
7 "I p.9

COBWEBI3:

A Portable Implementation

KATHI, EEN McKumcr_

KEVIN THOMPSON

Sterling Software/AI Research Branch

NASA Ames _ch Center, Mail Stop 244-17

MotTett Field, California 94035 USA

(":ASA- TH- 107661)
I_PL 5MENTAT ICoN

COh]WE?_/_,: A POP, TA_LE N92-25738

(NASA) 73 p

G3161

Uncl as
0091519

/._ Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-90-6-18-2

COBWEB/3: A Portable Implementation

Kathleen McKusick

Kevin Thompson

Sterling Software/AI Research Branch

NASA Ames Research Center, Mail Stop 244-17

Moffett Field, CA 94035 USA

E-mail: LABYRINTH _PTOLEMY.ARC.NASA.GOV

Version I.I

September 17, 1990

Abstract

This manual documents Cobweb/3, a portable implementation of an algorithm for data clustering

and incremental concept formation. The manual gives an overview of the Cobweb/3 system and

the algorithm on which itisbased, as wellas the practicaldetailsof obtainingand running the

system code. The implementation featuresa flexibleuserinterfacewhich includesthe abilityto

displaygraphicallythe concept hierarchiesthatthe system constructs.

The ideasinthispaperhaveresultedfromwork withtheothermembers oftheICARUS project:Pat Langley,

John Allen,John Gennari,Wayne Iba,and Deepak Kulkarni.Many ofthem have contributedcode tothis

implementation,asdid PatrickYoung. Doug Fishercontributedimportantideas.

Contents

1 Introduction 1

An Approach to Concept Formation

2.1

2.2

2.3

2.4

2.5

2.6

3

ltepresentation and Organization of Knowledge 3

Operators for Classification and Learning 5

Evaluation function ?

The COSWES Algorithm 9

2.4.1 Learning 10

2.4.2 Prediction 13

Sample Execution 15

Intellectual Debts 21

$ Using the Implementation 22

3.1 Getting Started 22

3.1.1 Getting the Code 22

3.1.2 Installing COBWEB/3 23

3.1.3 Compiling and Loading COBWEB/3 23

3.2 Input to COBW_.B/3 24

3.2.1 COBWEB/3 Input Format 24

3.2.2 COBWES/3 Input Examples 25

3.3 Top-Level Switches 26

3.3.1 Overview: Classes of Switches 26

3.3.2 Detailed Switch Descriptions 28

3.3.3 Summary Switch Descriptions 56

3.3.4 Useful Top-level Functions 59

3.4 Using the Graphical Interface 62

3.4.1

3.4.2

3.4.3

3.4.4

The Grapher Menu 62

Graphical Display 63

Multiple Graphs 64

The Build-Tree Option 64

I. Introduction

COBWEB/3is a tool for organizingdescriptionsof objects,places,events, or any data that can be

represented as conjunctions of attributes and their values. Because it forms classes from its input,

the system can be useful in clustering data into groups of instances that share regularities across a

number of attributes.

COBWEB was originally developed as a model of incremental concept formation, to demonstrate

some psychological aspects of this process in humans. After observing the world, humans form

concepts by organizing their observations on the basis of shared characteristics among things they

observe. For example, the general concept of dog is built up incrementally over time after many

experiences with particular dogs of varying appearance and behavior. The concept grows in gen-

erality and becomes more useful as one sees more dogs. It becomes possible to discriminate dogs

from other animals that look very similar. Eventually one can make accurate predictions about

a dog one is encountering for the first time: it probably barks, could bite if angered, has a cold

wet nose. Humans can form concepts despite irrelevant information (dog X is standing on a red

carpet) and incomplete examples (dog Y's owner is obstructing its tail from view). Much human

concept learning occurs through this process of organizing observations into general classes without

the advice of a tutor.

Similarly, COBWEB takes observations presented to it and organizes them, forming concepts that

summarize the instances they cover. As in human concept formation, this process occurs incremen-

tally: concepts become more discriminating over time as the system encounters more examples.

Concepts form despite irrelevant information and incompleteness in the inco_g observations, and

they form without the advice of a tutor. Like humans, COBWEB uses concepts to classify observa-

tions and make predictions about what it observes when observed information is incomplete.

COBWEB's approach to classification and learning is known as cor_tua/clustering (Michals_

& Stepp, 1983; Fisher & Langley, 1986). Five key traits, which COBWEB shares with a few other

systems (Feigenbaum, 1963; Kolodner, 1984; Lebowitz, 1987), distinguish it from most other work

in machine learning.

1. Hierarchical oeganization of concepts. Instead of forming fiat classes that merely group similar

instances together as do iterative optimization algorithms (Anderberg, 1973; Cheeseman et al.,

1988), COBWEB forms a concept hierarchy. In the hierarchy, nodes represent concepts that

are partially ordered by generality. Each node includes a concept description, a list of the

probabilities that certain features wRl occur in instances covered by the concept. We describe

the hierarchical organization in more detail in Section 2.1.

2. Top-down classification. COBWEB classifies a new instance by sorting it down through the

concept hierarchy to locate the classes in which the instance belongs. Typically an instance is

incorporated into a series of concepts, first into a very general concept, then into increasingly

specific ones.

3. Unsupervised Learning. COBWEB uses no tutor to guide classification or provide feedback after

classification has occurred, so it does not require predefmed class information in its input.

2 COBWEB/3: A PORTABLE IMPLEMENTATION

o

.

Instead it forms its own classes on the basis of shared characteristics (and dissimilarities) in

the observations it receives.

I_-_.nta/Learni_. Some systems (Cheeseman et al., 1988; Michalski & Stepp, 1983) require

all input before they can partition observations into classes, or accept instances one at a time

but then reprocess previously seen instances. COBWEB processes one instance at a time and

never does massive reprocessing of instances.

H_ cZirt_bi_. COBWEB makes adjustments to an existing concept hierarchy based on new

knowledge--the input it is currently processing--rather than keeping several alternative hier-

arc.hies in memory. This can be viewed as a form of hm-climbing search: each new hierarchy

is a function of the previous hierarchy, an incoming instance, and some operator. Since no

alternative hierarchies are considered or saved, memory requirements are limited to what is

needed to store a single hierarchy. This is in contrast to memory-intensive search techniques

such as depth-first or brea_Ith-first search, which would require storage of multiple hierarchies.

Beyond clustering instance descriptions, COBWEB forms general descriptions of classes at various

levels of abstraction. The system makes available to the user both these'general descriptions and the

particular instances that comprise a class. Since COBWEB can use the classes it creates to predict

attributes missing from new input, the system can be used in prediction tasks like those for which

decision tree classifiers are useful, such as medical diagnosis or fault identification. However, unlike

algorithms for inducing decision trees (Quinlan, 1986), COBWEB does not assume that instances

are preclassified. As mentioned above, it determines its own classes without requiring a tutor or

any explicit class information.

In a_idition to its role as a classifier, the system can also be viewed as an efficient case-based

memory system. By cre_ting a hierarchy of abstract classes, COBWEB indexes and allows the

e_icient retrieval of the individual instances it has seen as well as abstract concepts it uses to

summarize the instances. The system uses the abstractions it has derived not ouly to index stored

instance descriptions but also to make predictions about incoming cases that may differ from any

particular caseit has seen before. Therefore COBWEB moves beyond the observed cases by retrieving

and making use of relevant abstract case descriptions.

This manual gives an overview of the COBWEB/3 system and the algorithm on which it is based

(Section 2), as well as the practical details of obtaining and running the system code (Section 3).

The algorithm we describe is a hybrid of Fisher's (1987a) COBWEB algorithm and Gennari's (1989)

CLASSIT algorithm. In Section 2.6 we explain how this implementation is tied to each. Since the

manual is intended as a practical guide to using the system, our treatment of theoretical issues is

brief. For the reader interested in more detail, we recommend Fisher (1987a, 19871)), Gennari et al.

(1989), Gennari (1989a, 1990), and Fisher and Langley (in press), which discuss the theory behind

COBWEB in depth. For information about how COBWEB has been incorporated into other research

projects and systems, we recommend Langley et al. (1989), Foa and Gennari (in press), Thompson

and Langley (1989), and Yoo, Yang, and Fisher (in press). COBWEB'S evaluation function, category

utility, is discussed at length in Gluck and Corter (1985).

CoBwms/3: A POXrrABL_ IMPLEMENTATION 3

(a) DIAMEH_ medium

COLOR green

REBOUND _gh

DIAMEFI_ 2__2

COLOR 3

REBOUND 0.71

Figure 1. Two instances of a tennis ball: (a) nominal attributes, (b) numeric attributes.

2. An Approach to Concept Formation

Now we turn to the details of how concept formation works in COBWEB. Any concept formation

system needs some way both to represent knowledge, and to organize and store this knowledge in

memory. We discuss this in Section 2.1. Since COBWEB is an incremental hl]l-climbing system,

it relies on a set of operators to create new knowledge hierarchies from old. We discuss these

operators in Section 2.2. To decide which operator to apply at any given time, COBWEB evaluates

the alternatives using an evaluation function which we describe in Section 2.3. How these pieces

fit together in COBWEB'S algorithm for classification, learning, and prediction is the subject of

Section 2.4. Finally, we illustrate the algorithm with a sample execution in Section 2.5.

2.1 RAepresentation and Organization of Knowledge

COBWEB accepts as input a series of instance descriptions. Instances are represented as an ordered

set of attribute-value pairs, and each attribute may take on only one value. The implementation

of COBWEB described here can handle either nominal or numeric attribute values.

To illustrate how instances are represented, Figure 2.1 shows a tennis ball described in terms of

nominal attributes (a) and numeric attributes (b). The attributes chosen to describe this instance

are sizE, COLOa, and av.nOUND. In the nominal case, size of a ball can be described as sn_l,

medium, or large, COLOIt as green, red, etc., REBOUND as tow, medium, or hu3h. In the numeric case,

SIZE can be described as the diameter of the ball, COLOR as a value on a continuous numeric scale

from 0 to 10, and ItEBOUHD as a percentage of the dropped height when released onto a smooth

surface.

As we have noted, COBWEB uses instances like those illustrated to construct and maintain a

concept hierarchy. COBWEB adds each instance it receives to the hierarchy, adding knowledge by

changing information within the concept nodes and in some cases changing the overall structure of

the hierarchy. The concept hierarchy is a tree, with each node in the tree describing a concept. The

concepts are partially ordered, from most general (the root of the tree, summarizing all objects) to

most specific (the leaves of the tree, specific instances).

Each concept node describes a class of instances. Like instances, concept nodes are described

in terms of attributes and values, as this is a natural way to summarize the instances covered by

the concept. The information stored at a concept node is slightly different when attribute values

are nominal in the instance descriptions than it is when numeric values are used. In both cases,

4 COBWEB/3:A PORTABLEIMPLEMENTATION

SIZE I LARGE
MEDIUM

COLOR ORANGE
GREEN
WHITE

RF_.BND HIGH
MEDIUM

r(c_) - o.25 r(v_

SIZE MEDIUM 1.00
ill,

COLOR WHITE 1.00

REBND HIGH 1.00

P(_) = O.25 p(v_

SIZE MEDIUM 1.00

COLOR i GREEN 1.00

REBND i HIGH 1.00
I

P(c=) = OJO PO_

SIZE lARGE 1.00

COLOR ORANGE 1.00

REBND HIGH 0.50
MEDIUM O.5O

sr_. x._ Leo srT_. LARGE 1.00

COLOR ORANGE 1.00 COLOR ORANGE 1.00

REBN'D MEDIUM 1.00 REBND HIGH 1.00

F_t/re 2. COBWEB hier&rchy of be,]] inst.a_ces with nominal attribute values.

COBWEB stores the probability of the concept's occurrence at each concept node (Smith & Medin,

1983). It also stores information about every attribute observed in the instances that are covered

by the concept. In the nominal case, COBWEB stores the conditional probability of each attribute

value, given membership in the class covered by the concept. In the n_neric case, the system

stores a continuous normal distribution for each attribute, in the form of a mean and _ standard

deviation.

Figure 2.1 shows a sample COBWEB hierarchy of instances with nominal attribute values. This

hierarchy describes instances of balls that differ in their size, color, and amount of rebound. The

nodes in the hierarchy are numbered (Co, ..., C5) in the order that COBWEB generated them.

At the top of ear.h node is its probabifity of occurrence, specified with respect to its parent. For

example, if an instance belongs in the class Cs, then the probability that it belongs in the class

C4 is 0.5. Below the class probability is the list of attributes and their possible values. As in the

instance descriptions, the attributes which describe the instances stored in this hierarchy are SIZE,

COLOIt, aJld REBOUND.

