall Damage Summary, Normal Impact,
S=30.48 cm, Impact Energy > 25,000 joules

Test		Intermed. Impact		Pressure Wall		
No.	Stand-off Dist. (cm)	Stand-off Dist. (cm)	Energy	Penetrated?	Spalled?	
		t ≃] s	L.6 mm			
118-2 130A	10.16 10.16	7.62 2.54 2.54 7.62	4,492 4,072	No Yes	No Yes	
176C	12.70	5.08 7.62	4,619	No	Yes	
158A	10.16	2.54 7.62	1,816	Yes	No	
158B	15.24	2.54 12.70	1,839	Yes	No	
		t ≃ s	2 mm			
179A 179B	17.78 17.78	7.62 10.16 7.62 10.16	25,532 27,467	Yes Yes	No No	
191A	20.32	10.16 10.16	26,249	No	No	
		t ≃ s	3 mm			
153A 153B	10.16 10.16	7.62 2.54 7.62 2.54	25,531 29,049	Yes Yes	No No	
167A 167B	20.32 20.32	10.16 10.16 10.16 10.16	26,410 26,895	No Yes	No No	
		t ≃ s	5 mm			
187A 187B	20.32 20.32	10.16 10.16 10.16 10.16	58,105 52,021	No No	Yes No	
186A	30.48	10.16 20.34	53,246	No	No	

Table 8.15 Effect of Total Stand-off Distance and Total Bumper Thickness on Dual-Bumper System Response, Normal Impact

.

Test	Int	ermedi	ate St	and-off	E Dist	ances	Impact	Pressur	e Wall
No.				(cm)			Energy (J)	Penetrated?	Spalled?
				t ≃ s	4 mm,	S = 1	7.78 cm		
181A	7.62	10.16					23,973	No	No
181B	7.62	10.16					18,632	No	No
180A	2.54	2.54	2.54	10.16			24,902	No	No
180B	2.54	2.54	2.54	10.16			18,229	No	No
182A	5.08	5.08	5.08	2.54			24,204	No	No
				t ≃ s	3 mm,	S = 30).48 cm		
188D	10.16	10.16	10.16				54,130	No	No
188E	20.32	10.16					53,422	No	No
189C	5.08	5.08	5.08	5.08	5.08	5.08	50,125	Yes	 No

Table 8.16 Effect of Intermediate Spacing and Number of Intermediate Bumpers on Multi-Bumper System Response, Normal Impact

Table 8.17 Pressure Wall Damage Summary, Normal Impact, t $_{\rm S}{\simeq}1.6$ mm, S=10.16 cm, With MLI

Test No.	Stand-off Distances	Impact Energy (J)	Pressure Penetrated?	Wall Spalled?
128A	2.54 7.62	3,441	No	No
P12C	10.16	3,409	No	No
128B	2.54 7.62	2,370	Yes	No
P12D	10.16	2,852	No	No

-

Test No.	Stand-off Dist. (cm)	Impact Energy	'Normal' Penetrated?	Area Spalled?	'In-line' Penetrated?	Area Spalled?
		Impact	Energy < 10,0)00 Joules	:	
137A	7.62 2.54	4,474	No	No	Yes	No
230C	10.16	4,842	No	No	Yes	No
137B 168A	7.62 2.54 9.44 0.72	5,805 5,461	No No	No No	Yes Yes	No No
230D	10.16	5,682	Yes	No	Yes	Yes
137C 137D 168B 168C 168D 169A 169B 170A 170B	7.62 2.54 7.62 2.54 9.44 0.72 9.44 0.72 9.44 0.72 9.76 0.40 9.76 0.40 8.81 1.35 8.81 1.35	6,990 8,809 6,373 7,997 8,961 8,532 7,778 7,636 8,359	No No No No No No Yes	No No No No No No No No	Yes Yes Yes Yes No No Yes Yes No	No Yes No No No No No No
230E	10.16	7,969	Yes	No	Yes	Yes

Table 8.18 Pressure Wall Damage Summary, Oblique Impact, t \approx 1.6 mm, S=10.16 cm

•

14 m

÷

Impact Energy > 10,000 Joules

138A	7.62 2.54	13,317	No	No	Yes	No
138B	7.62 2.54	16,380	No	No	Yes	No
002A	10.16	15,310	No	No	Yes	Yes

Figure 8.1 Oblique Impact of a Single-Bumper System

Figure 8.2 Oblique Impact of a Dual-Bumper System

• **

SECTION NINE -- CONCLUSIONS AND RECOMMENDATIONS

9.1 Conclusions

An in-depth analysis of over 500 hypervelocity impact test specimens was performed in an effort to more fully understand the effects of the particulate space environment on the candidate materials, configurations, and support mechanisms of long-duration spacecraft. The analysis included the characterization of the effects of impact obliquity on pressure wall damage, the characterization of the potential of the rear side of the pressure wall to undergo spallation, the characterization of the effects of secondary and ricochet debris generated by oblique impacts, and the characterization of the effects of non-spherical and non-aluminum projectiles on pressure wall damage. Where possible, penetration curves and regression equations were developed to predict hypervelocity impact damage to dual-wall structural systems. A Hypervelocity Impact Damage Database was developed based on the test data obtained during the course of the various analyses that were performed.

In an investigation in which two composite materials and one ceramic material were used as bumper plate materials, it was found that thin Kevlar, graphite/epoxy, and alumina panels offer no significant advantage over equivalent aluminum 6061-T6 panels in reducing the penetration threat of hypervelocity projectiles. However, replacing monolithic aluminum bumpers with equal weight aluminum corrugated bumpers resulted in a significant increase in protection against pressure wall penetration by hypervelocity projectiles.

A study of multi-layer Lexgard windows under hypervelocity projectile impact revealed that such window systems sustained high levels of internal,

penetration, and rear-side spall damage. On the other hand, triple-pane glass window systems were found to be rather resilient under hypervelocity projectile impact loadings and did not sustain any penetration or spall damage of the inner-most window pane.

An investigation of projectile shape and material effects on the impact response of aluminum dual-wall structures revealed that hypervelocity impacts by equal-weight spherical and cylindrical projectiles with L/D-1 at similar speeds resulted in similar levels of pressure wall penetration and crater damage. The density of the impacting projectile was found to be directly related to the nature and extent of damage inflicted to the pressure wall.

Finally, a study was performed to determine the advantages and disadvantages of using multi-bumper systems as a means of increasing the resistance of long-duration spacecraft to penetration by hypervelocity projectiles. It was found that multi-bumper systems sustained less damage than similar single-bumper systems. Front-side pressure wall damage areas, rear-side pressure wall spall areas, and single-hole diameters in penetrated pressure walls in the single-bumper systems were significantly larger than those in the corresponding multi-bumper systems.

.

Ξ

Ē

I IN INTEL 18 LICENSIN MANY

9.2 Recommendations

An extensive program of hypervelocity impact testing and spacecraft materials evaluation has been underway at the NASA/Marshall Space Flight Center for over twenty years. However, additional testing is still required to more fully understand the various phenomena associated with the hypervelocity impact response of metallic and non-metallic materials that will be

exposed to the meteoroid and space debris environment. It is imperative that more testing be performed using larger projectiles at higher impact velocities and at higher impact obliquities. Alternative bumper and pressure wall materials and configurations must be explored to provide the best protection possible to the crews of habitable spacecraft modules. Additionally, tests must be performed to study the effects of the composition and placement of thermal insulation, such as MLI, on the response of multi-wall structural systems. Perhaps alternative thermal insulation should be developed, preferably one without the damaging effects associated with MLI that were observed during the course of this investigation. Finally, tests with more tests with non-spherical and non-aluminum projectiles should be performed in order to more fully characterize different kinds of damage that can result from various projectile shapes and densities.

APPENDIX -- HYPERVELOCITY IMPACT DAMAGE DATABASE

An impact analysis of over 500 test specimens was performed to generate a Hypervelocity Impact Damage Database. The Database consists of 17 LOTUS files, which can be found on the floppy disk attached to this Report. A brief description of the Database, the various Database files, and a printout of the Damage Database is presented in the following paragraphs.

The Hypervelocity Impact Damage Database developed during this investigation contains the following information (units are in parentheses):

1. Test number;

- 2. Bumper plate hole dimensions (in.);
- 3. Pressure wall equivalent hole diameter (in., if penetrated);
- 4. Pressure wall damage area (sq.in.);
- 5. Pressure wall spall area (sq.in., if spalled);
- 6. Debris cloud trajectory (θ_n , degrees);
- 7. Debris cloud spread (γ_n , degrees);
- Diameters of the three largest holes in the pressure wall plate (in., if applicable);
- Diameters and depths of the three largest craters on the pressure wall plate (in., if applicable);
- 10. Number of witness plates perforated (if applicable).

If the impact test was performed at a non-normal obliquity, then the information in items 3 through 9 is presented for both, the 'normal' and 'inline' pressure wall plate damage areas.

In order to make the Damage Database more manageable, it has been split up into several small files, each of which contains the damage information

from a similar group of tests. The following list presents the names of the LOTUS files and a description of their contents. Where feasible, the test numbers have also been included.

- 1. <u>COMPOSITE.WK1</u> ... damage information for tests with composite and ceramic bumper plates (Test Nos. SS-103 through SS-104B, SS-122-1,SS-122-2, SS-140A through SS-140C, and, SS-177A and SS-177B);
- 2. <u>LEXGARD.WK1</u> damage information for window tests with multi-layer Lexgard panels (Test Nos. SS-123 through SS-129, and SS-171 through SS-174);

١

- 3. <u>GLASS.WK1</u> damage information for window tests with multi-pane glass windows (Test Nos. SS-P-18-1 through SS-P-18-5);
- 4. <u>CYLINDER.WK1</u> damage information for tests with cylindrical projectiles (Test Nos. SS-146A,B, and SS-225A through 225D);
- 5. <u>NONALUM.WK1</u> damage information for tests with non-aluminum projectiles;
- <u>NORDUAL.WK1</u> damage information for normal impact tests on dual-bumper systems;
- 7. <u>NORMUL.WK1</u> damage information for normal impact tests on multi-bumper systems;

- <u>OBLDUAL.WK1</u> damage information for oblique impact tests on dual-bumper systems;
- 9. <u>NSERNMLI.WK1</u> damage information for normal and oblique impact tests with spherical aluminum projectiles on single-bumper aluminum systems without MLI (Test Nos. SS-001 through SS-231);
- 10. <u>NSERYMLI.WK1</u> damage information for normal and oblique impact tests with spherical aluminum projectiles on single-bumper aluminum systems with MLI (Test Nos. SS-001 through SS-339);
- 11. <u>EHSSMLIN.WK1</u> damage information for normal and oblique impact tests with spherical aluminum projectiles on single-bumper aluminum systems without MLI for the EH and EHSS test series (Test Nos. EH1A through EH1D and EHSS-1A through EHSS-8A);
- 12. <u>EHMLIY.WK1</u> damage information for normal and oblique impact tests with spherical aluminum projectiles on single-bumper aluminum systems with and without MLI for the EH, EHRP, MD, and PR-EH test series (Test Nos. EH2A through EH4B, EHRP-1 through EHRP-9, MD-Test-A,B,D, and PR-EH1 and PR-EH2);

13. PSERMLIN.WK1 damage information for normal impact tests
with spherical aluminum projectiles on single-bumper aluminum systems without MLI for the P test series (Test Nos. P-01 through P-35);

- 14. <u>PSERMLIY.WK1</u> damage information for normal impact tests with spherical aluminum projectiles on single-bumper aluminum systems with MLI for the P test series (Test Nos. P-07 through P-35C);
- 15. <u>TSERNMLI.WK1</u> damage information for normal impact tests with spherical aluminum projectiles on single-bumper aluminum systems without MLI for the T2 and PT test series (Test Nos. T2-2 through T2-20 and PT-4A through PT-8B);
- 16. <u>TSERYMLI.WK1</u> damage information for normal impact tests with spherical aluminum projectiles on single-bumper aluminum systems with MLI for the T2 test series (Test Nos. T2-1 through T2-19B);
- 17. <u>CORRBUMP.WK1</u> damage information for normal and oblique impact tests with spherical aluminum projectiles on aluminum systems with corrugated bumpers.

It is noted that this Hypervelocity Impact Damage Database must be used

in conjunction with the MSFC/Boeing Phase B Test Parameter Database presented in Section 2.5.1. The MSFC/Boeing Database contains the material, geometric, and impact parameters for each test in the Hypervelocity Impact Damage Database. Specifically, the MSFC/Boeing Database contains the following parameter information:

- 1. Test number and date performed;
- 2. Projectile velocity, diameter, and shape;
- 3. Angle of obliquity;
- 4. Bumper plate(s) material(s) and thickness(es);
- 5. Pressure wall plate material and thickness;
- 6. Presence of MLI;
- 7. Stand-off distance;

Together, these two databases provide a wealth of information on the response of multi-sheet structures under normal and oblique hypervelocity projectile impact.

