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A Determination of the Radio-Planetary Frame Tie From

Comparison of Earth Orientation Parameters
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The orientation of the reference frame of radio source catalogs relative to that

of planetary ephemerides, or "frame tie," can be a major systematic error source
for interplanetary spacecraft orbit determination. This work presents a method of

determining the radio-planetary frame tie from a comparison of very long baseline

interferometry (VLBI) and lunar laser ranging (LLR) station coordinate and Earth

orientation parameter estimates. A frame tie result is presented with an accuracy
of 25 nrad.

- I. Introduction

Very long baseline interferometry (VLBI) offers inter-
planetary spacecraft navigation a highly accurate data

type for orbit determination. The most commonly used

z data type, delta differential one-way ranging (ADOR),

provides 50-nrad (or better) information about the angular
position of a spacecraft relative to a nearby radio source

[1]. The positions of radio sources within the inertial refer-

ence frame defined by extragalactic radio sources are typ-
ically known to 3-5 nrad [2]. The planetary ephemeris de-

fines a separate inertial reference frame [3]. Knowledge of
-the relative global rotation, or frame tie, between these two

inertial reference frames is necessary to take full advantage
of VLBI tracking of interplanetary spacecraft. The uncer-

tainty in the frame-tie calibration can be the dominant

orbit determination error for inner planet approach navi-
gation [4].

1Now with Astronomy Programs, Computer Sciences Corporation.

In addition to providing a navigational data type, VLBI
plays another important role in spacecraft orbit determina-

tion. VLBI radio source observations are used to monitor,
with 10-nrad accuracy, the orientation of the Earth with

respect to inertial space. The time dependent transforma-

tion from terrestrial to celestial coordinates is expressed in

terms of universal time and polar motion (UTPM) param-
eters and precession and nutation corrections that result

from fitting the VLBI data. Since these observations re-

fer the orientation of Earth to the radio reference frame,

the radio-planetary frame tie will affect interplanetary or-
bit determination even when no VLBI observations of the

spacecraft are employed.

Lunar laser ranging (LLR) is an alternate technique for
monitoring the orientation of the Earth with respect to
inertial space. The LLR observations refer the orienta-

tion of tlle Earth to the lunar ephemeris, which gives LLR,

tracking station locations in the lunar ephemeris frame.

Through the effect of solar perturbations on the lunar or-
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bit, the LLR data are sensitive to the ecliptic plane and
the direction to the sun. The orientation of the plane-

tary ephemeris system, as defined by the Earth's orbit,

can therefore be tied to the lunar ephemeris system with

about 10-nrad accuracy [3].

Since both LLR and VLBI measure the orientation of

the Earth with 10-nrad accuracy, it should be possible to
determine the frame tie from a comparison of these mea-

surements. An earlier attempt to do this by Niell 2 was

limited by a restricted ability to determine the orientation
of the terrestial frames for VLBI and LLR. Now that there

are three well-determined LLR station locations, and be-

cause of recent efforts to unify terrestrial coordinate sys-

tems [5], it is possible to determine the frame tie with

15-25 nrad accuracy from a comparison of LLR and VLBI
Earth orientation series.

The theoretical foundation for this comparison is estab-
lished in Sections II and III. Section II examines in detail

the nature of the time dependent terrestrial-celestial ties

mentioned above. In Section III an expression is derived

for the radio-planetary frame tie in terms of the LLR to

VLBI station-coordinate system tie and the parameters of
the two terrestrial-celestial ties. The LLR and VLBI so-

lutions compared in this analysis are presented in sections

IV and V, respectively.

In Section VI, a determination of the LLR to VLBI

station coordinate transformation is presented. Since the

VLBI stations and LLR sites are widely separated, it is

necessary to use other data to bridge the two coordinate

systems. A recent Crustal Dynamics Project (CDP) VLBI
station location set, which includes mobile VLBI observa-

tions at LLR sites, is used to connect the LLR and VLBI

terrestrial coordinate systems.

With this terrestrial tie determined, the planetary

ephemeris to radio source catalog frame tie can be deter-

mined from an intercomparison of the VLBI and LLR nu-

tation and Earth orientation parameters. This comparison
and the resulting frame tie are presented in Section VII.

The derived frame tie is compared with other available
results in Section VIII. Some comments on how to best

use the results of this work for spacecraft navigation are
included in Section IX.

2A. E. Niell, "Absolute Geocentric DSN Station Locations and the
Radio-Planetary Frame Tie," JPL Interoffice Memorandum 335.2-
159 (internal document), Jet Propulsion Laboratory, Pasadena,
California, March 21, 1984.

Much of this work paraI]els the current efforts of the

ternational Earth Rotation Service (IERS). IERS is in t
process of comparing and unifying terrestrial VLBI, LL]

and satellite laser ranging (SLR) coordinate systems ar_
unifying different VLBI celestial coordinate systems wit

the goal of testing the consistency of various Earth rot,

tion parameter series [6-8]. Where possible, the notatk
used here is consistent with that of the IERS.

II. Ties Between Celestial and Terrestrial
Frames

In the process of reducing LLR or VLBI data, a time d,

pendent transformation between implicitly defined cele/

tial and terrestrial coordinate systems is established. Th

transformation represents a dynamic tie between Eartl
fixed and inertial frames and includes estimated and

sumed precession, nutation, and Earth orientation paran

eters. To employ this transformation, it must be unde:

stood in some detail. To this end, the standard represent_

tion of the orientation of the Earth with respect to inerti.

space is presented here. Particular attention is paid t
the quantities that are commonly estimated and how the-

affect this representation.