Consider the size attribute. Two values have been seen so far, medium and/arge. Balls that &re

members of the more general root node, which describes four instances, have an equal chance of

being medium or lawe, as indicated in the P(VIC) column. Balls that are members of the more

specific node (:73, which describes two instances, are all lawe. The terminal nodes in the hierarchy,

_OBWEB/3: A PO_rABLE IMPLEMENTATION 5

1

P(CO)= 1.00

affr meQn 0

DIAM 6.03 3.52

COLOR 4.37 3.07

REBND 0.58 0.13

P(CI)= 025

t7

0.10
0.10
0.10

P(C2) = 0_.5

attr mean o'

DIAM 2.52 0.10
COLOR 3.00 0.I0

REBND 0.71 0.10

attr

DIAM

COLOR

REBND

P(C3) = 0.50

affr me_ £7

DIAM 9.55 0.10
COLOR 725 025
REBND 0.45 0.I0

mean

2.50

0.00

0.70

attr

DIAM
COLOR
REBND

P(C4)= 0.50 p(C5)ffi0.50

mean o' am" mean

9.50 0.10 DIAM 9.60

7.00 0.I0 COLOR 7.50
0.40 0.10 REBND 0.50

Figure 3. COBWEB hierarchy of ball instances with numeric attribute values.

ff

0.I0

0.I0

0.I0

C1, C2, C4, and Cs, all describe a single instance. The probabilistic descriptions are simple in these

nodes: each attribute has one value that is certain to occur.

Figure 2.1 shows the hierarchy that COBWEB forms from similar instances described with numeric

attribute values. The node headers show the conditional probabilities of the concept's occurrence,

just as in those in the previous hierarchy. The other information stored at the node is somewhat

different. Instead of a list of possible values for ear3 attribute, each node contains the mean and

standard deviation of the values seen in the instances covered by the node. Note that except at the

root node, the standard deviations are all 0.1, a minimum value. We will return to an explanation

of this mlnirnllrn value in Section 2.3 when we discuss the scuity parameter.

2.2 Operators for Classification and Learning

COBWEB relies on four operators to incorporate the knowledge in an instance description into the

concept hierarchy. At each level of the concept hierarchy, the system applies an operator that uses

a particular mechanism to classify an object into the hierarchy at that level. The operators apply

locally to the subtree composed of the last concept node to which an instance was classified (we

will refer to this as the "current node"), and the children of this node. Initially, all instances are

classified to the root node, m "aking the root the current node. COSWES selects which operator to

apply by evaluating alternate classific,'ttions with an evaluation function, discussed in Section 2.3.

COBWEB's operators are illustrated in Figure 2.2. COBWEB applies the first of the four operators,

6 COBWEB/8: A PORTAB][,Z IMPt_MBI_rrATiOH

a) _zpo_ b)]ncoxpom_ _ ztnglezoz_extend downward

('eate-_w-disjunct d)M_e

e) spur

F_gl,lre 4. COBWEB'S learning operators.

Incorporute, when an instance fits into an existing concept well. This operator integrates the

instance into one of the child nodes. If this child node is not a singleton (i.e. it describes more

than one instance), COBWEB updates the conditional probabilities for the concept and each of the

attribute values. Figure 2.2 (a) illustrates this process schematically. (For a more precise definition

of Incorporate and the other operators, refer to the pseudocode in Appendix A.) If the node to

which COBWEB is incorporating the instance is a singleton, COBWEB must extend the hierarchy

downward, as shown in Figure 2.2(b).

COBWEB applies the second operator, Create-neto-d_s_unct, when an instance has very different

characteristics from any existing concept at the current level, as determined by its evaluation

function. This operator places the instance in a category by itself, a sibling of the existing concept

nodes. Figure 2.2 (c) shows this process.

COBWF,B/3: A PORTABLEIMPLEMENTATION 7

Two additional operators allow COBWBB to restructure the hierarchy without reprocessing previ-

ous instances. These give the system some power to reorganize in light of new incoming knowledge

while rema£uing an incremental system. COBWEB applies the Merge operator when the hierarchy

is overly branched, and combining two classes provides a good concept to which to classify the

incoming instance. The Merge operator merges two child nodes and incorporates the instance into

this new combined class. The e_ects of this operator are shown in Figure 2.2 (d).

COBWEB applies the Split operator when the hierarchy contains a node that is too general and

therefore less useful for classification and prediction. In this case brea]_g the general node into

well-defined classes creates a good match for the incoming instance and dlstingulshes classes that

turn out to be too different to be grouped at this level. The Split operator breaks the current

node up into several distinct concept nodes, as illustrated in Figure 2.2 (e). This split is achieved

by removing the current node and replacing it with its children. Then COBWEB incorporates the

instance into one of these more specific nodes.

2.$ Evaluation function

Note that we have not yet explained how COBWEB selects which operators to apply as it sorts an

instance down through ea_ level of the hierarchy. To make this choice, the system must be able to

evaluate alternative classifications and apply the operator which produces the best. COBWEB uses

an evaluation function, category ut/li@ (G1uck & Cotter, 1985), to score these alternatives.

Different classifications of a new instance result in a number of different _zrtitio_ of all the

instances into classes. Category utility gives a high score to partitions which maximize shnflarity

among class members (intra-class similarities) and differences between members of different classes

(inter-class dfl_erences). Intuitively, it makes sense to form classes whose members have very similar

attributes, which in turn differ greatly from the attributes of members of other classes..

In effect, category utility trades off the Fredictiveness of each attribute value (the probability of

an instance's membership in a class, given its attribute value) and the predic_iity of the value

(the probability of the value, given that an instance is a member of a class). For example, if you

know an instance can be classified as a bird, you can predict that it has wings. Yet wings may

not be a terribly predictive attribute value, as bats, insects, and airplanes are all classes that also

contain instances with wings. Even if you know that an instance has wings, you cannot predict

with confidence that it is a bird from this attribute.

Conversely, if you know that an instance has an understanding of quantum mechanics, you can

predict that it is human and not a member of another species. Therefore this attribute value is

predictive. Yet this is not a very predictable attribute value, as knowing that an instance is human

does not necessarily mean that it understands quantum mechanics.

To summarize, predictive values are those most nearly unique to a certain class and therefore

indicative of it. The evaluation function favors classes with many predictive attribute values because

these maximize inter-class differences. Predictable values are those that many members share

and therefore are easy to guess accurately. The evaluation function favors classes with many

predictable values because these maxin_e intra-class similarities. Since attributes are often not

8 C._BW_/3: A PORTABLZ IMPLEMENTATmN

both predictable and predictive, category utility trades off the two, maximizing each as much as

possible. The category utility equation can be summarized as

X-Y

K '

where X is the expected number of attribute values that can be correctly guessed, given the K

categories, and Y is the expected number of attribute values that can be correctly guessed without

any category knowledge. Dividing by K, the total number of classes, normalizes for partitions with

differing numbers of classes. In the expanded equation, the X term is

K I J

e(ck) :E :E =
kffi-1 iffil #ffil

summing acrossK classes,I attributes,and J values.P(Ct) isthe probabilityofoccurrence of a

particular class Ct and P(Ai = r_jlC_) is the conditional probability of a particular value _# given

membership in the class. The Y term expands to

I J

i--1 jffil

where P(A_ -- _j) is the probability of a particular value at the parent of the node classes being

considered; that is, the probability across all classes without category knowledge. The complete

equation is:

e(c,) E, Ei P(A = ilC,) 2- £, = j)2
K

For informationon the derivationof thisequation,referto Ghck and Corter (1985),which givesa

two-classversionofthe equation,and Fisher(1987b),which givesthismulti-classform.

COBWEB applies this version of category utility when instances have nominal attributes. As is,

it cannot be applied when instances have numeric attributes, since it is unable to distinguish any

difference between numbers that are close in value from those that are far apart. Por example, the

real numbers 3.112, 3.113, and 12.9 would all be treated as distinct, unrelated values by the original

equation. However, category utility can be adapted to deal with numeric valued attributes. Since

probabilities for numeric attributes are stored as a normal distribution (a mean and a standard

deviation), the innermost summation in the ordinary category utility equation can be replaced with

the integral of the equation for the normal distribution

t_ueo

E P(Ai = V_j) _
J

e-('_,)_ dr, = (r 4V _

COBWZB/3: A POK'rABLE IMPLBMENTATION 9

The transformed evaluation function is then

K I I

k s s

4K_

where K is the number of classes, I is the number of attributes, _k is the standard deviation for

attribute i in class k, _p is the standard deviation for attribute i in the parent (i.e. where no dabs

information is present).

One problem with this transformed equation is that a = 0 when a concept node describes a

single instance, so the 1/(7 is oo in this case. In this situation, COBWEB relies on a user-specified

parameter, acuity, to serve as a minimum value for or. Acuity represent the minimum detectable

difference between instances.

Typically, some instance descriptions axe incomplete, with values missing for one or more at-

tributes. In tiffs implementation of COBWEB, we adapt the category utility equations so they

handle this situation by dividing the attribute summations by I, the number of attributes in the

incoming instance. The revised equations are:

K 1 p(c_) 5"_._. p(A,fV_[Ck), _ P(A,=I_j)'
I I

K

for discrete values, and

• I

Z eCCk)J-'T- -
k=l

4Kv

forcontinuous values.As Gennari (1989)pointsout,mixing nominal and numeric attributesin a

singleinstancedescriptionisan open issuein the literatureon numerical taxonomy and clustering.

However, Gennari (1990)presentsevidence that summing togetherterms from both forms of the

equation works wellin domains with mixed data. We includethe capabilityto handle instances

with mixed attributetypesin COBWEB/3.

2.4 The COBWEB Algorithm

We now turn to a discussion of how the evaluation function, operators, and concept hierarchy work

together in the COBWEB algorithm. Theoretica_y, COBWEB has two modes of operation, learning

mode and prediction mode. In our implementation, the two modes are not completely distinct, but

it is helpful to define learning and prediction in terms of their impact on the COBWEB hierarchy

before we discuss the particulars of the implementation. In learning mode, COBWEB classifies each

instance and incorporates it permanently into the hierarchy, changing the hierarchy's structure and

thus affecting future classification and prediction. In prediction mode, COBWEB also classifies an

instance but without incorporating it into the hierarchy, merely locating the most specific concept

10 C_8w1_/3: A POI_rADLEIMPLEMENTATION

that describes it. Then COBWEB uses the probabi]istic information stored at this concept node to

predict attributes missing from the instance description. Strictly speaking,]earning and prediction

are different processes, although both rely on the same classification mechanism. Learning alters

the hierarchy while prediction does not.

In this implementation of COBWEB, prediction and learning are partially intertwined. Learning

can run without prediction: COBWEB/3 reads in instances and incorporates them into the hierarchy.

However, the prediction mode is automated for running large-scale empirical studies with the

system. An instance is read in, then each attribute in turn is excised and COBWEB/3 attempts

to predict it, and reports how it does. When the system completes prediction on an object, it

subsequently turns learning on and adds the instance to the hierarchy. Thus prediction is distinct

from learning but runs in tandem with it. Below we describe the COBWEB/3 algorithm for each

processing mode.

2.4.1 LEAItNING

COBWEB accepts instance descriptions One at a time. The system actually has two inputs e_

time it processes an instance, the instance description and an existing concept hierarchy. Typically,

the concept hierarchy is one COBWEB has built from previous instances. Alternatively, the concept

hierarchy can be one the user has built and passed to the system. The concept hierarchy can also

be empty; if COBWEB has not seen any instances yet and no user-defined hierarchy is passed in,

the system bootstraps from the first instance, making this instance the root of a new hierarchy.

Given a_ instance and a hierarchy, COBWEB's task is to create a new hierarchy that incorporates

the new, incoming knowledge embodied in the instance description. Simply stated, the learning

task is

• Given: an instance sad a concept hierarchy

• Do: create a new hierarchy that incorporates the instance

The algorithm that carries out this learning task can be viewed as a three-step recursive process.

There is an initialization step at the root of the hierarchy, and then classification takes pla_e level

by level. The steps followed in learning mode are:

start. _ at root

step 1. Preview the next level

step 2. Incorporate the instance

step 3. Recurse to the next level _= :

Notice the basic recursive mecha,_ism COBWEB uses to sort an instance down through the hier-

archy. Starting at the most genera] root node, the system previews and incorporates, previews and

incorporates, as it sorts instances downward. In so doing, COBWEB selects a path through the tree

composed of increasingly spec_c concept nodes. Now we turn to the details of each step, including

the initialization.

COBWEB/3:A PoIrrABL_IMPLEMENTATION 11

DIAMETERSMALL

COLOR RED

REBOUNDLOW

(b) P(CO)-- 1.00

SIZE LARGE
MEDIUM

COLOR "'C)RANGE

GREEN
WHITE

REBND HIGH
MEDIUM

POIIC')

0.5O
0.50

0.5O
0,.25
0._

0.50
0.5O

(c) P(Co)= 1.00

SIZE LARGE
MEDIUM
SMALL

COLOR ORANGE
GREEN
WHITE
RED

REBND I-UGH
MEDIUM
LOW

P(VIC)

0A0
0A0
0_?_)

0.40
0_10
0_0
0_.0

0.40
0.40
0.2.O

Figure 5. hmtanee of a marble (a) and a root node before (b) and after (c) incorporation of the marble.

start. Initialize at root

COgWEB begins by incorporating the current instance into the root concept node. As the most

genera/node in the hierarchy, the root summarizes all instances the system has seen so far. Re-

turning to the example in Figure 2.1, the root node is the most genera/concept for BALL. This

concept does not yet capture the _aziety of most of the balls in the world, only an abstraction of

the balls it has seen: two tennis balls and two basketballs. Suppose the system is classifying a new

ball description into the hierarchy, that of a marble. First the system must incorporate it into the

root, which generalizes the root concept to cover the marble instance. Figure 5 shows the root node

before and after the incorporation.

