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Introduction

Community noise in the vicinity of major airports around the world is an obstacle

to the natural growth of airline traffic. During the almost 30 years since the advent of

commercial jet transports in the late 1950's, flyover noise levels of individual aircraft
have been dramatically reduced. This reduction in noise was brought about by a
combination of market forces--for example, competition, Federal and international

regulations, engine efficiency and cycle improvements, and noise reduction technology

development. In the same time period, however, there has been only a slight increase
in the number of airports, despite the tremendous growth in airport operations--

especially since deregulation of U.S. airlines went into effect. These factors have
combined to make airport noise a potential deterrent to the otherwise orderly growth

of the world's air transportation system.

Details are presented in this chapter for the measurement and prediction of air-

craft flyover noise to be used for certification, research and development, community

noise surveys, airport monitors, and pass-fail criteria. Test details presented are ap-

plicable to all types of aircraft, both large and small, and the use of Federal Aviation

Regulations (FAR) Part 36 (ref. 1) is emphasized. The test procedures described in
FAR Part 36 are considered the best for all types of aircraft-noise testing. Accu-

racy of noise measurements is important. Thus, a pass-fail criterion should be used
for all noise measurements. Finally, factors which influence the sound propagation

and noise prediction procedures, such as atmospheric and ground effects, are also

presented.
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Measurement of Noise Produced by

Airplanes Powered by Turbofan Engines

Purpose and Objectives for Conducting
Tests

A long-term goal of the aircraft manufacturing industry is to achieve community

compatibility by phasing out the older, noisier airplanes and replacing them with
newer, quieter designs, hnproved flight operational procedures, land acquisition, and

land usage are other methods being used to help reduce airplane-noise exposure. The

imposition of local airport noise regulations and operating restrictions is becoming
more prevalent as a means of improving airport coml)atibility with the community.

In addition, some older jet transports have been modified to quieter versions

by refitting them with higher-bypass-ratio turbofan engines or by adding sound-
absorbing material to the nacelles. These events have resulted in the increased need

for in-flight measurements together with the need to follow strict guidelines when
acquiring flyover-noise measurements.

Certification

Flight-testing for aircraft-noise certification must be tightly controlled and rig-
orously specified in order to assure validity and credibility. In the United States,

Federal standards intended to control aircraft noise began with the adoption of Fed-

eral Aviation Regulations (FAR) Part 36 in 1969. This regulation initially applied

only to new designs of turbojet and transport category airplanes and required that

they be markedly quieter than the earlier airplanes of these types. Since the adop-

tion of FAR Part 36, the Federal Aviation Administration (FAA) has amended this

regulation 15 times to cover all categories of aircraft, including helicopters. (See
Amendment 15, ref. 1.)

A parallel set of aircraft-noise requirements was adopted by the International
Civil Aviation Organization (ICAO) in 1971 as Annex 16 to the Convention on

International Civil Aviation. As with FAR Part 36, Annex 16 has been continually
reviewed and revised, with the latest change being Amendment 5, applicable on
November 26, 1981 (ref. 2).

Research and Development

The major airframe and engine companies involved in the production of large

commercial jet airplanes made extensive use of airplane flyover-noise measurements

for research and development during the 1960's and 1970's. The prime purposes of

those tests were to define the noise characteristics and to develop modified engines
and/or nacelles that would reduce flyover-noise levels. Data from such fight tests

have led to the development of analytical tools that enable noise measurements

obtained during static engine operation to be projected to flight conditions for

those airplanes. The result of these developments is that a large portion of

turbofan engine noise research and development programs now rely heavily on static

engine measurements, with some supplemental flight test data acquired usually in
conjunction with a noise certification flight test.
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Community Noise Surveys

An aircraft and airport comnnmity noise survey may be conducted for a variety

of reasons:

1. Assessment of land use suitability

2. Comparison with local noise ordinances

3. Identification and quantification of major noise sources

4. Determination of sound exposure at particular locations

5. Determination of trend in sound exposure levels

6. Determination of need for new or additional noise control measures

Outdoor conlmunity noise measurements are generally made during a noise survey.

The purpose of each survey plays a major role in deciding the extent, type, and

quantity of equipment required to measure aircraft flyover noise.

Airport Noise Monitors

Aircraft-noise monitoring systems are usually set up at fixed locations in the

vicinity of airports and are activated when the A-weighted sound level of an

aircraft flyover exceeds a given threshold level. The monitor normally provides a

printout that includes time of day, maximmn A-weighted sound level in decibels,

and A-weighted sound exposure level (SEL) in decibels.

Many airports throughout the world have round-the-clock monitoring of aircraft

traffic. Some airports, such as Los Angeles and San Jose, California, have a public

display located in the terminal where on-line readouts of each monitor microphone
are visible to the general public.

Test Requirements

The objective of any flight test is to acquire noise levels that are representative

of the flight conditions desired and that are from a sufficient number of flights of a

particular aircraft to derive a subjective noise measure (e.g., effective perceived noise

level (EPNL) as discussed in appendix B of ref. 1) for takeoff, sideline, and approach
conditions.

Test Site Terrain

Tests to show compliance with aircraft-noise-level standards consist of a series of

actual or simulated takeoffs and approaches during which measurements are taken at

noise measuring stations located at reference points such as those shown in figure 1.
For each actual or simulated takeoff, simultaneous measurements are made at the

sideline noise measuring stations on each side of the runway and also at the takeoff

noise measuring station. Each noise measuring station should be surrounded by

relatively flat terrain having no excessive sound absorption characteristics, such as

those which might be caused by thick, matted, or tall grass, shrubs, or wooded areas.
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Figure 1. Noise certification measurement locations for" new designs.