Let ._ represent the Earth-fixed coordinate vector •

a station in an equatorial coordinate system with the

axis nominally aligned with the Greenwich meridian. 3 Tt

station's instantaneous (J2000) celestial coordinate vectc
at time t is calculated as

C=PNSOA _ (]

The (polar motion) rotation O corrects for the offset b,

tween the Earth-fixed coordinate pole and the Celesti.

Ephemeris Pole (CEP). The CEP is conceptually define

as the axis which, in the theory of the rotation of tl"
Earth, has no forced daily or semi-daily nutations [9,10

S models the rotation of the Earth about the CEP, N a,

counts for the quasi-periodic nutation of the CEP abot
the "mean pole of date," and P models the precessiol

or secular drift, of the "mean pole of date" and "mea-

equinox of date" with respect to the celestial fixed po__
and equinox of J2000. Each of these rotations is discusse
in detail below.

All together, eight or more angles are used to describ
the rotation between terrestrial and celestial coordinate

3The time dependence of the Earth-fixed location due to plate mc
tlon is ignored throughout this section.



(including three precession angles, two nutation angles,
two polar motion angles, and UT1-UTC). The conceptual

definitions of these angles are largely a product of the his-

torical development of the theory of the Earth's rotation.

While the overall rotation can be experimentally deter-

mined, many of the intermediate rotation angles have no

precise empirical definition, and thus cannot be uniquely

measured. The philosophy that will be adopted here is

that in the final analysis, only the total rotation matrix

has a well-defined physical meaning.

A. Notation

In order to discuss modeling of Earth's rotation in de-

tail, a notation for positive rotations Rx, Ry, and Rz

about the x-, y-, and z-axis, respectively, is introduced,

where Rx, Ry, and Rz are defined by

rtx(0) =
1 0 0 ]
0 cos 0 sin 0

0 -sin0 cos0

Rr(0) =
cos0 0 -sin0 /

0 1 0
sin 0 0 cos0

(2)

Rz(O)=
cos0 sin0 0/

-sin0 cos0 0

0 0 1

These rotations are positive in the sense that they rep-
resent a transformation between two coordinate systems

with the final coordinate system's basis vectors being ro-
tated from the initial system's basis vectors by a right-

handed rotation of angle 0 about the designated axis.

A rotation about an arbitrary axis will be defined by

R(6)_" = _'- sin00 x F+(1 - cos0)6) x (6 x

(3)

where 0 = IO[ is the angle of rotation, 0 = O/0 is

the rotation axis, and _' is an arbitrary coordinate vec-

tor. For example, with this notation Rx(0) = R(0_x),

Ry(0) = R(O_y), and Rz(0) = R(0_z), where _x, _r,
and _z are the x- , y- , and z-unit vectors, respectively.

Two results will prove useful in connection with this nota-

tion. First, if M is a rotation matrix, then it can be shown

that

MR((_)M-' = R(M(_) (4)

Equation (4) follows from Eq. (3) and the invariance of

the cross product under orthonormal coordinate transfor-

mations (M[A x g] = [MX] × [Mg]). A second result is

the approximation rule for small rotation vectors,

R(B)R(A) _ R(A+ g + X x B/2) (5)

which is accurate through second order.

B. Terrestrial Pole Orientation

The first rotation applied in the transformation from
terrestrial to celestial coordinates is the orientation matrix

Oi which accounts for polar motion, the offset of the CEP

from the terrestrial coordinate system pole

o(t) = R
0

(6)

The angles x and -y are approximately the x and y coor-
dinates of the CEP in the Earth-fixed system.

C. Rotation About the Pole

The vast majority of the rotational velocity of the Earth

is modeled in the spin matrix

s(t) = Rz(-0_) (7)

where 0a represents Greenwich Mean Sidereal Time, the

hour angle between the meridian containing both the ter-
restrial x-axis and the CEP and the meridian containing

both this pole and the mean equinox of date. The equation

of the equinoxes, which is normally included with the spin

rotation S, will be incorporated below in the nutation ma-
trix N. It should be noted that small rotational velocities

occur due to precession, nutation, and polar motion, and
therefore the CEP is not the rotation axis of the Earth's

crust. By definition, the Earth-rotation-based time scale

UT1 is directly related to Oa, with the explicit relationship

given by [11]. When UT1 is estimated, the spin matrix

may be represented as

S(t) = $0(t)Rz(-fl[UT1 - UTC]) (8)

]
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where fl is the mean rotation rate of the Earth and S0(t)

is the value of S(t) obtained by assuming UT1 = UTC.

D. Nutation

Nutation describes the short-term quasi-periodic varia-

tions in the CEP. The longest period terms have an 18.6-

year period with an amplitude of 43/trad. The standard
model for nutation is given by

N(t) = Rx(-c)Rz(A¢)Rx(e + Ae)Rz(-aE) (9)

where A¢ is the nutation in the ecliptic longitude of the

pole, and Ae is its nutation in obliquity (the angle from

the ecliptic pole). Here, the equation of the equinoxes

= A¢cos(t + At) (lO)

has been included with the nutation since the equation

of the equinoxes depends only on nutation parameters.