The probability for the root category stays the same (unity), since all instances sort to the

root. However, note that the values _m_II, red, and /arge appear because they now have nonzero

probabilities. Furthermore, the probabilities of the other values have shifted slightly. At the SIZE

attribute for example, even though there has been no change in the absolute number of Large

instances (two), the probability of this value in the concept shifts from 4_ to _ because the concept

covers five instances instead of four. The probability of the medium value sim|]arly shifts to 35"

The probability of the small value is I" The conditional probability of each value for COLOR and

KEBOUND a/SO Shift.

12 COBWEB/3: A PORTABLE IMPLEMENTATION

Figure 6. Previewing involves only the current node and its children.

step 1. Preview the next level

During the preview step, COBWEB does a one-step looka_ead to determine the best place to

incorporate the instance at the current level of the hierarchy. This lookahesd does not perma-

nently change the tree; the system simply considers the efl_ect of various classification strategies.

Previewing involves only the current node 1 and the immediate children of the current node in

the classification decision, as illustrated in Figure 2.4.1. Thus classification decisions are localized

to a small area of the hierarchy at a time. While previewing, COBWEB considers two obvious

classification strategies that have minimal impact on the structure of the hierarchy:

1. Classification to an existing concept.

COBWEB tries incorporating the new instance into each of the existing classes, seeking an

existing concept that fits the instance well. It evaluates each resulting partition with the

evaluation function described in Section 2.3. If one of these partitions gets the best category

utility score, application of the Incorporate operator is indicated.

2. Classification as a new concept.

COBWEB tries setting the instance apart from existing classes, creating a new, disjunct class

with the new instance as the only member. If this partition gets the best category utility score,

application of the Creste-new-disjunct operator is indicated.

COBWEB considers two additional classification strategies that pa_ially reorganize the tree. Since

the system processes instances one at s time, it can be misled by the particular order of early

instances it receives and build a non-optimal hierarchy. The fo]lowing methods of incorporation

help CoBw_.B to recover and axiapt the hierarchy it constructed with more _ted infomstion, to

e_ectlvely cover both old and new instances.

I. Current node refers to the last node where an instance was incorporLted. Initially this is the root.

COBWl_/3: A PORTABLE IMPLEMENTATION 13

3. Mer_ug two concepts.

COBWEB tries merging the two best classes, and incorporates the instance into this new corn-

blued class. If this partition gets the best category utility score, application of the Merge

operator is indicated.

4. Splitting a concept.

COBWEB tries splitting the best class, replacing this node with the node's children. Then the

system tries incorporating into each child of the split node, evaluating each resulting partition

with the evaluation function. If this partition gets the best category utmty score, application

of the Split operator is indicated.

Step 2. Incorporate the instance

Based upon the results of the preview, COBWEB applies one of its four operators to incorporate

the instance into the concept hierarchy. Recall from Section 2.2 that we denote COBWEB'S four

operators I_, Create-new-d_nct, Merge, and Spill If incorporating an existing concept

has the best category utility, COBWEB applies the Incorporate operator, handing it the instance

and a pointer to the node. If making a new disjunct has the best category utility, the system applies

the Create-nmn-d_nct operator, handing it the instance and a pointer to the current node (the

node from which the disjunct is to be made). If mer_ug two nodes has the best category utility,

COBWEB applies the Merge operator, handing it the instance and a pointer to the two nodes to

merge. If splitting a node has the best category utility, the system applies the Split operator,

handing it the instance, a pointer to the node to split, and a pointer to the best child concept of

that node. After applying an operator, which permanently incorporates the instance at the current

level, COBWEB continues to the next step, recursing to the levels below.

Step 3. Recurse.

COBWEB repeats from step 1 for the next level down. As the system recurses, it continues to

incorporate the instance into concepts of increasing specificity. COBWEB halts when it classifies a

new instance into a singleton node at the bottom of the hierarchy, or when it creates a new disjunct

with the instance at any level.

2.4.2 PREDICTION

COBWEB call use a concept hierarchy to make predictions about instances it has not encountered

before. In particular, it can predict attributes that are missing in partially-described instances.

Given a partial description and a hierarchy (one either the system or the user has constructed),

COBWEB's task is to classify the instance and predict missing attributes.

In this implementation, prediction is automated for comparative studies between COBWEB/3

and other systems. Partial instances are manufactured by removing one attribute at a time. 2 The

system then classifies the instance and predicts the value of the missing attribute. During the next

2. COBWEB and CLASSIT can in theory predict any number of attributes, but COBWEB/3 does not yet support
this feature.

14 COBWF_/3: A Po_rABI.Z IMPLF_F_CrXTION

iteration, a different attribute is removed. This process continues until COBWEB has predicted each

attribute in turn. The system reports the results of this process. To summarize, the prediction

task is:

• Given: an instance and a concept hierarchy

• Do: remove and predict each attribute in the instance

The prediction algorithm is divided into four steps. Iterate for every attribute in the instance:

start. Remove an attribute from the instance

step I. Preview the next level

step 2. Recurse to the next level

finish. Predict missing attribute

The prediction algorithm, like the learning algorithm, is recursive. COBWEB classifies instances

using a classification strategy similar to the one it uses in learning. However, unlike the learn-

Lug process, there is no lasting change to the hierarchy because instances are not permanently

incorporated as classification takes place. We now describe each step in more detail.

start. Remove an attribute from the instance

COBWEB removes an attribute from the instance, replacing the missing attribute from the pre-

vious prediction iteration (if any).

step I. _ the next level

As in learning, COBWEB classifies the instance to the root by default. Then it considers the

classes that exist at the next level and calculates category utility for the following partitions:

1. Classification to an existing concept.

COBWEB tries putting the new instance into each of the existing classes, seeking an existing

concept that fits the instance well.

2. Classification as a new concept.

COBWEB tries setting the instance apart from existing classes, creating a new, disjunct class

with the new instance as the only member.

Unlike when learning, COBWEB does not consider merging or splitting nodes during classification.

step 2. Recurse to the next level

The system repeats from Step 1 for the next level down. As COBWEB recurses, it continues

to classify the instance to concepts of increasing specificity. COBWEB halts when the instance is

placed in a class by itself, becoming a new disjunct, rather than being incorporated into an existing

concept at the current level. If the system would create a new disjunct, it predicts from the parent

of this disjunct. If the system classifies to a singleton, it predicts from that node.

_,OBVV'EB/3: A POitTABLZ II_LEI_TA'FION 15

first instml_:
white minis ball

DIAMEFER 2.50

COLOR 0.00

REBOUND 0.70

hierarchy:

P(Co)- 1.00

Qffr m_on

DIAM 250 0.10
COLOR 0.00 0.10
REBND 0.70 0.10

Figure 7. COBWEB hierarchy after the first instance of a ball.

finish. Predict missing attribute

From the concept node locatedduring classification,COBWEB determines the most frequently

occurringvalue for the attributethat ismissing from the instanceand itpredictsthisvalue. If

thereare ties,itpredictsthe firstof the tiedvalueslistedat the node.

2.5 Sample Execution

In this section we step through a sample execution to illustrate the COBWEB learning algorithm.

Most of the example hierarchies used as Rlustratious thus far have involved nominal attributes.

Here, for contrast, we use instances with real-valued attributes. Note that we are using the same

domain (game balls), but described numerically. Ea_ instance is described in terms of its diameter

(in inches), its color (on a continuous coior spectrum numbered from zero to ten, with 0 white and

10 black), and its percent rebound when dropped from a standard height onto a smooth surface. We

set the acuity parameter to 0.1 before the run begins. Recall that the acuity parameter specifies

the mum standard deviation, which is required to calculate category utility when COBWEB

evaluates partitions that include singleton concepts.

In this case, the system begins with s null concept hierarchy. (Note that alternatively, we could

pass a predefined hierarchy into the system, providing a form of background knowledge.) COBWEB

reads in the first instance, which is a description of a white tennis ball, and uses it to form the

root of the hierarchy. This root concept is illustrated in Figure 2.5. We show concepts numbered

in the order in which they are formed, so this is Co. At the top of the concept description is the

probability of its occurrence within the partition created by its parent. Since Co is the only node

in the hierarchy, P(Co) - 1. Below this concept probability is the list of attributes and a mean

and standard deviation for their values, calculated from the instance description. Since this node

describes a single instance, the mean values are the same as the values found in the instance. Note

that the standard deviations displayed are actually the acuity value, 0.1, since the true standard

deviations are zero for this singleton concept.

16 COBWZlI/3: A Po_rJmr_ IMPLmm_rrAanON

second instmce:
_en tmnis ban

DIAMETER 2.52

COLOR 3.00

REBOUND 0.71

attr

DIAM
COLOR
REBND

hierarchy:

P(C O) = 1.00

art fflea?l o

DIAM 2.51 0.I0
COLOR 1_50 1_50
REBND 0.70 0.10

P(C I) = 0_50 P(C2) = 0_50

B'l_an o _

2.50 0.I0 DIAM
0_0 0.I0 COLOR
0.70 0.10 REBND

0

2_52 0.10

,3.0O 0.I0

0.71 0.I0

Figure 8. COBWEB hierarchy after the second instance of a ball.

Next, COBWEB reads in a new instance, a description of a green tennis ball. The updated concept

hierarchy is shown in Figure 2.5. Using the Incorporate operator, COBWEB incorporates the new

instance into the root node, forming a generalized concept for the balls seen thus far. The mean

and standard deviation values in this concept summarize the values seen in the two instances. Note

that only the standard deviation for the color attribute exceeds the acuity. Since the root was a

singleton before the new instance was incorporated, the Incorporate operator extends the hierarchy

downward, making the white tennis ball and the green tennis ball instances disjuncts of the new

root. Now the two children of the root node describe the individual instances.

The third instance describes a basketball. Fis_re 2.5 shows the hierarchy updated to include

this instance. As always, the instance is first incorporated into the root node. The basketball has

quite different chara_:teristics than the two tennis balls and so it changes the means and standard

deviations in the root node quite a bit from their previous values. At the next level, the category

utility evaluation tells COBWEB to apply the Cre_te-new-disjunct operator, creating a new singleton

concept rather than incorporating the basketball into either of the existing tennis ball concepts.

The fourth instance describes a second basketball. Note that the two basketballs are more alike

than the two tennis balls, because they are similar not only in diameter and rebound characteristics,

but also in their color. Figure 2.5 shows the hierarchy after the new instance has been sorted

downward and incorporated. After incorporation into the root node, category utility evaluation

determines that the two basketball descriptions are enough alike to be grouped together. COBWEB

applies the Incorporate operator at the next level, adding the second basketball to the existing

basketball concept node. Since this is a singleton concept, COBWEB extends the hierarchy downward

so the two basketball instances become singleton disjuncts.

COBWlgB/_: A PORTABLE IMPLEMENTATION 17

mirdinstm_

DIAMETER 9_50

COLOR 7.00

REBOUND 0.40

hierarchy:

P(Co) = 1.00

alTr ff'_,a/,l £7

DIAM 4.84 330

COLOR 3-33 2.87
REBND 0.60 0.14

P(C1) = 0.33

attr m_an G

DIAM 2.50 0.I0
COLOR 0.00 0.I0

REBND 0.70 0.I0

P(C2) = 0.33

a/fr m_atl o'

DIAM 2.52 0.I0

COLOR 3.00 0.I0

REBND 0.71 0.I0

P(C3) = 0.33

artr mean o

DIAM 9.50 0.10
COLOR 7.00 0.I0

REBND 0.40 0.I0

Figure 9. COBWEB hierarchy after the third instance of a ball.

The fifth instance describes a marble. It has very different characteristics from the other four

balls: it is much smaller, it does not bounce, and it is the only ball that is red in color. As shown

in Figure 2.5, after incorporating the marble description into the root node category utility directs

Cosw_.s to apply the Create-new-disjunct operator rather than classifying the marble with the

basketball concept or either of the tennis ball concepts.

The sixth instance describes another green tennis ball. With the incorporation of this instance

(Figure 2.5), we see the effects of COBWEB's merge operator. In light of the additional instance

descriptions added to the hierarchy since the tennis ball instances came in, these two instances

are now relatively similar. The evaluation function directs COBWEB to apply the Merge operator,

merging the two tennis ball nodes and incorporating the new tennis ball into this merged node. At

the next level down, COBWEB incorporates the green tennis ball into the existing singleton node

for the original green tennis ball, creating a new concept node for this subclass. The hierarchy is

extended downward, retaining the green tennis ball instances as singleton concepts at the bottom

of the hierarchy.