During the period when tile flyover-noise time record is of interest, no obstruction
should exist that would significantly influence the sound field from the aircraft.

Aircraft Testing Procedures

The aircraft height and lateral position relative to the extended centerline of

the runway should be determined by a method which is independent of normal flight

instruments, such as radar tracking, theodolite triangulation, or laser trajectography.
Photographic scaling techniques have also been used.

Aircraft position along the flight path should be synchronized to the noise

recorded at the noise measuring stations with time code signals. Also, the position
of the aircraft should be recorded during the entire time period in which the acoustic

signal is recorded for analysis.

Microphone Array

To acquire data consistent with the requirements of FAR Part 36 or ICAO

Annex 16 (refs. 1 and 2), each microphone should be mounted with the center of

the sensing element 1.2 m (4.0 ft) above the local ground surface. Each microphone
should be oriented to provide a known angle of sound incidence at all times of interest

throughout the significant duration of each flyover-noise measurement. To avoid

ambiguity, most flyover-noise measurements are made with a windscreen around

each microphone at all times. Correction for any insertion loss produced by the
windscreen should be applied to the measured data.

The microphone array should consist of at least three microphones, one directly
under the flight path and two to measure maximum sideline noise. Each sideline

microphone should be placed symmetrically with respect to the one on the opposite
sideline so that the maximum noise on either side of tile airplane is measured.
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Flight Path Intercepts

Simulated takeoffs and approaches consisting of flight path intercepts are often

used in lieu of actual takeoffs and landings at an airport. For takeoff and sideline noise

measurements, the procedure consists of intercepting and following the desired climb

profile. To perform the approach intercepts, a normal approach path is maintained
over the microphone array, the test condition being ended prior to landing with power

being reapplied and a go-around initiated. Aircraft weights and configurations should
be selected carefully in order to maintain near-constant indicated airspeed during
each test condition.

The benefits of using flight path intercepts are that they permit much greater

test site selection flexibility and they permit target altitude over the centerline

microphone to be chosen to optimize the signal-to-noise ratio. Shorter test times
and lower test costs are further benefits.

Measurement of Aircraft Noise

All noise measurements should be made with instruments meeting the specifica-

tions of FAR Part 36 (ref. 1).

Weather Restrictions

There should be no rain or other precipitation during the testing. Also, the

ambient air temperature should be between 2.2°C and 35°C (36°F and 95°F),

inclusive, over that portion of the sound propagation path between the aircraft and

a point 10.0 m (32.8 ft) above the ground at the noise measuring station. The

lower temperature will avoid freezing and the upper temperature will avoid takeoff

power settings that result in lower than the flat temperature-rated takeoff power

settings as well as highly absorptive atmospheric conditions. Relative humidity and
ambient temperature over that portion of the sound propagation path between the

aircraft and a point 10.0 m above the ground at the noise measuring station should

be such that the sound attenuation in the 1/3-octave band centered at 8000 Hz is

not greater than 12 dB/100 m (3.66 dB/100 ft) and the relative humidity should be

between 20 and 95 percent, inclusive. A graphical representation of the foregoing

weather restrictions is provided in figure 2.

Wind Limits

Tests may be conducted when (1) the wind speed over the noise measurement
period does not exceed an average of 12 knots or a maximum value of 15 knots and

(2) the crosswind component over the noise measurement period does not exceed an

average of 7 knots or a maximum value of 10 knots. An averaging period less than

or equal to 30 sec may be used to define wind speed. Wind measurements should

be made 10.0 m (32.8 ft) above the ground in the vicinity of the microphones. No

anomalous wind conditions (including turbulence) which will significantly affect the
noise level of the aircraft when the noise is recorded at each noise measuring station

should exist during any test.
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Figure 2. Test weather windows from 10.0 m (32.8 fl) to airplane height.

Reference Conditions

Aircraft position, performance data, and noise measurements should be adjusted
to the following noise reference atmospheric conditions:

1. Sea level pressure of 101.3 kPa (1 atm)

2. Ambient temperature of 25°C (77°F)

3. Relative humidity of 70 percent

4. Zero wind

The above reference conditions provide near-minimum atmospheric absorption, that
is, maximum aircraft flyover-noise levels.
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Determination of a Subjective Measure

Noise Floor Corrections

Aircraft sound pressure levels within tile 10-dB down times should exceed the

mean background sound pressure levels by at least 3 dB ill each 1/3-octave band to be
included in the calculation of a subjective measure for a given aircraft flyover. In the

case where the aircraft acoustic signal is greater than the background acoustic level,

the true aircraft signal may be determined by subtracting the background mean-

square sound pressure levels from the indicated mean-square aircraft-noise sound

pressure levels.

When a 1/3-octave band sound pressure level from an aircraft-noise recording
is not more than 3 dB greater than the corresponding 1/3-octave band sound

pressure level of the background noise, the aircraft's signal in that 1/3-octave band

is defined as being masked. When masking occurs, levels for the masked bands

may be estimated by applying one or more of the correction procedures described in
reference 3.