Fourier series for A¢ and At for the standard (IAU 1980)

model are given by Wahr [12] or Seidelmann [9].

To provide a better understanding of the nutation ma-
trix, an approximate formula for it will be derived using

Eqs. (4) and (5). First, using Eq. (5), the nutations can

be grouped together:

N(t) _ Rx(-t)R
At

0

A¢
) rtx(t)Rz(-  )

The nutations A¢ and Ae are applied in ecliptic coor-

dinates, with Rx(t) representing a transformation into

ecliptic coordinates, and Rx(-t) representing a transfor-

mation back to equatorial coordinates. By using Eq. (4)

with Rx(-e) as M, the nutation matrix may be reduced
to a series of small rotations:

N(t) _ R
At

-A¢ sin t

A¢ cos c

rtz(- E)

By using the explicit form [Eq. (10)] for the equation of

the equinoxes, and by collecting together small rotations

by using Eq. (5), the approximation

N(t) _ n -ACsine (11_
0

is obtained, which is accurate to a few nrad.

When nutation is estimated, the corrected nutation ma-

trix can be represented as

N(t) = Ntav(t)R ])-6¢ sin t

0

(12;

where NIav is the (unapproximated) standard model ant
& and (i¢ are corrections to Ae and A¢.

E. Precession

Precession describes the long-term drift of the mean

pole of date and mean equinox of date. The mean pole

drifts in declination by n _ 97.16 prad per Julian year_
and the mean equinox drifts in right ascension by m _.

223.60 #rad per Julian year [13]. The standard model for

the precession is given in the form

P(t) = Rz((a)Ry(-oa)nz(zA) (13)

Polynomial expressions for the angles (.4, 0a, and za as

a function of t are given by Lieske [13,14]. These are,
however, physically uninformative. A clearer vectorial for-

mulation of precession is given by Fabri [15].

When corrections to the standard precession model are

estimated, the corrected precession matrix may by repre-

sented as [16]

P(t) = PIAU(t)R
0

-(in

(im

(14)

where PIAU is the standard model [Eq. (13) with Lieske's

polynomials]; (in and 6m are corrections to the precession
rates in declination and right ascension, respectively; and

tn is a reference epoch, which is preferably near the mean

data epoch. The corrections to the general precession in



-declinationandrightascension,6n and 3m, may be ex-

pressed as

6n = 6plsine
(15)

_rn = 6pl cose - 6X

with e representing the mean obliquity of the ecliptic,/fpl

representing the correction to the luni-solar precession in

longitude, and _X representing the correction to the plan-

etary precession in right ascension.

F. The Total Effect of Estimated Quantities

By combining the above results and using Eqs. (4) and

(5), one finds that the transformation from terrestrial to
celestial coordinates, including estimated quantities, may

be expressed as

where

PNSO : PIAUNIAu$oR(6))

(_ __ -1 --1So N1au

0

-6n

6m

(t--_D) + S_ 1 -6¢ sin e

0

Y

+ x

f_(UTC - UT1)

or, neglecting the effect of the nutation matrix on the precession corrections (this is less than 0.1 nrad),

&cos0c - (_n(t - tD)+ _¢ sin e) sin 0G + y

6) = -6esinOa - (_n(t--tD)+6¢sine)cosOa + x

6re(t- tD) + _(UTC- UT1)

(16)

(17)

(18)

Several points should be noted from this relationship.

First, estimation of precession in declination 6n is equiv-

alent to estimating a linear trend in the nutation in lon-
gitude 6¢. It can therefore be neglected in the following

analysis without loss of generality. Second, estimation of

precession in right ascension 6m is equivalent to estimating
a trend in UT1-UTC. As has been discussed by Williams

and Melbourne [17], when corrections to precession are

adopted in the future, the definition of UT1 should be al-
:tered so that the UT1 series is continuous. Guinot has

:gone further by suggesting that rather than referring UT1
to the meridian of the mean equinox, it should be referred

to a "nonrotating origin," which is defined on the instan-
-taneous Earth equator so as to be largely independent of

precession and nutation models [18]. In the fight of this

-thinking it makes no sense to estimate the precession in

right ascension 6m. Finally, it should be noted that on
time scales short compared to a day, it is impossible to

distinguish between nutation and polar motion; only three

angles are needed to describe a general rotation. In fact, if

nutations were allowed to have rapid variations with nearly

daily periods, there would be no need for the polar angles
x and y. Thus, whatever the conceptual definition of the

CEP, its actual implementation results from fitting data

to slowly varying nutation and polar motion models.

III. Relating the VLBI, LLR, and Planetary
Ephemeris Reference Systems

In this section, the relationships between the celestial
and terrestrial reference frames for VLBI and LLR will

be discussed. The end result will be an expression relat-

ing the radio-planetary frame tie to quantities available
from the LLR and VLBI data reductions and the tie be-

tween LLR and VLBI terrestrial coordinate systems. The



radio-planetaryframetie willberepresentedbyarotation
vectorA that relates VLBI celestial coordinates CVLBI

and planetary ephemeris coordinates CpE by

CVLBX = R(A-')CpE (19)

The derivation of the frame tie starts with tile planetary

ephemeris, as represented by the ephemeris of the Earth

(which is the celestial reference frame for LLR), and pro-

ceeds in steps to the LLR terrestrial coordinate system, the
VLBI terrestrial system, and finally to the VLBI celestial

system.