At six instances, COBWEB has already formed some interesting concepts. The root node is too

general to contain much information, but below the root we see identifiable concepts. Note the

concept for tennis balls, Cr. By studying the means and standard deviations for this concept, we

conclude that these balls are about 2.5 inches in diameter, rebound 70% of their dropped height,

and are greenish in color. We are less sure of the color because of the high standard deviation

of this parameter. Similarly, COBWEB forms a more specialized concept for "green tennis balls _,

Ca, and a concept for "basketballs," C3. The system forms these classes on its own; the instances

it classifies are not labeled and do not contain any explicit class infomation. If COBWEB were to

18 COBWES/S:X POrrASL_Im'LZMZ_rXTmN

fourthinstance:
basketball

DIAMETER

COLOR

REBOUND

P(CI)=0.25

meaJ1

2.5O

0.00

0.70

9.60

7.5O

O.5O

affr

DIAM
COLOR

REBND
i

hierarchy:

P(C O)= 1.00

a flr _ o

DIAM 6.03 3.52
COLOR 4.37 3.07
REBND 0-58 0.13

P(C3) = 050

affr m_q G

DIAM 9-55 0.10
COLOR 7;25 0.25
REBND 0.45 0.10

O

0.10
0.10
0.10

P(C4) = 0.50 P(Cs) = 0.50

9.50 0.10 DIAM 9.60 0.10
7.00 0.10 COLOR 7-50 0.10
0A0 0.10 REBND 0.50 0.10

P(C2)=0.25

DIAM 2.52 0.10
COLOR 3.00 0.10
P,J_N'D 0.71 0.10

am"

DIAM
COLOR

REBND

Figure 10. COBWEB hierarchy after the fourth instance of a ball.

COBWEB/3:A PORTABLEIMPLEMENTATION 19

fffzhinsta_ce:
blue marble

DIAMETER

COLOR

REBOUND

0.50

8.00

0.04

hierarchy:

P(Co)= z.O0

aftr m_aB o

DIAM 4.92 3.85
COLOR 5.10 3.10
REBND 0.47 00.5

P(C z) - 0_.0 P(c 2)= 02o

attr

DIAM

COLOR
REBND

ff_an

2.52
3.00
0.71

o

0.10
0.10
0.10

P(C3)=0.40

aft/" mean o

DIAM 9-55 0.10
COLOR 7_.5 00.5
REBND 0.45 0.10

affr mean £7

DIAM 2.50 0.10
COLOR 0.00 0.10
REBND 0.70 0.10

P(C4) = 0.50

attr mean o

DIAM 9-50 0.10
COLOR 7.00 0.10

REBND 0.40 0.10

P(C6)=0_0

P(Cs) = 0.50

arrr

DIAM

COLOR

REBND

9.60
7-50
O-5O

affr m_ G

DIAM 0-50 0.10
COLOR 8.00 0.10
REBND 0.04 0.10

o

0.10
0.10
0.10

Figure 11. COBWEB hierarchy after the fifth instance of a ball.

20 COBW_/3: A PoI_rABLE IMPLEMENTATION

sixth instsnce:
_-een tennis ball

DIAMETER

COLOR

2.49

3.00

0.70

hierarchy:

REBOUND P(Co) = 1.00

affr mean G

DIAM 4-52 3.63

COLOR 4.75 2.94

REBND 0.51 O.24
i

P(C_) = 0.50

affr mean G

DIAM 2.50 0.10

COLOR 2.00 1.41
REBND 0.70 0.10

P(C I) = 0.33

affr f_.aPl o'

DIAM 2.50 0.10

COLOR 0.00 0.I0
REBND 0.70 0.10

P(C e) = 0.50

P(C 2) = 0.67

affr m_n ¢r

DIAM 2.51 0.10

COLOR 3.O0 0.10

REBND 0.71 0.10

affr mean ¢r

DIAM 2_52 0.10

COLOR 3.00 0.10

REBND 0.71 0.10

P(C 3) = 0.33

medn G

DIAM 9-55 0.10

COLOR 7.25 0.10
REBND 0A5 0.10

alfr

DIAM
COLOR

IU_ND

P(C 6) = 0.17

affr mean o'

DIAM 0.50 0.10

COLOR 8.00 0.10
REBND O.O4 0.10

P(C 4) = 0.50 P(C 5) = 0-50

_an O' affr ;'t_an

9.50 0.10 DIAM 9.60

7.00 0.I0 COLOR 7.50

OAO 0.10 RKBI_ 0.50

P(C 9) = 0.50

affr mean G

DIAM 2.49 0.10

COLOR 3.00 0.I0

RP..BI_ 0.70 0.10

Figure 12. COBWEB hierarchy after the sixth instance of s ball.

¢7

0.I0
0.I0

0.I0

COBWEB/3: A POZ_'ABLBIMPLEMENTATION 21

process additional instances, it would continue to adjust concept descriptions, form new concepts,

and alter the shape of the hierarchy to incorporate the new information.

2.6 Intellectual Debts

As we have mentioned, the COBWEB/3 algorithm described in this document is based on previous

work by Fisher (1987a, 1987b), who developed the original COBWEB, and Gennari (1989a, 1990),

who developed the CLASSIT system. Fisher's COBWEB formed concept hierarchies from instances

with nominal attribute values, using the original (nominal) form of category utility and the four

operators described above. Gennari's CLASSIT extended CoswEB by adapting the category utU-

ity equation to handle both numeric attributes and instances with mixed nominal and numeric

attributes, as described in Section 2.3, including the use of an acuity parameter. The current im-

plementation, COBWES/3, is more similar to CLXSSIT than to the original COSWEB, but we have

retained the latter name for the sake of Continuity. 3

However, COBWEB/3 does not incorporate all of the capabilities of its predecessors. For in-

stance, Fisher's system included a 'promotion' operator that moved nodes higher in the concept

hierarchy. CLASSIT elnployed a fo1111 of pruD._Ig that avoided sorting an instance to the bottom

of the hierarchy if it matched well enough against a nonterminal concept. Gennari's system also

included a mechanism for matching and incorporating instances with multiple components, as well

as a method for selectively attending to diagnostic attributes. Future implementations may draw

on these additional capabilities, but Cosw_.B/3 does not incorporate them.

3. COBWEB/2 was an earlier extension to COBWEB, described in Fisher (1987b).

COBWEB/3: A PORTABLE IMPLEMENTATION

3. Using the Implementation

COBWEB/3 iS an implementation of the COBWEB algorithm that we describe in the preceding

sections. COBWEB/3 iS not the simplest, most compact, most efficient implementation of COB-

WEB. More effort has been put into usability and documentation than efficiency. This is research

code that includes the LXI3YI_INT]_ system (Thompson, 1989; Thompson & Langley, in press), an

extension to COBWEB that is still under development and undocumented in this release. A more

elegant implementation of COBWEB iS possible if the constraints of LABYItlNTII are absent. Soft-

ware implementing a version of CLASSIT, a related system we mentioned above, iS av'ailab]e at

ics. ics .ucl. odu (directory pub/classwQb); this code is smaller and probably a bit more efficient.

Features in COSWEB/3 not shared by the CLASSIT code include:

1. A graphics interface that _Uows dynamic inspection of hierarchies and node contents, as well as

capability for users to build hierarchies themselves, with guidance from the system evaluation

functions. These features are supported in (FP.ANZ ALLEGRO COMMON LISP) and X windows

only;

2. A series of top-level switches to control how nodes are printed, specify how much output to

show, pass in pre-defined hierarchies, and request other run-time features;

3. Performance mechanisms for testing the system that allow prediction of nfissing attributes.

This is our first release to the "outside world _, so there may be problems, although this code (at

least most of it) has been used for over a year for research purposes. H you have problems or

comments, please feel free to send mail to labyrSnthQptolmy.arc.nua.gov, and we will try to

get back to you in a short time. In addition, please register with that e-mall address if you are

using the code, to keep us informed about who iS using the implementation.

8.1 Getting Started

COBWEB/3 was originally implemented using KYOTO COMMON LISP (KCL) and its descendant

AKCL from Austin. The current version is written in FItANZ ALLEGaO COMMON LISP, but very

little non-standard code is used. Apart from the windowing environment and graphical interface the

only significant implementation-dependent code lies within the print functions, which we discuss

below. In addition, compilation of this system requires the MIT loop macro; this should be av-_ilable

to most users, but is available with COBWEB/3 if not. The current implementation has been tested

on FRANZ ALLEGIIO COMMON LISP version 3.1, LUCID COMMON LIsP version 3.0, and AKCL

version 1.243. We plan to test it under HARLEQUIN LIsPWOaKS and SYMBOLICS COMMON LISP

in the near future.

3.1.1 GETTING THE CODE

COBWEB/3 is av_b|e through anonymous FTP from muJ.r, ar¢.nasa.gov (128.102.112.24),

as file pub/icarus/cobweb.T, ar.Z. Make sure you are in "binary" mode when transferring the file,

COBWEB/3: A POit'rABL_ IMPLEMENTATION 23

since it is in UNIX compressed archive format. If you do not have access to UNIX, let us know.

Oth_, execute the UNIX she]] command

uncompress -c cobeeb.tax.Z [tax Xf -

to get the source from the archive. If you have FRANZ ALLEGRO COMMON LISP with ALLEGRO

COMMON WINDOWS on either a Sun 3 or a Sun 4, you can use the graphical interface as documented

in Section 3.4. You must get either ¢ode/gr4.fasl .Z or code/gr3.fasl.Z for Sun 4's and 3's

respectively. Uncompress the appropriate file and rename it to gr.fasl in directory code. 4

3.1.2 INSTALLING COBWEB/3

If you are using a Common Lisp that is not either FRANZ ALLEGRO COMMON LISP, LUCID COM-

MON LISP, KYOTO COMMON LISP, you need to redefine the functions in _nplementation-dep. ¢1.

COBWEB/3 will function without defining these functions, but much flexibility for memory in-

spection will be lost. Please send mail to us if you successfully port these functions to a new

implementation.

In addition, because Common Lisp la_ks a default extension for lisp source files, you might need

to change the file type from the default ".cl". This can be done in UNXXby typing:

foreach _ile (*.el)

? my Sfile Sfile:r.lisp

? end

to change all the file types to "lisp".

3.1.3 COMPILING AND LOADING COBWEB/3

COBWEB/3 comes bundled with a system declaration file, sysd¢l.cl, and a defsystem utility,

defsys .cl. Although many Common Lisp implementations have their own defsystem utilities,

there is not yet a standard, so we use a very simple version here. This system declaration defines

the proper order to compile the constituent files. Executing

(compile-_ile "defsys")

(load "sysdcl")

(use-package : labyrinth)

(coapile-it)

;; also loads the de, system utility

;; or (in-package :labyrinth)

should compile and load the system without errors, though there will be several warnings. For any

later uses, executing

4. Note that this is an experiments/version of a tree grapher that FRANZ has graciously granted us permission to

distribute in binary form for this specific purpose. As it is not yet freely avs/lable, please do not distribute it

further without pea'on from FRANZ.

COBWEB/S: A PORTABLE IMPLEMENTATION

(load "sysdcl")

(use-packqe :labyr4,,th)

(Ioad-lt)

loads the system.

; ; loads the defsystea utility

8.2 Input to Coswr, B/3

COBWEB/3 receives input from an external data file. The system accepts as input instances de-

scribed in terms of attributes and values. For an eye these might be

color - blue hue - 8.0

shape - Llmond or eidth - 0.74

pupil - dilated pupil dilation - 0.80

condition - bloodshot redness _actor - 0.85

In general, the more attributes you use the more complete the description. We show attribute

labels like color and shape here for clarity only. Th e system expects no attribute labels, as we

explain below.

Table 1. The COBWEB/3 syntax for instances.

< input -- set > : := < in_anee > I < inpuf -- met > < in_anee >

< in_anee > : := (< label > < value - li_ >)

< value - liJt > : := < value > I < value - list > < value >

3.2.1 COBWEB/3 INPUT FORMAT

Each instance input to COBWEB/3 is in the form of a list. The syntax of a set of input instances

is shown in Table 1. The basic syntactic categories are:

s < label >, which is a label or Lisp atom.

. < value >, which is a nominal or numeric value.

Thus a single instance description would take the form

(< label > < value > [< value >...])

For a particular input set, you define the number of attributes and how to label the instances. Note

that no attribute labels appear in the instance description. By ordering the attribute values, you

designate the attribute each refers to implicitly.

_t_ees axe themselves lists, but each instance stands alone, The input file should be in the

form of a number of distinct instances, not one long list. Since the Lisp reader handles input, you

_BWT.B/3: A Po_L'r,_m_c I_X._t'A'rXON 25

may insert comments anywhere, preceded by a semicolon. The Lisp resder ignores everything on

the line following the semicolon.

3.2.2 COBWEB/3 INPUT EXAMPLES

The distribution is bundled with a sample data file, sample-cob, da1:. This file should be fairly seIf-

explanatory and allow testing of your local insta_ation. Use (run %ample-cob.dat _ :force-nominal

t), then look at the result_ug tree. We mustrate some other examples here.

An input file of eye descriptions described nominally with four attributes might look like this:

; ; example nominal eye descriptions

(eye-1 blue almond dilated bloodshot)

(eye-2 brown oval noraal normal)

(eye-3 blue triangular constricted noraal)

(eye-4 hazel oval noraal irritated)

Here, the hnpllcit attributes are color, shape, pupil-condition, and redness-factor. An

input file of eye descriptions described numenc_11y with four attributes might look like this:

;; example numeric eye descriptions

(eye-I 8.00 0.74 0.80 0.85)

(eye-2 3.50 0.60 0.50 0.10)

(eyo-3 8.00 0.69 0.20 0.10)

(eye-4 7.80 0.62 0.62 0.85)

For this example, the implicit attributes are hue, wJ.dth, pupil-dilation, and redness-fac_cor.

To specify missing attributes, simply use the value ? in place of the normal attribute value.