Pseudotone Identification

Aircraft-noise measurements obtained from microphones located 1.2 m (4.0 ft)

above the ground are susceptible to spectral irregularities caused by ground plane

reflections or introduced by data processing techniques that account for background
noise contamination. Tone corrections to perceived noise levels are only intended

to account for the subjective response due to the presence of pronounced spectral

irregularities from aircraft-noise sources.
Any spectral irregularities not related to aircraft-noise sources are termed pseu-

dotones, or fictitious tones, and may be excluded from the calculation of effective

perceived noise levels. Methods to detect and identify pseudotones are discussed in
reference 3.

Test Condition Acceptance and On-Line

Systems

Test Condition Acceptance Criteria

Each acceptable aircraft-noise flyover measurement should comply with all the

following criteria. The weather window between the aircraft and 10.0 m (32.8 ft)
above the noise measuring station should consider temperature, relative humidity,

and atmospheric absorption at 8000 Hz. The wind limits should consider average
wind, maximum wind, and crosswind. Aircraft performance should consider lateral

offset from the target flight path, overhead height, airspeed, and engine power setting.

On-Line Data Acquisition and Reduction

Most major airframe manufacturers have developed systems which enable an as-

sessment of the quality of the test data and an initial determination of final noise
levels to be made "on-line" and "on-site." The systems use digital computation to

determine the test aircraft position in real time, integrate that information with air-

plane performance data, and telemeter the data to a ground-based test coordination
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and control station. One such system is described in detail in reference 4. In this

particular example a ground station performs an acceptance check on the teleme-

tered data by comparison with predetermined positioning and performance limits.

Data from a particular run are accepted and recorded if aircraft, engine, acoustical,
and meteorological parameters are all within established tolerance limits.

The entire process takes place while the test aircraft flies a continual traffic pattern

circuit. If the test site is free of other aircraft traffic, the typical time of 6 minutes

between tests is interrupted only by the vertical soundings of the meteorological
airplane.

Validity of Results

The sample size should be large enough to establish statistically a 90-percent
confidence limit not to exceed 4-1.5 dB. No test result should be omitted from the

final values of effective perceived noise level in calculating this value. From each

sample compute the arithmetic average of the effective perceived noise level for all

valid test runs at the takeoff, approach, and sideline measuring stations. If more than

one noise measurement system is used at any single measuring station, the resulting

data for each test run (after correction) should be averaged as a single measurement.
If more than one test site or noise measuring station location is used, each valid test

run should be included in the computation of the average values and their confidence
limits.

The minimum sample size for each of the three measurements (takeoff, approach,

and sideline) should be six. For tests designed to determine the variation of effective

perceived noise level as a function of engine power setting (for constant height and

airspeed), there should be at least six valid data points over the power setting range

of interest. The number of samples should be large enough to establish statistically
for each of the three average noise levels a 90-percent confidence limit which does

not exceed 4-1.5 dB. No test result should be omitted from the averaging process.

Measurement of Helicopter Noise

Measurement of helicopter noise in flight has many requirements in common with

that of airplane noise. However, there are several significant differences that make

the planning and conducting of a noise test for helicopters somewhat unique. A

major reason for the differences is that with helicopters, the primary noise sources

are the rotor systems while the engines are usually secondary sources.

Because of the importance of the aerodynamic environment, helicopter noise tends

to be more sensitive to flight conditions than to power or weight. For example, rotor

noise in partial power descent tends to be higher than that during full power takeoff
because rotor blades are closer to tip vortices shed from preceding blades in descent

than in climb. Furthermore, noise during landing may be very sensitive to operating
conditions such as combinations of airspeed and rate of descent.
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Test Design

In general, there are three types of testing conducted to measure the external

noise of helicopters. They are as follows:

1. Certification testing

2. Evaluation of flight procedures and measurement of noncertification test

procedures

3. Rotor noise research

Most noise testing procedures are based on ICAO Annex 16 (ref. 2). That doc-

ument contains information regarding all aspects of helicopter noise measurement,

instruments, and analysis. Specifics of flight conditions, microphone locations, data

analysis, and corrections, however, are rather narrowly defined and are applicable

primarily to noise certification.

In many cases, it is desirable to include in the test program conditions that are
more representative of the way helicopters are actually operated than those that

are reflected by noise certification testing. For example, the approach condition

for certification is a constant 6 ° approach angle at a constant indicated airspeed.

In practice, however, many approaches are made by continuously varying both the

airspeed and the rate of descent such that neither is held constant.

Test programs that are research oriented may often be designed to investigate

a particular phenomenon, such as impulsive noise at high rotor tip speeds or blade
vortex interaction in descent. In these cases, appropriate prediction analyses should

be employed to define the range of operating parameters of interest.

When designing a helicopter noise test, keep in mind that the sound field around

a helicopter is usually not symmetrical with respect to the aircraft centerline. This
is because the main rotor advances on one side of the aircraft and retreats on the

other side and because the tail rotor is usually located to one side of the aircraft.
For these reasons it is important to make acoustical measurements on both sides of

the flight path. Measurements obtained by placing a microphone on one side only
and flying reciprocal headings to gather data should be restricted to extremely low
wind conditions.

Configuration and Operation

The most important parts of the helicopter, with respect to external noise gener-

ation, are the rotor blades. The blades should be "tracked" to within manufacturer's

specifications (i.e., the out-of-tolerance amount permitted by the manufacturer when

the blades are hand turned) prior to testing.

