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Sparse distributed memory was proposed by Pentti Kanerva as a realizable architecture that could

store large patterns and retrieve them based on partial matches with patterns representing current
sensory inputs. This memory exhibits beha,iors, both in theory and in experiment, that resemble

those previously unapproachable by machines .. e.g., rapid recognition of faces or odors, discovery of

new connections between seemingly unrelated ideas, continuation of a sequence of events when given
a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of
one's tongue. These behaviors are now within reach of machines that can be incorporated into the

computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a
break with the Western rationalistic tradition, allowing a new interpretation of learning and
cognition that respects biology and the mysteries of individual human beings.
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Recognizing your mother's face in a crowd. Experiencing a flood of old memories

an instant after sniffing an odor you haven't smelled for years. Seeing a connection that

no one ever taught you between two concepts. Discovering that an idea which seemed to

occur to you spontaneously was actually given to you by a friend in a conversation last

year. Recognizing that a particular leaf is a maple. Humming the rest of a familiar tune

when given a phrase from the middle. Knowing that you don't know the answer to a

question. Knowing that you do know the answer to a question, but that it is inaccessibly

perched on tip of your tongue.

These everyday phenomena illustrate capabilities of human beings that we do not

know how to reproduce in a machine but that would be very useful if we could. The

failure of artificial intelligence to produce machines with any of these capabilities after

forty years of research is not a failure of intention. It is a failure of the rationalistic

philosophy deeply rooted in Western thought (1). That philosophy has produced in many

disciplines a search for models that combine context-free (meaningless) elements into
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systemsgovemedby formal laws. Not only haveinformation-processingmodels of

cognition fallen short in computer science, but corresponding models have also fallen

short in anthropology, economics, linguistics, political science, psychology, and other

disciplines. These shortcomings have prompted a new examination of what it means to

be human, a search for a philosophy that respects the mystery of individuals and the

biological roots of all learning.

Against this background, the emergence of Pentti Kanerva's theory of sparse

distributed memory is refreshingly welcome (2). Kanerva departs from the rationalistic

tradition to develop an architecture of memory, inspired by biology, in which the

phenomena I mentioned in the first paragraph can arise holistically. Because his theory

deals with entire patterns stored across large regions of the memory space, he does not

insist that anyone can ever know precisely how the phenomena arise. In what follows, I

will describe the central ideas of sparse distributed memory; I would encourage you to

read the details in Kanerva's book.

The theory begins with an interpretation of human long-term memory as a storage

system that associates sensory input patterns quickly with actions that are appropriate for

the situation. In Kanerva's model, sensory input is represented in the form of very long

bit vectors containing thousands or tens of thousands of bits. Because no two external

situations are identical, the memory must respond to partial matches between the current

sensory pattern and previously stored patterns. The measure of dissimilarity between

pattems is the number of bits in which they differ, a metric known as the Hamming

distance. For example, the distance between 01101 and 10111 is 3 bits.
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Kanerva illustrates his design with an example of 1,000-bit patterns, giving rise to a

space of 2 l°°° possible patterns. In this space, 1/1000 of the patterns are within 451 bits

of any given pattern, and all but 1/1000 of the patterns are within 549 bits. The

extremely large number of patterns that are so close to the mean distance of 500 bits

between two random patterns is crucial to the memory's ability to make connections

between patterns that seemingly have little to do with each other.

Ordinary (random-access) computer memories are designed around a simple idea:

within a few nanoseconds 'after a memory cue (address) is presented for a read operation,

the memory responds with an output pattern (data). High speed is achieved by

associating one physical location with each possible address. Current technology limits

the designs to about 25 address bits and 64 data bits, nowhere near the pattern lengths

needed for simulation of human long-term memory.

Kanerva proposes an architecture that encompasses an affordable number of

physical locations (say 1,000,000) and a large pattern size (say 1,000 bits). Each location

is assigned an address (1,000-bit pattern) at random, and the set of location addresses

constitutes a sparse subset of the memory space. The memory has an input register for

the cue (address) pattern and an input register for the data pattern, and it has a register for

an output pattern (these registers each hold 1,000 bits). Each location has an address

decoder that compares its own address with the input cue, selecting that location as a

participant in the next storage or retrieval operation whenever the cue is within distance

d of the location's address. Kanerva demonstrates that the address decoders can be built

of linear threshold circuits -- gates that produce a 1 at their output whenever the number

of Is among their many inputs is at least 1000-d. He notes a similarity of operation
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between these circuits and neurons in the nervous systems of many animals.