The value COBWEB/3 recog_s as missing is in the llsp variable *miss|ng-va]ue*, which ca_ be

changed if necessary.

26 Coswr_/3: A Po_'rABLE IMPL_NTATION

3.3 Top-Level Switches

Issuing a call to the top-level function (run) starts a COBWEB/3 run. This function reads in

instances one at a time from an external data file which you specify as a command-line argument.

The system processes them, cresting a concept hierarchy indexed by the _]obal variable *isaroot*. s

You can control many details of a COBWEB/3 run by setting optional switches when you call

(run). Here we describe the switch options and give some examples illustrating their effects.

To initiate a run, designate the input file, and specify switches, type

(run "infile" [:switchnue sett£n 83 [:swi_chnue setting] ...)

You can set any combination of switches, although some combinations are more sensible than

others. For example, you probably do not want to print out "complete" node information (the

:prlnt-function switch) when you are running the grapher. We note other dubious interactions

below, where applicable, in the explanation of individual switches.

H you want to view a summary of switch settings w1_ile COBWEB/3 is loaded, type (usage).

The function usage provides fairly extensive on-line help to the command switches from this

manual; from time to time, the on-line help might be slightly more current, let us know if there are

discrepancies.

Detailed information about individual switches is on the following pages. In Table 3.3.1 we give

an overview of the switches, grouped together by function. Scan the table to get a genera] idea of

how you can use the switches to define COBWEB/3'S behavior during a run. Section 3.3.2 gives a

detailed description of each switch, org&uJzed alphabetically. Refer to the detailed descriptions for

in-depth information about switches you are interested in using.

At the end of this section, we provide a summary description of each the switch functions. Use

the summary as a reference when running COBWEB/3, after you are familiar with the switches.

3.3.1 OVERVIEW: CLASSES OF SWITCHES

The optional switches control six separate aspects of processing. Table 3.3.1 lists the switches in

terms of their functional groupings.

input: You always specify a data file for COBWEB/3 to read in. Optionally, you can also specify

an initial concept hierarchy to use as a starting point for classifying incoming instances.

output: You can specify the level of detail and format of the system output.

5. All symbols described in this section are in the labyrinth ptckage (and presumably exported). When you issue

a use-package or in-package command, as described in Section 3.1.3 you make these symbols available. If for

some reason you are not in the labyrinth package, you may need to qualify some symbols defined in the package

with the prefix labyrinth::. Refer to your Lisp documentation on packages for more information.

COBWEB/3: A POaTABLE IMPLEMENTATION 27

Tab/e 2. Summary of COBWEB/3 switches.

Functional Group Switch Name

INPUT :att-names

:tree

OUTPUT '_outme

INSTANCE PROCESSING

PERFORMANCE

DEBUGGING

GRAPHER

:prediction-print

:print-each

:print-function

:printing

:too-ma_y-members

:acuity

:force-nominal

:merge

:split

:pred-atts

:prediction

:start-at

:test-set

:breaker

:consistency-checks

:print-scores

:build-tree

:graph-ea_

-.host

:keep-this-graph

.-ase-big-window

instance processing: You can specify options for processing incoming instances. These govern

how attributes are handled when ConwEn/3 reads in an instance description, and which of

the operators to consider applying during classification. In addition, if the input instances have

numeric attributes, one can optionally set the acuity.

performance: You can assess the effectiveness of the concept hierarchy by ruauiug COSWEB/3

in prediction mode with incoming instances.

debugging: You can request debugging aids.

grapher: You can turn on a graphics] _isplsy of the developing concept hierarchy and, optionally,

participate in classification decisions.

28 CoBwEB/3: A POErABLE IMPL_NTATXON

3.3.2 DETAILED SWITCH DESCItIPTIONS

We describe each switch in detail on the following pages. Each switch has a default setting, which

is listed first and marked with a[D]. You can change most default values by editing the

(dofparanoter edef&ult- uariab[e-neme* <valuo>)

definitions in the file globals, ci, or using setq from the lisp listener. For example, to change the

default for the :acuity switch, change the variable *default-acuity*. Most switches are re-set to

their defaults with each run. We list the other &vai]able settings below the default switch setting.

You can alter switch settings during a run by issuing a break (interrupt) and changing the

global variable associated with a switch. Do this through the lisp listener using setq, or use the

Parame1:ers selection on the glapher menu. For more information about the Parameters menu,

refer to Section 3.4 on using the graphical interfa_:e.

For each switch documented, there is a purpose section, describing its overall use and function,

and a description section describing the effect of each of the possible switch settings. If applicable,

examples, specisd notes, and bugs sections give additional information about the switch.

COBWEB/3:A POaTABLE IMPLEMENTATION 29

:acuity

SWITCH

:acuity

OPTIONS

1.0 [D]

<num>

SYNOPSIS

acuity defaults to 1.0

set acuity to <num>

SWITCH CLASS

INSTANCE PROCESSING

Purpose

Use the :acuity switch to set the acuity used by COBWEB/3 for processing continuously-valued

attributes. Acuity is a free parameter used in CLASSIT (see Gennari et al, 1989) as a mum

value for _r, the standard deviation seen in the equations of Section 2.3.

Description

If you specify an acuity value, COBWEB/3 uses that value in the current run.

By default, acuity is 1.0.

Special Notes

If the input instances contain no real-values attributes, setting the acuity has no effect.

SO COBWF_/3: A PORTABLE IMPLEMENTATION

:att-names

SWITCH

:att-names

OPTIONS

<list of names>

SYNOPSIS

generate standard attribute names

use these names

SWITCH CLASS

INPUT

Purpose

Because COBWEB/3 uses a compact format for its datasets, you do not specify attribute names

in the data files you provide to the system (see Section 3.2). Ordinarily, COBWEB/3 generates

attribute names for its internal use of the form

(ATT-1 ATT-2 A'Z"Z'-3ATT-4 .,.)

If you plan to inspect the trees COBWEB/3 builds with the :print-tree or :graph-tree functions,

however, you may want to specify more meaningful attribute names.

Description

If you specify a list of attribute names in the form

(COLORSHAPE SIZE ...)

then COBWEB/3 uses these names during the current run.

Examples

(run "saRrplo.dal:" :_orco-nom_s.l t :&tt-naaos '(COLOR SHAPE SIZE))

COBWEB/3:A PORTABLEIMPLEMENTATION 31

:breaker

SWITCH

:breaker

OPTIONS

t

SYNOPSIS

no break in maht-loop

break in main-loop

SWITCH CLASS

DEBUGGING

Purpose

Use the :breaker switch to request a break signal after each instance COBWEB/3 processes, so you

can check the execution stack, inspect or change variable values, or execute Lisp expressions. The

break signal is embedded in the (maln-loop) function, which is the main loop of the COBWEB/3

code. The (main-loop) function is in the top. cl fLle.

Description

Ifyou specify:breaker t,executionbreaksin main-loop aftereach instanceisprocessed.

By default,when :breaker isnil,executiondoes not break in main-loop.

82 COBWEB/3: A PORTABLE IMPLEMENTATION

:build-tree

SWITCH

:build-tree

OPTIONS

n_ [D]
t

SYNOPSIS

no interactive hierarchy building

build hierarchy interactively from instances

SWITCH CLASS

DEBUGGING

Purpose

You may want to provide background knowledge to COBWEB/3 in the form of a concept hierarchy.

One way to build such a hierarchy is with the :build-tree option.

Description

If you specify :build-tree t, you build the concept hierarchy by interacting with the tree grapher

as COBWEB/3 runs.

By default, when :build-tree is nil, COBWEB/3 builds the concept hierarchy on its own, without
advicefrom the user.

Special Notes

Save the hierarchy after building it with the Save Thle Tree option on the Grapher menu. For

more information about the grapher, refer to Section 3.4 of this guide.

Pass the hierarchy into COBWEB/3 with the :tree switch.

COBWEB/3:A PORTABLE IMPLBMZNTATION 33

:conslstency-checks

SWITCH

:consistency-checks

OPTIONS

nil[D]
t

SYNOPSIS

no consistencychecks

perfom consistencychecks

SWITCH CLASS

DEBUGGING

Purpose

Using the :conslstency-checks flag,you can requestCOBWEB/3 to perform variousconsistency

checks as itexecutes. These are reallyprogram debugging aids,not conceptual debugging aids;

theirmain purpose isto determine ifthe program isdoing anything wrong. They are usefulifa

bug appears, to track down itssource.When a bug ispresent,COBWEB/3 printsout a relatively

uselessmessage ifno consistencychecksare set.Turning on the consistencycheck code may help

you to flagthe bug. These consistencychecks can be quitetime-consuming, but ifno bugs are

present,they are silent.

Description

If you specify -consistency-checks t, COBWEB/3 will perform various checks during its run, and

report any found inconsistencies;otherwise,therewillbe no visibledifferenceexcept in execution

speed. Among these checksare:

1. checking if counts are consistent, such as whether the node-count of a node equals the sum of

the node-counts of its children;

2. checkingconsistencyof the tree;

3. checkingwhether pointersbetween parentsand childrenare consistent.

We do not intend thisllst to be exhaustive; COBWEB/3 alsocarries out other checks.

34 COBW]_/3: A PORTABLE IMPLEMENTATION

:force-nominal

SWITCH

.'force-nominal

OPTIONS

nil [D]

SYNOPSIS

allow primitive attributes to

be nominal or continuous

treats all primitive attributes as nominal

SWITCH CLASS

INSTANCE PROCESSING

P urpose

COBWEB/3 can process objects whose attributes are either nominal or numeric. With the :force-

nominal switch you cam force objects with mixed attribute types into having nominal values for

all attributes.

Description

If you specify :force-nominal t, COBWEB/3 treats all primitive attributes as nominal, even nu-

meric attributes. If a]] attributes are nominal anyway, this switch has no effect.

By default, when :force-nominal is nil, COBWEB/3 checks to see whether the primitive attributes

are nominal or numeric, and processes the instance accordingly.

Special Notes

COBWEB/3'S evaluation function can handle instance descriptions in which nominal and numeric

attributes are mixed, but this approach is stin being researched. If you have mixed attributes, an

alternative option is to set :force-nominal t or to seek a way to represent the nominal attributes

numerically.

CoOwl_/3: A PORTABLE IMPLI_MENTATION 35

:graph-each

SWITCH

:graph-each

OPTIONS

t

SYNOPSIS

no graphing

show graph after each instance

SWITCH CLASS

GKAPHER

Purpose

COBWEB/3 can display its concept hierarchy graphically, in addition to the printed output it

provides. Use the :graph-each switch to request graphical output.

Description

If you specify :graph-each t, COBWEB/3 displays the concept hierarchy as a graph. A new graph

displays after COBWEB/3 incorporates each new instance.

By default, when :graph-each is nU, COBWEB/3 does not display the concept hierarchy graphi-

cally. The system generates only printed output as it runs.

Special Notes

For more information about the grapher, refer to Section 3.4 of this guide.

36 COBWEB/3: A PORTABLE IMPLEMENTATION

:host

SWITCH

:host

OPTIONS

(machine running Lisp) [D]

< host >

SYNOPSIS

use X display running Lisp

draw graphics on given host

SWITCH CLASS

GEAPHEK

Purpose

COBWEB/3 uses an Xll-based graphics package. In X, a given process can display its output

on other displays (given permission, see "xhost _ for details). By default, if graphics are called

for, COBWEB/3 will draw them to the main display of the CPU on which Lisp resides. However,

specifying an alternative machine with the :host option allows alternative displays.

Description

To specify an alternative display for graphics, supply a string with the name of that machine.

Examples

(run "sample-cob.dat" :force-nominal t :graph-each t :host "thoreau")

will display the graphics on host "thoreau".

COBWEB/3: A PORTABLE IMPLEMENTATION 37

:keep-this-graph

SWITCH

:keep-this-graph

OPTIONS

nU [D]

t

SYNOPSIS

redraw developinghierarchyin one window

createnew window foreach new hierarchy

SWITCH CLASS

GRAPHER

Purpose

Ordinarilywhen the grapher is running, COBWEB/3 displaysthe concept hierarchyin a single

window, overwritingthe previoushierarchywith each new one as instancesare incorporated. If

you prefer,you can request separate windows for each new graph with the :keep-this-graph

switch.

Description

If you specify :keep-this-graph t, a new graph window displays every time COBWEB/3 updates

the graph of the concept hierarchy.

By default, when :keep-this-graph is nil, COBWEB/3 redraws the updated graph in a single

window, overwriting the previous graph.

Special Notes

You can change the value of :keep-this-graph in the middle of a run using the Parameters

window, which is explained in Section 3.4 of this guide. By turning :keep-this-graph on and off

you can selectively keep graphs of hierarchies you find interesting or want to study further.

COBW]F_/3- A PORTABLE IMPLEMBNTATION

:merge

SWITCH

:merge

OPTIONS

t [D]
SYNOPSIS

allow merge operator

disallow merge operator

SWITCH CLASS

INSTANCE PROCESSING

Purpose

COBWEB/3 uses the merge operator to help it recover from order effects in its input. If you don't

want the system to use the merge operator, you can turn merging off with the :merge switch.

Description

If you specify :merge nil, COBWEB/3 does not consider applying the merge operator as it sorts

an instance thorough the hierarchy.