LOTUS FILE COMPOSITE.WK1

103 KEULAR 0.345 Yes 0.533 4.910 No N.S. 1.720 103H KEULAR 0.331 Yes 0.319 4.910 No N.S. 1.720 103H KEULAR 0.331 Yes 0.319 4.710 No N.S. 1.720 103E KEULAR 0.331 Yes 0.319 4.710 No N.S. 1.720 103E KEULAR 0.331 Yes 0.319 4.140 Yes 0.319 1.720 104 KEULAR 0.336 No N.P. 4.140 Yes 1.720 104 KEULAR 0.336 No N.P. 4.140 Yes 0.009 104 KEULAR 0.336 No N.P. 8.140 No N.S. 1.720 104 KEULAR 0.336 Yes 1.971 19.630 No N.S. 1.400 104 KEULAR 0.775 Yes 1.83	test Umber	Bumper plate Material	Bumper Hole Size (In.)	Backalall Penetrated?	Backalanle eq. hole Diameter (111.)	Backaral dayage Area (Sq. IN)	BACKMALL SPALLED?	BACKAMLL SPALL AREA (SQ.IN.)	debris cloud Trajectory (deg)
1038 KEUAR 0.303 Yes 0.533 4.910 No N.S. 1.720 1038 KEUAR 0.381 Yes 0.319 4.710 No N.S. 1.720 1038 KEUAR 0.381 Yes 0.319 4.710 No N.S. 1.720 1031 KEUAR 0.335 No N.P. 0.319 4.710 No N.S. 1.720 01 KEUAR 0.335 No N.P. 0.319 4.710 No N.S. 1.720 01 KEUAR 0.335 No N.P. 0.410 Yes 1.905 1.720 No $N.S.$ 1.720 1048 KEUAR 0.775 Yes 1.971 19.430 No $N.S.$ 1.400 $N.S.$ 1.400 1048 KEUAR 0.775 Yes 1.971 19.430 No $N.S.$ 1.400 $N.S.$ 1.400	103		1, 0, 0	:					
1034 KEULAR 0.381 Yes 0.319 4.710 No N.5. 1.720 103E KEULAR 0.371 Yes 0.319 4.710 No N.5. 1.720 103E KEULAR 0.371 Yes 0.319 4.140 Yes 1.720 N.5. 1.720 103E KEULAR 0.335 No N.P. 4.140 Yes 0.399 1.000 104 KEULAR 0.735 Yes 1.905 0.00 N.5. 1.000 N.5. 1.000 104 KEULAR 0.775 Yes 1.971 19.630 No N.5. 1.400 1048 KEULAR 0.770 Yes 1.877 21.650 No N.5. 2.000 1048 KEULAR 0.775 Yes 1.877 21.650 No N.5. 2.000 22-2 KEULAR 0.775 Yes 1.877 22.580 No N.5. 2.000	~~	NEVLHK	C05.U	Yes	6.53.0	4 010	-11		
103B KEULR 0.371 Yes 0.317 Yes 0.319 0.170 No. N.S. 1.720 103C KEULR 0.371 Yes 0.319 0.080 No N.S. 1.720 103C KEULR 0.353 No N.P. 4.140 Yes 0.099 1.000 104 KEULR 0.755 Yes 1.975 Yes 1.900 N.S. 1.000 104 KEULR 0.775 Yes 1.971 19.530 No N.S. 1.400 N.S. 1.400 1048 KEULR 0.775 Yes 1.971 19.630 No N.S. 1.400 22-2 KEULR 0.775 Yes 1.871 19.630 No N.S. 2.000 22-2 KEULR 0.775 Yes 1.871 19.630 No N.S. 2.000 22-2 KEULR 0.775 Yes 1.877 22.580 No N.S. <td< td=""><td>VE01</td><td>KEULAR</td><td>1381</td><td>Yar</td><td></td><td></td><td>2</td><td>N.5.</td><td>1.720</td></td<>	VE01	KEULAR	1381	Yar			2	N.5.	1.720
JUDID KEVLAR 0.371 Yes 0.319 0.080 No. N.P. 1.720 N.S. 1.700 N.S. <t< td=""><td>1000</td><td></td><td></td><td>221</td><td>0.317</td><td>4.710</td><td>£</td><td>U Z</td><td>90E -</td></t<>	1000			221	0.317	4.710	£	U Z	90E -
103C KEVLAR 0.345 No N.S. 1.720 N.S. 1.720 103-1 KEVLAR 0.358 No N.P. 4.140 Yes 1.009 1.000 104 KEVLAR 0.795 Yes 1.905 21.650 No N.S. 1.400 104 KEVLAR 0.775 Yes 1.915 21.650 No N.S. 1.400 1048 KEVLAR 0.775 Yes 1.971 19.630 No N.S. 1.400 1048 KEVLAR 0.776 Yes 1.877 21.650 No N.S. 1.400 22-1 KEVLAR 0.776 Yes 1.877 22.580 No N.S. 2.600 22-2 KEVLAR 0.775 Yes 1.837 22.580 No N.S. 3.580 22-2 KEVLAR 0.775 Yes 2.144 13.770 N.S. 3.580 22-2 KEVLAR 0075 Yes	9601	REVLAR	0.371	Yes	0 310		!:		07/1
(B3-1 KULR 0.335 NO N.P. 4.140 Yes 0.099 1.000 104 KEVLAR 0.355 No N.P. 4.140 Yes 0.099 1.000 104 KEVLAR 0.775 Yes 1.905 21.650 No N.S. 1.400 1048 KEVLAR 0.775 Yes 1.971 19.630 No N.S. 1.400 1048 KEVLAR 0.775 Yes 1.971 19.630 No N.S. 2.000 22-1 KEVLAR 0.775 Yes 1.837 22.590 No N.S. 3.500 22-2 KEVLAR 0.775 Yes 2.144 13.770 N.S. 3.500 22-2 KEVLAR 0.775 Yes 2.144 13.770 N.S. 3.500 22-2 KEVLAR 0.775 Yes 2.144 13.770 N.S. 3.500 22-2 KEVLAR 0.775 Yes 0.303 <td>1030</td> <td>KPUI AP</td> <td>27C U</td> <td>-14</td> <td></td> <td>020' n</td> <td>D</td> <td>N.S.</td> <td>1.720</td>	1030	KPUI AP	27C U	-14		020' n	D	N.S.	1.720
103-1 KFULAR 0.358 No N.P. 8.040 No 9.077 1.000 104 KEVLAR 0.775 Yes 1.975 Yes 1.975 9.000 No N.S. 0.000 104 KEVLAR 0.775 Yes 1.975 21.650 No N.S. 1.430 1048 KEVLAR 0.775 Yes 1.971 19.430 No N.S. 2.000 22-1 KEVLAR 0.776 Yes 1.837 22.580 No N.S. 2.000 22-2 KEVLAR 0.775 Yes 2.144 15.700 No N.S. 3.580 22-2 KEVLAR 0.575 Yes 2.144 15.700 No N.S. 3.500 22-2 KEVLAR 0.512 Yes 2.144 15.700 No N.S. 3.500 210-4 ALMOKIDE 1.303 No No N.S. 3.500 210-4 No			COC. 2		Α.Ρ.	4.140	Yec	0 000	
104 KEVLAR 0.775 Yes 1.905 2.1650 No N.S. 0.000 1048 KEVLAR 0.775 Yes 1.905 2.1650 No N.S. 1.400 1048 KEVLAR 0.775 Yes 1.971 19.630 No N.S. 1.400 22-1 KEVLAR 0.775 Yes 1.871 19.630 No N.S. 2.000 22-2 KEVLAR 0.775 Yes 1.877 19.630 No N.S. 3.580 22-2 KEVLAR 0.775 Yes 2.143 17.720 No N.S. 3.530 22-2 KEVLAR 0.775 Yes 2.436 17.720 No N.S. 3.530 40-8 ALIM-OKIDE 1.303 No N.P. 15.770 No N.S. 0.000 40-6 ALIM-OKIDE 1.406 Yes 0.276 Yes 0.200 3.530 0.000 40-8 ALIM-O	193-1	KEVLAR	0.358	Υ.	2			U.U77	1.000
044 KEVLAR 0.773 Tes 1.905 21.650 No N.S. 1.400 01048 KEVLAR 0.775 Yes 1.971 19.630 No N.S. 1.400 01048 KEVLAR 0.775 Yes 1.971 19.630 No N.S. 2.000 22-1 KEVLAR 0.776 Yes 1.837 22.580 No N.S. 2.000 22-2 KEVLAR 0.776 Yes 2.144 15.900 No N.S. 3.500 22-2 KEVLAR 0.775 Yes 2.144 15.900 No N.S. 3.500 22-2 KEVLAR 0.775 Yes 2.144 15.720 No N.S. 3.500 22-3 MUH-UKIRE 0.602 Yes 2.144 15.720 No N.S. 0.000 40-8 ALUH-UKIRE 1.303 No N.P. 15.500 Yes 0.001 40-6 ALUH-UKIRE <td< td=""><td>104</td><td></td><td>302 0</td><td>:</td><td></td><td>8.040</td><td>2</td><td>N.S.</td><td>0.000</td></td<>	104		302 0	:		8.040	2	N.S.	0.000
104A KEULAR 0.775 Yes 1.971 1.972 1.971 1.7720 N.9 N.5 1.970 1.9701 1.9701 1.9710 1.9710 1.9710 1.9710 1.9710 1.9710 1.9710 1.9710 1.9710 1.9710 1.9710		NEVLAR	CK/.N	Yes	1.905	157 10	14		
104B KEVLAR 0.750 VES 1.471 19.430 No N.S. 2.000 22-1 KEVLAR 0.776 YEs 1.837 22.580 No N.S. 3.500 22-2 KEVLAR 0.775 Yes 1.1837 22.580 No N.S. 3.500 22-2 KEVLAR 0.775 Yes 2.144 15.770 No N.S. 3.530 40-8 ALUH-OXIDE 0.602 Yes 2.436 17.720 No N.S. 3.530 40-8 ALUH-OXIDE 1.303 No N.P. 17.720 No N.S. 3.530 40-8 ALUH-OXIDE 1.406 Yes 0.300 8757 Yes 0.000 40-1 ALUH-OXIDE 1.406 Yes 0.236 Yes 0.2360 No No N.S. 0.000 40-1 ALUH-OXIDE 1.406 Yes 0.236 Yes 0.236 0.000 40-1 <	1044	KEVLAR	0.775	Yee		ACO 17	DA.	N.S.	1.430
22-1 KEULAR 0.730 Yes 1.837 22.580 No N.S. 2.500 22-2 KEULAR 0.770 Yes 2.144 15.700 No N.S. 3.500 22-2 KEULAR 0.775 Yes 2.144 15.700 No N.S. 3.500 22-2 KEULAR 0.775 Yes 2.144 15.720 No N.S. 3.500 22-4 ALUM-OKIDE 0.602 Yes 0.300 8.950 Yes 0.000 40-8 ALUM-OKIDE 1.303 No N.P. 15.670 No N.S. 0.300 40-1 ALM-OKIDE 1.303 No N.P. 15.670 No N.S. 0.000 40-1 ALM-OKIDE 1.406 Yes 0.276 12.560 No N.S. 0.000 77-8 GRAPHITE-EPOXY 0.614 Yes 0.1276 0.129 0.000 77-8 GRAPHITE-EPOXY 0.614 Yes	1040	VC N AD		173	1/2/1	19.630	Z	N.S.	000 C
Z2-1 KEULAR 0.770 Yes 2.144 1.27.00 No N.S. 3.580 22-2 KEULAR 0.775 Yes 2.144 13.770 No N.S. 3.530 40-A ALUN-CKIDE 0.602 Yes 2.434 17.720 No N.S. 3.530 40-B ALUN-CKIDE 0.602 Yes 2.436 17.720 No N.S. 0.000 40-B ALUN-CKIDE 1.303 No N.P. 15.470 No N.S. 0.000 40-C ALUN-CKIDE 1.406 Yes 0.226 Yes 0.201 40-C ALUN-CKIDE 1.406 Yes 0.226 No No N.S. 0.000 77-A GRAPHITE-EDCY 0.614 Yes 0.226 No No N.S. 0.000 77-B GRAPHITE-EDCY 0.610 Yes 0.226 No No N.S. 0.000 77-B GRAPHITE-EDCY 0.610		NEVLHR	NC/.N	Yes	1.837	33 580	4		nnn · 7
22-2 KEULAR 0.775 Yes 2.144 15.900 No N.S. 3.530 40-A ALUN-CKIDE 0.602 Yes 2.436 17.720 No N.S. 0.000 40-B ALUN-CKIDE 1.303 Na N.P. 17.720 No N.S. 0.000 40-B ALUN-CKIDE 1.303 Na N.P. 15.670 Yes 0.000 40-C ALUN-CKIDE 1.303 Na N.P. 15.670 Yes 0.000 40-C ALUN-CKIDE 1.406 Yes 0.276 12.560 Yes 0.100 77-B GRAPHITE-EPDXY 0.614 Yes 0.127 0.100 N.S. 0.000 77-B GRAPHITE-EPDXY 0.610 Yes 0.540 12.560 No N.S. 0.000	22-1	KEVLAR	877 A	Yer		DOC . 33	2	N.S.	3.580
ZZ-2 NEVLAR 0.775 Yes 2.436 17.720 No. No. 3.349 40-A ALUAUXIDE 0.002 Yes 2.436 17.720 No. N.S. 0.000 40-B ALUAUXIDE 1.303 No N.P. 0.300 8.950 Yes 0.006 0.000 40-C ALUAUXIDE 1.303 No N.P. 15.870 No N.S. 0.000 40-C ALUAUXIDE 1.406 Yes 0.276 12.540 No N.S. 0.000 77-A GRAPHITE-EDXY 0.614 Yes 0.276 12.560 No N.S. 0.000 77-B GRAPHITE-EDXY 0.614 Yes 0.540 13.270 No N.S. 2.000				52	2.144	15.900	ş	U N	
40-4 ALUN-UXIDE 0.602 Yes 0.300 17.20 No N.S. 0.000 40-B ALUN-UXIDE 1.303 Na Na 0.300 8.950 Yes 0.006 0.000 40-B ALUN-UXIDE 1.303 Na Na N.P. 15.870 Yes 0.096 0.000 40-C ALUN-UXIDE 1.406 Yes 0.226 12.560 Yes 0.000 77-8 GBAPHITE-EPDXY 0.614 Yes 0.1256 Yes 0.000 77-8 GBAPHITE-EPDXY 0.610 Yes 0.540 12.560 No N.S. 2.000 77-8 GBAPHITE-EPDXY 0.610 Yes 0.540 13.200 No N.S. 2.000	7-77	KEVLAR	0.775	Yes	767 6		! :		0.050.6
40-B ALUN-CKIDE 1.303 No 0.309 8.950 Yes 0.096 0.300 40-C ALUN-CKIDE 1.303 No N.P. 15.870 No M.S. 0.000 40-C ALUN-CKIDE 1.406 Yes 0.126 0.000 0.000 40-C ALUN-CKIDE 1.406 Yes 0.1276 12.550 Yes 0.000 77-B GRAPHITE-EPCX 0.614 Yes 0.1276 1.2550 No N.S. 0.000 77-B GRAPHITE-EPCX 0.614 Yes 0.1276 1.2550 No N.S. 2.000	40-A	ALIM OXIDF	CU7 ()		001.1	17/1/1	2	N.S.	0.000.0
Pure ALUTUXIDE 1.303 Na N.P. 15.070 No V.202 U.000 40-C ALUTCXIDE 1.406 Yes 0.224 12.560 No N.S. 0.000 77-A GRAPHITE-EPDXY 0.614 Yes 0.129 0.000 77-B GRAPHITE-EPDXY 0.610 Yes 0.540 13.260 No N.S. 2.000 77-B GRAPHITE-EPDXY 0.610 Yes 0.540 13.200 No N.S. 2.000			70010	521	906.0	8.950	Yec	704 U	
40-C ALUN-CXIDE 1.406 Yes 0.000 77-A GAQAPHITE-EPOXY 0.614 Yes 0.224 12.560 Yes 0.129 0.000 77-B GAQAPHITE-EPOXY 0.610 Yes 0.436 12.560 No N.S. 2.000 77-B GAQAPHITE-EPOXY 0.610 Yes 0.540 13.200 No N.S. 1.000	7	ALUNUXIDE	1.303	P.	9 2		2		004.0
77-8 GRAPHITE-EPDXY 0.614 Yes 0.276 12.560 Yes 0.129 0.000 77-8 GRAPHITE-EPDXY 0.614 Yes 0.436 12.560 No N.S. 2.000 77-8 GRAPHITE-EPDXY 0.610 Yes 0.540 13.200 No N.S. 2.000	40-C	ALIM - NYING	AD.			D/A.CI	£	N.S.	0.000
77-8 GRAPHITE-EPOXY 0.614 Yes 0.436 12.560 No N.S. 2.000 77-8 GRAPHITE-EPOXY 0.610 Yes 0.540 12.500 No N.S. 2.000 13.200 No N.S. 1.000	; ;		001-1	185	0.276	12 SAD	Yee	2	
77-8 GRAPHITE-EPDXY 0.610 Yes 0.540 12.560 No N.S. 2.060 13.200 No N.S. 2.060	₽~	GRAPHITE-EPOXY	0.614	Yec			2	1.12	0.000
1. ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	0-11	CDADUTTY TOWN		C 21	024.9	12.560	ž	U N	000 0
		UNHER LEVUAT	0.610	Yes	6 540	00C C1	1		000-7
				•		13.200	£	N.S.	1 . DDD

-

ORIGINAL PAGE IS OF POOR QUALITY -

Ξ

-

1. 3 Th (IN.)	7C0 0	0/ 0 /0			0.095		
CRATER NO DIA. (IN.) DEF	Ę	1/1.0			0.156		
40. 2 EPTH (IN.)	1	ccn.n			0.114		
CRATER N DIA. (IN.) DI		0.161			0.142		
40. 1 EPTH (IN.)		0.106			0.169		
CRATER) DIA. (IN.) DI		0.198			6.175		
HOLE ND. 3 Dianeter (IN.)					0.124	0.114	
HOLE ND. 2 DIAMETER (JN.)					0.164	0.165	007° 0
HOLE ND. 1 DIAMETER (IN.)					0.195	0.190	NN7.N
debris cloud Spread (deg)	37.910 34.050 30.710	43.580 54 510	64.010	0.7.00 40.760	43.060	57.320	49.440 55.400

LOTUS FILE LEXGARD.WK1

****		FILMUNIT	LINDRI FO.	UINDU INT. DAMAGI	NOGNIN	nindou spall
IESI	THI FILLEC (111)	DCALTRATEND	WILE DIA. (IN.)	AREA (SQ. IN.)	SPALLED?	AREA (SQ. IN.)
NUTIBER					M Yes	8.432
123-1	nc/.n	£				966 U
123-2	0.750	R	N.P.	3.1	162	107.0
123-3	0.750	2	N.P.	5.1	8 Yes	C21.1
	0 750	, v	0.295	10.0	Se No	N.S.
1-671		<u> </u>		0	ź	S Z
124-2	0.750	Yes	0.248	0.1		
124-3	0.750	Yes	0.228	1.1	ON BZ	1.5.N
124-4	0.750	£	N.P.	9.1	60 Yes	0.159
175-0	0.750	Yes	0.410	17.5	80 No	N.S.
	0.750	Yes	0.266	9.3	2	N.S.
9-071		<u> </u>	2	- 0	An No.	N.S.
125-C	0.750	£	.7.8			-
126-4	1.250	£	Ν.Ρ.	20.9		
174-R	1.250	Ŷ	N.P.	16.9	60 No	N.S.
- CC1	1.250	ž	N.P.	28.2	20 Yes	0.380
		2	2	29.2	00 No	N.S.
H-/7[NC7.1	2			1	U N
129-4	1.250	Yes	0.261	/		
129-8	1.250	Å N	N.P.	24.7		7.7
129-E	1.250	£	N.P.	28.6	180 Yes	1,180
171-4	1.250	Å	N.P.	69.1	30 No	
A-64	1 25	2	N.P.	3.7	90 90 98	
H 3/1		2 :			A No	
A-671	0.750	Yes	694.1	1.62	N :	
174-4	0.750	Yes	1.175	R.	92 06	

•

LOTUS FILE GLASS.WK1

APPEARENCE	No D a nage No D anage No D anage No D anage No D an age
INNER PANE PBNETRATED?	₽₽₽₽₽
NATERIAL	HERCULITE 11 HERCULITE 11 HERCULITE 11 HERCULITE 11 HERCULITE 11
APPEARENCE	SHATTERED CRACKED MINOR PITTING MINOR PITTING CRACKED
niddle pave Povetrated?	s 8 8 8 8
MATERIAL	HERCIALITE 11 LAN. HERCIALITE SODA LINE LAN. SODA LINE LAN. SODA LINE
APPEARBNCE	SHATTERED Shattered Shattered Shattered Shattered Hole (J=0.125*)
outer Pane Ponetrated	YES YES YES YES
MATERIAL	Soda Line Soda Line Soda Line Soda Line Soda Line Lan, Soda Line
test Number	18-1 18-2 18-4 18-5

LOTUS FILE CYLINDER.WK1

hole no. 1 Ameter (IN.)	1.167 1.539 1.744 0.148 0.148
debris cloud Spread (deg) di	73.780 37.388 40.600 51.900 24.600 N.D. N.D. N.D. N.D. 14.900 18.000 30.000
debris cloud Trajectory (deg)	3.600 0.200 2.900 1.400 1.400 9.600 9.600 1.400 N.D. N.D. N.D. 17.400 17.400 17.400 12.700
BACKMALL SPALL AREA (SQ.IN.)	0.000 9.000 3.309 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BACKMALL SPALLED?	♀♀♀♀♀♀♀♀₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
BACKAMALL DAMAGE AREA (SQ. IN.)	28.300 12.755 6.950 6.991 11.930 3.139 9.000 0.000 0.000 0.000 0.989 1.480 5.418
BACKAMALL EQ. HOLE DIAMETER (IN.)	2.220 1.169 1.539 1.539 1.539 0.921 0.921 0.1420 0.1420 0.420 0.420 0.420 0.000 0.000
BACKMALL PENETRATED?	YES YES YES YES YES YES YES YES
Bumper Hole Dmax (1n.)	0.689 0.640 0.612 0.612 0.672 0.672 0.672 0.672 0.673 0.673 0.670 0.670 0.670 1.101 1.102
Bumper Hole DMIN (IN.)	0.689 0.538 0.539 0.539 0.401 0.422 0.485 0.485 0.485 0.483 0.483
TEST NUMBER	22501 P188V P22A P22A P22B P22B T2-13 T2-13 223A 223A 223A 223A 223C 224A 223C

1.0% 0.15% 1.0% 0.15% 1.0% 0.15% 1.0% 0.15% 1.0% 0.15% 1.0% 0.15% 1.0% 0.15% 0.16%<	KOLE ND. 2 Weter (IN.)	NOLE NO. 3 Dimeter (IN.)	CRATER DIA. (IN.) I	NO. 1 DEPTH (IN.)	CRATER N DIA, (JN.) DE	10. 2 PTH (IN.)	CMATER N DIA. (JN.) DE	10. 3 EPTK (JN.)	BACIQUALL PBUETRATED?	BACKANAL EQ. MOLE DIANETER (IM.)	Bachanul Datage Area (Sq. 1n.)	20317NAS Baccarart	BACKANLE SPALL
1.410 1.137 1.000 1.072 1.022 1.101 1.023 1.137 1.000 1.112 1.022 1.101 1.023 1.145 1.103 1.112 1.103 1.103 1.145 1.104 1.112 1.103 1.103 1.145 1.104 1.104 1.103 1.123 1.147 1.104 1.104 1.103 1.143 1.104 1.104 1.103 1.143 1.104 1.104 1.103 1.143 1.104 1.104 1.103 1.143 1.104 1.104 1.123	960.0		0.159	1.099	1.148	6.496	0.150	8/0.0					
5.738 5.738 5.738 5.736 5.736 5.736 5.736 5.796 0.072 0.404 0.405 0.401 0.402 7.940 0.472 0.404 0.405 0.401 0.402 7.940 0.473 0.404 0.407 0.402 0.402 7.940 0.433 0.403 0.403 0.402 0.402 7.940 0.433 0.404 0.403 0.402 0.402 7.240	0.410		151.0 241.0	0.0.0	0.07 0.112	6.032 0.450	1.101 1.02	1.123					
			0.07 740.0 670.0	0.046 0.034 0.034	411-0 411-0	929.0 820.0	0.00 070.0 121.0	920°0 920°0		8,238 8,638 8,738 8,75 8,75 8,75 8,75 7,75 7,75 7,75 7,7	82°25 82°11 82°12 82°25 82°25 82°25		

10 C C 10

officers do to

મું એ એ એ એ

ORIGINAL PAGE IS OF POOR QUALITY

10.000

Ξ

11111110

-

rer ND. 3 A 2 (IN.)	960" B
DIA I (IN.) DI	121,9 8,61,9 1,90,0 1,00,000,0
("NI) HLd	8.00 155 1155 116 110 10 10 10 8
ER NO. 2 ; 2 (JN.) DE	111.0 190.0 121.0 121.0 121.0
CRAT Dia 1 (IN.) Dia	922.0 1732 1732 1732
("NI") HL	0.878 0.142 0.156 0.060 0.060 0.061
ER NO. 1 2 (IN.) DEF	112.0 840.0 861.0 851.0 851.0
CANT Dia 1 (IN.) Dia	255-4 161-0 161-0 161-0 161-0 161-0
. 3 2 (IN.)	£1.1 Æ1.1
NOLE NO. Dia 1 (IN.) Dia	8.249 9.181
. 2 2 (N.)	0.292 0.202
HOLE NO Dia 1 (IN.) Di	1/2.1 1
. 1 a 2 (IN.)	666° 0 868° 0 982° 1
HOLE NO Dia 1 (IN.) Di	0.210 0.361 0.437
deris cloud Spread (deg)	18.194 6.401 7.394 19.194 4.409 3.194
debris (1.000) Trajectory (deb)	901.49 902.52 909.54 909.54 909.54

LOTUS FILE NONALUM.WK1

3

-

•

spalled?	765 7785 70 70 70
HOLE Dianeter (m)	1.296 0.289 0.009 0.000 0.000 0.000 0.200
ratessare water	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Davage Area (Sq. In.)	3.329 3.500 11.841 8.680 8.299 28.300
GANNA (DEG)	28.988 29.998 59.208 45.208 44.200 73.708
THETA (DEB)	0.600 3.460 0.000 0.000 1.900 1.900
BUNPER HOLE Size (In.)	0.345 0.350 0.527 0.501 0.689
PROJECTILE NATERIAL	STEEL STEEL LEXAN LEXAN LEXAN LEXAN
TEST NO.	146A 146B 225A 225B 225C 225C

ORIGINAL FAGE IS OF POOR QUALITY

.