It is recommended that testing be limited to gross weights not less than 90 percent
of maximum and that the helicopter be refueled when this condition is reached. This

range of weights represents the typical operating condition of a helicopter.
The following operating conditions should be considered and selection made as

applicable to a specific test: ground idle with rotors not turning, flight idle with

rotors turning, hover in ground effect, hover with wheels about 1.5 m (5 ft) from

ground, takeoff at maximum continuous power, flyovers at various airspeeds up to the

maximum, and approaches at various airspeeds and rates of descent. Most helicopters

have a permissible range of rotor speed selection. Testing should always be conducted
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at 100 percent of design rotor speed and at other rotor speeds applicable to the test

objectives.

Some helicopters have special control features that are designed to perform certain

functions, such as maintaining the fuselage at a level attitude. Some of these controls

(for example, longitudinal differential cyclic trim on tandem rotor helicopt(_rs) can

have a major influence oll noise. The test should include operation of the_ (tevic_,s
over their permissible range.

Most helicopters do not include engine-noise supl)ression devices as standard

equipment. In some cases, such as critical rotor noise research, it may be desirable

to equip the test helicopter with engine-noise suppression devices to further enhance
a ineasurenlent of rotor noise.

Test Site

When selecting a site for hover noise tests, keep in mind that rotor downwash can

cause local velocities in excess of 26.8 m/see (60.0 mph). Loose articles that could

be blown about and cause potential damage or injury should be secured or removed.
Whenever possible, the area should be cleared of debris such as loose vegetation and

gravel. In all other aspects the test site requirements should be the same as those

for large airplanes.
Hover noise measurements should be made at a horizontal distance of at least

two rotor diameters to avoid the acoustic "near field." Many researchers use 61.0

and 152.4 m (200 and 500 ft) as preferred distances since they are in the "far field"

of the low-frequency rotor noise and yet are close enough to give a satisfactory signal-
to-noise ratio.

Hover noise measurements should be made at several locations around the

azimuth because of the directional nature of the acoustic field. Increments of 30 °

are adequate for general purposes, although smaller increments might be required

for special purposes. Hover noise should be recorded for at least 30 sec to allow

sufficient time to average what are often rather unsteady sound signals.

Flyover noise should be measured on both sides of the helicopter. The sideline

distance on approach and departure depends on the specific helicopter; however,

in general, valid data can be acquired from the time when the helicopter is about

1524 m (5000 ft) in horizontal ground distance on the approach side (approximately
152.4 m (500 ft) height) of the microphones to a distance of approximately 914.4 m

(3000 ft) on the departure side.

Instruments

A typical acoustical spectrum of a helicopter is presented in figure 3. Examination

of this spectrum reveals two important elements. First of all, the dominant

spectral components are harmonic, and second, the highest amplitudes tend to

occur at the main rotor passage frequency, which is of the order of 10 to 15 Hz.

In order to properly measure such acoustic signals, the instrumentation system,

from microphone through recorder, must be selected with these low-frequency

requirements in mind. Many helicopter researchers use 1-in. microphones and FM

recording to preserve the rotor noise signal. If the purpose of the test is more general,
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such as measurenmnt of the peak level (e.g., inaxinmin A-weighted sound pressure

levels and maxinmm perceived noise level), simpler systems may suffice.

Although microphones located above tile ground level may be used for many
measurements and are required for certification, ground-level microphones may be

preferred for research in order to minimize distortion of the measured sound spectrum
due to tile reflected ground wave. Figure 4 illustrates the difference in sound pressure

levels as sensed by a ground-level microphone and by an elevated microphone located

near a rotor. In figure 4 the slope above 400 Hz is correct for the ground-level

microphone.

In some flight conditions, the sound of a helicopter can become quite impulsive.

A pressure-time history of such an event is illustrated in figure 5. In such situations,

the high ratio of peak to root-mean-square sound pressure effectively eliminates noise
measurement systems that include exponential time weighting (i.e., slow, fast, or

impulse). Recording levels should be carefully selected to avoid overloading input

amplifiers.
For many applications, such as noise certification and research (e.g., comparison

with prediction), it is necessary to know the helicopter location with respect to the

microphones and to have this information coordinated with the acoustical records.
Several methods, including radar tracking, laser tracking, and photo-optical tracking,

may be employed. When conducting precise research, it may also be important to
instrument tile helicopter for measurement of parameters such as fuselage attitude,

rotor blade motions, and hub motions and to have these measurements coordinated

with the acoustical data by use of time codes or telemetering.

Factors Influencing Sound Propagation

(Full-Scale Static and Flight Testing)

Atmospheric Effects

Beyond the immediate vicinity (near field) of a sound source, the acoustic energy

spreads out spherically, resulting in a level reduction described by the inverse-square

law. The acoustic energy is also subject to absorption (by molecular resonance and

thermal conduction), change of direction, focusing, impedance changes, scattering

(by turbulent eddies), and Doppler shifts. Some of these effects are more significant
than others, and in some cases the current technology is not adequate to correct for
them.