For the LLR data reduction_ terrestrial coordinates
XLLR and celestial coordinates CpE are related by

CPE = PIAUNIAuSoR(OLLR)XLLR (20)

where _LLR has the form of Eq. (18). It should be noted

here that many LLR data reductions estimate corrections

to the planetary ephemeris. This derivation is limited to
the case where no such corrections are estimated and over-

all orientation variations are absorbed by estimated pre-

cession and nutation parameters.

The complete transformation from LLR to VLBI terres-
trial coordinates must account for a rotation, translation,

and a possible difference of scale. This will be discussed
in Section VI. Here the main concern is with the relative

orientation of the two coordinate systems. Therefore, in

this section the relationship between direction coordinates

in the two systems will be represented as

-_VLBI = R(_)f, LLR (21)

where the vector/_ parameterizes the rotation between the

LLR and VLBI terrestrial coordinate systems.

In the VLBI data analysis, terrestrial coordinates

)_VLBI and celestial coordinates CVLB1 are related by

CVLBI = PIAUNIAuSoR(_)VLBI)Y, VLB1 (22)

where _)VLBI has the form of Eq. (18). The parameteriza-
tion of 6)VLBI estimated in the VLBI data reduction will-

be discussed in Section V.

By tracing the coordinate transformation

CVLBI _'- XVLBI 4-- -_LLR <-- CPE

the planetary-radio frame tie is found to be given by

R(A) = PIAUNIAuSoR(_)VLBI)R(R)

--i -I -I
× R(--OLLR)S 0 NIAUPIA U (23)

By using Eq. (4) and Eq. (5), this reduces to

,4 = PIAuNIAuSo[_gVLBI + R- _)LLR] (24)

By neglecting the effect of precession and nutation on small

quantities (this is less than 0.5 nrad), the components of

this equation are given by

A_ \--(_¢VLBI -- 6¢LLR)sine sinOa cosOa

A3 = R3 O(UT1vLB1- UT1LLR)

(25):

=

where precession in declination is included as a trend in be slowly varying. Therefore, the terms in Eq. (25) that

_¢. As argued earlier, nutation and precession can be are modulated by sinusoids in 6a, the Greenwich Mean_

separated from polar motion only by requiring that each Sidereal Time, must be separately zero. This gives the



biasbetweenthetwopolarmotionseriesin termsof the
terrestrialtransformationparametersR1 and R2, which

correspond to a displacement of the coordinate pole:

YLLR -- YVLBI -_ R1

XLLR -- XVLBI = R2

(26)

The frame-tie rotation vector is then given by

_eVLBI -- _LLR

X = -(5¢vLm - 6¢LLn) sin e (27)

R3 - f2(UTlvLBI - UTILLn)

Equation (27) shows how a full three-dimensional radio-
planetary frame tie may be deduced. Its use requires a

comparison of LLR and VLBI nutation and UT1 estimates,
• nd a determination of the transformation between VLBI

_nd LLR terrestrial coordinate systems.

IV. The LLR Solution Set

The LLR solution employed here was provided by

Newhall, Williams, and Dickey, and is similar to results

)ublished by IERS as solution JPL 90 M 01 [19]. IIowever,

:br this particular solution, no corrections to the plan-

_.tary ephemeris were estimated. The solution included

:wenty years of data from August 1969 to January 1989.
_tation locations, reflector locations, lunar gravity, lunar

_phemeris, nutation, precession, and UT0 parameters were

_stimated from the LLR data. The planetary ephemeris

reed in the fit was DE200 [20,21] with an updated lunar

_.phemeris.

Coefficients were estimated for in-phase corrections for

he 9-year and annual nutation terms and both in-phase

md out-of-phase 18-year nutation terms. The sum total

tutation corrections, including the linear trend to account

or precession, may be written as

5¢.LL R -_ 8.73 cos l' - 0.97 cos(2f_,,)

+ 15.13 cos 12,_+ 6.88 sin f_,_nrad

5¢LLRSine -- --156.98 -- 5.14 T

+ 8.73 sin l' -- 2.18 sin(2f2,)

(28)

- 16.68 sin I2, + 5.09 cos ft,_ nrad

where I_ is the mean anomaly of the sun, fin is tile mean

longitude of the ascending lunar node, and T is the time

measured from tile epoch J2000 in years.

Plate motion was applied to the stations by using the

AM0-2 model of Minster and Jordan [22]. This model is

based on geological data, and consists of rotation rates
for the crustal plates. The model imposes a global condi-
tion of "no net rotation" to define absolute site velocities.

In the data reduction, the station locations for the epoch
I988.0 were estimated. The resulting estimates are given

in Table i.

V. The VLBi Solution Set

The JPL VLBI software [23] was used to analyze a se-

lected set of NASA's Deep Space Network (DSN) Cat-

alog Maintenance and Enhancement (CM&E) data and

Time and Earth Motion Precision Observations (TEMPO)

data. CM&E passes are long observation sessions (12-

24 hr) used for the determination of radio source posi-
tions, while TEMPO passes are shorter sessions (2-4 hr)

used to update Earth orientation. With only three station

complexes in the DSN (California, Spain, and Australia),

measurements are generally only made on one intercon-

tinental baseline at a time. Two problems occur when
measurements are made on one baseline only. First, the

component of the total rotation 6_wLBt of Eq. (18) that is

along the baseline direction is unobservable. The second
problem has to do with determining the angle between the

Spain-California and California-Australia baselines. If the
observations on these baselines are independent, then this

angle cannot be determined. By adding a constant bias to
x, y, or UT1 for the sessions on the SpMn-California base-

line, but not to those for the California-Australia baseline,

this angle may be arbitrarily changed.