0. 3 PTH (IN.)	0.057 0.083 0.063
CRATER N DIA. (IN.) DE	0,081 0,125 0,090
NO. 2 EPTH (IN.)	0.064 0.086 0.064
CRATER I DIA. (IN.) DI	0.085 0.112 0.076
40. 1 EPTH (IN.)	680-0 680-0
CRATER P	0.090 0.135 0.078
10	.052
HOLE NO. 3 Diameter (in.	
HOLE NO. 2 DIAMETER (IN.)	290°0
HOLE ND., 1 DIAMETER (IN.)	840°0
SPALL Area (CN2)	1.180 1.800 0.040 0.000 0.000

•

i

H I I POPULATE IN A LOCAL DIVISION

I TREATORN I TRANSPORTATION IN TAIL IN THE AND A CARDINAL AND A CARDINAL AND A CARDINAL AND A CARDINAL AND A C

_

_

LOTUS FILE NORDUAL.WK1

TEST NUMBER	BUNPER PLATE Material	BUMPER #1 HOLE SIZE (IN.)	Bunper 112 Hole Size (IN.)	Backarl. Penetrated?	BACKMALL EQ. HOLE DIANETER (IN.)	BACKMALL DAYAGE AREA (SQ. JN.)	BACKAPLED?	BACKAMLL SPALL AREA (SQ.IN.)
115-1	AI IMIMIM	0.381	1.017	Û		5.90	QN	
	ALININN	0.352	0.853	¥		5.43	Ð	
115-3	ALUMINUM	0.357	0.769	YES	0.19	5.94	YES	
116-1	ALUMINUM	0.303	0.602	Ŷ		3.j2	Q	
116-2	ALUNINUM	0.260	0.350	Ŷ		0.29	YES	0.01
117-1	ALUMINUM	0.383	1.498	9		2.04	Ŧ	
117-2	ALUNINUM	0.364	1.063	YES	0.04	2.21	¥ :	
1-81	ALUMINUM	0.380	2 . 1	765	0.15	1.00	2 9	
18-2	ALUMINUM	0.371	1.370	Ż		5,94 20	2 9	
18-3	MINIMI	846.0	1.508	YES	CRACK	1.08	2	
1-61	ALUNIMIN	0.409	0.624	YES	0.62	8.55	2	
19-2	ALUMINUM	0.380	1.432	YES	.97	2.53	문	
19-3	ALIMINIM	0 .375	1.538	YES	0.12	3.17	2 :	
- 1 - 1 -	ALIMININ/KEVLAR	9.469	2.000	2		22.89		
20-2	ALUMINUM/KEVLAR	6.438	1.500	Z			2 9	
2-2	ALUNINHYKEVLAR	9.4 06	952.0	2 :		12.00	2 9	
1284	ALMINIM	0.378	1.034	Z	:		2 9	
1288	ALUMINUM	1.366	C/8.0			1.13	2 5	
	ALIMIMIM	9.494	678°9	YES			i a	
HOE	ALUMINUM	974-1	1.160	51 (j	40°.	0.0	2 9	
		224.0	1.363	51 SI	+7.0	10.0 17 c	2 9	
HII			110-7		4		2 9	
318		C.44.0	/15.1			2.17	2 5	
1310		5C4.8	877-1		/c• 1	3.0/ E 45	2 9	
		10C-10	90/1				2 5	
111		1.001 0.555	1.989	2 2		5.03	문	
	ALIMINH	529-8	2.605	2		5.92	2	
4 25	ALIMINIM	0.421	1.368	2		2.52	Ŧ	
1528	ALIMINIM	892.0	1.053	YES	0.21	1.45	9	
1534	ALIMIMA	0.750	1.500	YES	2.48	14.52	YES	
1538	ALUMENUM	0.800	1.100	YES	0.50	5.73	YES	02.1
1584	ALUHINUM	905.0	9.718	YES	0.21	2.11	2	
1588	ALUNIMA	0.319	0.720	YES			₽ 3	
15%	ALIMINAN	0.420	0.900	YES	0.27	6.61	2 9	
1598	ALUNINU	0.420	1.684		2	/.31	2 9	
160	ALUNINUM	850.9	C48. I	155	NO. 1	77 C N7't1	2 9	
1639			2.47U	5 3		10 C	2 9	
1038		100°0	0/0°1	2 2		10-7 17	2 5	
H/01	ALUTINUT	077.0	7 754	AFS.	CRACK	25.9	2 9	
	AL DATING	0 410	1 112	i ž	PC 1	7.07	YES	0.07
		717 U	1 958	<u>i</u> R	SHALL HOLES		XES	0.0
			1 940	ž		175	9	
1744		0.400 0.400	1.821	e W		10.29	2	
1748	ALIMINIM	0.383	1.295	£		5.94	QN	
1760	ALUMINUN	0.370	1.452	묫		5.41	YES	VERY SHALL
1760	ALIMENIM	196.0	0.910	YES	9.27	2.41	Ŷ	
1794	ALUMINUM	0.550	2.900	YES	1C.E	37.50	2	
179B	ALUMINUM	0.548	2.016	YES	0.77	18.67	¥	
181A	ALUMINUM	0.899	3.760	92		9.62	Z	
1818	ALUMINUM	0.870	3.270	Ŷ		4.91	2	
186A	ALUMINUM	1.050	4.000	Z		9.51	¥	

÷

÷

. . .. 0.01

8.35 3.30 5.68 7.21 17.72 13.99 8.29 1.23

₽₽₽₽₽₽₽₽

3.580 4.513 6.320 2.444 0.945 0.945

1.053 1.080 1.080 0.556 0.556 0.510

ALUNIN AL

÷

18/8 1878 1878 1878 1886 1886 1918 1918

> ORIGINAL PAGE IS OF POOR QUALITY 259

TES	-			OT-INN T		~ .
no. Ultness pla Ponetrated						
0. 3 PTH (IN.)	0.07 0.14				0.17 0.13 0.06	0.08
CRATER N DIA. (IN.) DE	0.14 0.14		9.9 9.1 9.1 9.13 9.13 9.13 9.13		0.16 0.16 0.06	0.11 11. 16. 8
0. 2 PTH (JN.)	0.19 8.18		50°6 50°6 50°6 50°6 50°6 50°6 50°6 50°6		61.0 80.0 20.0	0.15 8.07 8.12
Crater N Dia. (.n.) dei	8.15 0.16		0.12 0.12 0.13 0.13 0.13 0.13		0.16 0.14 0.06 0.18	0.16 0.12
L I TH (IN.)	0.13 0.12 9.09	5	8.98 9.98 9.98 9.98 9.93 0.94 0.94		0.16 0.13 0.02 0.12	0,19 0,16 0,16
Crater ND 1. (IN.) Dep	0.15 0.29 0.29	5. -	0.09 0.13 0.14 0.15 0.15 0.15		0.19 0.14 0.10	0.08 0.24 0.13 0.13
HOLE NO. 3 Diameter (IN.) Dia			6.0 32	9.100		
HOLE NO. 2 Diameter (IN.)			0.859 8.865	0.156	0.010	
le No. 1 Eter (IN.)	161.0	0.040 0.147 0.010 0.624 0.973 1.216	0.095 0.422 0.124 0.124 0.569	0.211 2.406 0.500 0.310 0.310 0.200 1.809	0.810 0.248 0.010	0.268 3.131 0.765

.

HOLE N DIANETER 0.27 0.04 0.22 0.02 0.20 0.94

LOTUS FILE NORMUL.WK1

.

TEST NUMBER	Bumper plate Naterial	BUNPER 111 HOLE SIZE (IN.)	BUMPER N2 HOLE SIZE (IN.)	BUNPER #3 HOLE Size (IN.)	BUMPER #4 HOLE SIZE (IN.)	BUMPER AS HOLE Size (IN.)	BUMPER 16 HOLE Size (In.)	BACKMALL Penetrated?	BACKMALL EQ. HOLE DIAMETER (IN.)	Backlaall dayage Area (Sq. In.)
1804	ALUMINUM	0.56	1.72	3.63	5.26			2		90 G
18us	ALUNIMUM	0.54	1.31	2.83	4.66			: 2		9.39
1828	ALUMINUM	0.56	1.99	4.63	1.99			: 2		11-0 76 6
1880	ALUMINUM	0.65	2.20	7.53				: 22		97 7 7''
189C	ALUMINUM	0.56	3.89	5.74	7.59	BUCKLED	87.8	: ≻	(<u>7</u> 1	10.0
0481	HININ 14	0.65	2.16	6.38				• >	2770 A 42	
MO	HUMINUM	0.47	1.14	1.98				. >	25 U	00° F
1908	ALUMINUM	0.51	2.00	4.38				Z	10.0	1.77

ultness plates Penetrated			5	5	
£					
0. 3 PTH (IN.)	0.02			0.08 0.67	
CRATER N DIA, (IN.) DE	0.11			0.14 0.09	
NO. 2 Depth (In.)	0.03			0.07	
CRATER DIA. (IN.)	0.13			0.16 0.01	
. 1 TH (IN.)	0.04	0.03		0.11 0.04	
CRATER NO DIA. (IN.) DEP	0.20	0.08		0.22	
HOLE NO. 3 DIANETER (IN.)					
HOLE NO. 2 Dianeter (IN.)				0.13	
HOLE ND. 1 DIAMETER (IN.)			0.72	0.28	
BACKMALL SPALL AREA (SQ.JN.)					
Backaall Spalled?	z	z z :	z Z 2	. Z Z	

LOTUS FILE OBLDUAL.WK1

NDR44. Eg. Hole Backmall Dayage Backmall Spall Hole No. 1 Hole No. 2 & (1v.) Area (so. 1v.) Spalled? Area (so.1v.) Dia (1v.) Dia (1v.) Dia (1v.)	. 1.62 N		0.99 N	0.250 1.06 N	1.26 N 0.200 0.150		0.024 0.024		2.55 E	4.05 N			1.22 N	0.09 3.98 N 0.065
BACKMALL BACKMALL PENETRATED? DIAMET	z	Z	Z	7	z	~	Ż	z	Ž	z	Z	z	Ż	٨
Mper #2 hol dia (in.)	1.398	1.484	1.565	1.489	2.027	2.067	1.040	1.040	1.119	1.067	0.863	0.899	1.170	1.110
HOLE BI DIA 2 (IN.)	0.431	0.419	0.420	0.421	0.519	0.511	0.420	0.414	0.440	0.442	0.464	0.459	0.401	0.425
BLAPER 41 DIA 1 (IN.) 1	0.547	0.555	0.562	0.610	0.716	0.688	0.571	0.061	0.580	0.613	0.659	0.638	0.675	0.619
BLNPER PLATE NATERIAL	ALUMINUM	ALUMINUM	ALUNINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUNINUM	ALUMINUM	ALUMINUM	ALUNINUM	ALUMINUM	ALUMINUM	ALUMINUM	AL UNIMUN
test Number	137A	1378	137C	1370	1384	1388	1684	1688	1680	1 480	1694	1698	1704	1708

ļ

(INCOMPANY)

I FE ALL REPORTED IN THE

. 1 1 2 (IN.)					1.31	12.1		7.4	11			11. Q					
HOLE ND. 1 (DN.) DIA	0.19				9 .6	12.0	0.27	2	12.1			1.27					
DIA				-12	•												
BACKAMLL SPALL				-													
epcionali Bacionali	z	Z	z		z	Z	z	2	z	z	z	Z	2	: 3	:		
IN-LINE Backmanll Damage Anga (Sq. IN.)	3.42	3.19	7.32	2.52	8.92	8.44	2.27	3.89	2.49	4.1	6 , 1	3.3	4.91	1.4			
BACKMALL EQ. HOLE DIAMETER (IN.)	0.22	1.24	0.12	6.25	1. 53	8.48	1.35	0.4	0.17			0.20	6.25				
BACIONALL PONETRATED?	۲	٢	¥	z	۲	٢	٢	7	,	z	z	¥	۲	x			
. 3 EPTH (JN.)	E0"0																
CNATER NO 14 1 (IN.) D	6.69													9779			
. 2 Epth (JN.) D	0.02												17.4	/8.8			
CRATER NO JA 1 (JN.) D	0.12									9							
0. 1 DEPTN (IN.) D	80.0				1.07					1.14				21.4			
CIATER N DIA (IN.)	1.14				6 .14					A.14				71.8			
HOLE ND. 3 DIA (IN.)							C)F	214	GI	N	A	Ļ	F	ÞΑ	G	E

-

ORIGINAL PAGE IS OF POOR QUALITY

ND. WITNESS PLATES Penetrated			0 - 7						
EPTH (IN.)	0,05 0,12	0,14	0.08 8.12 9.86 0.06						
XTER NO. 3 (A 2 (IN.) D	0.12 0.17	0.14	0.12 8.16 8.10 8.99						
CRV DIA 1 (IN.) DI	0.15		0.14 8.24 8.09 8.28						
("NI) HIG	0.08 0.16	0.11	6.08 0.18 0.18 0.18						
ter no. 2 A 2 (IN.) de	0.12 0.13	0.14	6.11 0.17 0.33						
CRA DIA 1 (IN.) DI	0.15 0.21	1.17	0.16 0.25 0.14 3.20	• •			هه ج م م		
('NI) HL	0.08 0.14	8.14 0.13	0.13 0.15 0.19 0.11						
iter No. 1 A 2 (IN.) D	0.13 0.17	0.18 0.16	0.23 0.20 0.17 0.17						
CRA DIA 1 (IN.) DI	0.18 0.22	0.18 6.16	0.17 0.27 8.14 0.26	·				:	
. 3 A 2 (IN.)	0,05	0.14 8.89 6.11							
HOLE NO DIA 1 (IN.) DI	0.07 0.12	0.20 0.10 0.13							
. 2 1 2 (IN.)	0.08 0.12	0.20 0.18 0.18 0.11	8.14 0.14						
HOLE NO. 1 (IN.) DIA	0.11 0.15 0.05	0.29 0.46 0.32 0.32	8.14 0.19						
DIA									

i

LOTUS FILE NSERNMLI.WK1

e...

	MATERIAL	DIA 1 (IN.)	DIA 2 (IN.)	PENETRATED?	BACKMALL EQ. HOLE DIAMETER (JN.)	BACKMALL DANAGE AREA (SQ, IN.)	BACKAALL SPALLED?	BACKLALL SPALL AREA (SQ.IN.)
001A	ALUMINUM	0.825	0.658	YES	0.199	4.91	YES	0.04
0024	ALUMENUM	0.797	0.614	2		U 12	¥	
101	ALUMINUM	0. 399		YES	0.262	3.14	2	
101A	ALIMINM	0.370		YES	0.143	3.97	Ŷ	
1018	ALUNINU	8.568		Ŷ		12.56	9	
102	ALIMINIM	0.700		YES	9.630	33.18	YES	0.86
5	ALUMINUM	8.889	0.625	YES	0.417		Z	
5	ALUMINUM	1.126	0.621	YES	0.312	5.03	Ŧ	
1058	ALMINUM	1.295	0.571	2		1.21	9	
901	ALUMINUM	0.931	0.766	Đ		3.80	YES	0.10
1064	ALIMINUM	1.280	0.780	YES	0.368	9.84	9	0.09
1068	ALIMININ	1.772	0.645	Q		3.56	YES	0.13
1-901	ALUMINUM	1.140	0 . 7 40	YES	1.397	7.48	YES	0.10
106-2	ALUNINA	1.530	0.625	Ð		5.43	P	
107	ALIMININ	0.750		YES	809.8	21.64	YES	1.68
107A	ALUMINUM	8.728		YES	0.335	24.02	YES	2.40
1078	ALUMINUM	0.750		¥		21.65	YES	2.12
801	ALUMINAM	0.692		YES	0.224	44.30	YES	0.11
109	ALUMINUM	0.522		Ŷ		19.64	92	
10%	ALUNINA	0.429		2		13.85	Ŷ	
1098	ALUMINUM	0.400		92		9.62	9	
109C	ALIMINIA	0.315		¥		1.12	YES	50.0
1090	ALUMINUM	0.319		Ŷ		0.0	2	
110	ALMINUM	0.727		Ŷ		13.36	YES	1.23
113	ALIMINUM	0.730	0.429	Ð		2.99	2	
WE II	ALUHENUM	0.578	6.442	Ŷ		4.37	₽	
114	ALUMINUM	8969	0.598	2	-	9.62	R	-
1148	ALUMINUM	0.628	0.514	Ŧ		3.84	¥	
121-1	ALUNINUM	8.669		YES	0.641	27.39	YES	0.10
121-2	ALUMINUN	9.630		YES	0.650.0	18.67	YES	0.00
	ALUMINUM	0.598	0.506	2		0.0	2	
	ALUNINUT	0.64/	8°.364	2		0.00	2	
		9CC.0	0.516	2		0.0	2	
		190.0	0.521	2		0.0	Ŷ	
1305		N20.U	1,36/ 0 550	2 9		8.6	2	
13/C		07/°n	0CC-8			8.8 2	SE LE	0.06
1360	ALINIM	0///n	900'n	2 5		(%)/	TES VIC	8.09 2.2.2
1394	ALUMINUN	0.578		2 2		10.0	AFS	0.0.0
1398	ALUMINUM	0.541		YES	0.259	42° 01	YFS	
1424	ALUMINUN	0.502		92		53.69	2	
A54	ALUMINUM	0.622		¥		58.92	£	
1438	ALUMINUM	0.550		Z		58.92	Ŋ	
1440	ALUMINUM	0.602		9		9.62	YES	0.14
1448	ALUNINUM	0.548		YES	0.517	10.32	YES	0.32
144C	ALUNINUN	0.536		YES	0.184	8.30	YES	0.31
150A	ALUMINUM	0.712	8.563	£		6.61	Q	
151A	ALUNENUN	0.723	0.631	ŝ		0.45	QN	
ISHA	ALUMINUM	0.546	0.429	2		0.20	Ð	
	ALUNINUM	0.482	0.372	£		1.13	¥	
HCCI	ALUMINUM	0.571	0.519	YES	0.150		9	
9901	ALUNINUN	19.75I	0.429	2		12.57	Ð	
890	ALUNIMUN	NE9° N	0.442	2		15.34	2	