The most important effect is certainly atmospheric absorption. It is a strong

flmction of temperature and humidity (see fig. 6, from ref. 5) and can change sound

levels substantially. Indeed, it is not unconunon for absorption at high frequencies to
reduce sound levels below the test site background sound level, making it impossible

to conduct a flight test until the weather conditions improve. Currently there
are two standard methods for predicting absorption, the Society of Automotive

Engineers (SAE, ref. 5) and the American National Standards Institute (ANSI,

ref. 6) standards. Both methods calculate absorption as a continuous flmction of

frequency. Absorption is such a strong function of frequency that it is difficult to

generate accurate values for use in a 1/3-octave band. As an approximation, for

aircraft noise spectra the SAE method specifies tile use of absorption at 1/3-octave

band center frequencies for bands of 4000 Hz and below and at 1/3-octave band lower
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Reprinted wzth permission, copyright 1975, SAE, Inc.)

edge frequencies for bands above 4000 Hz. The current ANSI procedure does not

specify a method to use with 1/3-octave spectra. For flight testing, it is important

to acquire an accurate profile of the temperature and relative humidity between the

ground and the aircraft, since the absorption can vary widely along the path.

For the presence of wind, accurate absorption calculations should be done in a
frame of reference moving with the wind. The path length is then distorted and

the frequencies are Doppler shifted from what they would be in a calm atmosphere.
These effects combine to increase the levels for sound propagating downwind and

decrease them for sound propagating upwind. In addition, wind and temperature

gradients cause sound rays to curve and, especially at shallow angles to the ground,

there can be focusing effects. As there are no standards for predicting these effects,
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it is best simply to avoid testing in tile presence of strong winds or temperature
gradients.

Atmospheric pressure affects source noise. Sound pressure is directly proportional
to atmospheric pressure for Inost noise sources important to aeroacoustics, so aircraft

altitude may be an important consideration. In addition, as sound travels along

a ray tube through inoderate gradients of acoustic impedance it conserves power

(except for absorption), but the sound pressure may vary. This variation results in

a correction to the acoustic pressure, which is proportional to the square root of

acoustic impedance and which typically partially cancels the ambient pressure effect

on source level. Impedance gradients strong enough to cause significant reflections
are unlikely in the atmosphere.

Doppler frequency shift in the case of a uniform stationary atmosphere is a well-
known effect usually accounted for by tile equation

A
/o-

1 - M cos 0

where fo is observed frequency, fs is source frequency, M is Mach number, and 0 is

the angle between the flight path and the ray direction. The frequency shift does

change in the case of a windy atmosphere; it can be calculated (ref. 7) and basically
depends on the aircraft speed relative to the air and the sound ray angle. The

finite integration time of the measurement system may cause Doppler-shifted tones

to appear to be spread out in frequency.

The presence of turbulence in the atmosphere causes scattering, but there are no

good quantitative predictions of this effect available yet. For noise sources having
narrow beams of sound, tile peak is reduced and the beam is broadened, but aircraft-

noise sources tend to be more nearly onmidirectional and are not likely to exhibit this

effect. Turbulence may have a more significant effect on ground-reflection patterns
near the ground.

It is common practice to restrict flight testing to those weather conditions within

which atmospheric and propagation effects are either insignificant or calculable.

Ground Effects

Sound propagation near the ground is somewhat different from propagation

through the atmosphere. Reflections from the ground affect the sound received by a

microphone; turbulence may also play a role. Wind and temperature gradients may

become steep enough near the ground to create "shadow zones" for shallow angle
propagation.

Ground-reflection prob[eins occur when a ray reflected off the ground combines
with a direct ray at the microphone. The two rays may reinforce or cancel each other

(depending on their relative phase), resulting in a spectrunl modified by "ground
dips" of as much as 15 dB. This effect can be ignored if the microphone installation

and flight path of the normalized conditions are close enough to those of the measured

conditions, but it is important if static data or predictions are to be extrapolated
to flight. Propeller airplanes or other types with dominant low-frequency tones can

produce noise which is extremely sensitive to the exact location in frequency of the

ground dips, and even slight differences in flight path may need to be corrected.
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Though there are no universally accepted standard methods for calculating ground-

reflection effects, the work of Chessell (ref. 8) and others, especially as summarized
in reference 9, is widely used. The situation is most difficult when shallow angles are

involved, such as ill static engine testing. When more repeatable results are needed,

the microphone must be placed very near the ground on a hard surface. This method

gives a microphone signal 6 dB above free field, at least up to 10 kHz; it is frequently

used for static testing and occasionally for flight testing. Elevated microphones over

natural terrain are subject to significant variations because of ground impedance

variations, turbulent scattering of phase relations, and changes in ray arrival angle

due to ray curvature; all these sources of variation are extremely difficult to predict.
Occasionally, microphones are placed very high (10.0 m (32.8 ft) is common); they

then have ground dips so closely spaced that the 1/3-octave band spectrum appears

smooth, at least if there are 11o dominant low-frequency tones. For flight testing,

note that ground dips can be spread out over frequency by the measurement system

integration time in the same inauner as Doppler-shifted tones.

When the wind or temperature gradients are such that the ray from the source

to the inicrophone curves tip, it is possible that the microphone will be in a shadow

zone into which no direct ray penetrates. This is inost likely in static testing when

the ground surface is hot from solar heating and the ray is propagating upwind. This
shadow zone problem is difficult to treat theoretically, and it is usually handled by

using empirically derived wind and temperature limits or by using extra microphones

to detect shadowing effects (because they show up most strongly at high frequencies).

Turbulence effects are more likely to be visible when sound is propagating near the

ground. When ground reflections are involved, different turbulence in the two paths

causes a randomization of phase and reduces the peaks and dips. This shows up

first at high frequencies, where wavelengths are short, and is quite visible in narrow-
band data. Turbulence also smooths out a shadow zone boundary, and scattering

of eddies is responsible for what little sound does penetrate deep into shadow zones.