Kanerva recommends d--451 for the 1,000,000-location memory of 1,000-bit

patterns. With these parameters, approximately 1/1000 of the physical locations wiU be

selected by any given input cue. How axe storage and retrieval carried out with this

arrangement?

To store a 1,000-bit data pattern at address A, the memory works as follows. The

input cue pattem A is presented to the memory, and all locations within 451 bits of A

select themselves. This set of selected locations is called the sphere selected by A. A

copy of the input data pattem, which is to be associated with A,

is then entered into each of the selected locations. Because any given location is within

the spheres of selection of many distinct cue patterns, entering a new value must not

obliterate the previous contents of the location. This is accomplished by implementing

each location as a set of 1,000 counters, one for each bit position of the data. Data are

entered by adding 1 to each counter for which the corresponding data bit is 1, and

subtracting 1 from each counter for which the corresponding data bit is 0. Kanerva

calculates that 8-bit counters axe adequate for most applications.

To retrieve a 1,000-bit pattern corresponding to input cue A, the memory works as

follows. The sphere of selected locations is formed as described above. A set of 1,000

output counter values is constructed from all the selected locations by summing all the

corresponding selected counters; for example, the counter in output bit position 2 is the

sum of the bit-2 counters of each selected physical location. The 1,000-bit output pattern

is constructed from the 1,000 output counters by a threshold method: if an output counter

is nonnegative, that output bit is 1; otherwise it is 0.
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The rationale for the name is obvious: the memory is sparse because the physical

locations are a vanishingly small subset of the memory space; it is distributed because a

pattern is stored in many locations and retrieved by statistical reconstruction from many

locations. Distribution enables the memory to retrieve a stored pattern when the input

cue only partially matches any stored pattem, an ability that arises from the large overlap

between the spheres of selected locations of two similar cues. It also renders the memory

robust in case of failures of portions of the addressing or storage hardware.

Each storage and retrieval can be carried out with massively parallel operations

among the address decoders and counters, allowing the memory to respond rapidly. At

the NASA Ames Research Center, David Rogers has built a simulator of the sparse

distributed memory running on a 32,768-node Connection Machine 2 of the Thinking

Machines Corporation; it simulates 250,000 locations with 256-bit patterns, with cycle

time of about 1/2 second.

Let us consider again the phenomena mentioned at the start of this essay. The

memory's ability to retrieve patterns associated with sensory input quickly could allow it

to recognize instantly your mother's face or a long-forgotten odor. The memory can

form associations between patterns without ever being explicitly taught those

associations because the distance between two patterns is sufficiently small that the one

pattern retrieves the other. Similarly the memory can retrieve a forgotten pattern from

some cue that seemingly had nothing to do with it, giving the impression of generating a

new pattem. It can retrieve the pattern corresponding to "maple leaves" that was

formed internally after storing many patterns encoding specific maple leaves. It can store

pattems in lists representing their temporal order, and begin an iterative retrieval from
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anywhere in the list. Fast convergence of an iterative search can be interpreted as

"knowing that you know" and nonconvergence as "knowing that you don't know"; the

tip-of-the-tongue phenomenon would occur somewhere between these two cases.

It is important to remember that the theory predicts that these phenomena will occur

in sparse distributed memory, but it cannot predict the details. It cannot predict which

connections you might see between ideas, which concepts you will form, or what will be

on the tip of your tongue.

Kanerva began to develop his theory in the early 1970s. He did so independently of

James Albus and David Marr, who developed similar theories from observation of the

human nervous system and the cerebellum (3, 4). These theories have the distinguishing

feature that they can be readily tested; they have thus inspired much work with

simulators that verify their mathematical properties and predictions. Albus's theory also

emphasizes the hierarchical organization of the nervous system, suggesting that

associative memory and sensory encoding may be organized into levels. The three

theories are consistent with the biological theory of learning proposed by Maturana and

Varela (5).