_

15/A 15/A	ALUNINUM ALUNINUM	0.630 0.680	1.428 0.537	DN		1.23 3.80		
1624	ALUMINUM	0.550 (0.466	2	-	11.95	9	
1 62B	ALUMINUM	0.455	0.389	VES 0	.13	8.04		
1844	ALUMINUM	1.260		2		C4.9%	TES U	
1848	ALUNINUM	1.230			26	10° 1	YEG	1
1829		1.260			940	61.10	YES	0.20
HARI	LINNITLIN THE	1.080		N		80.88	YES	E0.0
202A	ALUMINUM	614.0	•••	19		2.67	Q	
2028	ALIMINIM	0.409	0.307	DN		1.77	<u>R</u>	
202C	ALIMINUM	0.425	0.373	94		4.43	2	
2020	ALUMINUM	0.447	0.330	2 1		1.23		
282E	ALUMINUM	0.510	0.405					
2025	ALUMINUM	0.565	0.486 0.420	2 2		17 6		
2040 2040		N8/-0	0.400 0.400			1.77		
2040 2040	ALUTIVGT ALIMIPHIM		0.420	2		2.76	2	
2010		177 U	0.381			5.94	2	
20,40		579. U	0.382	2 2		3.98	92 92	
2048		0.514	0.411	. 9		3.55	Q.	
2040	ALMINIM	0.511	64.0	QN		5.41	R.	
2040	ALIMENT	0.447	0.350	Q.		4.43	2	
ZAKF	AL IMINIM	0.410	0.330	Q		5.43	R	
20.45	ALIMINA	0.539	0.455			3.46	2	
2002		0.845	0.453	ON		24.85	CN	
8802		0.704	0.461	YES 0	711.	7.87	Q	
ZARC		0.790	0.570	2		6.74	2	
2980	AL UNING	0.791	8.477	Q		5.73	ON	
208E	ALUMINUM	0.826	0.488	. 2		0.79	94	
213A	ALIMINIM	0.621		YES	1.212	10.32	YES	9.8
2138	ALIMINUM	0.617		2		9.62	YES	E
2130	ALUMINA	0.479		YES	.270	11.04	YES	2.2
2130	ALUMINUM	0.526		2		7.67	YES	
2144	ALUMINUM	0.387		2		cg-17		
214B	ALUMINUM	0.404		YES	. 740	/5.21		
214C	ALUMINUM	0 .389		YES	.102	9.62	TES Vrr	8. X
214D	ALUMINUM	0.370		2				
2150	ALUMINUN	9.514		YES	.239	4.7		
2164	ALUMINUM	0.890	0.715	9				
216B	ALUMINUM	6.8 92	0.733	N		3.70		
216C	ALUMINUM	0.832	575.0				2 9	
217A		C2/-0	8.233	nu nu		14.90	2 9	
B/1Z	ALUMINUM	RI/-0		2 9		27 L		
2170		0.629	U.46/ 0.453			100 C	2 7	
21/10	ALUNINUN		764.0				2 3	
2175	ALUMINUM	8.612 0.250	0.4/1	2 9		1.00		
6777		0.500	1.2/7	2 9			2 2	
9777		0.330 1.294	107.0			2.07	2	
1777		407 D	L17.0	VEC		11 44	YES	1.62
5877		USP.U		VEC	000-1 042 0	5.73	YES	2.30
9977		077-U				4.91	YES	۲.1
1077		757.9 141 a		VEC	A . 104	75.4	YES	0.51
70CC	Murating A	TLL'A	767 U			16.4	Ţ	
UULC		0.647	n.526	YFS	0.102	5.31	R R	
7767			24220					

90.0	98.0				
-					
					-
ND ND YES	YES				
~~~~	œ				
4 4 8 8 4 4 8	10.5				
o∽ 80	œ				
0.17 0.16	÷				
Yes No Yes	YES			_	_
0.558 0.308 0.270 0.250	<b>B</b> .650			-	
	02			-	
0.00 14.4.0	1.02				
HANINA HANNA TUMINA HANINA	WINIWIT			-	•
~~~~	~				
230E 231A 231B 231C	2310				

_

	debris cloud Trajectory (deg)	debris cloud Spread (deg)	HOLE NO. 1 Diameter (In.)	HOLE NO. 2 Diameter (In.)	HOLE NO. 3 DIAMETER (JN.) DIA	CONTER (IN.) D	ND. 1 Epth (JN.)	CMATE DIA. (IN.)	er No. 2 • Depth (In	.) DIA	CINTER (IN.)
	13.63	13,63	0.152	0.129		0.160 0.160	0.162 0.075	0.151	0.15 0.07	9.0	0.115 0.168
	98°.CI	28.07	0.262								
	0.86	31.26	0.143			171 B	115	571.0	90.0		0.151
	0.0	52.80	UCU W			1/1-0				ł	
	47.4	81.6/	0.417								
	10.07	21.38	0-203	0.182	0.152						
	8.95	17.21									
	4.00	30.57	ž	001 0	0 123	0.218	0.139	6.18	0.1	26	0.178
	9.23	47.74 04 ·	[81.0	(01)0							
	90.1- 10 11	04° I-	0,149	0.159	0.138	0.187	9.146	6.29	4 8.1	5	0.216
	00-1-										
	2.86	66.51	0.608								
	3.72	69.10	0.355								
	0.00	66.51		:							
	2.81	34.31	0.200	0.100							
	0.86	63.97									
	3.01	55.30				0.007	0.245	9.04	1.0 1.1	n	0.088
	1.58	44.17									
	0.72	23.86									
	215	55° 19									
	17.74	25.03									
2	9.9	32.46									
73	23.15	41.12									
	4.86	89.06								×	(81.8
	3.53	40.76	0,041		ġ	0,142	0.116 • • • • •			2	A.174
	00.0	43.06	• • 573	0.138	0.120	101.9			;	5	
	23.63	58.13									
	22.17	52.84									
	24.23	53.04									
	26.57										
	CC-/I	10.0L				0.208	0.133	0.1	49 0.1	5	0.116
	11.31	02 68				0.155	0.125	0.2	00	90	0.184
	60°11	44.42				0.175	0.094		- 6		
	14.04	45.82				0.23	0.139			2 2	041.0 Voc V
	0,0	48.80	0.238	0.103		0.213	0.142			153	72.0
	2.36	54.55				0.134	0.063			50	145
	2.29	56.79				1/1.0	U.11J			22	122
	1.50	56.82				CVI.U	701 0		00 00	80	0.210
0	1.58	47.26		1		877°A	101.0			5	174
RI	7.13	46.04	0,403	EZE-0		196 U	171 .V			E20	0.089
G	1.86	44.19	19.137	0.123		100.1	101.0				
IN.	8.53	09°6E									
AL	2.86	95.11 2.00									
_	EI''2	ZN"/									
P۵	61.7	10,70	0.150								
G	24-57	47.06									
F	27.70	51.76									
ŗ											

ORIGINAL PAGE IS OF POOR QUALITY

291-0 291-0	0.077 0.173 0.173 0.173 0.174 0.174 0.185 0.185 0.185 0.185 0.185 0.195	0.102 0.102 0.157 0.157 0.157 0.157 0.157 0.153 0.153 0.130 0.130 0.130 0.130	v.074 0.090 0.095 0.167 0.167 0.167 0.107 0.198 0.199 0.199
0.032 9.036 0.052 0.052	0.059 0.053 0.053 0.053 0.053 0.053 0.053 0.052 0.053 0.053 0.053	0.884 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.113 0.110 0.110 0.083 0.084	0.062 0.051 0.045 0.045 0.045 0.012 0.012 0.012 0.101 0.101 0.010 0.084
0,078 6,065 6,067 0,092	.103 .103 .104 .104 .099 .099 .094 .094 .094 .094 .094 .0	0.143 0.113 0.129 0.129 0.113 0.112 0.112 0.112 0.112 0.128 0.128 0.135	0.111 0.111 0.053 0.067 0.138 0.138 0.138 0.138 0.138 0.138 0.155
0.037 9.648 9.656 9.075	0.864 0.146 0.146 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863	0.196 0.084 0.135 0.153 0.153 0.153 0.150 0.141 0.150 0.116 0.116 0.116 0.116	0.066 0.055 0.043 0.017 0.017 0.117 0.117 0.117 0.126 0.126
6.0 63 0.1 71 0.1 78 0.1 31	0.101 0.136 0.136 0.143 0.143 0.143 0.143 0.143 0.148 0.148 0.151	8.118 8.175 8.175 8.175 8.157 8.157 8.157 8.158 0.168 0.168 0.168 0.158 0.168 0.178 0.178 0.170 0.160 0.160	0.070 0.088 0.095 0.073 0.111 0.073 0.121 0.121 0.121 0.130 0.130
		1.322	
		0.438	141.0 170
0.190 4.350 0.940		0.117 0.270 0.270 0.489 9.182 9.259	0.979 0.740 0.086 0.102
17.88 88.74 99.52 99.28 99.28 91.2 12.1 12.1 12.1 12.1 12.1 12.1 12.1	88 83 88 93 33 33 57 56 68 88 88 88 88 88 53 35 56 68 98 75 56 58 98 98 98 58 58 58 58 58 58 58 58 58 58 58 58 58	88.73 35.75 38.73 39.73 26.03 26.03 26.26 28.25 29.25 20.25	36.56 38.30 38.30 39.30 33.41 33.48 33.48 33.48 33.48 33.48 33.48 33.48 33.48
8.53 8.53 8.55 2.6.57 2.6.57 2.6.57 1.62 1.62 1.43 1.29 1.29 0.00 0.00 0.00 0.00 0.00 0.00	2.02 7.13 7.13 2.86 2.86 4.29 19.29 19.29 19.29 14.04 18.53 26.57 26.57	21.88 12.68 1.2.68 0.90 1.88 1.88 1.88 1.88 1.88 0.00 1.38 5.43 8.53 8.53 15.38	12.68 20.56 21.80 8.53 8.53 7.13 7.13 7.13 7.13 7.13 7.13 7.13 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72

-

ì

.

0.122	0.200					
0.051	0.118 0.130					
0.137	0.160 0.220					
0.124	0.142 0.146					
0.134	0.222 0.190					
	0.090 0.118					
	0.137					
0.179	0.106 0.252					
	Ň					
32.95 32.53	1.30 45.66 48.39					
11.31 16.70	11.30 8.53 10.62					

ebris cloud Pread (deg)	16.10 24.36		20.71	12.81	V0.CI	29.80	26.95	36.26			20.40	19.37	N8.81	N /1		58.13	M. 20	06.62	56.67	20.92	23.54	C7.14							28.39		61.15 1		-1.80	-1.90
ebris cloud de	37.78 39.95		46.80	28.04	C67/E	0.72	47.07	1.58			42.38	35.94	51.12	77° 6 6		23.63	22.17	24.57	17.35	43.53	E8.14	38.22							39.52	10" N	41°14		-1.00	-1.00
BACKARALL SPALL D	0.28				0.17	A0.0	0.10									1		7	96.9															
BACIONAL L SPALLED?	NO YES	!	9 9 2 9	ÛN	KES I	YES	AFC	2			Ŧ	2	2	Z		2	YES	R I	YES	£	2	Ŧ							2	2	2 3	2 9	2 9	9
actawall damage Rea (Sq. IN.)	0.28 7.07		4.64	1.04	2.81	5.90 0 00	85 11	0.0			5.19	3.30	2.84	2.52		16.84	15.07	70.41	15.71	7.47	7.35	7.07							6.61	1.11	4.15	LC • 7	0.00	9.9
BACKMALL EQ. HOLE B DIANETER (IN.) A	0.831 1.010		0.417 0.548		0.968	0.612	767 U	071.0				795.0		0.376		0.458	120.0		524.1	9.368		1.305							0.489	0.390		945'A 872 H	(07°A	
BACKNAALL PENETRATED?	YES YES		YES YES	9 N	YES	YES	NU VEC	S D			2	YES	2	YES		YES	YES	XES YES	rcs YES	YES	QN	YES							YES	YES	2	TES	ŝ	ž
NO. 3 Depth (IN.)	0.137 0.063	0.071				0.117		611.U		14 H					0.090 0.102					0.076	0.053	9,848	0.107	1.12/ 9 500	0.00 0.082	0.029	9.9 00	0,045 8,065						

-1.00	68.74 57.06	13.31 15.81 16.88 34.33 -1.00	22.14 24.48 23.88 6.04 5.50 5.50	12.73 11.98 11.98 26.57 26.57 26.57 21.00 26.57 21.00		24.90 26.35 15.51 13.13 16.56 10.70 8.59	17.34 10.81 7.82 4.32 4.32 21.97 21.96
-1.00	20.56 26.57	35.94 39.52 39.95 41.19 29.36 -1.00	44.78 47.86 55.77 37.78 37.78 37.78	44.27 38.66 30.96 50.77 50.77		36.59 37.78 39.52 59.35 56.31 57.46	58.39 38.83 37.95 34.99 34.99
		0.04	0.12			0.14 0.06 0.08 0.24	0.26 0.02
2 2	92 P2	YES ND ND ND ND ND	NO NO NO NO NO NO	<u> </u>	2 Z	MO NO Yes Ves Ves Ves Ves	VES PO
0.00 3.80	11.95 8.04	1.78 2.76 4.91 3.14 9.62 5.41	0.59 7.67 1.23 1.23 1.38 0.31	2.07 1.48 3.14 6.61 0.00 0.00 5.68	11.79	6,49 7,67 3.55 13,36 16,80 5,41 4,43	19.64 1.48 0.60 0.20 0.20 5.15 5.73
		0.054 0.325 0.344 0.124 0.124	0.172 0.115	0.124	6.164	1.155 0.916 0.299 0.299 0.299 0.295	0.564 0.468 0.503
0N DN	0 N	YES YES YES YES	NO NO NO NO NO NO NO NO NO	53 Q Q 9 Q Q Q Q	YES	15 15 15 15 15 15 15 15 15 15 15 15 15 15	S S S S S S S S S S S S S S S S S S S
		0.016 0.022 0.028 0.026	0.058 0.049 0.038 0.038 0.040	0.059 0.034 0.026 0.040 0.040 0.040 0.010	0.071 0.085 0.116 0.116 0.112 0.125 0.126 0.135 0.135	0.098 0.107 0.064 0.029 0.044	1.00.0 6.025 0.028 0.005 0.005 0.028 0.028 0.028 0.028 0.028 0.028

27.19 14.55 1.36 13.82 19.96			
38.66 34.70 35.68 89.90			
8.04			
YES ND ND ND			
8.35 1.77 0.00 7.87 7.65 7.65			
0.470			
Yes Ng Ng Ng			
0.049 6.074 0.155			

HOLI DIA 1 (IN.	E ND. 1) DIA 2	('NI)	HOL DIA 1 (IN.	E NO. 2	2 2 (JN.)	I AIO	HOLE ND. (IN.) DIA	3 2 (IN.)	CIRA Dia 1 (IN.) Di	iter No. 1 (a 2 (IN.) Di	EPTH (JN.)	CRV DIA 1 (IN.) DI	iter No. 2 a 2 (IN.) d	EPTH (IN
0.54	۲. e ⁵ .	0.428 0.119	0.37	79	0.325 0.093		0.370 0.098	0.283 0.062	0.140 0.217	0.138 0.217	0.157	0.285 0.310	0.157 0.226	
0.56	3 2	0.307 0.304												
1.2	<u> </u>	0.750 0.437	6.9	2	0.233		0.200	0.162	0.196	0.185	0.096	0.192	0,160	0
0.31	EI	0,213	0.2	06	0.271		0,190	0.190	0.276	0.195	0,084	0.227	0,151	-
0.5	613	806.0												
0.5	126	0.421		211	0.158									
990 90 90	82566	0.276 0.071 0.750 0.957		11	0.157		0.118	0.079	0.195 0.145 0.235 0.145	0.166 0.145 0.145 0.145	0.131 0.110 0.106 0.089	0.153 0.157 0.116 0.144	0.120 0.157 0.116 0.116 0.109	
00	275 316	0.475 0.232	.0	562	0.211				0.235	0.173	0.105	0.160	0.160	
	872	0.200	0.	571	2 /1.0		0.171	0.125	0.985	0.222	0.142	0.235	0.208	
	456 320	0.354 0.320		.253	0.220		0.122	0.122						
	40	0.300	6	.100	0.100									

0.250	A.214										
0 222						0.1.0	PC[.9	9,09,0	8.246	0.184	0,029
100.0	01010					U.1/6	0.899	0.883	0.210	0.134	0.078
0.450	CDC. N					0.153	890.0	0.092	0.207	0.079	0.038
	0.169	0.161	0.117			0.132	0.119	0.129	0.171	0.138	8.114
0.130	0.118					0.118	6.115	0.122	0.154	0.135	0.095
8.258	0.180					0.157	0.135	0.101	0.118	0.118	8.0.9
0.180	0.165					0.358	0.123	0.088	0.128	0.116	0.074
						0.102	0.095	0.058	0.137	0.115	0.057
						0.234	0.133	520.0	0,260	0.247	0.074
301.0	105					0.268	0.228	0.065	0.251	0.065	0.058
01.U	CU1.0					0.135	0.101	986.9	6.139	0.089	0.081
						0.189	0.129	0.135	0.134	0.086	0.076
1/1-0	19. n					0.122	0.112	0.038	0.158	0.058	0.032
						0.238	0.145	0.072	0.383	0.160	0.045
						0.303	0.182	0.084	0.195	0.155	0.070
						0.098	0.09u	0.069	0.152	0.074	0.062
						0.337	0.125	0.056	0.148	0.124	0.042
						0.212	0.141	0.126	0.182	0.119	0:030
C 1 1	157							1			
7.1.0						0.227	0.194	0.121	0.145	0.180	870.0
88	6 U		1 235			ş	1	1			
		187.0	CC7' N			0.257	0.250	0.187	0.309	0.117	0.126
9 K 6	0.916					0.157	0.148	0.4	0.205	0.149	0.128
0.313	0.286	,				0.220	0.122	0.226	0.386	0.259	0.187
EII'I	0.4/1	0.190	0.177	0.174	0.160	0.303	0.189	0.205	0.441	0.279	0.150
1.091	683	0.347	0.269	0.298	0.240	0.235	0.218	0.193	0.213	0.185	0.152
0.328	0.273					0.261	0.205	0.141	0.170	0.136	0.130
U.498	/02.0					0.372	0.294	0.245	0.391	0.263	0.151
C84-1	/02.0	0.319	0.274	0.293	0.257	0.235	0.215	0.205	0.467	0.285	0.199
						0.100	0.093	0.054	0.117	0.062	0.031
						0.071	0.051	0.035	0.065	0.048	0.034
						0.153	0.112	0.061	0.126	0.108	0.051
0.468 0.503	0.468 0.502					0.170	0.151	0.121	0.077	0.077	0.180
נטכ, ט	CUC. U					0.335	0.283	0.122	0.214	0,205	0.118

 0.203
 0.135
 0.135
 0.136
 0.136

 0.135
 0.135
 0.135
 0.136
 0.067

 0.0136
 0.135
 0.136
 0.136
 0.067

 0.136
 0.136
 0.136
 0.136
 0.0667

0.282 0.259 0.173

0.470 0.470

281 C-4

. WITNESS PLATES PENETRATED	M 4 N B	904	3 G	-	с , го	6	e	 - 0 4	. ~ ~		-	<u>,</u>	-		 -	
물																
EPTH (IN.)	0.104 0.065		6. 855	8.048				62 0. 0	27)	0.056	0.085 0.77	850.9				
TER NO. 3 A 2 (IN.) D	0.131 0.166		0.178	0.136				0.100 0.100	0.127 A.189	0.108	187.9 143	0.163				
CBA 1 (IN.) DI	0.230 0.230		8.206	0.184				0.087 0.106	0.127 0.109	0.108	0.230	0.210				
DIA														00		

M T N D

• m

•	~ 5	• •	4 6	.	• •		•						0				•	Ð		e e	-	-	-	0	-	•	- -		. 4			2				4	4	 m (Y
		0.023	0.040	0.03/	9.044	0.071	0.066	0.055	0.029	0.013	0.058	0.059	0.022	0.024	0.028	0.052		E10.0	/20.0	0.064						0.107	401°A	- 10 T	0 138	1.095	0.142	0.149	0.030	0.031	0.006	-		0.057	0.184
		EZO.0	890.0	180.0	101.0	0.120	0.091	0.096	0.146	0.051	0.075	0.092	0.066	0.106	0.160	0.085		0.070	0.134	6,095						B.149	167 B	1.23 1 1 1 2	01.0	0.152	0.788	0.166	0.058	0.055	0.054			0.116	641.0
		0.125	0.117	0.128 0.128	101.U	141.0	0.217	0.252	0.153	0.091	0.112	0.162	0.152	0.176	0.194	0.093		0.199	0.172	0.208						0.286	0.262	6C7.0	001.0	071.U	0.2.0 D 751	0.216	0.095	0.062	0.086			6.17	0.244

•

0.189 0.151 0.657 0.174 0.153 0.**65**6 8.193 0.139 0.633

.