By default, when :merge is t, COBWEB/3 considers merging the two best nodes s into a single

node and incorporating the instance into this newly-crested node as it sorts an instance through

the concept hierarchy.

6. "Best_ node meus that when COBWEB/3 incorporates the instance into this node, the resulting partition receives

the highest c_tegory utility score.

COBWEB/3:A PORTABLEIMPLEMENTATION _9

:outflle

SWITCH

:out fie

OPTIONS

nil [D]

t

< out file >

SYNOPSIS

output to *STANDARD-OUTPUT*

output to < in file >-out

output to < out file >

SWITCH CLASS

OUTPUT

Purpose

You can specify where you want COBWEB/Ys output text to go.

Description

If you specify :outflle t, COBWEB/3 sends output to the file "< in.file >-out", where < in file >

is the input fie name you specified on the command line after run.

If you specify an outfie name, COSWEB/3 sends output to the fie "< out file >'. Make sure you

put the outfie name in quotes.

By default, when :outflle is nil, the default output of COBWEB/3 messages and data is to

standard-output, a Lisp variable. Typically, this is the screen.

Examples

(r_ "foo.dat"...)

:_ output to *_'rAlmAD-0tTrPUT,

(run "foo.dat" :outfile t ...)

:_ output to "foo.dat-out"

(run "foo.dat" :outfile "outfile" ...)

=_ output to "outfile"

40 C_Bw_/3: A PORTASt_ IMPLZMENTA'rION

:pred-atts

SWITCH

:pred-atts

OPTIONS

nil [D]

<:list of positions_*

<list of names>

SYNOPSIS

predict with each attribute in turn

predict with positionally-spech_ed attributes only

predict with named attributes only

SWITCH CLASS

PERFORMANCE

Purpose

In any of the prediction modes, certain attributes are excised from the instance description, one at a

time, and the remaining partial instance description is used to predict what the missing value should

be. By default, every attribute in the instance description is excised, one at a time. Alternately,

you can specify a particular subset of the attributes to be excised and predicted, since not all

attributes might be equally interesting or predictable. Thus, one can specify certain attributes to

be predicted.

Description

You can specify which attributes to predict in one of two ways: positional]y or by name.

To specify positionally, list the positions of the attributes to predict, starting at 0.

To spechey by name, list the names of the attributes to predict.

Examples

(run "£oo.dal;"

(run ":_00. dal;"

:predictlon :test-tra:Lu :pred-atts '(0 I 3 6))

:predic'clon :_est-tr_ :a_t-names '(co;Lor shape size we£gh_)

:pred-atts '(color size))

Special Notes

Specifying attributes by name using the :pred-atts switch works only if you also indicate attributes

names using the :att-names switch.

C,OBW_B/3:A PoR'r,_SLBIMPL]_M'ZNTATION 41

:prediction

SWITCH
:prediction

OPTIONS
nil [D]
:test-train
:test-set-during
:test-set-after

SYNOPSIS

no prediction

use each traininginstanceas a testinstance

use testsetbetween each traininginstance

use testsetafteralltraining

SWITCH CLASS

PERFORMANCE

Purpose

You can test the system's ability to predict each attribute in the instance descriptions. Use the

:prediction switch to turn on one of three specified prediction modes.

Description

If you specify :prediction :test-train, COBWEB/3 uses each instance as a test instance before

incorporating it into the hierarchy, thus obviating the need for a separate test set. Thus for each

instance, multiple tests are performed. The system excises each of the attributes (see :pred-atts),

one at a time, and reports a score for that prediction.

If you specify either :test-set-during or :test-set-after, then a separate test set of instances is

used for testing the concept hierarchy (see :test-set). In the :test-set-during case, the test set

is used between every instance (after :start-at); this is time-consuming but allows generation of

learning curves. In the :test-set-after case, the test instances are used only after all learning has

taken place, giving only an idea of final predictive performance but taking far less time.

By default, when :prediction is nil, COBWEB/3 does not do prediction.

Special Notes

When the prediction mode is :test-train, prediction scores are reported as lists in the form

(<_ustanco-num> <att-naao> <score>),

For example, (5 ATT-3 1.0) means that, in predicting the value of the third attribute of the fifth

instance (after four instances have been classified), the prediction score is 1.0. If :outflle is t, the

prediction scores are written out to the file < out/ile >-rep.

V_'hen the prediction mode requires use of a test set, prediction scores are reported as lists in the

form

(<:L_stance-nmn> <test-_Llutance-nme> <art-name> <score>),

sincethereare multipletestinstancesin thiscase.

For nominal attributes,a "predictionscore"issimply 0 or 1, depending on whether COBWEB/3

predictedthe same valueas the one excisedfrom the object.See Fisher(1987a,1987b)forexamples

of predictionresultsusing thesescores.

42 COBWF._/3: A Porr,_BLE IMPLZMENTATION

For numeric attributes, a "prediction score" represents the absolute error between the predicted

and real value, a number between 0 and oo. See Gennari, Langley, and Fisher (1989) or Gennari

(1990) for examples of prediction results using these scores. Note that the combination of prediction
results for nominal and numeric attributes is thus m-defined in the current release.

The prediction code was developed for specific research purposes. The implementors welcome

suggestions on other approaches to evaluating COBWEB/3'S predictive ability.

COBWF.B/3: A PORTABLE IMPLEMENTATION 43

:prediction-print

SWITCH

:predlction-print

OPTIONS

[D]

t

SYNOPSIS

no trace info during prediction

print trace info during prediction

SWITCH CLASS

OUTPUT

Purpose

When testing the system's predictive performance, you can either have COBWEB/3 print out de-

scriptive information about each prediction it attempts, or simply print the outcome of each of the

prediction trials.

Description

If you specify :prediction-print t, COBWEB/3 prints out trace information as it does prediction. It

prints out information about each prediction and about each classification; this can be informative

but time-consuming.

By default, when :predictlon-prlnt is nil, the system does not print out trace information as it

does prediction; rather it prints only the outcome of each of the predictions trials.

Special Notes

If the :prediction switch is nil, setting :prediction-print to t has no effect.

44 CoBwn/3: A Poa_rAuL_I_LB_W_rrATION

:print-each

SWITCH
:print-each

OPTIONS

nil [D]

t

SYNOPSIS

no tree printout

print tree after each instance

SWITCH CLASS

OUTPUT

Purpose

You can print out the concept hierarchy in text form during a run. You may find this useful if you

are not using the graphics and want to view the hierarchy as it develops.

Description

If you specify :print-each t, CoBwEB/3 prints out the current concept hierarchy after each instance
has been classified.

By default, the system does not print out the hierarchy at all during a run.

Special Notes

This switch always uses the rec-members print function. To see a different level of detail, you

can print out *isaroot* with a different recursive print function. Refer to the :prlnt-function

documentation for more information.

COBWEB/3: A PORTABLE IMPLgMENTAT1ON 45

:print-functlon

SWITCH

:print-function

OPTIONS

:members-compress [D]
:members

:generic

:complete

:rec-members-compress

_ec-members

:rec-generic

:rec-complete

SYNOPSIS

node labels from input, compresses

node labels from input, never compresses

generic node labeling, N1, N2...

detailed node information

like members-compress, but recursive

like members, but recursive

like generic, but recursive

like complete, but recursive

SWITCH

CLASS

OUTPUT

Purpose

COBWES/3 makes several print functions available. Set the print function to control how much

information to print when you type a node name. There are two daises of print functions: regu/ar

and r_--ur_/_e. Regular print functions print only information about a particular node. Recursive

print functions print infomation about a node, its children, and so on recursively, thereby printing

the entire subtree rooted at a given node. Recursive printers are those with a rec- prefix.

Descr_t_n

If you specify :print-function :members-compress, COBWEB/3 draws nodes using the labels

given by the input instance. When the system creates a generalized node from two or more chil-

dren, it labels this node with a name that is the concatenation of the labels of the child no'des.

When the number of elements in the concatenated label reaches the size designated by the variable

too-many-members (or the :too-many-members switch), it displays the number of elements

followed by the word instances. For example, in lieu of (balll ball2 balls ball4 ballS) it shows

(5 instances) if *too-many-members* is set to 4. We refer to this as compressed form.

The :members print-function is just like the :members-compress print-function, but never com-

presses.

If you specify :print-function :generic, COBW_.B/3 labels the nodes with a generic numbering

system: N1 for node 1, N2 for node 2, and so forth. Leaf nodes retain the labels given in the input.

If you specify :prlnt-functlon :complete, COBWEB/3 prints detailed node infomation, including

attributes and probabilities on each value. Note that the values are sorted.

The :rec-members-compress print-function is just like :members-compress, but recursive.

The :rec-members print-function is just like :members, but recursive.

48 Conwma/3: A PO]tT,_SLZIm'LZMENT.'nON

The :rec-generic print-function is just like :generic, but recursive.

The :rec-complete print-function is just like :complete, but recursive.

Special Notes

You cam set the print function in two c]J_erent ways. You can change from the default by setting one

of the above keywords when you invoke a run. Alternatively, if you are using an implementation

that so allows, you can simply type in a one-word command for each of these switches to a lisp

listener (from a break loop or after a run) to change the cm-rent default. These macros are named

from the keywords given above, without the beginning colon. Thus typing (members) changes

the current default print function to :members.

In some cases, the system ignores the current default print function. For instance, if the :print-

each flag is on, the rec-members function is called by default. Some print functions do not work

well with the PIUtNZ tree grapher, which has severe problems with recursive print functions, and

works best with :members-compress, :members, or :generic print functions. The grapher does

not work wet] with the recursive functions nor the :complete function. However, the function

(graph-tree) will use the current default printer if it is a "legal" one for graph use; otherwise, it

uses the members-compress print function.

The implementors have had great di/iiculties in understanding how to make all Lisp implementations

do useful indentation in all cases with nodes. Suggestions from talented hackers are always welcome.

The variable*isaroot* in the examples below is the name of the root node of the hierarchy.

Examples

These examples show how each of the nonrecursive printers would print the same hierarchy, in

this case the one produced by running COBWEB/3 on the first eight instances of sample-cob.da_

(the soybean disease data that is supplied with the distribution).

; ;usumtmg :nembers-compr,ss Ss the carren¢ default.
eisazoot* =_

D4 D3 D2 D1 I)4 D3 D2 D1

(nenbers-tight-pr:/_ter *isaroo1:*) ::_

(8 _stancos) ; ; Z_ *TOO-I_lrY-lqFJ4BEI_* is loss t_m 8

(generlc-pr_uter *isa_oo_*) =_
|2

(m_bers-pr_uter eisaroo_*) =_

I{D4 D3 D2 D1 D4 D3 D2 D1)

COBWEB/3: A POitTABLE IMPLEMENTATION 47

(coipleSe-pr£nter *is_oot*) =_

iode{(D4 D3 D2 D1])4 D3 D2 D1)

Attribute{ATT-1 count 8

0 O, 25

2 0.25

4 0.25

5 0. 125

e o.126)
AttrSbute{ITT-2 count 8

1 0.6

0 0.6}

AttrSbute{ATT-3 count 8

2 0.625

1 O. 125

0 0.2_}

A1;tribut e {ATT-4 count 8

1 , 0. 625

0 0.25

2 O. 125}

Attribute{ATT-5 count 8

0 O. 625

1 O. 375)

£ttribut e{JtTl"-6 count 8

1 O. 376

3 0.375

2 0. 125

o o.126}
Attribut e{ATT-7 co_t 8

1 0.626

3 0. 126

2 0. 125

0 O. 125)

A_ribut e{A_'r-8 count 8

1 0.75

2 O. 25}

£ttribute{£TT-9 count 8

0 0.5

1 O.S)

48 COBWEB/3: A PORTABLE IMPLEMENTATION

:print-scores

SWITCH

:print-scores

OPTIONS

0 [D]

1

SYNOPSIS

no score printing

information about four classification operators

SWITCH CLASS

DEBUGGING

Purpose

COBWEB/3 can print out some of the scores it uses in its interna_ evaluation of which operators to

apply. This is useful for seeing how the algorithm is working in a given domain.

Description

There are two different settings for the :print-scores parameter. With its default value of O, no

information about the scores of possible operator applications is printed. With a value of 1, the

system prints each score of whether to apply the new-disjunct, incorporate, merge, or split operator

to a partition.

_nWeB/S: A PORTAnLZ I_LZ_N'rA_oN 49

:printing

SWITCH

:printing

OPTIONS

t [D]

nil

SYNOPSIS

output to designated :outKle

no output

SWITCH CLASS

OUTPUT

Purpose

You can suppress the printed output generated by COBWEB/3. Because printing output takes up

a lot of time during a run, we recommend turning output off during full-scale test runs to improve

speed.

Description

If you specify :printing nil, COBWEB/3 generates NO text output during a run.

By default, when :printing is t, COBWEB/3 sends output to the :output location. Output in

general (depending on other switch settings) Consists of lines indicating what instance is being

processed (indicated by its label), and whether the system is in learning, prediction, or recognition

mode. For each classification, COBWES/3 reports what operator is applied at each level. The

system also reports the run time in minutes, to facilitate monitoring of experiments.

:split

SWITCH I OPTIONS
:split t [D]

nil

SYNOPSIS

allow split operator

disallow split operator

SWITCH CLASS

INSTANCE PROCESSING

Purpose

COBWEB/3 uses the split operator to help it recover from order effects in its input. If you do not

want the system to use the split operator, you can turn splitting off with the :split switch.