The strategy adopted here to solve these two problems

was to work entirely with pairs of back-to-back Spain-
California and California-Australia baseline sessions and

to constrain the changes in nutation, UTI, and polar mo-
tion between the sessions of any pair to physically reason-

able levels. All catalog session pairs with fewer than 24
hours of separation were included. TEMPO session pairs
with fewer than 24 hours of separation were included only

if they coincided with LLR measurements. From these

datal a set of epoch 1988 DSN station locations and a
series of nutation corrections, UT1 corrections, and po-
lar motion corrections were estimated. Radio source posi-

tions were taken from the JPL radio source catalog 1989-5,

which agrees to 5 nrad with IERS celestial reference frame



RSC89C 01[6].Noadjustmentsweremadeto thesource
positions.

Foreachcatalogdevelopmentsession,nutationcorrec-
tions6¢ and6e,UTI corrections6UT1, and polar mo-

tion corrections 6x and 6y were estimated. The nutation
corrections were relative to the standard IAU 1980 series,

while the UT1 and polar motion corrections were relative

to an a priori series. Changes in these corrections between

sessions in a back-to-back pair were constrained (in a least

squares sense) to 5 nrad in nutation, 5 nrad in polar mo-
tion and 0.2 ms in UT1, which corresponds to the level of

random fluctuations of these parameters over one day [24].

The TEMPO sessions are too short to separate nutation

from polar motion. An initial solution that did not include
TEMPO sessions showed that the nutation corrections for

the catalog sessions were 25 nrad or tess. In the final so-

lution, therefore, the nutation offsets for the TEMPO ses-

sions were constrained to be zero with 25-nrad sigmas. In

all other aspects the TEMPO sessions were modeled iden-

tically to the catalog development sessions.

Epoch 1988.0 locations were estimated for all the DSN

stations involved in the observations, with constraints from

short baseline experiments applied to intracomplex vec-
tors. The motion of the stations was described by the

AM0-2 plate motion model. A priori epoch station loca-

tions for DSS 14, DSS 43, and DSS 63 were taken from

the IERS station set ITRF88 [6]. In order to specify the

coordinate system for the adjusted station location set, a
rotation and a translation vector between the a priori and

adjusted station coordinates were defined. The rotation

vector /_, the translation vector 7_, and a scale change D

were defined in terms of an unweighted, least-squares fit
between the a priori station locations X' and the (as yet

uncalculated) adjusted station locations _i + 6_i. This

fit results from minimizing

J = _ T-/_x2 i+DX i - 6)_i r (29)
i=14,43,63

Minimization of J with respect to T, R, and D resulted

in a set of linear equations that gives these fit parame-
ters in terms of the station coordinate adjustments 6X'.
The translation 7_, and rotation /_, defined in this man-

ner, were constrained to be zero. The scale change D was
left unconstrained. The estimated scale change value was
-9 4- 4 x 10 -9.

The station location set resulting from this estimation

is given in Table 2. The nutation, UT1, and polar motion

estimates are presented in Table 3.

t=y

VI. Determination of the DSN VLB!- -_
LLR Stat|on Co0rdinate Tr§nSformation- \

Since the DSN stations and LLR sites are widely se_
rated, it is necessary to use other data sets to compare-on

two coordinate systems. The CDP has been performm
a number of collocations of SLR and VLBI instrument

in order to be able to compare and unify terrestrial re!
erence frames. The results of their comparison indicat

agreement between the CDP VLBI terrestrial system an
the SLR terrestrial system at the 2-cm level for relativ

station locations [5]. SLR data are sensitive to the loca
tions of stations with respect to the Earth's center of mas_

while VLBI data are insensitive to the geocenter. The coI
locations of VLBI and SLR instruments allow the SLI

geocenter determination to be applied to the VLBI terres
trim frame. Three of the SLR sites used in the VLBI-SL1

collocation study are also the LLR sites listed in Table I

The CDP VLBI solution, therefore, includes the LLR site

as wet] as the DSN sites. Thus, one can find the relativ
orientation of the LLR and DSN VLBI terrestrial frame

by comparing them with the CDP VLBI solution.

In fitting the station sets it was assumed that each sta

tion set (LLR, DSN VLBI, and CDP VLBI) is internM1
consistent but expressed in a different coordinate systerr

By using the least-squares procedure described below,

seven-parameter transformation was estimated to map th

LLR, DSN VLBI, and CDP VLBI terrestrial systen_s t

a unified terrestrial frame constrained to agree with th
CDP VLBI frame in orientation, scale, and translatior
The transformation estimates were based on the statio:

coordinates in the station location sets and on ground ti
information.

Since there are only three LLR and three DSN VLB

sites used to estimate a seven-parameter transformatior

there is more susceptibility to systematic errors than d(

sirable. However, given the good agreement of the SL]
and CDP VLBI station sets at the centimeter level an

the good agreement in modeling for station locations i

the CDP VLBI, SLR, LLR, and DSN VLBI software, th

authors do not expect any significant systematic error a
the 5- to 10-cm level, which is the accuracy of the LLR sta
tion location determination. As more LLR sites becom

active (recently _,Vettzell started taking LLR data), it wit
be possible to strengthen the terrestrial comparison.