Quantitative predictions of these effects are not yet available.
It has been common to lump the foregoing ground effects together as "lateral at-

tenuation" or "extra ground attenuation (EGA)," using an empirically derived extra
attenuation for shallow angle propagation. Although it is widely agreed that EGA is

mostly ground-reflection effect, with some effects due to inaccurate atmospheric ab-

sorption used when the curves and source nonaxisymmetry are derived, the standard

used for aircraft-noise prediction is that provided in reference 10.

Prediction of Noise for Airplanes Powered

by Turbofan Engines

Noise Prediction Capability

In order to receive approval for production and operation in a particular country,

essentially all aircraft must now satisfy that government's noise standards. In the

United States, these standards are contained in FAR Part 36 (ref. 1), while most

other countries have adopted the standar(ts of ICAO Annex 16 (ref. 2). For turbojet

and transport airplanes, noise limits are defined for approach, sideline, and takeoff

locations, and are dependent on maximum certificated takeoff gross weight (mass).
For the takeoff location, the noise limits are also dependent on the number of engines

371



Peart

mounted on the airplane. The unit of measurement is the effective perceived noise
level (EPNL) in decibels. This unit takes into account the duration of the noise

event and penalizes any discrete frequencies or tones which have been found to be

more annoying than broadband noise of the same intensity.

The elements of a successful aircraft-noise prediction include a reliable definition

of the aircraft performance, a confident prediction of the noise characteristics of the

power plant (as a function of power setting, altitude, and flight speed), and, in some
flight conditions, the noise of the airframe. When there are substantial measured

noise data to support a new airplane-engine configuration, they can be projected to

the new flight conditions through fairly clearly defined procedures. For example, if
the new airplane incorporates power plants which are not very different from versions

already in service, flight-test data can be transposed to the new conditions. Or, where

the measured information is obtained from static engine tests during the development

program prior to airplane flight, there are methods for transposing these data to

the flight conditions (ref. 11). The least predictable mode of operation embraces
the totally new airplane-engine configuration and, under such circumstances, it is

necessary to rely on accumulated past experience in the form of component-based
prediction procedures. These procedures have to embrace not only noise but also

aircraft performance.

Figure 7 outlines the minimum elements necessary to provide a credible estimate

of the noise of a given airframe power-plant combination. The main features are

expanded in the following sections.

Power-Plant Design Details and
Performance Characteristics

At the very minimum, there should be either a design scheme for the power plant

in question and a knowledge of how the individual noise-producing component areas

perform or a credible extrapolation/interpolation of both noise and performance data

from a similar power plant. If the latter exists then the detailed component noise

prediction procedures described below may become unnecessary.

Component Noise Prediction
Procedures

Component noise prediction procedures are required which allow all the significant

noise sources to be related to leading engine performance parameters and to be

integrated to reflect the noise of the total system, including any noise reductions

resulting from specific noise control actions. The depth of detail and breadth of

coverage of the component procedures necessary are related directly to the type of

power-plant propulsion system and the aims of the prediction exercise. For example,

prediction of certification noise levels demands a knowledge of all the sources that

lie within 10 dB of the peak level throughout the total noise-time history (see fig. 8),

whereas a prediction of levels at large distances is controlled by low-frequency sources
and thus it may be possible to limit the breadth of the coverage.

Normally, it is the propulsion system noise that controls the overall aircraft noise,

and there are three fundamental types of "jet" propulsion system. (See fig. 9.) These

types are the single shah, single-flow-duct "pure" jet, or turbojet engine; the two-
shaft, double-flow-duct low-bypass-ratio engine; and the two- or three-shaft, double-

flow-duct turbofan engine. The total noise is illustrated in figure 8.
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Figure 7. Elements necessary for noise prediction.
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MD-80, BAe 146,
A320, F-100, Business jets
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Figure 9. Three types of jet propulsion system.
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Sources of Noise

Noise sources vary according to tile engine cycle and are located both internally

and externally. They may be sunlmarized as follows:

1. In all cases, the exhaust-jet mixing process with the atmosphere produces

broadband noise. Additionally, where the exhaust flow is supersonic (in zero-

or low-bypass-ratio engines), there are other noise sources associated with the

expansion-shock structure.

2. In all cases, compressor-generated tonal and broadband noise radiates through

the engine air intake and, in all but the pure jet, may propagate down the bypass

duct to radiate with the compressor exhaust stream.

3. In all cases, tonal noise from the turbine and broadband noise from this compo-

nent and the "core" combustor propagate from the final nozzle in the hot core
flOW.

4. In a turbofan, tonal and broadband fan noise radiates both forward and rearward

from the engine.
5. Other minor noise sources, peculiar to the engine design, may be present (e.g.,

bleed valves, flow mixers, and support struts).

Available Component Prediction
Models

The following published component noise prediction procedures are available:

1. For single-stream exhaust flow conditions, SAE ARP 876C (ref. 12) provides the

most widely used method of jet noise prediction. Based on normally available

jet flow parameters, it provides both mixing and shock-associated spectral levcls

over a wide range of pressures, velocities, temperatures, and radiation angles.

2. For dual-stream flows there is no widely accepted method, but SAE AIR 1905

(ref. 13) describes three methods that could be used, one being a simple extension

of the single-stream method of SAE ARP 876C.