LOTUS FILE NSERYMLI.WK1

BACIONALL SPALL	AREA (SQ.IN.)																										020.4																									5. 6
BACKMALL	SPALLED?	Û	Ŷ	R	2	Z	Q	Ŷ	2	Ð	QN	Ŧ	2	¥	¥	Ŷ	2	2	Ð	2	Ŷ	2	Q	¥	Q	Z	YES	2	2	2 9	53	2 9	2 5	2 2	£	QN	Ŷ	Q	7	23		2 2	2 2	D V	2 9	ŝ	2 QN	2	Q	Q	9	YES
BACINAKL DANAGE	AREA (SQ. IN.)	0.20	0.60	00.9	6.07	10.99	44.7	7.40	7.16	9.44	0.44	0.20	90.0	2.41	4.91	9.62	62" 0	3.98	3.55	6.34	4.43	2.41	1.23	1.23	61	8.30	4.43	6.0	3.3 9	3, YU 1 40	10° n	/0" /	2.07	0.0	0.79	7.07	4.43	5.94	0.0	0.00	na'n	67" I	4/"N	0.77	10.0	0.00	0.0	0.0	0.00	3.98	4.43	6.43
BACKANALL EQ. NOLE	DIAMETER (IN.)								0.200			0.151															9.148				21.2 21.2	<i>442</i>	7771			0.565	6.327														0.482	8.300
BACIGINILL	PENETRATED?	Đ	Ŷ	92	92	₽	Ŵ	2	YES	Ŷ	Q	YES	Q	R	¥	9	£	2	모	2	2	R :	2 3	2 i	2 :		YES 10	₹ 9	2 9	2 5	YES	YFS	£	9	8	YES	YES	2	2 3	2 9	2 2	2	ŝ	2	2	Ŷ	2	Ð	2	Z	YES	YES
BUNPER HOLE	DIA 2 (IN.)	0.664	0.605	0.520	0.651					b.400	0.425	0.497	0.422	0.505	0.477	0.427	0.534	0.583	0.501	0.579	0.475	884 · 0	6.49U	PUC.0	0.419	0.000	//010	C10.0	X05 0	1.557	0.666	579.0	0.667	0.710	0.609				99C.U	7/C'A	0.403	262.0	0.331	0,323	0.390	0.412	0.372	0.444	0.428			
BUMPER HOLE	DIA I (IN.)	0.820	0.792	0.747	0.926	0.668	0.653	0.609	0.566	0.532	0.518	0.738	0.644	0.938	0.962	0.849	9.932	1.167	0.948		765.0	760.4	9AC-10	U.030	//0.0	1/8/0	C74.0	100.1	R 847	577.N	1.196	1-400	0.842	0.906	162.0	0.477	0.508	0.513	1/// 0	10/00 10/00	0.501	0.531	0.438	0.457	0.478	0.55!	0.593	0.591	0.586	0.618	0.491	80C.D
BUNPER PLATE	MAILENIAL	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALIMINUM	ALUNINUM	ALIMINUM	ALUHINUM	ALUNINUM	ALUMINUM	ALIMINUM	ALUNINUM	ALUMINUM	ALUNINUM	ALUMINUM	ALUMINUM		ALUMINUM		ALUNINU								ALIMIMIM	ALUMENUM	ALUMININ	ALUNBAUN	ALUMINUM	ALUMINUM	ALIMINIM	ALUMINUM	ALUMINUM	ALUMINUM		AI IMIMM	ALIMINEN	ALUMINUM	AL UMINUM	ALUNINUM	ALUMINUN	ALUMINUM	ALUMINUM	ALUMIMUM	ALUNING	ALUMINUM		ALUNINUM
TEST	NUTBER	0018	0028	003A	0044	1024	1028	1020	1020	201A	2018	2010	201D	203A	2038	2030	1692		2035	2050			1020	2065		H/N7	20/02	7002	2098	2090	2108	218D	2118	2110	2128	2154	2158	712	H017	2180	221A	2218	221C	2210	2264	2268	226C	227A	2278	H27	9427 1	767

0:00

0.10

.

.....

¥	모	2	웃	£	물	물	₽	£	2	2	£	Ŷ	¥	물	웊	물	웃	¥	£	Ŷ
0.386	0.354	0.418	0.568	0.525	0.562	0.697	0.439	0.543	0.527	0.458	0.600	0.594	0.291	0.298	0.386	0.410	0.444	0.523	0.569	0.593
0.467	0.463	0.537	0.724	0.743	0.732	0.901	319970	0.723	0.701	0.672	0.759	0.750	0.389	0.394	0.509	0.615	0.562	0.771	0.876	0.853
ALIMINUM	ALUMINUM	ALUMININ	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALUMINUM	ALIMINUM	ALUMINUM	ALUMINIA	ALUMINUM	ALUMINUN	ALUNINUM	ALUNINN	ALUMININ	ALUMINA
2304	2308	301	303	WEBE	3038	906	319	320	321	324	325	326	EEE	334	335	336	3369	337	338	339

CRATER DIA. (IN.)	0,040											000 0	0.003		0.061	0.079	0.103	0.107	1 190	0.075			2.07.0	0.090	0.100	0.075	0.107	0.109	0.152			0/1/0	0.108	0.139	0.124	0.099	0.078		0,059	0.267	0.079	0.214				170 0	100.0	0 051	100.0		0.005					0,075	0.133	0.227
0. 2 PTH (3N.)	0.037											100 U	100'A		0.025	0.020	0.007	0.028	0.039	0.038			0.03/	0.044	0.042	0.018	0.041	0.080	101	0.00	6.047 0.050	4CU.U	0.048	0.080	0,040	0,040	0.023		0.024	A.126	0.114	0.092	1			000 0	020.0		710°0	100.0	0-04U					0.066	0.044	0.130
CRATER N DIA. (IN.) DE	0.058											011.0	41170		0,087	0.077	0.073	0.085	0,088	0 141		007 0	001.0	0.088	0,098	0.057	0.104	0.139	0.170	1010	001.0	201.0	0.110	0.127	0.115	0.112	0.045		0.066	0.158	0.123	0.049				0 071	1/01/0	0 0/6	030 0	BC0'0	U.U.U					0.093	0.128	0.330
0. 1 PTH (IN.)	0.045											CO1 0	701° A		0.047	0.043	0.014	0.031	0.076	0 057		000 0	750.U	0.047	6.00.0	0.026	0.050	0.081	0.115	0110	740.0 CC0 0	7/0° 0	0.0/4	0.102	0.080	0.075	0.034		0:030	0.129	0.118	0 . 10A				0 075	C70.0		0,000	000.0	560° 0					0.074	0.073	0.136
CRATER N DIA. (IN.) DE	0.139											0 100	001.0		0.071	0.131	0.180	0.104	0.097	0.109		906 6	C90.0	C/0°0	0.191	0.107	0,108	0.168	0.124	CP1 U	741°N	0,077	ABU.U	0.126	0.180	0.202	0.062		0.076	0.227	0.107	0.052				0 U U			0.110	0.001	140,0					0.094	0.194	0.258
HOLE NO. 3 DIANETER (IN.)							-																																																			
HOLE NO. 2 DIAMETER (IN.)																																				0.141																						
HOLE NO. 1 Hameter (IN.)									0.200			0 151	10110																A. 140						0.125	0.172				0.565	0.327																0.482	006'8
debris cloud Spread (deg) c	33.41	12.74	-1.00		000	00.1-	-1.80	-1.00	-1.00	6.47	000	7 15			22.80	30.23	40.29	12.92	30.85	26.51	34.07	20 20	07'7C	67.67	15.90	17.35	14.04	41.65	32,28	17.05	00 BC	00°07	DC"76	12.48	40.25	32.53	22.64	-1.00	14.13	-1.00	-1.00	-1.00	-1.00		-1.00	14.13	14.17			07 7C	0.02	04° I_	00,1-	00.1-	00'I-	9) - - -	-1.00	00.1-
debris cloud Trajectory (deg)	13.63	4.29	-1.00	12 41	44.71	-1.UU	-1.00	-1.00	-1.00	15.38	20101	0.1		ng' 1-	IF.11	21.80	23.03	14.04	14.04	18.91	17.41	0 0		20.21	19.29	8.53	5.71	25.41	15.38	1.43	14 14	00 01	73.71 71		14.04	12.68	7.13	-1.00	5.43	-1.00	-1.00	-1.00	-1,00	-1.09	-1.00	18.60	7.13	61. C	0C F	(7° F		00'1-	00.1- 90	00°1-	B , -	10. -	-1.UU	NU. I-

0.143	900.0	0.088	8,045	0.114
0.112	0.015	0.102	0.012	
0.125	0.036	0.067	0.021	0.053
0.184	0.027	0.116	9.024	0 .092
135	0.031	0.111	0.028	6.070
6.039	0.012	0.057	0.003	0,045
8.130	0.022	0.103	0.017	0.146
0.107	0.028	0.132	0.022	0.139
0.126	0.628	0.107	0.020	0.096
0.108	8.0 65	0.137	0.037	9.204

28.87 7.06 18.79 22.64 9.75 9.75 9.75 9.75 19.67 19.77 19.67 19.77 19.67 19.67 19.67 19.67 19.67 19.67 19.77 19.77 19.67 19.77

-

NO. 3 DEPTH (IN.)	BACKNALL PENETRATED?	BACKLARLE EQ. HOLE DIAMETER (3N.)	Backulail Dayage Area (sq. in.)	BACIQUALL SPALLED?	BMCKAMLL SPALL AREA (SQ.IN.)	debris cloud Trajectory (deg)	debris cloud Spread (deg)
0.014	YES	0.310	1.23	2		38.04	10.80
	YES	0.193	1.48	QN		37.33	12.36
	YES	1.350	9.62	Ŷ		41.59	25.51
	9		0.00	0 <mark>N</mark>		-1,00	-1.00
	ČEL	5	00 v	ŝ			i e
	TES T	955.U	0,99 0,99			40.53	8./0 8.87
0.031	YES	0.126	0.44	2		20.22	4.33
	YES	0.490	16.0	2		42.38	4.78
0.017	Q		2.07	Ŧ		56.75	6.55
0.019	2		9.20	2		60.33	1.80
0.003	2 9		0.20	2 9		60.26	1.76
0.032	2 Q		/9/ 8.95			29.1C	13.78
0.827	2		1.48	2		55.18	6.39
	YES	0.153	4.60	Q		56.79	10.57
0.029	YES	0.896	1.23	N		41.19	10.83
0.029	YES	0.172	2.76	2		40.36	14.08
0.034	YES	0.667	9.1 9.7	2 9		37.95	12.05
800.0	NU	YPE U	0//N	2 9		30.06 55 55	9.18
1/0.0	YES	0.143	14° 0	2		57.99	3.03
0.086	QN		0.31	92		60.33	2.18
0.040	R		8.94	9		51.12	24.56
0.035	2		8.9	2		57.59	2.12
0.045	2 9		0.0	2 2		-1.00	90° [-
0/0/0 1920 D	2 2		1.// 0 00	2 2		9C.¥C	C9.0 01 7
0.050	YES	0.224	6.9	Ē		0.00 48 49	97.52
0.009	YES	0.635	3.54	2		40.20	16.15
	YES	1.503	1.77	Ŷ		40.20	11.84
0.011	YES	0.620	2.76	Ð		38.04	15.98
0.119							
0.111							
	YES	0 - 455	CA. C	ş		C7 17	8 94
	, LES	869.0	2.41	2		61.28	5.39
	YES	0.730	3.98	0N		59.46	7.58
0.012	2		0.44	2		32.01	6.97
	₹ 9		0.0U	2 s		54.4E	G
0.010	2 2		16.U	Ê		41.19 40.04	5.11 4 20
6E0'0	YES	0.950	0.99	2		21.12	6.29
	YES	0.470	1.77	9 9		53.82	6.66
	YES	864.0	0.99	2		53.97	5.32
	YES	0.480	2.41	2 9		52.27	8.39
	YES	1.419	6.49	2		52.70	14.41
290.0							
0.127							

9	R		9	Q	Ŷ	QN	₽	92	QN	P	Q.	8	Ŷ	9	9	¥	2	2	2	2
0.11	0.60	0.31	2.41	0.44	1.48	9.62	0.99	1.77	0.99	0.44	1.23	0.99	0.11	0.11	2.07	1.19	1.77	6.49	1.77	20.63
				0.617		2.092	0.721	CRACK	0.305	0.708	0.558	0.538			0.384	0.543		0.857	E72.1	1.717
DN	2	2	Ŷ	YES	Q	YES	92	92	YES	YES	2	YES	YES	YES						
0,007			0.014	0.010	0.006	0.001		0.016	0.021		0.016	0.029								

42.54 40.11 41.19 33.9.95 33.9.95 33.9.95 33.9.95 33.53 33.53 33.53 40.53 33.78 40.53 33.78 40.53 33.78

3.00 6.75 5.20 14.27 6.33 6.33 6.33 6.33 8.65 9.54 9.11 9.11 9.11 9.54 11.93 3.54 11.93 3.54 11.93 3.54 11.93 3.54 11.93

('NI) HIG	0.051	0.126 0.045 0.034 0.633 0.633	0.156 0.117 0.053 0.081 0.081 0.025 0.022	0.045 0.023 0.022 0.059	0.133 0.097 0.097 0.040 0.040 0.040	0.013 0.179 0.118 0.039
ER NO. 2 : 2 (IN.) DE	0.084 0.109	0.169 0.042 0.137 0.137 0.183	0.306 0.199 0.680 0.097 0.097 0.071 0.071	0.096 0.071 0.056 0.056	0.163 0.206 0.083 0.052 0.141	0.075 0.131 0.050,0
CRAT DIA 1 (IN.) DIA	0.250	0.179 0.105 0.138 0.138 0.138	0.477 0.237 0.110 0.186 0.238 0.238 0.115	0.089 0.089 0.089 0.089	0.220 0.390 0.156 0.155 0.185 0.185	0.173 0.173 0.168 0.098
PTH (IN.)	0.123 0.065	0.204 0.084 0.056 0.055 0.055 0.055 0.055 0.055	0.203 0.128 0.956 0.089 0.062 0.062	8.085 0.035 0.075 0.075 0.090	0.183 0.111 0.846 0.030 0.084	0.133 0.186 0.109 0.124 0.124
ER NO. 1 1 2 (111.) De	0.081 0.147	0.203 0.144 0.120 0.120 0.263 0.263 0.263 0.263	0.287 0.103 0.155 0.167 0.167 0.156 0.156	0.137 0.071 0.100 0.083 0.075	0.077 0.241 0.105 0.089 0.127	0.198 0.181 0.089 0.089
CRAT DIA 1 (IN.) DIA	0.213	0.334 0.194 0.151 0.275 0.209	0.297 0.370 0.875 0.208 0.232 0.232	9.261 9.114 0.200 0.187 0.112	0.135 0.382 0.155 0.175 0.255	0.409 0.247 0.165 0.163 0.163
3 1 2 (IN.)	0.082		0.169	0.104		0.220 0.100
HOLE NO. DIA 1 (JN.) DIA	0.133		0.197	0.152		0.248 0.165
2 1 2 (IN.)	0.156	0.274	8.168 0.178	1.335	0.214	0.138 0.161 0.126
HOLE NO. DIA 1 (IN.) DIA	£22°D	₩ ₩ ₩	0.108 0.216	0.402	0.384	0.163 0.246 0.218
1 2 (IN.)	0.136 0.187 1.350	0.271 0.462 0.192 0.313	0.108 0.138 0.138 0.269 0.345 0.133	0.199 0.835 1.491 0.321	0.606 0.608 0.439	0.409 0.285 0.278 0.356 0.356
HOLE NO. DIA 1 (IN.) DIA	0.384 0.200 1.350	0.402 8.511 0.156 0.422	0.108 0.138 0.214 0.278 0.154	0.252 0.835 1.515 0.728	0.708 0.668 1.216	0.478 0.775 0.333 0.527 2.445

				0,142	0.083	890.0	0.143	0.114	0.056
				0.191	0.088	0.040	0.138	0.056	0.022
				0.385	0.308	0,060	0.252	0.145	0.016
				0.423	0.221	0.179	0.379	0.194	0.167
<i>667</i> 6	575 U			0.096	0.088	0.017			
c.o.,				0.472	0.326	0.257	0.383	0.380	0.248
3.500	1.250			0.137	0.103	0.040	0.111	0.045	0.033
1.015	0.512			:		001 0	196 0	0 153	570 V
ž				0.462	0.313	U.138	107.0	7C1'A	
0.316	0.294								
0.829	0.605			5			0000	000 0	0.075
0.824	0.378			962.0	ACI.0	0.11/	740.0	0.00	
E07 0	0 410			0.419	0.186	0.173	0.101	CK8.0	N9N' N
C (D . N				0.313	0.211	0.098			
				0.364	0.290	0.109			
0.470	0.313			0.265	0.112	0.161	0.081	0.064	0.068
0.718	0.410			0.183	0.119	0.185	0.195	0.159	0.116
1.075	0.670	0.121	0.115	0.101	0.058	0.055	0.148	0.083	0.048
1.468	1.110								
1.717	1.717								

PLATES 10	00 4	0 - 4 0 M	505- Ng	©₹₹N8—	ৰ প বি	44NW- NO
PENETRATE						
£						
("NI) HI	0.090 0.047	0.040 0.038 6.020	0.026 0.005 0.050 0.02 0.049 0.015 0.068 0.068	0.036 0.020 0.039 0.011 0.011	0.055 0.065 0.025 0.008 0.035	0.031
- B						
ND. 3	0.069 0.098	0.094 0.042 0.083	0.063 0.159 0.159 0.060 0.060 0.085	0.099 0.075 0.081 0.068	0.235 0.166 0.050 0.091 0.054	670°0
RATER DIA 2						
(IN.)	0.111 0.202	0.118 0.089 0.133	0.152 0.060 0.214 0.217 0.217 0.189 0.189	0.109 0.077 0.232 0.185 0.087	0.293 0.170 0.022 0.022 0.097	0.081 0.143
DIA 1						

.