The transformations between the station coordinat

systems and the unifying coordinate system were assume_
to be linear. The transformations included possible offset

of origins and possible rotations. In addition they include(
possible differences in scale. Scale differences can arise du,
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to differing treatments of general relativistic corrections.
In particular, both the CDP VLBI and DSN VLBI station

sets were adjusted to the geocentric metric preferred by

IERS [25], while the LLR station locations are expressed

with respect to a heliocentric metric [26]. Thus, the LLR

terrestrial frame is expected to be different in scale by
about 1.5 x 10 -s.

In the fit, the coordinate vector of the ith station in the

jth station set (either LLR, DSN VLBI, or CDP VLBI)
: I
X_ is given in terms of Xbcs, the coordinate vector in the
1unified coordinate system, by

Zj = r4+ (1+ D,)ZbCS - × X't'cs + (30)

where 7_ is the origin offset of coordinate system j, Dj is

the scale offset of coordinate system j, and/_j is the rota-

tion offset vector of the jth station set coordinate system.

l_jis the measurement noise on the coordinate vector,
which was assumed to be independent for each Cartesian

component. The unified coordinate system was defined by
constraining TCDP, DCDP, and RCDP to be zero.

Ground ties are measurements of the displacement be-

tween nearby sites, where "nearby" means that the dis-

tance between sites is short enough that the errors caused

by differences in orientation and scale between coordinate

systems are smaller then measurement errors. In this anal-

ysis, ground ties were incorporated as measurements of
differences between the coordinates of stations in the uni-

fied coordinate system. A tie /_ik between station i and
station k was modeled as

(31)

_vhere X_rcs and i_c s are the station coordinates in the

_nil_ed system, and _ik is the measurement noise, which

_vas assumed to be independent for each Cartesian com-

ponent.

The estimation procedure used the ground ties and the
_artesian coordinates for each station location set to solve

.:or the transformation parameters. Only diagonal errors
zere used for coordinates and ties since full covarianees

_¢ere not available for each station set and ground tie. The

_ation locations and errors for the LLR solution are g_ven
n Table 1. The DSN VLBI solution station locations and

;rrors are given in Table 2. The station location and for-

hal errors for the CDP station locations used are given

n Table 4. Table 5 shows the ground ties used and their

assumed errors. A priori values for transformation param-
eters for the LLR and DSN VLBI frames were taken as

zero with a priori errors set to 100 km for the translation,
1.0 for the scale, and 1 radian for the rotation.

The transformation parameters estimated between the

CDP VLBI terrestria_ system and the LLR and DSN VLBI

terrestrial systems are given in Table 6. Note that the ro-

tations for both LLR and DSN VLBI terrestrial systems
are smaller than 10-nrad. This indicates that each terres-

trial system is in agreement with the IERS system at the

10-nrad level. The origin of the DSN VLBI system, which

was set to agree with the IERS terrestrial reference sys-

tem ITRF88, is consistent with the CDP VLBI origin, con-

strained to the ITRF89 terrestrial system, at the few-era

level, which is about the level of uncertainty of the DSN
VLBI station location determination. Unlike the VLBI

measurements, LLR data are sensitive to the geocenter.
The LLR translation offset at the 5- to 10-cm level thus

shows agreement of the determination of the geocenter for

the LLR and IERS systems at about the LLR uncertainty
level.

The overall fit had a X 2 per degree of freedom of ap-

proximately 0.7, indicating that station sets are welI fit

by the seven-parameter transformation. Tile fit residuals

for the station locations and the ground ties are given in
Tables 7 and 8.

The rotation transformation parameters in Table 6 give
the rotation from the CDP terrestrial system to either the

LLR or DSN VLBI system. For the frame tie one needs
the rotation from the LLR terrestrial system to the DSN

VLBI system, which is given by

-11-1-22

+ 44-16

- 34- 7

nrad (32)

VII. The Planetary-Radio Frame Tie

Comparisons of the LLR and DSN VLBI nutation cor-

rections and UTI series are presented in tbJs section. In

accordance with the analysis in Section III, the planetary-

radio frame tie is then synthesized from the derived biases

between the LLR and DSN VLBI nutation and UT1 series,

and results that have been presented above.
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A. Comparison of LLR and DSN VLBI Nutation

Corrections

Equation (27) shows that the x and y components of

the frame tie rotation vector A, which correspond to an

offset between the planetary ephemeris and radio catalog
coordinate poles, are related to the bias between the LLR
and DSN VLBI nutation corrections. The DSN VLBI and

LLR corrections to the IAU nutation theory are compared

in Figs. 1 and 2, with Fig. 1 showing corrections to A¢ and

Fig. 2 showing corrections to ACsin e. The points with er-

ror bars are the DSN VLBI estimates. They come in pairs,

one for each session in a back-to-back session pair. The

points with large errors in the late 1980s are the TEMPO
sessions. The solid lines represent the LLR nutation cor-

rections as given by Eq. (28). For ease of comparison, the
best-fit VLBI-LLR offset has been added to each of the

LLR curves. The biases were found to be

5eVLBI- 5ELLR --_- 5 4- 10 nrad

(5¢VLBI- 50LLR)Sin¢ = --49 -t- 10 nrad

(33)

The fits, which were performed by neglecting the errors
in the LLR corrections, resulted in formal bias errors near
1 nrad. Correct treatment of the LLR nutation errors

is problematic. Williams, Newhall, and Dickey [27] quote

separate uncertainties of 10 nrad for the 18.6-year nutation
amplitudes and 1.2 nrad/year for the precession in decli-
nation as measured by LLR. However, what matters here

is the accuracy of the total nutation correction at epochs
within the data span. This total should be better deter-

mined than any Of its component parts. The errors given

in Eq. (33) reflect the authors' estimate of the uncertainty
of the LLR corrections.