The sparse distributed memory is intended as an integral component of a larger

system that includes sensory apparatus and a scheme for encoding sensory input into

binary patterns. Such a system also includes motors that act when driven by stimulus

patterns. Kanerva calls this an autonomous learning system. It includes a component

called the focus that contains a pattern updated constantly from both sensory input and

the contents of the sparse distributed memory and that generates the patterns used to

drive the motors. The focus represents the current moment of consciousness, which
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continuously changes as the sensory input and the context retrieved from memory

change.

A major research area is the design of sensory encoders. How does visual input get

encoded so that the patterns stored in memory are relatively insensitive to small

rotations, translations, zooms, and pans of the visual field? Or so that certain shapes are

easily detectable within any visual field? How does speech input get encoded so that the

same word produces similar patterns independently of the speaker? How does tactile

input get encoded so that different surface textures are distinguishable? These and

similar questions are occupying Kanerva and his colleagues, who seek to build

prototypes of devices that recognize visual shapes, continuous speech, and fine textures.

A theory proposed by Robert Erickson suggesting that the power of visual systems arises

from large numbers of simple components illustrates a possible sensory-encoding system

that might mesh well with sparse distributed memory (6).

David Rogers has been studying the sparse distributed memory as a statistical

inference machine. In one experiment, he fed in a stream of patterns, each derived from

a vector of measurements of 15 meteorological phenomena from a four-hour interval at a

weather station in Darwin, Australia. There were 50,000 vectors covering about 23 years

of observations. The 15 components of each vector were encoded as a 256-bit pattern

that was the storage address of the single bit indicating ram in the subsequent four-hour

period. Rogers modified the operation of the memory so that the address array would

add addresses similar to those associated with ram and delete addresses not associated

with ram. At the end of the experiment, the address array identified the combinations of

bits that were the most reliable predictors of ram in the data.
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However promising his theory is, Pentti Kanerva advises that it is not a final answer.

It is only a step in a line of investigation whose final outcomes cannot be predicted. His

theory opens the possibility that machines can perform some of the actions of which we

are capable, while leaving plenty of room for the biological roots of intelligence and the

mysteries of each human being.
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Architecture
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Thisschematicdiagramshows therelations among thecomponents ofspame distributed memory.

The memory in this example storesand remeves 256-bit patterns across 2,000 physical location_. Each

horizontal row is a location. The input panem (cue) in the address reg_er is compa_d simultaneously to

all patterns in the memory address array, each line of which holds the address of one location. The

distances from each address pattern ate compazed to the memory's th_shold radius (119 bits) and a subset

of the locations is selected. The 2S6-bit pattern in the data-in register is stored at the selected locations by

adding 1 to each counter corresponding to a I in the panem and subtracting I f_m each counter

corresponding to a 0 in the pattern. A 256-bit pattern is retrieved by forming 256 sums fzom the

corresponding counters in each selected location, and then forming a I output bit in the data-out register for

each sum that is nonnegative and a 0 for each sum that is positive. The re.eyed panem in the data-out

register is a statistical reconstruction determined from the contents of all selected locations. All selections

can be done in parallel, and all data bits can be handled in parallel, giving the memory great speed over a

wide range ofpanern widths and physical locations.
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Abstraction
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Each oftheninepatternsatthetopwas storedinasimulatedsparsedistributedmemory by

addressing the memory with the pattern itself. Each pattern is a 16xt6 array of bits that transforms into a

256-bit vector. The three figu_s at the bottom show the result of an iterative search in which the result of

the first retrieval was used as the input cue for the second retrieval. The final output pattern was none of

the patterns stoma Because each of the nine stored patterns was constructed from an "O" with 20% of

the bits randomly reversed, this behavior may be interpreted as the memory's ability to extract a signal

from noise. Another interpretation is that the memory formed a statistical interpolation amon_ the stored

patterns: the new pattern is stable (it will retrieve itseLO and thus serves as a conceptualization of the data.
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Sequencing
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The six pa_tems atthetopwere stored as a list in a simulated sparse dis;ributed memory by storing

each patternas thedataassociatedwiththepreviouspatterninthesequence.The fourpam_ms _ the

bottom of the figure resulted fi'om an iterative search, beginning with a noisy version of the third pattern

and culminating in a clean version of the sixth. This behavior may be interpreted as the memory's ability

to locate the rema/ader of a temporal sequence given a pattern that is similar to one of the members. Such

behavior will occer even when the sequence sto_'d in the memory is noisy, suggesting that the memory can

gene_te an abstract form of a sequence.