0.040	0.150	0.188 0.026	0.055	0.015 0.031	0.054	
0,081	0,218	0.232 0.048	0.134	0.070 0.134	0.090	
0.191	0.310	0.339 0.121	0.222	0.171 0.150	0.330 0.200	

~

~ * 0 ~

- -

4

- ~

4 ~ 4

LOTUS FILE EHSSMLIN.WK1

_

TEST	BUMPER PLATE	BUNPER HOLE	BUMPER HOLE	BACKINALL	BACKAMALL EQ. HOLE	BACKAALL DAMAGE	BACKMALL	BACKHALL SPALL
NUMBER	MATERIAL	DIA 1 (IN.)	DIA 2 (IN.)	PENETRATED?	DIANETER (IN.)	AREA (50, 1N.)	SPALLED?	AREA (SQ.IN.)
EHJA	ALUMININ	0.670	0.630	YES	1.51	19.63	92	
EH18	ALUNINUM	0.790	0.650	YES	0.89	11.04	R	
EHIC	ALUNINUM	0.980	0.650	YES	0.01	10.64	YES	0.11
ENID	ALUMINUM	1.420	0.570	YES	0.19	15.90	Ŷ	
EHSSIA	ALUMINUM	0.557		Ŧ		11.04	YES	0.97
EHSS18	ALUMINUM	0.510		YES	0.58	97.11	YES	1.1
EHSSIC	ALUNINUM	0.518		YES	0.37	11.04	YES	1.2
EHSS2A	ALUMINUM	0.521		Q		8.30	YES	0.2
EHSS28	ALUMINUM	0.480		¥		9.62	YES	0.8
EHSS3A	ALUNINUM	100	0.558	YES	0.24	9.62	YES	0.15
EHSE35	ALUNNAUPA	0-614	0.583	YES	6.89	7.07	92	
EHSS3C	ALUMINUM	0.542	0.491	YES	9.19	10.32	8	
EHSS4A	ALUMINUM	9.747	0.573	¥		2.41	¥	
EHSS4B	ALUHINUM	9.697	0.563	Ð		3.14	YES	9.0
EHSS4C	ALUNINU	9.649	0.505	2		6.49	YES	9.9
EHSSEA	ALUNINUM	0.522	8.478	YES	6.48	8.30	Ð	
ENSSB	ALUNININ	0.556	0.493	YES	0.43	14.19	£	
EHSSSC	ALUMINUM	6.857	0.478	YES	0.27	3.55	YES	0.0
EHSS5D	ALUNINU	0.787	0.433	YES	6.19	3.98	9	
EHSS6A	ALUMINA	B.644		YES	0.31	13.36	YES	1.6
EHSS4B	ALUMINUM	0.578		YES	2.23	16.80	YES	8.9
EHSSAC	ALUMINIM	0.400		YES	1.26	19.63	YES	·0
EHSS7A	ALUNINUM	0.822	0.636	9		3.14	9	
EHSS7B	WINIMITH	9,840	0.667	9		4.91	YES	0.2
EHSSBA	HINIMI TH	1.468	0.546	YES	0.43	6.49	YES	6.0

DEBRIS CLUID	DEBRIS CLOUD	HOLE NO. 1	HOLE NO. 2	HOLE ND. 3	Sec.	TER NO. 1	CRAT	ER NO. 2	CRATER
TRAJECTORY (DEG)	SPREAD (DEG)	DIANETER (IN.)	DIAMETER (IN.)	DIANETER (IN.)	DIA. (IN	(") DEPTH (IN.)	DIA. (IN.) DEPTH (IN.)	DIA. (IN.)
24.82	60.51	1.513			0.1	90 0.076	0.12	2 0.068	0.193
19.90	47.26	0.887			0.1	41 0.111	0.14	1 0.093	6.199
6.93	46.80	9.010			0.1	35 0.072	0.15	0.070	0.139
4.29	56.80	0.142	0.132		0.2	24 0.139	0.18	5 0.137	0.273
1.72	50.19				0.1	12 0.085	0.0	5 0.072	080.0
0.36	52.19	0.427	242.0		. .0	59 0.146	0.16	9 0.132	0.119
0.0	50.19	0.184	0.179	0.140	0.1	22 0.145	0.13	4 0.127	0.120
0.36	44.19				0.1	98 0.073	90-0	M 0.073	0.089
0.00	47.26				0.1	61 8.146	0.12	1 0.128	0.079
23.27	11.80	0.173	0.162		0.0	205 0.151	e.15	5 0.129	0.127
22.66	35.23	0.873	15.000	0.092		63 0.132	0.18	6 0.129	8.096
28.48	40.13	0.790				127 0.148	0.15	id 0.137	0.191
8.53	24.36				0.0	220.0 0.02	0.10	4 0.074	0.11.0
16.04	26.73					960.0 980	0.13	11 0.085	0.094
16.04	36.39				6.1	34 0.152	0.14	1 0.125	0.127
21.80	41.18	0.289	0.265	0.197		0.120	0.11	0 9.108	0.128
25.17	51.39	9.362	0.180	0.160		66 0.152	0.14	6 0.130	8.149
9.93	29.43	0.270				102 0.097	0.11	5 9.093	8.097
21.80	29.53	0.160	0.103			45 0.114	0.15	5 0.077	0.07
0.00	54.41	0.310							
0,00	59.78	2.204	0.157	0.148	-	18 0.139	0.1	A 0.113	0.153
3.58	63.68	1.259							
12.68	25.28					114 0.116	0.12	8 0.103	0.099
23.03	33.10				0.1	102 0.091	8.17	2 0.075	0.118
10.62	16.96	8.363	0.207	0.120	-	118 0.124	0.14	64 0.117	0.116

NO. 3 DEPTH (IN.)	BACKMALL Penetrated?	BACKMARL EQ. HOLE DIAMETER (IN.)	Backalall oxyabe Area (Sq. In.)	SPALLED?	BACKAMUL SPALL AREA (SQ.IN.)	debris cloud Trajectory (deg)	debris cloud Spread (deg)
	ŝ			ş		2	1
100.0	æ		1 , U, U	2		78.82	10.10
870.0	R		0.0	2		38.13	28.47
690.0	Ŷ		6.61	2		50.19	15.01
6:03	2		0.0	Ŷ		24.82	56.80
0.061							
0.117							-
0.093							
0.064							
0.078							
0.115	Z		0.00	2		23.27	41.80
0.123	Ŷ		8.60	2		22.66	35.23
890.0	¥		0.00	9		28.48	40.13
0.045	YES	0.33	1.48	2		39.95	11.06
0.065	YES	0.51	5.41	YES	0.02	37.05	19.95
0.109	YES	0.45	2.41	2		43.30	5.69
0.106	¥		0.0	¥		21.80	41.18
0.119	2		0.0	2		25.17	51.39
0.085	Ŷ		2.76	2		63.72	5.18
8.852	ł		0.44	Ŷ		58.39	3.84
0.074							
980-0	YES	9.99	3.55	Q		39.27	17.09
0.073	YES	0.96	2.07	2		42.15	12.24
0.110	2		00	2		10.62	38.31

EPTH (IN.)	6.129 0.056	0.132 0.138 0.146	0.000 9.951 0.131 0.161
TER NO. 2 4 2 (IN.) Df	0.236 0.142	0.126 0.115 0.128	0.156 0.156 0.112
CRAT DIA 1 (IN.) DIA	6.256 6.142	8.248 9.146 0.223	6.210 6.130 6.210 8.145
(CPTH (JN.)	8.139 8.684	0.153 0.152 0.168	8.055 8.055 8.142 8.128
TER NO. 1 A 2 (IN.) 0	0.118 0.159	8.149 0.136 0.137	0.187 0.169 0.169
CBA1 DIA 1 (IN.) DIA	0.118 0.200	6.289 6.210 9.244	0.225 0.225 0.215
3 2 (IN.)		8.1 87 8.199	0.142 0.130
HOLE ND. Dia 1 (IN.) dia		6.236 9.208	6.226 0.148
I. 2 A 2 (IN.)		0.113 0.288 0.224	6.156 0.128
HOLE NC DIA 1 (IN.) DI		0.154 0.380 0.319	0.226 0.152
. 1 A 2 (IN.)		6.231 8.273 8.273	0.548
HOLE NO DIA 1 (IN.) DI		0.391 0.34.0 0.341	1.318 1.463

CRATER ND. 3 NO. UITNESS PLATES DIA I (IN.) DIA 2 (IN.) DEPTH (IN.) PENETRATED

	- 7 0	0 0 0 0 N
0.121 0.041	0.120 0.110 0.090	0.005 0.024 0.126 0.052
0.120	0.126 0.102 0.131	0.074 0.090 0.142 0.105
0.177 0.150	0.190 0.163 0.274	0.137 8.153 0.248 0.144

LOTUS FILE EHMLIY.WK1

TEST	BUMPER PLATE	BUMPER HOLE	BUMPER HOLE	BACKARLL	BHCKMALL EQ. HOLE	BACKARLL DAMAGE	BACKMALL	BACKHALL SPALL
NUNBER	MATERIAL	DIA. 1 (IN.) D	IA. 2 (IN.)	PENETINATED?	DIAMETER (IN.)	AREA (SQ. IN.)	SPALLED?	AREA (SQ.IN.)
EHC	ALUMINUM	0.130	0.629	YES	0.198	14.52	R	
EHRA	ALUMINUM	1.319	0.629	YES	6.137	11.16	9	
ENTRB	ALUNINUM	1.319	0.591	YES	8.195	16.62	Ŷ	
EH r B	ALUMINUM	1.102	0.472	YES	0.171	27.01	8	
EHAC	ALUMINUM	0.787	0.394	QN		6.61	Q	
EH2A	ALIMINAN	9.634		YES	2.505	17.87	9	
EH2B	ALUMINUM	0.751		Q		16.4	Ŷ	
EH2C	ALUMINUM	0.631		YES	0.410	2.76	QN	
QZH3.	ALUMINUM	0.635		YES	1.516	12.7	Ŷ	
EHZE	ALUMINUM	0.583		YES	2.710	8.95	2	
EH3A	ALUMINUM	0.596		YES	1.962	31.96	YES	1.11
EH4A	ALUMINUM	0.584		YES	0.870	35.78	Q	
EH48	ALUMINUM	0.645		YES	1.600	21.65	Q	
EHRP1	ALIMINUM	1.140	0.650	QN		14.52	ÛN	
EHRP2	ALUMINUM	1.300	0.630	9		14.52	ş	
EHRP3	ALUMINUN	0.781	629.0	ÛN		6.49	9	
EHRP4	ALUMINUM	0.813	0.563	Z		8.30	QN	
EHRPS	ALUMINUM	0.813	0.563	Q		4.43	ON	
EHRP6	ALUMINUM	0.782	0.551	Q		5.41	¥	
EHRP7	ALUMINUM	0.669	0.413	ŪN.		5.94	ON	
EHRP8	ALUNIMUN	0.594	0.438	YES	520.0	20.63	P	
EHRP9	ALUMININ	0.669	0.472	Z		15.71	묫	
MDTA	ALUMINUM	0.324		YES	0.320	0.15	Q	
HDTB	ALIMINIM	0.320		YES	0.420	- 79-1	Q	
MDTD	ALUNINUM	0.630		R		6.83	2	
PREHI	ALIMINIM	0.620		YES	1.100	25.97	GN	
PREH2	ALUMININ	0.615		YES	1.998	25.97	Ŷ	

S5.69 0.141 0.113 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.139 0.135 0.139 0.136 0.139 0.136 0.139 0.136 0.139 0.139 0.136 0.139 <th< th=""><th>DE DE</th><th>BRIS CLOUD</th><th>HOLE NO. 1</th><th>HOLE NO. 2</th><th>HOLE NO. 3</th><th>CINTER NIA CINTER</th><th>NO. 1 Meptu (IN)</th><th>010</th><th>RATER NO.</th><th>2 4 (IN.)</th><th>CRATES</th></th<>	DE DE	BRIS CLOUD	HOLE NO. 1	HOLE NO. 2	HOLE NO. 3	CINTER NIA CINTER	NO. 1 Meptu (IN)	010	RATER NO.	2 4 (IN.)	CRATES
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	READ (DEB)	DIATELEK (JN.)	UIANELEK (IN.)	NIME ICK VIN'S	1 / WIX ' WIA					
7.7 0.172 0.197 0.206 0.135 0.205 0.138 9.73 0.171 0.171 0.137 0.139 0.206 0.136 9.73 0.171 0.137 0.139 0.139 0.206 0.106 9.73 0.171 0.169 0.189 0.189 0.201 0.065 9.73 2.565 0.700 0.180 0.169 0.066 0.066 9.73 2.510 0.710 0.125 0.078 0.209 0.066 7.41 0.410 0.410 0.160 0.062 0.046 0.066 7.41 0.410 0.410 0.125 0.056 0.062 0.046 7.43 0.410 0.416 0.466 0.166 0.166 0.166 8.41 1.400 0.126 0.166 0.166 0.166 0.166 8.43 1.400 0.126 0.166 0.166 0.166 0.166 8.43 0.166 0.166 0.166 0.166 0.166 0.166 8.43 0.126		55.69	0.161	0.104	0.050	0.170	0.111	9	-169	0.094	0.218
9.33 0.195 0.181 0.132 0.201 0.104 00.73 2.505 0.171 0.215 0.006 0.209 0.008 00.73 2.505 0.410 0.171 0.215 0.006 0.008 00.73 2.505 0.410 0.172 0.006 0.008 0.008 00.73 2.505 0.410 0.172 0.006 0.008 00.74 0.720 0.006 0.106 0.008 01.46 1.516 0.170 0.006 0.008 01.41 1.000 0.870 0.125 0.005 0.002 01.41 1.000 0.173 0.106 0.166 0.166 01.23 0.137 0.137 0.169 0.166 01.23 0.105 0.160 0.166 0.166 01.23 0.106 0.137 0.169 0.163 01.23 0.106 0.137 0.169 0.163 01.23 0.160 0.166 0.166 0.166 01.23 0.160 0.166 0.166 0.163 01.23 0.160 0.166 0.166 0.163 01.23 0.160 0.166 0.166 0.16		11.11	0.172	0.137		0.208	0.135	æ	205	8 .138	0.174
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		59.33	0.195			0.181	0.139	•	.241	0.116	9.224
38.74 3.215 0.174 0.209 0.068 0 41.75 0.410 0.410 0.410 0.410 34.71 0.410 0.410 0.410 34.75 0.410 0.410 0.410 34.71 0.410 0.410 41.87 0.410 0.410 55.68 2.710 0.410 56.48 2.710 0.410 56.31 0.870 0.160 56.41 1.680 0.160 56.23 0.400 56.23 0.160 56.23 0.160 56.23 0.160 56.23 0.160 56.23 0.160 56.23 0.160 56.23 0.160 56.23 0.160 56.23 0.160 56.23 0.160 33.13 0.170 33.13 0.180 33.13 0.193 33.13 0.193 33.13 0.193 33.13 0.193 34.19 0.193 57.40 0.160 10.13 0.105 10.13 0.105 11.173 0.105 11.173		48.70	1/1.0			0.169	0.086	0	200	6.065	0.124
60.23 2.505 34.71 2.505 34.71 2.710 24.16 1.516 41.67 1.516 45.48 2.710 56.28 2.710 7.4.88 1.927 6.41 1.516 6.41 1.516 6.41 1.600 6.41 1.600 6.41 1.600 6.41 1.600 6.41 1.600 6.41 1.600 6.42 0.160 6.43 0.150 6.44 0.150 6.45 0.160 6.47 0.150 6.47 0.150 6.47 0.150 6.47 0.150 6.47 0.150 6.47 0.160 6.47 0.160 6.47 0.150 6.47 0.150 6.48 0.160 6.49 0.160 6.49 0.160 6.49 0.160 6.49 0.160<		38.74				0.215	8.074	•	.209	0.068	0.150
34.71 34.71 26.16 0.410 41.67 1.516 6.68 2.7710 7.88 1.982 7.88 1.982 80.31 0.870 80.31 0.870 80.31 0.870 80.31 0.870 80.32 0.170 56.41 1.060 66.41 1.060 66.41 1.060 66.41 1.060 56.23 0.170 56.23 0.170 56.23 0.170 56.23 0.170 56.13 0.056 56.23 0.173 56.13 0.055 57.06 0.055 57.06 0.173 56.13 0.105 57.01 0.173 57.02 0.160 56.13 0.105 57.06 0.105 57.01 0.173 57.01 0.173 57.01 0.173 57.11 0.102 57.1		60.23	2.505								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		34.71									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		26.16	0.410								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		41.67	1.516								
74.88 1.962 0.052 0.062 0.062 0.062 66.41 1.600 66.41 1.600 0.667 0.062 0.044 0 66.41 1.600 66.41 1.600 0.667 0.169 0.067 56.23 56.23 56.24 0.169 0.169 0.057 36.24 33.13 0.120 0.968 0.142 0.113 33.13 55.00 0.160 0.055 0.160 0.055 33.13 55.01 0.102 0.137 0.115 0.055 33.13 55.01 0.102 0.137 0.102 0.055 33.125 0.105 0.102 0.137 0.102 0.137 31.125 0.055 0.106 0.126 0.055 57.40 0.102 0.102 0.137 0.055 57.41 0.420 0.102 0.137 0.105 57.10 1.001 0.123 0.102 0.137 71.10 1.100 1.102 0.137 0.059 71.12 1.990 <td></td> <td>45.68</td> <td>2.710</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		45.68	2.710								
80.31 0.870 0.125 0.055 0.062 0.062 66.41 1.600 1.600 0.160 0.055 55.23 55.23 55.23 0.160 0.063 49.29 0.120 0.068 0.160 0.057 44.78 0.130 0.168 0.164 0.053 33.13 0.133 0.159 0.142 0.114 33.13 0.156 0.159 0.166 0.055 34.78 0.159 0.137 0.163 0.055 33.13 0.150 0.175 0.055 0.055 34.78 0.173 0.102 0.137 0.055 34.09 0.139 0.102 0.055 0.055 34.09 0.102 0.102 0.137 0.055 34.09 0.102 0.102 0.137 0.055 34.09 1.100 0.137 0.055 71.72 1.900 0.102 0.137 0.055		76.88	1.962								
66.41 1.600 56.23 1.600 56.23 49.29 34.98 0.160 44.78 0.160 34.98 0.160 34.98 0.160 34.98 0.160 34.98 0.160 34.98 0.160 34.98 0.137 33.13 0.139 33.13 0.139 3.135 0.113 3.125 0.115 3.126 0.139 3.127 0.059 3.128 0.105 3.129 0.156 57.40 0.102 57.40 0.102 57.41 0.137 57.42 0.115 57.40 0.102 57.41 0.420 19.41 0.420 11.90 1.100 71.72 1.990		80.31	0.870			0.125	0.056	-	1.062	0.044	0.105
56.23 56.23 49.29 0.160 0.068 0.160 0.057 34.98 0.170 0.160 0.057 0.114 44.78 0.137 0.163 0.160 0.049 33.13 0.159 0.137 0.160 0.049 33.13 0.139 0.157 0.175 0.095 34.08 0.139 0.115 0.055 0.055 34.08 0.173 0.102 0.115 0.055 35.08 0.060 0.060 0.055 0.055 36.31 0.123 0.102 0.137 0.053 36.31 0.420 0.160 0.165 0.053 19.41 0.420 0.102 0.137 0.053 11.00 1.100 0.102 0.137 0.053 71.72 1.990 0.190 0.164 0.164		66.41	1,600								
49.29 49.29 0.160 0.068 0.160 0.057 34.98 44.78 0.137 0.140 0.142 0.114 33.13 0.139 0.159 0.116 0.059 0.114 33.13 0.139 0.159 0.115 0.049 34.08 0.139 0.113 0.049 33.13 0.126 0.175 0.049 34.16 0.139 0.115 0.049 34.18 0.139 0.115 0.055 34.125 0.102 0.115 0.055 34.129 0.102 0.102 0.053 34.129 0.102 0.102 0.053 34.10 1.100 0.102 0.102 0.053 11.10 1.100 1.100 0.102 0.102 0.053 71.72 1.990 0.190 0.102 0.102 0.053		56.23									
34.98 34.98 0.120 0.668 0.166 0.057 33.13 33.13 0.137 0.142 0.114 33.13 0.130 0.137 0.142 0.114 33.13 0.130 0.137 0.142 0.114 33.13 0.130 0.137 0.142 0.114 33.13 0.130 0.137 0.142 0.114 33.13 0.130 0.137 0.142 0.142 34.17 0.156 0.137 0.155 0.055 57.40 0.160 0.117 0.102 0.155 50.31 0.120 0.127 0.137 0.059 51.10 1.100 0.102 0.137 0.059 71.12 1.100 1.100 1.100 0.137 0.059		49.29									
44.78 0.137 0.142 0.114 0 33.13 33.13 0.137 0.142 0.114 0 35.08 35.08 0.180 0.137 0.160 0.049 0 34.75 50.13 0.137 0.155 0.175 0.049 0 31.25 51.60 0.175 0.150 0.175 0.049 0 50.31 50.31 0.150 0.177 0.102 0.155 0.156 0.055 50.31 6.02 0.320 0.150 0.160 0.137 0.055 0.156 0.055 50.31 0.320 0.122 0.102 0.137 0.055 0.156 0.055 19.41 0.420 0.420 0.102 0.137 0.059 0.157 0.157 0.157 71.72 1.90 1.100 1.90 1.990 0.159 0.157 0.157 0.159		34.98				0.120	0.068	-	0.160	0.057	0.11
33.13 33.13 0.059 0.100 0.049 34.08 34.08 0.139 0.105 0.049 35.08 31.25 0.150 0.139 0.115 0.055 57.40 0.051 0.150 0.175 0.055 0.055 50.31 0.075 0.173 0.126 0.055 0.055 50.31 0.20 0.160 0.137 0.055 0.055 50.31 0.20 0.150 0.102 0.137 0.055 50.31 0.320 0.150 0.102 0.137 0.055 50.31 0.320 0.124 0.055 0.102 0.137 0.055 19.41 0.420 0.102 0.102 0.137 0.059 71.72 1.990 1.100 1.990 0.102 0.112 0.055		44.78				0.190	0.137	-	1.142	0.114	0.117
33.08 0.180 0.139 0.175 0.095 31.25 57.60 0.075 0.156 0.055 0.155 50.31 57.60 0.056 0.157 0.155 0.055 50.31 0.102 0.137 0.155 0.055 50.31 0.220 0.160 0.137 0.055 19.41 0.420 0.102 0.137 0.059 71.10 1.100 1.100 1.100 1.190		33.13				0.130	0.059	-	0.100	0.049	0.12
31.25 31.25 0.156 0.055 0 50.31 0.075 0.156 0.055 0 50.31 0.102 0.126 0.058 0 6.02 0.320 0.173 0.102 0.137 0.059 19.41 0.420 0.420 0.102 0.137 0.059 71.10 1.100 1.100		36.08				0.180	0.139	-	1.175	8. 095	0.125
57.60 0.053 0.150 0.126 0.058 50.31 50.31 0.122 0.137 0.059 6.02 0.320 0.122 0.137 0.059 19.41 0.420 1.100 1.100 71.72 1.990		31.25				0.150	0.075	-	0.115	0.055	0.12
50.31 50.31 0.137 0.059 1 6.02 0.320 0.320 0.137 0.059 1 19.41 0.420 0.420 0.100 1.100 71.72 1.990		57.60	0.075			0.150	090.0	-	0.126	0.058	0.18(
6.02 0.320 19.41 0.420 40.39 1.10 71.72 1.990		50.31				0.173	0.102	-	1.137	0.059	0.15
19.41 0.420 40.39 71.10 1.100 71.72 1.990		6.02	0.320								
40.39 71.10 1.100 71.72 1.990		19.41	0.420								
71.10 1.100 71.72 1.990		40.39									
71.72 1.990		71.10	1.100								
		71.72	1.990								