B. Comparison of LLR and DSN VLBI UT1 Series

As was shown in Section III, the planetary-radio frame

tie in right ascension consists of two offsets. The first offset

is R3, the difference in longitude origin of the two terres-

trial coordinate systems. The second offset arises from a
bias between the VLBI and LLR UT1 series and is consid-
ered here.

The DSN VLBI solutions for UT1 and polar motion

have already been presented in Table 3. Table 9 presents
those LLR measurements that occured near one of the

pairs of VLBI session pairs. In some instances no LLR

measurements oecured near a session pair, and in others

several measurements occured. For the LLR reduction,

only UT0 was estimated. Table 9 shows the time a

date, estimated UT0-UTC and its error, the polar moti

angles xo and Yo assumed in the reduction, the sensitivi

S, and Sv of UT0 to the polar motion angles, and the LI
station name.

A corrected value of UT0 for the LLR measuremen

to include updated polar motion values, was modeled a

UT0_.°/_ = UTOLLn + [S,(xrLR -- x0)

+ Sy(yL_R - y0)]/_ (3

where UTOLLR is the value estimated in the LLR reducti(

by using polar motion values x0 and Y0, UT0_;°/_ is tl
value that would result if the LLR reduction had us_

updated polar motion values XLLR and YLLB, and _ is tl

mean rotation rate of the Earth. The updated LLR pol
motion angles were obtained from the DSN VLBI analy_-

with corrections given by Eq. (26):

XLLR "- ZVLBI "_ R2 , YLLR ---- YVLB! + R1

where XVLBI and YVLBI are the polar motion values frol

the DSN VLBI fit interpolated to the time of the LL
measurement, and R1 and R2 are VLBI-LLR terrestri.

coordinate rotations about the x- and y-axis presented i
Section VI.

UT1 is given in terms of UT0 and polar motion by

UT1LLR = UT0_._ - tan ¢ [XLLR sin A

+ YLLR COS )_]/_ (35

where ¢ and A are the latitude and longitude of the LLt-
station.

Using all DSN VLBI session pairs with coincident LL[

measurements, a least-squares fit was performed to esti

mate the bias, AUT1, between DSN VLBI and the LLI=
UT1, as defined by

UT1LLR -- UTIvLBI- AUT1 (361

where UT1vLB/ is the DSN VLBI UT1 determination in-

terpolated to the time of the LLR measurement.
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The least-squares fit using the LLR measurements for

all back-to-back DSN VLBI session pairs incorporated the

full six-by-six information matrix for the two sets of VLBI

UT/PM estimates in each back-to-back session pair. The

offset AUT1 was estimated, and the sensitivity of this es-
timate to the rotations R1 and R2 was calculated. The

resulting offset measurements are shown in Fig. 3. The

weighted mean offset was found to be

UT1vLBI- UT1LLR ---- 0.22 4- 0.12 msec (37)

where the error given here includes the considered effect
of the errors in the rotations R1 and R2.

C. The Frame Tie

By returning to Eq. (27) and substituting the terrestrial

rotation, nutation, and UT1 biases given above, the follow-
ing estimate of the frame tie from the ephemeris DE200 to
the IERS celestial reference frame results:

X

+ 54- 15]

-494- 15

- 19 4- 25

nrad (38)

_The errors from the comparison process include the nuta-

tion bias uncertainties (10 nrad), the UT bias uncertainty

(9 nrad), the R3 uncertainty (7 nrad), and the uncertainty
in the alignment of the radio source catalog with the IERS

-celestial reference frame (5 nrad in each component). The

=errors given in Eq. (38) include estimates of systematic er-

rors. Since many steps in the comparison procedure rely

on separate data reductions, each with correlated param-

eters, to derive formal errors would require combining full
covariance matrices, not all of which are available. The

largest potential source of systematic error is thought to

lie in the comparison of the UT1 series where the number

:of points included is small for a measurement known to be

:fairly noisy. In future work, more comparison points can

be obtained by including a more extensive VLBI data set.

-Other improvements could come from combining the LLR

and VLBI information matrices [28], along with the full

-covariance for the CDP station determination, to allow an

estimate of the errors including correlations of parameters.

However, the presented frame tie result is apparently the

most global and accurate determination yet available.

The frame tie result given in Eq. (38) represents the

rotation (and uncertainty) between the IERS radio source

frame and the reference flame determined by the tabu-

lated orbit of the Earth within the ephemeris DE200. The

orbit of the Earth is tabulated with respect to a pro-

jected dynamical equator and equinox for the year 2000

[20]. There is significant uncertainty in the determination

of the equinox of 2000 since it depends upon predictions
using estimated precession and nutation constants, which

are quantites that (aside from data reduction) do not af-
fect the orbits of the planets. The authors believe that

the physical content of the ephemeris can be referred to
the orbit of the Earth for the definition of the reference

system. The orbits of the other planets do not define dif-
ferent reference systems but can instead be referred to tile

orbit of the Earth with an uncertainty characteristic of the

internal consistency of the ephemeris.