Description

If you specify :split nil, COBWEB/3 does not consider applying the split operator as it sorts an

instance through the hierarchy.

By defsult, when :split is t, the system considers splitting the best node _"(moving the best node's

children up s level) and incorporating the instance into the best of the children.

7. "Best" node means that if COBWEB/3 incorporates the instance into this node, the resulting partition receives

the highest Category Utility score.

CO"WT,B/3: A Poz_r_tz IMPt.EMz_rr*TION 51

SWITCH

:start-at

OPTIONS

2 [D l

<n>

SYNOPSIS

start prediction at 2nd instance

start prediction at nth instance SWITCH CLASS
PERFORMANCE

:start-at

P urpose

Use the :start-at switch to tell COBWEB/3 at what input instance to begin prediction.

Description

You can specify an integer corresponding to the instance at which prediction should start.

By default, prediction starts at the second instance (when :prediction is :test-train or test-set-

during).

Special Notes

If :prediction is nU, setting the :start-at value has no effect.

52 Coswss/8: A Pomr_Lm IMPLEMENTATION

:test-set

SWITCH

:test-set

OPTIONS

< i./ile >-test [D]
< file >

SYNOPSIS

generate testset file name from < in file >

use < .file > for test data

SWITCH CLASS

PERFORMANCE

Purpose

Use this switch to indicate the file cont_ini-g the test set, when :prediction is :test-set-during

or :test-set-after.

Description 7

If you specify a test file name, COBWEB/3 resds the test set from the file "< file >'. Make sure

you put the test file name in quotes.

By default, COBWEB/3 reads the test set from the file "< in file >-test, where < in file > is the

input file name for the training instances.

Examples

(run "foo.dat" :prediction :teot-oot-a:[ter)

::_ look for test set _ "foo.dat-toot"

(run "foo.dat" :prodiction :tost-sot-a_tor :toot-sot "big-toot")

=_ look for toot sot in "big-toot"

Special Notes

If :prediction is nil or :prediction, setting :test-set has no effect.

C_0BWZB/3: A PORTABLE IMPLEMENTATION 53

:too-many-members

SWITCH

:too-many-members

OPTIONS

10 [D]

<:n:>

SYNOPSIS

compress with 10 objects

compress with n objects

SWITCH CLASS

OUTPUT

Purpose

Use the :too-many-members switch to tell COBWEB/3 at what point to begin printing com-

pressed node labels. When a node label describes more than the specified number of objects, a

compressed label prints instead of using the concatenation of all the instance names. This switch

works in conjunction with the :prlnt-functlon switch.

Description

You can specify an integer corresponding to the level at which compression mode starts.

By default, compression starts at ten instances.

Special Notes

This switch operates when :print-functlon is :members-compress or :rec-members-compress.

Wehn other print functions are active, setting :too-many-members has no effect.

54 Conw_s/3: A Po_rAsu_ IMPLEME_rrATION

:tree

SWITCH

:tree

OPTIONS

nil [D]

< Iispezpr >

SYNOPSIS

no input tree

evaluated expr is root node of input tree

SWITCH CLASS

INPUT

Purpose

You can give COBWEB/3 background knowledge in the form of a concept hierarchy. Use the :tree

switch to pass the predefmed tree to COBWEB/3 at the start of a run.

Description

If you specify a < lispezpr >, the system evaluates the expression, which should evaluate to the

root node of the concept hierarchy you want to pass in. By specifying :tree *saved-tree*, you

pass in the most recent tree you saved with the Save This Tree option on the grapher menu. You

can copy trees with the COBWEB/3 function (copy-isa-tree). Since the system alters the concept

hierarchy destructively, use (copy-isa-tree) to pass in the same tree for more than one run.

By default, when :tree is nil, COBWEB/3 begins execution with a null hierarchy.

Examples

(run "foo.dat" :tree *saved-tree* ...)

;; *saved-_roo* is _tored dur:Lug_n

(run "foo.d&t" :trot (copy-isa-tree *saved-tree*))

;; *saved-tree* stays _tact, • copy is a].tor_lduringrun

Special Notes

You can build trees interactively with the :build-tree option. Refer to Section 3.4 of this manual

for more information about the grapher.

Refer to the definition of node in s_ruct, el to fred out about the structure of nodes and how they

link to form trees.

C4)BW'EB/8: A PORTABLE IMPLEMENTATION 55

:ule-big-window

SWITCH

:use-big-window

OPTIONS

nil[D]

t

SYNOPSIS

no background window

background window for graphs

SWITCH CLASS

GKAPHER

Purpose

Use the :use-big-window switch to display a large background window behind the window dis-

playing the concept hierarchy.

Description

If you specify :use-big-window t, a large background window displays behind the window display-

ing the concept hierarchy. This window is useful if you execute window dumps in X. The concept

hierarchy and associated windows are children of the background window, so you can dump all

these windows at once to the printer.

By default, when :use-big-wlndow is nil, no background window displays.

Special Notes

When the switch :graph-each is nil, setting :use-big-window to t has no effect.

56 COnWF,S/3: A PmcrazLZ Im'Lm_.s'rx_oN

3.3.3 SUMMARY SWITCH DESCRIPTIONS

This section summarizes the options for each switch. We recommend using these pages as a quick

reference for the switches after you are familiar with them.

INPUT

Optional parameters related to INPUT:

SWITCH OPTIONS SYNOPSIS

:att-names nil [D] generate standard attribute names

(name-I name-2) use these names

:tree nil [D] no input tree

< lispezpr > evaluated expr is root node of input tree

OUTPUT

Optional parameters related to OUTPUT:

SWITCH OPTIONS SYNOPSIS

:outflle nil [D] output to *STANDARD-OUTPUT*

t output to < in file ;>-out

< out file > output to < out file >

:prediction-print nil [D] no trace info during prediction

t print trace info during prediction

:print-each nil [D] no tree printout

t print tree after each instance

:print-function :members-compress [D]

:members

:generic

:complete

:rec-members-compress

:rec-members

:rec-generic

:rec-complete

node labels from input, compresses

node labels from input, never compresses

generic node labeling, N1, N2...

detailed node information

like members-compress, but recuraive

like members, but recursive

like generic, but recursive

like complete, but recursive

:printing t [D] output to designated :outfile

nil no output

:too-many-members 10 [D] compress with 10 objects

< n > compress with n objects

r

COBWF, B/3: A PORTABI_ IMPLEMENTATION 57

INSTANCE PROCESSING

Optional parameters related to INSTANCE PROCESSING:

SWITCH

:acuity

.'force-nominal

:merge

:split

OPTIONS

1.0 [D]

(hUm)

t

t [D]
nil

t[Dl
nil

'SYNOPSIS

use specified acuity

set acuity to <aura>

nominal and/or continuous attributes

treats all attributes as nominal

allow merge operator

disallow merge operator

allow split operator

disallow split operator

PERFORMANCE

Optional parameters related to PERFORMANCE:

SWITCH OPTIONS SYNOPSIS

:pred-atts nil [D] predict with each attribute in turn

(0 1 3 ...) predict with poaitionally-specitied attributes only

(color shape) predict with named attributes only

:prediction nil [D] no prediction

t excise aud predict instance attributes

:start-at 2 [D] start prediction at 2nd instance

< n > start prediction at nth instance

:test-set < infile >-test [D] generate testset file name from < in/lie >

< .file > use < file > for test data

COBWF_/3:A POIrrABL_IMeLZMxI_rA_oN

DEBUGGING

Optional parameters related to DEBUGGING:

SWITCH OPTIONS SYNOPSIS

ibreaker nil [D] no break in main-loop

t break in main-loop

:consistency-checks nil [D] no consistency checks

t perform consistency checks

:print-scores 0 [D] no score printing

1 information about four classification operators

GRAPHER

Optional parameters related to GRA.PHER:

SWITCH . OPTIONS SYNOPSIS

:build-tree nil [D] no interactive hierarchy building

t build hierarchy interactively from instances

:graph-each nil [D] no graphing

t show graph after each instance

:host (machine running Lisp) [D] use X display running Lisp

< ho_ > draw graphics on given host

:keep-this-graph nil [D] redraw developing hierarchy in one window

t create new window for each new hierarchy

:use-big-w:miiow nil [D] no background window

t background window for graphs

COBWF_/3: A PORTABL_ _PL_N'rA'rlON 59

3.3.4 USEFUL TOP-LEVEL FUNCTIONS

There are several COBWEB/3 functions which do useful work when you ca]] them from the top

level. You can call these functions from the Lisp Iktener between runs, or during a run after a
break executes.

Function

graph-tree

Usage

graph-tree [:node NODE] [:title TITLE]

Description

graph the current tree, or a sub-tree

[Note: This function is applicable only when using the FItANZ tree-graphing package.]

It is often useful to graph the current tree from s break loop after a run is completed. This

function takes the current tree rooted at *isaroot* and shows it graphically, using generic-printer

if that is the current default node printer, otherwise using members-compress-printer. The user

can specify a NODE as the root of the grapher tree. Any parameter TITLE passed in will be used

as the window-title for the resulting graph.

The resulting graph will have the following mouse sensitivities:

LEFT produces a full display of that node's internals, in a separate window.

MIDDLE sets the global variable g* to that node.

RIGHT gives a partial display of that node's internals.

The function graph-tree returns the graph (an internal data structure) and window associated

with the display as multiple values.

60 CoBwu/S: A POTABLE I_LZ_B_rA_ON

Function

print-tree

Usage

print-tree [:primitive PRIMITIVE] [:composite COMPOSITE]

Description

graph the current tree, or a sub-tree

This function prints out the current tree to the terminal by calling rec-members-printer on

the current tree.

Function

initialize-window-system

Usage

iaitia_e-window-system [:host HOST]

Description

Initialize the window system on host HOST.

This function is largely a front-end to the FRANZ function cw:initialize-common-windows.

However, it also sets certain global v-_risbles for the proper functioning of the grapher.

You can call this function directly to request s display HOST other than the default. Specify the

name of the host with the :host switch. COBWEB/3 calls this function sutomstically, if necessary,

when the user specifies the :graph-each or :build-tree switches, or if the user calls graph-tree.

Conw_/3: A PORTABLE]MPLZMENTATION 61

Function

wrlte-tree-to-file

Usage

(write-tree-to-file FILE)

Description

write out the concept hierarchy to a file in machine-readable form

This function prints out a concept hierarchy in machlne-readable Lisp forms, so that another

Lisp process can read in the hierarchy. It overwrites any existing tree in the file designated. As

currently implemented, write-tree-to-file is quite slow.

Function

read-tree-from-file

Usage

(read-_ree-from-file FILE)

Description

returns a pointer to the tree contained in FILE
I I I I IF

A complement to the function write-tree-to-file described above, read-tree-from-file simply

returns the tree contained in FILE.

_2 COBWEB/3" A PORTABLE IMPLEMENTATION

3.4 Using the Graphical Interface

You can view COBWEB/3's developing concept hierarchy graphically s by setting the :graph-each

switch at run time. When the grapher is running, the system displays a hierarchy a_ter each instance

processes. This enables you to view the structure of the hierarchy and examine individual concept

nodes.

Set the :graph-each switch just as you would any other run time switch. For example, to run

the system on the input file sample-cob.dat with the grapher on, issue the command

(run "sample-cob.dat" :graph-each _:)

As the run begins, COBWEB/3 graphs the first input instance and displays a menu.

3.4.1 THE GRAPHER MENU

Using the onscreenmenu, you can interactwith the system asitprocessessuccessiveinput instances.

The menu has these selections:

Graph Next Object

Save This Tree

Flush Guts

Parameters

Exit

Two selections, Graph Next Object and Exit directly control the execution of COBWEB/3. The

other selections are for saving trees, and for window and parameter maintenance.

Graph Nezt Object

With the Graph Next Object menu selectionyou control COBWEB/3'S processingof instances

in the input file.The system processesthe firstinput instanceautomatically.To processthe next

instanceand redisplaythe hierarchy,selectGraph Next Object on the grapher menu.

After you selectthisoption,"no-op...graphing" displayson the grapher menu. After the next

object processes,which may take severalseconds,the currentgrapher frame dears and the new

hierarchydisplays.To continue,selectGraph Next Object again.

Parameters

Using the Parameters selectionyou can displaythe Parameters menu, with which you can

change the switchsettingsinteractivelywhile COBWEB/3 isrunning. Once you selectParameters,

be patient!The currentimplementation ofthe Parameters window iskludgy and the window may

take 30 seconds or more to display.

8. If you use Allegro Common Windows, you can use the grapher. Otherwise only nongraphica] output is available.

, COBWZB/3:A PO_I"XBLEIMPLEMENTATION 63

When the window displays, use the LEFT mouse to select the value you want to change. When

possible values are T/NIL, each mouse click toggles between these vMues. When other v'4lues are

possible, click the mouse to step through the possibilities.

Use the MIDDLE mouse to restore a default value. Selecting a value with the middle mouse

brings up a small menu. Select restore defa_l/c from this menu to restore the default value.

The default values used are the ones defined in the file globals, cl and marked with the comment

";;default settings for switches". (You can change defaults by editing the defparameter settings

in the globals .¢1 file.)