-

debris Cloud Spread (deg)	55.69 47.77 55	48.70 48.70	7 .		24.15	A9-9	24.78	28.27	28.56	33.96	5.71	57.60	50.31
debris cloud Trajectory (deg)	22.05 22.17	21.96	୬ ଝ		46.40		41.19	48.68	25.17	48.37	NC.15	10.42	7.13
BACKUPUL SPALL AREA (SQ.IN.)										6.041			
SPALLED?	22	22	2		ę	9	¥	Ŷ	2	YES	¥	¥	9
Bacialarle Dayage Area (SQ. IN.)	00.0	0.00 9.00	88.0		10.18	9.62	7.07	11.05	7.07	20.03	2.07	0.0	09.0
BACIONALL ED. HOLE DIAMETER (IN.)							1.004	0.347	0.341	6.425			
BACKAPALL PENETRATED?	2 2 2	7 9 7	2		¥	2	YES	YES	YES	YES	9	2	QX
NO. 3 Depth (In.)	0.083 0.129	0.108 0.053	0.039	8.034			0.040	0.081	0.041	0.078	0.051	0.055	0.040

i.

•

CRATER ND. 2 Dia 1 (IN.) dia 2 (IN.) depta (IN.)	
CRATER NO. 1 DIA 1 (IN.) DIA 2 (IN.) DEPTH (IN.)	
HOLE ND. 3 Dia 1 (in.) dia 2 (in.)	
HOLE ND. 2 Dia 1 (in.) dia 2 (in.)	
HOLE NO. 1 Dia 1 (IN.) dia 2 (IN.)	

÷

_

\$	•	~0	0	2
0.13	20.0	9.1	0.13	1.1
0.186	0.112	0.185	0.150	0.137
0. 280	0.156	0.195	0.145	0.147
8.148	260.0	8.116	0.139	1.089
6.17	0.102	0.156	0.200	8.146
0.225	0.117	0.156	0.242	21.1
	0.118	0.146	0.130	
	9.197	8.146	0.157	
	1.157	0.177	0.177	
	0.276	0.197	0.201	
1.004	0.157	0.217	0.197	
1.084	0.276	9.276	0.472	

ដ	 -	~~~~	~ •	₽ ~	-	•	00	~ ~
FLAT TED								
UTINESS PENETRA								
2.								
(. ND			0.139	0.042	0.076	0.029		
EPTH						-		
ND. 3 (IN.) D			0.170	0.125	0.160	0.113		
ATER I IA 2								
C8 (IN.) D			0.185	0.125	0.160	0.113		
DIA I								

•

LOTUS FILE <u>PSERMLIN.WK1</u>

test Number	Backlarl Penetrated?	BACKMALL EQ. HOLE DIANETER (IN.)	BACRAMLL DAMAGE AREA (SQ. IN.)	Backamall Spalled?	BACKMALL SPALL AREA (SQ.IN.)	debris cloud Trajectory (deb)	debris cloud Spread (deg)
	:		2	VEC	n 17	(<u>,</u>)	38.57
P-01	₹ :			2 5		8	47.30
P-02	2		n-'n		6		11 65
P-03	2		0.30			2.1	48.10 48.10
P-04	2		0.1	VEC	10.0 10.0	5. O	55.94
P-05	TES Vio		41°61 77 01	VEC	0.72 0.72	4.15	64.01
P-06A	NU	30 0		2 ¥	0.29	3.05	32.08
E1-4	TES	C7.0		212	0.0	87 8	58° &
P-138	ŝ	:	8.04	5 5	0.40	15 U	47.64
P-13C	YES	/a/	00.22				78.41
P-14	YES	0.46	6.'/	23		5. C	
P-14A	YES	0.19	C7.8	2			
P-148	Q		20.91	YES	CO. D	3.24	21.01
P-140	YES	0,15	4.91	Ð			21-67
P-15	01		2.78	92		10.02	11.6/
P-15A	2		- 2	92		8.62	
P-15C	Ŷ			8			
P-14	YES	1.21	21.24	YES	0.54	2.20	46.66
P-140	YES	0.79	21.65	YES	0.49	56-0	47.26
P-148	YES	0.94	13.66	YES	1.08	8+-0	37.90
P-16C	YES	0.70	20.63	YES	2.03	3.15	46.27
P-16E	YES	0.92	28.27	YES	1.96	0.00	53.11
P-166	QN		38.50	YES	0.45	0.48	60.47
P-17	YES	0.63	33.53	YES	1.43	0.00	20.04
P-208	Q		33.18	YES	0.79	1.24	56.74
P-20C	YFS	0.19	33.18	YES	0.98	0.76	56.92
P-21	YES	1.13	19.53	YES	0.82	1.86	63.97
P-214	YES	1.33	15.90	YES	0.19	1.72	58.14
P-24C	YFS	0.19	22.37	YES	8.48	0.67	47.91
P-24F	YES	0.19	25.80	YES	0.34	1.05	50.90
54	Ş		8.50	QN		2.29	30.62
P-754	2		5.15	9		10.85	11.98
P-258	YES	IE.0	0.0	R		0.10	-2.96
P-25C	9		1.47	Ŷ		2.10	13.01
P-27	ŝ		7.07	R		3.58	40°.0
P-27A	YES	0.18	3.37	Q		1.86	29.01
P-278	YES	0.12	4.91	¥		1.86	34.68
P-28	Q		1.63	9V		0.72	20.40
P-33	£		19.63	YES	0.52	B.57	63.99
P-34	YES	0.41	23.76	YES	0.42	1.72	83.98
P-34R	YES	1.01	12.55	YES	1.34	1 0.72	23.13
P-35	YES	1.79	16.73	YES	1.24	5.39	1.97

no. Witness plates Penetrated	-	, a		v . .	-	Ð	2	- 7	44	0	2	1	~ ~	. 0	-	2		•	0		~
. 3 TH (IN.)	000							0,069				0.072					6.055	0.103	0.106		0.091
CRATER NO DIA. (IN.) DEP	0 5 5 6	· · · · ·						0.140				0.155					0.144	0.154	0.215		0.130
l, 2 Th (IN.)		701.0						0.080				0.105					090.0	0.105	0.118		0.112
CRATER NO DIA. (IN.) DEF		007'0					1	0.133				0.148					0.136	8.241	0.103		0.190
. 1 TH (IN.)	5	011-0						0.124				9.114					0.067	0.141	0.142		0.127
CRATER NO (IN.) DEP	-						ł	0.155				0.139					0.128	0.219	0.199		0.241
HOLE NO. 3 Diameter (IN.) Dia.				0.134			0.220							0.110	0.110						0.084
HOLE NO. 2 DIAMETER (IN.)				0.244			0.220					0.174		0.110	0.110					UOC V	0.126
HOLE NO. 1 DIANGTER (IN.)		C81'1	147.U	0.365	0.194	0.154	1.080	0.786	569.0	0.920	0:9.0	0.204	1.134	011.0	0.110	0.310		6.175	0.120	0.408	1.766

LOTUS FILE PSERMLIY.WK1

.

TEST NUMBER	Bunder plate Haterial	BUMPER HOLE Size (IN.)	BACKIAN LL PBNETRATED?	Backalaller, Hole Dianeter (In.)	BACKARALL DAWAGE AREA (SQ. IN.)	SPALLED?	Backamil Spall Area (Sq.In.)	debris cloud Trajectory (deg)																										
P-7	ALUMINUM	0.42	YES	8.36	1.52	Ŧ		8.72																										
P-8	ALUMINUM	0.43	YES	60	3.14	YES	0.33	00.0																										
P-9	ALUMINUM	0.52	2		0.21	Z		08.0																										
P-10	AL UMINUM	0.51	9		1.7	9		0.00																										
P-11	ALUMINUM	0.51	92		0.33	2		8.57																										
P-128	AL UMINUM	0.56	2		6.97	2		0.00																										
P-12C	AL UNINUM	0.47	R		3.30	Z		1.43																										
P-120	ALIMINIM	9.50	Ŷ		2.82	¥		2.58																										
P-130	ALIMINUM	0.56	2		0.69	Ŷ		1.53																										
P-13£	ALIMINUM	6.48	Ð			2																												
P-14C	ALIMINIM	0.37	92		4.68	Ż		11.59																										
P-14E	ALUMINUM	0.33	YES	0.32	6.20	2		1.24																										
P-145	ALUMINUM	0.34	¥		4.55	2		1.72																										
P-158	ALUMINUM	0.20	æ		1.25	2		7.22																										
P-16H	ALUMINUM	0.61	Z		2.38	2		0.0																										
P-16J	ALUMINUM	0.62	92		1.74	¥		0.0																										
P-16K	ALUNINUM	0,60	DN		1.00	Đ		2.10																										
P-16L	ALUMINUM	0.57	2		6.56	÷		1.81																										
P-16N	ALUMINUM	0.55	YES	0.53	8.87	Q		15.46																										
P-16N	ALUHINUM	0.51	YES	0.25		ÛN																												
P-16P	ALUMINUM	0.57	YES	0.40	4.45	¥		1.15																										
P-20F	ALIMINUM	0.61	R		8.15	ÛŅ		1.05																										
P-206	ALUMINUM	0.51	YES	0.47	7.07	æ		0.95																										
P-20H	ALUMINUM	0.61	Q		6.21	YES	0.01	0.86																										
P-218	ALUMINUM	0.66	QN		1.62	QN		0.57																										
P-21C	ALUNINUM	0.60	QN		1.19	Ð		0.29																										
P-21D	ALUNINUM	0.59	YES	1.03	60.9	P		1.29																										
P-246	ALUMINIM	0.48	ÛN	-	3.31	Đ		0.67																										
P-27C	ALUMINUM	0.36	9		1.64	¥		1.60																										
P-270	AL LMINIM	0.35	£		1.69	Ŷ		1.00																										
P-27E	ALUNINUM	0.34	Ŷ		0.15	P		64.0																										
P-27F	ALIMININ	0.33	Ż		0.22	Ŷ		1.29																										
P-338	ALUNINUM	0.47	YES	0.83	2.84	£		2.72																										
P-338-1	AL UMINUM	0.47	YES	0.20	2.84	YES	0.13	0.14																										
P-33C	ALUNINUM	0.44	ÛN		2.38	Ŷ		0.0																										
P-34C	ALIMINIM	0.48	₽		4.52	2		3.72																										
P-34C-1	ALIMINUM	0.46	YES	0.30	5.31	QN		3.29																										
P-34C-2	ALIMINUM	0.48	문		5.31	Q		9.29																										
P-358	ALUMINUM	0.62	9		10.32	문		0.0																										
P-35C	ALUMINUM	0.59	YES	SPLIT	SPLIT	9																												
CRATER NO. 3 IA. (IN.) DEPTH (IN.)																																	0.087 0.068	
---	------------------------	-------	---------------	-------	-------	-------	------	-------	-------	-------	------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	------	------	-------	-------	-------	-------	-------	-------------	--
CAMTER ND. 2 . (1N.) DEPTH (1N.) D.																																	0.093 0.082	
CRATER ND. 1 4. (IN.) DEPTH (IN.) DIA																				-													101 0 171 0	
HOLE NO. 3 DIANETER (IN.) DIA				-											0.210		0.110		01.0									1.10C						
HOLE NO. 2 DIA me ter (IN.)															0.210		0.220	1	067.0									0.200						
HOLE ND. 1 DIANETER (IN.)	0.360 0.390								0.320						HCC W	0.250	0.320		0.375			1.026						0.80	0.200			0.300		
debris cloud Spread (deg)	19.70 28.00 7.44	20.81	4.24 15.73	12.13	77.50	DC*97	8.94	21.78	26.36	22.43	5.26	16.49	14.16	10.74	27.08		22.44	30.04	28.07	26.33	19.02	38.08	19.48	20.53	20.68	6.30	7.44	26.72	26.69	24.54	33.35	35.91	35.98	