3. For multistage compressor noise, the sensitivity of commercial organizations to

compressor design details and noise data has meant that there is no method of
the same acceptance level as that in procedure 1 for jet noise. However, the

methods of House and Smith (ref. 14) and of Heidmann (ref. 15) are well-known

and demand only the use of compressor performance parameters that are usually
available.

4. For fan noise, it almost goes without saying that commercial sensitivity has the

greatest effect on the availability of published data or prediction methodology.

The method of Heidmann is the only freely available procedure.

5. For turbine noise, the same problem of commercial sensitivity exists, but the

method of Matta, Sandusky, and Doyle (ref. 16) is available.
6. For combustor noise, the method of SAE ARP 876C (ref. 12) is the most widely

accepted procedure.

7. Since most engines now incorporate noise-absorbent linings in the major air and

flow ducts, a method is needed for computing duct attenuation as it affects fan,

core compressor, turbine, and colnbustor noise. The method of Kershaw and

House (ref. 17) is available.
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Airframe Noise Characteristics

The above procedures allow predictions to be made of the component spectral

levels in the far field at any given angle to the power plant. Unless it is a requirement

to maintain spectral information in fine detail throughout the noise-time history of
an aircraft flyover, it is normal to sum the noise energy to produce a single numerical

expression of the noise of a single flight event at a given power setting, either

in terms of peak level (e.g., peak PNL or peak A-weighted sound level) or time-

integrated energy (EPNL or SEL). However, before this process can be conducted,
it is important to consider the inclusion of one further source, which is most relevant
at approach conditions.

The airframe noise varies with flight speed, mass of tile airplane, and configu-

ration. The most important feature is deployment of the wing flaps and landing

gear. A procedure which provides the spectral information necessary to allow this

source to be integrated into the total flyover level (in the same way as the engine
components) is provided by Fink (ref. 18).

Total Airplane Noise

Having compiled a set of component noise predictions for the power plant and

the airframe, we can construct a "carpet" of noise as a function of engine power
and distance for the relevant flight speeds. For example, takeoff flight speeds are

usually at Mach numbers of 0.25 to 0.30 and approach flight speeds are at Mach

numbers of 0.20 to 0.25. Hence, for all the component sources, it is necessary to
make appropriate corrections for changes in flight speed between the takeoff and
approach conditions.

Even with these corrections, at this stage any noise-power-distance carpet that is
constructed will apply only to the isolated power plant in the "overflight" condition,

and it is necessary to make further adjustments for several other factors. For example,
the effects of having more than one engine on the aircraft need to be accounted for.

Equally, it may be that there are some special amplifying installation effects which

can be computed from previous observations, or there may be some shielding of the

noise because of the installation. Examples of these are the amplifying interaction

between the jet and the wing flaps on the one hand and the shielding effect of a

center engine installation of a trijet on the other hand. For a trijet, noise from the

inlet is not heard by an observer beneath the airplane, but it becomes progressively
audible as the observer moves to the side of the flight track.

There are no readily available methods for computing these effects, but generally

noise from engines mounted under the wing is amplified whereas that from engines
mounted at the rear of the fuselage is shielded, both beneath and to the side of the

aircraft flight track. All these effects are normally no greater than 3 dB, except when
the aircraft subtends a very small angle of elevation to the receiver.

Similarly, the effects of the ground plane (in the form of over-ground and airborne

"lateral" attenuation) together with the effects of the measurement position (ground
reflection) also have to be taken into account before the noise from the airplane can

be presented (either instantaneously or integrated into a single-number index) from
the observer's standpoint. These effects may be accounted for either in the manner

presented by ESDU (ref. 9) or, more simply, in the manner of SAE AIR 1751 (ref. 10).
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Prediction Methods Generally Available

The methods already referenced represent the latest available. In some cases there

are no generally accepted procedures. There is only one comprehensive aircraft noise

prediction method freely available, the Aircraft Noise Prediction Program (ANOPP

(ref. 19). This method utilizes many of the procedures referenced herein.

Accuracy

The component noise prediction procedures have variable accuracies, those assoclo

ated with turbomachinery being the least reliable. Those procedures associated with

zero- and low-bypass-ratio powered aircraft were studied in the 1970's and found to

be sufficiently accurate to be utilized in a major study of supersonic transport noise

by ICAO (ref. 20). No other comprehensive studies have been undertaken other than
those conducted for NASA in validating ANOPP.

Prediction of Noise for Airplanes Powered

by Propellers or Propfans

Components of Interest

Propeller and propfan noise is dominated by low-frequency tones. These tones
consist of a fundamental, the frequency of which is given by the propeller or

propfan rotation rate in revolutions per second times the number of blades, and

integer multiples of the fundamental frequency (i.e., harmonics). For propellers,

the fundamental frequency is typically 60 to 150 Hz. Propfans have fimdamental

frequencies from 125 to 300 Hz. Although it is possible to identify individual

harmonics by use of narrow-band frequency analyses, the 1/3-octave band analyses

performed for noise certification purposes allow the identification of the fundamental
through the third harmonic. Higher harmonics are more closely spaced in frequency

than the bandwidth of the 1/3-octave bands so that several harmonics fall within a

band. The higher frequencies may thus appear as broadband noise, but really they

are not.