When you finish selecting parameters, flush the window. If you select Parameters when a Pa-

rameters window already exists, you will get a Common Windows error from which it is dit_cult
to recover.

Note that changing parameters between runs has no lasting effect. Inste_i, set whatever switches

you want to at the beginning of a run, and only use the Parameters window if you want to change

these values after the run begins.

Sane This Tree

To save the data structure for the concept hierarchy that is currently onscreen, select Save This

Tree on the grapher menu. COBWEB/3 stores the root of the hierarchy in *saved-tree*. You can

pass this tree into later runs of the system using the :tree switch. Each time you select Save This

Tree, Coswv.s/3 overwrites *saved-tree* with the current root.

Flush Guts

As we describe in detail in the next section, you can click on nodes in the hierarchy to open a

window with information about the node. These windows stay onscreen until you flush them. To

flush all the windows containing node information after you have done a node expansion, select

Flush Guts on the grapher menu. You can also flush node windows one at a time, as you would

any window, by selecting flush on the window's right button menu.

Ezit

To stop processing input and exit the run, select Exit on the grapher menu.

3.4.2 GRAPHICAL DISPLAY

The concept hierarchy displays horizontally on your screen. You can control the display format of

the nodes and you can request detailed node information.

Node Display

Nodes in the hierarchy are labeled according to the print function in force when COBWEB/3

generates the graph. By default, the print function is members-tight. With this print function,

the system draws nodes using the labels given by theinput instance. When COBWES/3 creates a

generalized node from two or more children, it labels this node with a name that is the concatenation

64 COBWEB/3: A PORTABLE IMPLEMENTATION

of the labels of the child nodes. For more information on this and other print functions, see the

description of the :prlnt-function switch in Section 3.3 of the manual.

To select a different print function, specify the one you want with the :prlnt-function switch.

You can change the print function during a run using the Parameters menu. This changes only

future graphs, not the current one.

Using the Mouse on Node8

The graphical display shows the structure of the concept hierarchy, but no information about

individual nodes. To see information about the frequencies associated with the attribute values at

a node, click on the node with either the left or right mouse button.

If you click with the LEFT mouse button, COBWES/3 provides complete node information. For

each attribute represented in the node, you see a list of all the values that the attribute has taken

on and the associated conditional probability for that value.

If you click with the RIGHT mouse button, the system shows abbreviated node information.

For each attribute represented in the node, you see only the value with the highest associated

conditional probability. If the values are numeric, the right mouse button has the same effect as

the left button.

After you expand a node, the window containing node information stays ouscreen until you flush

it. You can flush nodes with the Flush Guts option on the static menu. For more information,

review the description of the Flush Guts menu option in this section.

The MIDDLE mouse button can be used as a quick way to get access to a node in the tree from

the lisp listener. Clicking this button on a node in a displayed tree sets the global variable g* to

that node in the concept hierarchy.

3.4.3 MULTIPLE GRAPHS

Ordinarily COBWEB/3 redraws each new hierarchy in the same window, overwriting the previous

hierarchy. Alternatively, you can plot successive hierarchies in different windows so that each graph

remains onscreen until you Jiush it.

You can keep successive graphs by setting the :keep-thls-graph switch to t. Refer to the

documentation for the :keep-this-graph switch for detailed information. You can also change the

value during a run using the Parameters menu.

3.4.4 THE BUILD-TREE OPTION

Instead of allowing COBWV.B/3 to build a hierarchy using category utility to evaluate partitions,

you can build the hierarchy yourself using the graphical interface as a tool To run the tree builder,

set the :build-tree switch to t at run-time. When the :build-tree switch is set, the system displays

each object from the input file next to the current hierarchy. Using the mouse, you can indicate

how you want to incorporate the object. At any time, you can choose to have COBWEB/3 use

category utility instead of directing the incorporation yourself.

COBWZB/3:A PORTABLEIMPLEMENTATION 65

I_ting an Object

The system classifies from the root of the hierarchy downward, and you direct the classification.

Here is what COBWEB/3 does:

1. The object under current consideration displays in a separate object window.

2. The current level in the hierarchy is highlighted in the hierarchy window. The next incorporation

will take place just below tlds level.

3. A separate static menu, the build-tree menu, displays beside the grapher menu. The build-tree
menu has seven selections:

New Disjunct

Select Best

Merge

spli
CU-best

CU-best-whole-objec_

Here is an overview of what you should do:

1. Select an option on the build-tree menu with azy mouse button.

2. Click on one or more nodes on the graph using the middle button.

Depending on your system's 1o_l, you might need to pause for a brief period between these two
selections.

By selecting an option on the build-tree menu and then clicking on appropriate nodes in the

graph, you incorporate the current object into the current level of the hierarchy. Here are the ways

to incorporate, corresponding to the build-tree menu selections:

NEW DISJUNCT. Make the instance a new disjtmct of the currently highlighted node in the

hierarchy.

Nodes to select: none

SELECT BEST. Incorporate the instance into the node that you indicate.

Nodes to select:

1. BEST: middle mouse on any child of the highlighted node.

66 ConwgB/8:A Po_rrAn,._.IMPLZ_rrA_oN

MERGE.Combinetwo nodesand incorporate the instance into the new merged node.

Nodes to select:

1. MERGEI: middle mouse on any child of the highlighted node.

2. MERGE2: middle mouse on another child of the highlighted node, sibling of MERGE1.

SPLIT. Replace a node with its children. This selection does not work exactly like the normal

SPLIT operator; it simply splits a child of the currently highlighted node and allows the user

to select what to do with the revised partition. 9

Nodes to select:

1. SPLIT: middle mouse on child of highlighted node. The node you indicate must have

children to be an appropriate selection.

CU-BEST. Incorporate the object into the node at the next level, as selected by category utility.

Nodes to select: none

CU-BEST-WHOLE°OBJECT. Incorporate the object into the remaining levels of the hierarchy, using

category utility to guide the incorporation.

Nodes to select: none

Using the Hierarchy

Once you build the hierarchy, you can keep it for reuse in another CoswEB/3 run with the

Save This Trn option on the grapher menu. For more information about this option, review
Section 3.4.1.

9. As we interpret it, the origins] COBWEB Split operator simultaneously puts the object into the best of the split
node's children.

COBWEB/3: A PORTABLE IMPLZMENTATION 67

References

Anderberg, M. (1973). C"/_ster anaJy$is/or applieat/o_. New York: Academic Press.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., _ Freeman, D. (1988). AUTOCLASS: A

Bayesian classification system. Proceeding8 of the Fifth International Conference on Machine

Learning (pp. 54-64). Ann Arbor, MI: Morgan Kaufinann.

Feigenbaum, E. A. (1983). The simulation of verbal learning behavior. In E. A. Feigenbaum & J.

Feldman (Eds.), Computers and thought. New York: McGrsw-Hi]l.

Fisher, D. H. (1987a). Knowledge acquisition via incremental conceptual clustering. Machine

Learning, 2, 139-172.

Fisher, D. (198713). Knowledge acquisition via incremental conceptual clustering. Doctoral disser-

tation, Department of Information & Computer Science, University of California, Irvine.

Fisher, D. H., & La_agley, P. (1986). Methods of conceptual clustering and their relation to numerical

taxonomy. In W. Gale (Ed.), Artificial intelligence and statistics. Reading MA: Addison

Wesley.

Fisher, D. H., & Langley, P. (in press). The structure and formation of natural categories. In

G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and

theory (Vol. 26). Cambridge, MA: Academic Press.

Gennari, J. H. (1989a). Focused concept formation. Proceedings of the 5izth International Work-

shop on Machine Learning (pp. 379-382). Ithaca, NY: Morgan Kaufmann.

Gennari, J. H. (1989b). A _rvey of clustering methods (Techxfical Report 89-38). Irvine: University

of California, Department of Information & Computer Science.

Gemmri, J. H. (1990). Concept formation: An empirical study. Doctoral dissertation, Department

of Information & Computer Science, University of California, Irvine.

Gennari, J. H., Langley, P., & Fisher, D. H. (1989). Models of incremental concept formation.

Artificial Intelligence, 40, ii-6i.

Gluek, M., & Cortex, J. (1985). Information, uncertainty and the utility of categories. Proceedings

of the Seventh Annual Conference of the Cofnitine Science Society (pp. 283-287). Irvine, CA:

Lawrence Erlba,m.

Iba, W., & Gennari, J. H. (in press). Learning movement concepts. In D. H. Fisher & M. Pazzani

(Eds.) Computational approaches to concept formation. San Marco, CA: Morgan Ka,fmann.

Kolodner, J. L. (1983). Reconstructive memory: A computer model. Cognitive $cierme, 7, 281-328.

Langley, P., Thompson, K., Iba, W. F., Gennari, J., & Allen, J. A. (1989). An integrated cognitive

architecture for autonomous agents (Technical Report 89-28). lxvine: University of California,

Department of Information & Computer Science.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEU. Machine Learn-

ing, _, 103-138.

Quixtlan, J. R. (1986). Induction of decision trees. Machine Learning, 1,81-106.

68 COBWEB/3: A PORTABLE IMPLEMENTATION

Smith, E., & Medin, D. (1981). Categor/es and concepts. Cambridge, MA: Harvard University

Press.

Michalski, R. S., & Stepp, R. (1983). Learning from observation: Conceptual clustering. In R. S.

Miehalsld, J. G. Csrbondl, & T. M. Mitchell (Eds.), Machine learning: An artificial intelli_enne

approach. San Mateo, CA: Morgan Kaufmmm.

Thompson, K., & Langley, P. (1989). Incremental concept formation with composite objects.

Proceedings o/ the Sizth International Workshop on Machine Learning (pp. 371-374). Ithaca,

NY: Morgan Kanfmann.

Thompson, K., & Langley, P. (in press). Concept formation in structured domains. In D. H.

Fisher & M. Pazzani (Eds.) Computational approaches to concept format/on. San Mateo, CA:

Morgan Kaufmann.

Yoo, J., Yang, H., & Fisher, D. H. (in press). Concept formation over explanations, plans, and of

problem solving experience. In D. H. Fisher & M. Pazzani (Eds.) Computational approaches

to concept formation. San Mateo, CA: Morgan Kaufanmm.

Index

:acuity,29
:att-names,30, 40

:breaker, 31

:build-tree, 32, 54, 60, 64

:complete, 45, 46

:consistency-checks, 33

copy-isa-tree, 54

cw'_i_itialize- common-win dows, 60

defan]t-acuity, 28

._orce-nominal, 34

g*, 59, 64

:generic, 45, 46

generic-printer, 59

:graph-each, 35, 55, 60, 62

:graph-tree, 30

_aph-tree, 46, 59, 60

:host, 36

in-package, 26

initialize-window-system, 60

isaroot, 26, 44, 46, 59

:keep-this-graph, 64

main-loop, 31

:members, 45, 46

members, 46

:members-compress, 45, 46, 53

members-compress, 46

members-compress-printer, 59

members-tight, 63

:merge, 38

missing-value, 25

node-count, 33

:outfile, 39, 41

:output, 49

Parameters, 37

:pred-atts, 40, 41

:prediction, 41, 43, 51, 52

:prediction-print, 43

:print-ea_, 44, 46

:print-function, 26, 44, 45, 53, 64

:print-scores, 48

:print-tree, 30

print-tree, 60

:printing, 49

read-tree-from-file, 61

:rec-complete, 46

:rec-generic, 46

:rec-members, 45

rec-members, 44, 46

:rec-members-compress, 45, 53

rec-members-printer, 60

run, 26

saved-tree, 63

:split, 50

standard-output, 39

:start-at, 41, 51

:test-set, 41, 52

:test-set-after, 41, 52

:test-set-during, 41, 52

test-set-during, 51

:test-train, 41, 51

:too-many-members, 45, 53

too-many-members, 45

:tree, 32, 54, 63

(usage), 26

:use-big-window, 55

use-package, 26

write-tree-to-file, 61

69

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

P_nt_" _nC_r" r_ bur'Jen rot th s _o ect on of nformat On "s -_st matPd tO average hour oer respor'se: nC ud ng tee t me for reviewing nstruct_ons searching e_istmg data source"_

_athetmg :Jnci mafnta n ng the data needed, and comD_etmg and rewe,',png the csIlectlon of mformat_on Send comments rec_ardmg ths burden estimate or any other aspect o _-Js

collection of information, including suggestions for reducing this burden tO "Nashmgton Headquar'cers Services. Directorate tot Informalion OperatiOns and RepOrts, 1215 Jeffer,,on

Da_s Highway. Su,te 1204. Arlington. VA 22202-_302. and to the Office of Management and Budge*.. P:_perwork ReductLon P'o ect {0704-0_88), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2_ REPORT DATE 3. REPORT TYPE AND DATES COVERED
Dates attached

4. TITLE AND SUBTITLE

Titles/Authors - Attached

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Code FIA - Artificial Intelligence Research Branch

Information Sciences Division

9. SPONSORING/MONITORING AGENCY NAME{S) AND ADDRESS(ES)

Nasa/Ames Research Center

Moffett Field, CA. 94035-1000

S. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

Attached

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Available for Public Distribution

13. ABSTRACT (Maximum 200words)

12b. DISTRIBUTION CODE

Abstracts ATTACHED

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
OF REPORT

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std Z3g-18

29B-I 02