LOTUS FILE TSERNMLI.WK1

T2-2 ALINNARI 0.307 YES T2-4 ALINNARI 0.430 YES T2-6 ALINNARI 0.433 YES T2-6 ALINNARI 0.471 YES T2-6 ALINNARI 0.471 YES T2-6 ALINNARI 0.409 YES T2-10 ALINNARI 0.500 YES T2-11 ALINNARI 0.500 YES T2-12 ALINNARI 0.501 YES T2-13 ALINNARI 0.530 YES T2-14 ALINNARI 0.530 YES T2-15 ALINNARI 0.530 YES T2-16 ALINNARI 0.530 YES T2-18 ALINNARI 0.530 YES T2-18 ALINNARI 0.530 YES T2-18 ALINNARI 0.530 YES T2-19 ALINNARI 0.530 YES T2-19 ALINNARI 0.530 YES T2-18	07 38 71 71 765 00 765 80 765 81 81 81 81 81 81 81 81 81 81 81 81 81	8.069 8.538 0.924 1.048 1.150	2.41 7.67 6.49 7.88	YES YES YES	9.06
T2-2 ALIMUMIA U. 30/ F2 T2-6 ALIMUMIA 0.473 YES T2-6 ALIMUMIA 0.473 YES T2-6 ALIMUMIA 0.471 YES T2-6 ALIMUMIA 0.473 YES T2-6 ALIMUMIA 0.500 YES T2-9 ALIMUMIA 0.500 YES T2-10 ALIMUMIA 0.500 YES T2-11 ALIMUMIA 0.500 YES T2-12 ALIMUMIA 0.530 YES T2-11 ALIMUMIA 0.530 YES T2-12 ALIMUMIA 0.530 YES T2-13 ALIMUMIA 0.530 YES T2-14 ALIMUMIA 0.530 YES T2-18 ALIMUMIA 0.600 YES T2-18 ALIMUMIA 0.630 YES T2-18 ALIMUMIA 0.630 YES F1-48 ALIMUMIA 0.630 YES	23 23 24 29 20 20 21 21 21 22 23 23 23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0.530 0.928 1.049	7.67 6.49 15.83 7.88	YES YES YFS	
12-4 ALINUMIN 0.438 YES 12-6 ALINUMUN 0.471 YES 12-6 ALINUMUN 0.471 YES 12-6 ALINUMUN 0.471 YES 12-6 ALINUMUN 0.471 YES 12-10 ALINUMUN 0.500 YES 12-11 ALINUMUN 0.501 YES 12-12 ALINUMUN 0.531 YES 12-12 ALINUMUN 0.533 YES 12-16 ALINUMUN 0.533 YES 12-16 ALINUMUN 0.533 YES 12-16 ALINUMUN 0.533 YES 12-16 ALINUMUN 0.533 YES 12-18 ALINUMUN 0.533 YES 17-48 ALINUMUN 0.6360 YES 17-48 ALINUMUN 0.580 YES 17-48 ALINUMUN 0.580 YES	38 YES	85.9 924.1 1.150	, 15.93 7.88	YES YES	75 U
T2-6 ALENDARY 0.471 YES T2-63 ALENDARY 0.471 YES T2-64 ALENDARY 0.500 YES T2-10 ALENDARY 0.500 YES T2-11 ALENDARY 0.500 YES T2-11 ALENDARY 0.501 YES T2-12 ALENDARY 0.531 YES T2-14 ALENDARY 0.533 YES T2-15 ALENDARY 0.533 YES T2-16 ALENDARY 0.533 YES T2-18 ALENDARY 0.530 YES T2-18 ALENDARY 0.696 YES T2-19 ALENDARY 0.630 YES T2-18 ALENDARY 0.630 YES T2-19 ALENDARY 0.630 YES T2-20 ALENDARY 0.630 YES T2-48 ALENDARY 0.500 YES	72 10 10 10 10 10 10 10 10 10 10 10 10 10	0.924 1.040 1.150	6.49 15.83 7.88	YES YES	
12-6 ALUMUUR 0.472 12-6 ALUMUUR 0.409 12-6 ALUMUUR 0.500 12-10 ALUMUUR 0.500 12-11 ALUMUUR 0.500 12-12 ALUMUUR 0.501 12-12 ALUMUUR 0.501 12-12 ALUMUUR 0.530 12-12 ALUMUUR 0.530 12-12 ALUMUUR 0.530 12-13 ALUMUUR 0.530 12-14 ALUMUUR 0.530 12-12 ALUMUUR 0.530 12-13 ALUMUUR 0.530 12-14 ALUMUUR 0.696 12-20 ALUMUUR 0.620 12-18 ALUMUUR 0.630 12-19 ALUMUUR 0.630 12-18 ALUMUUR 0.630 12-18 ALUMUUR 0.630 12-19 ALUMUUR 0.630 12-18 ALUMUUR 0.630 12-19 ALUMUUR <t< td=""><td>200 00 10 10 10 10 10 10 10 10 10 10 10 1</td><td>1.150</td><td>15.03 7.88</td><td>YFS</td><td>2.63</td></t<>	200 00 10 10 10 10 10 10 10 10 10 10 10 1	1.150	15.03 7.88	YFS	2.63
T2-64 ALINNAN 0.409 YES T2-8 ALINNAN 0.500 YES T2-10 ALINNAN 0.500 YES T2-11 ALINNAN 0.501 YES T2-12 ALINNAN 0.531 YES T2-12 ALINNAN 0.533 YES T2-16 ALINNAN 0.533 YES T2-16 ALINNAN 0.533 YES T2-16 ALINNAN 0.533 YES T2-16 ALINNAN 0.533 YES T2-18 ALINNAN 0.530 YES T2-18 ALINNAN 0.533 YES T2-19 ALINNAN 0.500 YES T2-18 ALINNAN 0.500 YES T2-20 ALINNAN 0.500 YES F1-48 ALINNAN 0.500 YES	09 YES	1.150	7.88		A 94
T2-8 ALUMBUN 0.500 YES T2-10 ALUMMUN 0.307 YES T2-11 ALUMMUN 0.367 YES T2-12 ALUMMUN 0.531 YES T2-16 ALUMUN 0.533 YES T2-16 ALUMUN 0.530 YES T2-18 ALUMUN 0.696 YES T2-20 ALUMUN 0.627 YES T2-48 ALUMUN 0.600 YES FT-48 ALUMUN 0.500 YES FT-48 ALUMUN 0.500 YES	00 YES 07 141 131 130 131 155 155 155 155 155 155 155 155 155	1.150	88.7	1	53 F
T2-10 ALUMUMH 0.307 T2-11 ALUMUMH 0.541 T2-12 ALUMUMH 0.531 T2-16 ALUMUMH 0.533 T2-16 ALUMUMH 0.533 T2-18 ALUMUMH 0.530 T2-18 ALUMUMH 0.696 T2-20 ALUMUMH 0.627 T2-20 ALUMUMH 0.627 T2-20 ALUMUMH 0.600 T2-48 ALUMUMH 0.500 PT-48 ALUMUMH 0.500	07 141 131 130 130 145 145			152	7r•1
T2-11 ALUNUMIN 0.541 T2-12 ALUNUM 0.531 T2-16 ALUNUM 0.530 T2-18 ALUNUM 0.530 T2-18 ALUNUM 0.696 T2-20 ALUNUM 0.672 T2-20 ALUNUM 0.627 T2-20 ALUNUM 0.620 T2-48 ALUNUM 0.580 PT-48 ALUNUM 0.580	141 131 130 145 145 145				
T2-12 ALUMANH 0.531 YES T2-16 ALUMANH 0.530 YES T2-18 ALUMANH 0.696 YES T2-20 ALUMANH 0.676 YES T2-20 ALUMANH 0.627 YES T2-4A ALUMANH 0.600 YES FT-4A ALUMANH 0.500 YES FT-4B ALUMANH 0.500 YES	131 YES 130 YES 196 YES				
T2-16 ALIMUMU 0.530 YES T2-18 ALIMUMU 0.696 YES T2-20 ALIMUMU 0.627 YES FT-4A ALIMUMU 0.620 YES FT-4A ALIMUMU 0.680 YES FT-4B ALIMUMU 0.580 YES	20 YES 96 YES			!	
T2-18 ALIMMAN B696 YES T2-20 ALIMMAN D627 YES FT-4A ALIMMAN D627 YES FT-4A ALIMMAN D620 YES FT-4B ALIMMAN D630 YES	yes YES	1.620	10.32	2	
T2-20 ALUMUNIN 0.627 YES FT-4A ALUMUNIN 0.400 YES FT-4B ALUMUNIN 0.580 YES		1.600	16.80	YES	9.0
12-20 MLWINN 0.400 YES PT-4A ALWUNN 0.400 YES PT-4B ALWINN 0.500 YES		0.596	21.45	YES	N. 0
PT-48 ALUNANT U.SOO YES	AFS YES	0.63.0	10.77	YES	19.0
		0.250	15.21	YES	₽. .
		700	50.5	YFS	22.0
PT-4C ALUMUNIA 0.436 TES	156 TES	0.070] ;	
pt-44 ALIMINAM 0.500 YES	SOD YES	1.068	10.6	Ż	
by DA ALIMANEM D ADD YES	YES YES	1.650	12.62	YES	0.96
			12 21	YEC	0-23
PT-68 ALLINGING 0.500 YES	500 YES	1.4.0	17-61	2	

NO. 3 DEPTH (JN.)	9.086	0.115	0.109	0.111				9.119	0.139			0.084	8.103			
CRATER DIA. (JN.)	860.9	0.134		A.244			0/1-0	0.128	121			C71 U	101.0			
40. 2 EPTH (IN.)	0.987	6.127	0.117	1.131			/1120	0.127	0,146			101	101.0 0 100			
CBATER DIA. (IN.) D	0.117	0.335	0.165	BEL 1			121.9	0.132	9.119			9,142				
VD. 1 EPTH (IN.)	0.119	0.129	0.123	0.165		131		0.164	0.163			0.112	111			
CRATER I DIA. (IN.) DI	0.161	9.183	0.153	0.145		91.9		0.127	0.152			0.109	0.140			
HOLE NO. 3 DIAMETER (IN.)		0.229		0.148	0.170	191		0.151	842.0	0.200						
HOLE ND. 2 Diameter (IN.)		0.270		0.172	0.260	51.0		0.420	9.299	0.230	0.150				0.00	
HOLE ND. 1 DIAMETER (IN.)	0.069	0.282	0.924	1.000	1.110	<u>618-1</u>		962.1	0.430	0.490	9.200	8.396	1.070	1.858	1 444	
Debris Cloud Spread (deg)	24.66	42.73	39.59	57.32	42.97	48,11		64.1J	99,40	11.94	57.53	35.85	50.19	53.22	54°88	
debris cloud Trajectory (deg)	0.08	3.58	1.72	1.86	0.57	8.95		27° 7	1.86	6.98	1.43	1.72	3.58	2.00	2.72	

LOTUS FILE TSERYMLI.WK1

.

TEST VIMBER	BIMPER PLATE Material	BLAPPER HOLE BLAPPER HOLE DIA. 1 (IN.) DIA. 2 (IN.)	BACKMALL PENETRATED?	BACKMALL EQ. HOLE DIANETER (IN.)	BACKAANLL DAMAGE AREA (SQ. IV.)	SPALLED?	BACKAPALL SPAL AREA (SQ.IN.)
1-2-1	ALUMINUS	0.268	YES	0.281	150	ş	
12-3	ALIMINIA	0.411	YES	0.160	2.76	DN	
12-5	ALUMINUM	0.434	YES	0.840	5.41	Ŷ	
12-7	ALUMINUM	0.488	YES	0.564	7.67	Ŷ	
T2-7A	ALUNINUM	0.547	YES	0.632	7.67	Q	
12-15	ALUMINUM	0.522	YES	3.440	31.92	Q	
12-17	ALUMINUM	0.608	YES	3.270	31.54	R	
12-19	ALUMENIA	0.576	Ŷ		13.36	Ŵ	
T2-19A	ALUNINUM	0.527	YES	0.499	8.30	Z	
T2-198	AL LINING	0.474	YES	0.69.0	2.41	Q	

-

DEBRIS CLOUD TRAJECTORY (DEG)	debris cloud Spread (deg)	HOLE NO. 1 DIANETER (IN.)	HOLE NO. 2 Diameter (In.)	HOLE NO. 3 Diameter (IN.)	CRATER N DIA. (IN.) DE	10. 1 PTH (IN.)	CRATER M DIA, (IN.) DEF	0. 2 Th (IN.)	CRATER DIA. (IN.)	NO. 3 Depth (In.)
00.0	66'8	0.281			0,098	0.006			900	0.015
5.13	26.16	0.160			0.174	1/0.0	0.0/0	0+0.0	0,138	
1.72	36.26	0.840			0.103	0.020	0.044	CID. 0	700 0	110.0
3.58	42.07	0.564			0.132	0.067	0.104	0.052	0.697	0.0.0
1.72	42.60	0.632			0.189	0.102	0,096	0.057	0.174	857.0
1.86	77.14	3.440								590 0
1.72	74.71	3.270			C1.0	0.0/3	RCN'N	9CN.U	+ 1 T O	770 0
1.72	54.53				0.116	0.120	140.0	1/0.0	000.0	010.9
3.59	(3.9)	0.419	0.270		0.174	0.127	6 0 }"0	0.122	001.0	040.0
3.58	24.32	0.690			0.194	0.109	0.235	680.0	0.147	0.055

LOTUS FILE CORRBUMP.WK1

PALL DEBRIS CLOUD .IN.) TRAJECTORY (DEG)	1.45	0.24	1.57		/S. 82	N. N.			10./1		70°76 AIA'A	24.21		
BACKAMALL S AREA (SD.														
SPALLED?	¥	Ŷ	2	£	¥	2	2	ŝ	2	2	YES	Z :	2 !	
Backall dayage Area (so. 1n.)	3.98	3.42	6**9		1.48	1.23	:	0.20	1.7		3.98	3.14		
Backwall Eq. Hole Diameter (IN.)	6.11.9	0.090	9.287											
BACKANLL PENETRATED?	YES	YES	YES	2	Ŷ	Ŵ	ł	2	9	Ż	¥	¥	2	9
HOLE BACK DX(1N.)	575.7	2.200	1.875	1.500	2.375	1.750	3.620	3.250	2.000	4.000	2.008	952.4	3,900	
BUNPER SIZE DN(IN.)	1.500	200	1.500	1.008	1.25	1.750	3.058	2.750	1.500	3.508	1.500	4.500	3.700	
HOLE Front DX(IN.)	UL 1	1000	0.292	0.484	0.527	0.571	1.148	0.650	0.563	627.4	0.621	6.80 8	1.008	
BUMPER SIZE 1 DN(1N.)	0 337	10010	0.292	949	8.379	0.390	0.570	9.486	0.492	0.494	0.406	0.546	0.600	
TEST NUMBER	1456		1450	307	389	906 906	1-60C	3098	3098	310	310R	311	312	

CRATER ND. 3)IA. (IN.) DEPTH (IN.)	0.166 0.167	0.181 0.099		0.062 0.006	8.096 8.041 8.863 8.827
0. 2 PTH (IN.) 1	0.117	0.101		8.002 8.001	8.072 8.834
CRATER N DIA. (IN.) DE	0.143	0.127		8 . 649 8 . 849	8.118 8.896
0. 1 FTH (IN.)	0.136	0.104	0.042	8.836 8.863	0.136 0.079
CRATER N DIA. (IN.) DE	0.123	0.131	8.069	0°0°0	6.258 0.100
HOLE NO. 3 Diameter (IN.)					
HOLE NO. 2 DIAMETER (IN.)					
HOLE NO. 1 DIAMETER (IN.)	0.113	0.287			
ebris cloud Pread (deg)	26.63 24 Pt	33.49	13.22	5.48	20.54 22.12

(IN.) DIA 2 (IN.)			0.110 0.127					0.322 0.322		6.331 B.160	
SPREAD (DEG) DIA 1	3.29	0.18	13.03	12.79	5.25	970	2.44	22.12	10.73	22.79	
dentis lluuv Trajectory (deb)	40 .70	38.66	37.60	33.82	38.66	35.99	49.82	39.69	41.99	21.80	
BACKMALL SPALL AREA (SQ. IN.)											
2004TTED; BMCIMINTT	¥	Ð	QN	ÿ	2	ž	Ŷ	2	Z	2	
BACKAALL DAMAGE AREA (SQ. IN.)	0.20	0.99	2.76	2 87		0.60	0.20	1.23	2.25	3.98	
BACKWALL EQ. HOLE DIANETER (IN.)			0.168					0.735		0.605	
Backhall Penetrated?	ÿ	2	YES	2 1	2 9	2 2	9	YES	, and the second se	YES	

.

. WITNESS PLATES Penetrated

-	
2	
~	

190.0

0.126

0.176

0,076

0.111

0.101

0.085

0.115

0.102

z	
	\sim
	ż
	9
	Ē

DEPT	
CRATER ND. 3 Dia 1 (IN.) dia 2 (IN.)	
DEPTH (IN.)	0.0 06
rater ND. 2 Dia 2 (IN.) I	0.064
DIA 1 (IN.)	8.109
("NI) HLA	0.092
ATER ND. 1 1a 2 (IN.) d	0.189
CA DIA 1 (IN.) D	0.197
0, 3 1A 2 (1N.)	
HOLE N (IN.) [
l Ald	
ND. 2 DIA 2 (IN.)	
HOLE 1 (IN.)	
DIA	

0.046 0.050	0.002 0.032	
0.152 0.170	0.670 0.023	
0.144 8.257	080°8 080°0	
0.068 0.044	0.007 0.029	
0.084 8.137	0.022 0.048	
6.090 0.191	0.185 8.048	
0.059 0.081	0.074 0.098	0.046
0.169 0.113	020.0 020.0	0.101
0.195	0.100 0.098	0.156
		0.159
		0.141
	0.662	0.461
	0.661	1.593

National Aeronautics and Space Administration	Report Docum	entation Pag	e	
1. Report No.	2. Government Access	ion No.	3. Recipient's Catalon N	
NACA OD / 1/2				•
NASA UK-4343				
4. The and Subline			5. Report Date	
Hypervelocity Impact Physics			January 1991	
			6. Performing Organizatio	on Code
7. Author(s)			l R Bartan an Oranitati	, ,
William P. Schonberg.	Alan J. Bean.			on Report No.
and Kent Darzi				
			10. Work Unit No.	· · · · · · · · · · · · · · · · · · ·
9. Performing Organization Name an	ad Address		M-655	
University of Alabama-Huntsville Department of Mechanical Engineering Huntsville, Alabama			11. Contract or Grant No.	
			NAS8-36955/D.O. 16	
Spansoring Agency Name and A	dian		13. Type of Report and Pe	riod Covered
National Aeronautics and Space Administrat Washington D.C. 20546-0001		ion	Final Contrac	tor Report
			14. Sponsoring Agency Co	ode
5. Supplementary Notes Contract Monitor: Dr. Marshall Space Flight	Ann F. Whitaker, Ma Center, AL 35812	terials and Pro	ocesses Laborator	у,
5. Supplementary Notes Contract Monitor: Dr. Marshall Space Flight 6. Abstract All large spacecraft a debris. These impacts systems, which can in the design of a spacec possibility of such im all of its exposed sub The work performed und of meteoroid/space deb and support mechanisms mechanics was used to impacted by a micromet over 500 test specimen database.	Ann F. Whitaker, Mar Center, AL 35812 are susceptible to impose occur at extremely be turn lead to catastro eraft for a long-durate opacts and their effect system components. Where the contract const of long term space we analyze the damage the eoroid or a space del as was performed to get	terials and Propacts by meteor high speeds and ophic failure of tion mission me tion mission me tion the space late materials yehicles. Hype hat occurs wher oris particle. enerate a hyper	roids and orbiting d can damage flig of the spacecraft ust take into acco cecraft structure ed research on the design configura ervelocity impact a space vehicle An impact analys rvelocity impact of	y, g space ht-critical . Therefore ount the and on e effects ations, is sis of lamage
5. Supplementary Notes Contract Monitor: Dr. Marshall Space Flight 6. Abstract All large spacecraft a debris. These impacts systems, which can in the design of a spacec possibility of such im all of its exposed sub The work performed und of meteoroid/space deb and support mechanisms mechanics was used to impacted by a micromet over 500 test specimen database. V Key Words (Suggested by Author lypervelocity O Space Debris I Meteoroid S Impact Testing Light Gas Gun	Ann F. Whitaker, Mar Center, AL 35812 are susceptible to import occur at extremely in turn lead to catastro traft for a long-durate opacts and their effect opacts and their effect opacts components. For the contract const of long term space we analyze the damage the eoroid or a space del is was performed to get (s)) blique Impact mpact Damage pace Structures	terials and Pro- pacts by meteor high speeds and ophic failure of tion mission me cts on the space late materials vehicles. Hype hat occurs when oris particle. enerate a hyper 18. Distribution Staten Unclassified Subject Cate	roids and orbiting d can damage flig of the spacecraft ust take into acco cecraft structure ed research on the d researc	y, g space ht-critical . Therefore ount the and on e effects ations, is sis of lamage
5. Supplementary Notes Contract Monitor: Dr. Marshall Space Flight 5. Abstract All large spacecraft a debris. These impacts systems, which can in the design of a spacec possibility of such im all of its exposed sub The work performed und of meteoroid/space deb and support mechanisms mechanics was used to impacted by a micromet over 500 test specimen latabase. V. Key Words (Suggested by Authord typervelocity O Space Debris I deteoroid S Impact Testing Light Gas Gun	Ann F. Whitaker, Mar Center, AL 35812 are susceptible to import occur at extremely in turn lead to catastro traft for a long-durate opacts and their effect osystem components. Her the contract const or is impacts on candid of long term space we analyze the damage the eoroid or a space del is was performed to get (s)) blique Impact mpact Damage pace Structures	terials and Pro- pacts by meteor high speeds and ophic failure of tion mission mu- cts on the space late materials vehicles. Hyper hat occurs wher oris particle. enerate a hyper 18. Distribution Staten Unclassified Subject Cate	roids and orbiting d can damage flig of the spacecraft ust take into accord cecraft structure ed research on the design configura ervelocity impact a space vehicle An impact analys revelocity impact of hent I-Unlimited egory: 18 21. No. of pages 22.	y, g space ht-critical . Therefore ount the and on e effects ations, is sis of lamage

•

NASA FORM 1626 OCT 86 For sale by the National Technical Information Service, Springfield, VA 22161-2171