Another component of propeller and propfan noise is broadband noise. This

component is currently considered insignificant for normal operation in flight. During

static and very-low-speed operating conditions, turbulence ingestion noise occurs.
This noise has some characteristics of tones and broadband noise. However, it

becomes insignificant during normal flight conditions. Finally, a propeller or propfan

powered airplane may have contributions from other sources of noise such as that

from the engines and the airframe. In this section only the dominant propeller and
propfan tones are described, as the other components are insignificant during normal

flight or are covered in another section.

Component Noise Prediction Models

Types of Noise Prediction Models

Propeller and propfan noise prediction models come in basically two types:

empirical and theoretical. Empirical models are based on regression analyses of
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test data. Theoretical models are based on nlathematical modeling of the physical

processes of propeller and propfan noise generation.

Empirical models for predicting propeller noise have been reasonably successful

and work well for fairly conventional designs that operate over a reasonable range

of tip speeds and power loading (power divided by propeller disk area). Empirical

models have generally not been successful for propfan noise prediction.

The most commonly used empirical propeller noise prediction method is that
of reference 21. This method allows calculation of propeller noise based on only

five parameters: tip speed, diameter, number of blades, fight speed, and distance.

Because it is based on a collection of measured data, mostly from turboprops, the

method intrinsically contains most other sources of noise, such as installation effects,
engine noise, and airframe noise.

Many theoretical models exist. These relate the radiated noise to the forces

imparted to the air by the physical volume of the blades and the pressure distribution
on the blade surfaces. Theoretical propeller noise prediction models consist of two

parts: an acoustic radiation model, which "converts" the forces on the blades to

noise, and an aerodynamic model, which allows the calculation of the forces on the

blades. Both are needed, along with detailed definition of the propeller geometry, to
perform noise predictions.

Relationship of Static to Flight Effects

As previously mentioned, under static conditions a significant amount of noise

due to inflow turbulence ingestion occurs. This is a source of noise which disappears

in flight. Figure 10, from reference 22, illustrates the influence of forward flight on

propeller noise. Under static conditions, the noise spectrum is dominated by intense

higher harmonics. In flight, the levels of these upper harmonics are greatly reduced.

Figure 11 shows the effect as measured on the airplane and on the ground during

static operation and during a flyover. The middle 1/3-octave bands show high levels

during static operation while the flight data show much lower levels. The measured
differences are greater than 10 dB.

It is thus apparent that static propeller noise data projected to flight generally
result in significant overpredictions. Static propeller noise data are thus of little

value. Even trends in noise under static conditions are suspect.

Installation Effects

Installation effects result in additional noise sources which generally raise pro-
peller and propfan noise levels. These effects are due to distortions in the inflow

which are caused by angle of attack, engine nacelle blockage, wing upwash, pylon
wakes, etc., and which are unavoidable in the installation of a propeller or propfan on

an airplane. The additional noise is caused by unsteady-loading noise, which results

from the periodic loading variation on the blades as they pass through the flow dis-

tortion. Unsteady-loading noise is a source usually included in the theoretical noise

prediction methods. For such calculations a means for calculating the flow field is re-
quired. Empirical noise prediction methods include some form of installation effects

by default, as they are included in the data.
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Figure 10. Comparison of static and flight propeller noise narrow-band spectra.

(From re]. 22.)

Accuracy of Prediction

It is difficult to make a precise assessment of propeller and propfan noise

prediction accuracy because of the types of methods available and the degree of detail

which can be applied. In general, the accuracy of empirical noise prediction methods
is about ±3 dB, providing that the noise of the configuration being estimated does

not fall too far outside the data base inherent in the prediction method. It is not

surprising to find errors of ±10 dB for unusual configurations.

The accuracy of theoretical noise prediction methods includes the accuracy of the

actual noise radiation model, how well the blade geometry can be defined (propfan

blades can have very complicated shapes), and how well the blade loading in both

the chordwise and the spanwise direction can be defined. It is expected that a

carefully calculated noise prediction in terms of effective perceived noise level or

A-weighted overall noise would have an accuracy of about ±1.5 dB. Other variables,

such as ground reflection effects, atmospheric absorption, and tilt of the propeller

axis relative to the flight path, can introduce additional errors.

Future Developments

It is generally agreed that existing propeller and propfan noise radiation models

are complete and detailed enough to provide good predictions. The prediction
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spectra. (From ref. 22.)

limitations appear to be in the aerodynamic codes required to define the inflow to

the propeller and to define the steady and, especially, the unsteady blade loading. It

is expected that improvements in propeller and propfan noise predictions will come
from improved aerodynamic codes.

Other Prediction Methods

It is feasible to scale model propeller and propfan tone noise data to full scale.

The scale limitation is not an acoustic one but rather one imposed by aerodynamics

380



Flyover-Noise Measurement and Prediction

(i.e., Reynolds number effects) and the ability to manufacture an accurate model

preserving airfoil contours. From an acoustic standpoint a model propeller has

the same harmonic spectrum as a full-scale propeller at the same blade angle,

tip rotational Mach number, and flight Mach number. The tone frequencies are

inversely proportional to the diameter ratio. Model broadband noise does not scale

geometrically.

Experience has indicated that models in the 0.61-m (2-ft) diameter range (ap-

proximately 1/5 scale) or larger scale very well. It should be apparent from the

foregoing discussion that the accuracy of scaling model data depends on how well

the model simulates the actual installation. For accurate results, one should consider

including a simulation of the flow field of the propeller. It is strongly cautioned that

there is no means for acquiring propeller noise under static conditions that can be

used for flight simulation.
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