VIII. Comparison With Other Frame Tie
Determinations

Other methods of determining the radio-planetary
frame tie include VLBI observation of spacecraft at other

planets and comparison of positions of millisecond pul-

sars based on VLBI and timing measurements. The result

presented above in Eq. (38) can be compared with other
results by examining the offset in right ascension and decli-

nation in the part of the sky where the other measurements
exist.

There have been a number of VLBI observations of

spacecraft at other planets. A planetary orbiter, or a

spacecraft making a planetary encounter, has a position
determined with respect to the planet from the gravita-

tional signature on the spacecraft Doppler data. VLBI

measurements between the spacecraft and one or more an-

gularly nearby radio sources can be used to estimate the

radio source coordinates in the planetary reference frame.

Newhall, Preston, and Esposito [29] reported average right
ascension and declination offsets consistent with zero, with

uncertainty of 40-60 nrad, based on the the results of VLBI

measurements for the Viking and Pioneer Venus orbiters.

McEireath and Bhat [30] derived a position of the radio

source P 0202 + 14 in the planetary ephemeris frame from

observations of the Soviet Vega 1 and Vega 2 spacecraft as

they flew by Venus in 1985. The Vega measurements re-

sulted in right ascension and declination offsets consistent

with Eq. (38) within their errors of 50 nrad in each com-

ponent. In 1989, VLBI observations of the Soviet Phobos

spacecraft at Mars were made for frame tie determination

in nearly the same part of the sky as the Vega observa-

tions. Preliminary results of the Phobos data 4 are consis-

4B. A. Iijima and C. E. Hildebrand, personal communication, Jet
Propulsion Laboratory, Pasadena, California, 1991.
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tent with the results in Eq. (38) at the 1-sigma level. An

observation sequence for the Magellan spacecraft at Venus

is being pursued to extend the data set of VLBI spacecraft
observations.

Timing of millisecond pulsars gives positions with few-

nrad accuracy based on the orbit of the Earth [31]. VLBI
observations of these sources are difficult since the pulsars

are weak radio sources. Two groups 5,6 have made VLBI

observations of the pulsar PSR 1937+21. Preliminary re-

suits from one group s give right ascension and declination

offsets in agreement with Eq. (38) within their errors.

In the future more spacecraft VLBI measurements and

refinements of the technique presented here, as well as re-

sults from other methods, should combine to produce a
consistent frame tie d_termination at the 5-nrad level. In

the meantime, the radio-planetary frame tie result pre-
sented here with 15-25 nrad accuracy is a useful reference

point.

IX. Application to Interplanetary Spacecraft
Navigation

In order to apply this (or any other) frame tie result

to spacecraft navigation with full accuracy, it will be nec-

essary to have well-defined standards for reference frame

definition. Guidelines for standards and implementation
are proposed below.

For orbit determination, UT and polar motion are usu-

ally read in from an external service and not adjusted (or

estimated) in the navigation process. The importance of

this external UTPM information in defining the reference

fraxne for the spacecraft is often overlooked. The adop-
tion of a station set and an Earth orientation series essen-

tially defines a cclcstial reference frame that may be differ-

ent from the desired reference frame (often the planetary

ephemeris reference frame). This inconsistency is most

important for interplanetary missions tracked mainly by

Doppler. In this case, the signature of the Earth on the

Doppler data is tied most strongly to a celestial reference

frame that is defined by the station set and Earth orienta-

tion series. When there are data directly sensitive to the

planetary ephemeris, such as range (which is sensitive to

the orbit of the Earth) or onboard optical data, there can
be a systematic discrepancy among the various data types

s N. Bartel, personal cornmlmication, Harvaxd-Smithsonian Center

for Astrophys[cs, Cambridge, Massachusettes, Aprl] 9, 199l.

e R. J. Dewey and D. L. Jones, "Millisecomt Pulsar Frame Tie," JPL

ION]" 335-6-91-006, (internal document) Jet Propulsion Laboratory,
Pasadena, Callfolada, April 17, 1991.
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which will be resolved by the amount and weighting of tile
data.

It is preferable to clearly define the reference frames

in use rather than having them defined implicitly and/or-i
inconsistently. The most practical choice would be to =

use the IERS definitions for station locations, Earth ori-

entation, and quasar locations while allowing the plane-

tary ephemeris to define its own reference system. Each
ephemeris would be related to the standard celestial co-:

ordinate system by three rotation angles, such as those:
given in Eq. (38). This choice of standards would sim-

plify matters by minimizing the number of parameters that

would vary from mission to mission or from ephemeris to

ephemeris. Each mission could use a standard station set,

Earth orientation series, and quasar catalog, regardless of
the ephemeris used. A priori values for tile three rotation
angles could be adopted from an external determination

(such as reported in this work). If it is desired and the
necessary partials exist, corrections to the frame tie could

be estimated for a particular orbit determination analysis.

This work has utilized the high accuracy of terrestrial

station locations in determining the frame tie. Geocen-
tric station locations have been determined with accuracy

better than 10 cm in all components. Each aspect of the

station location determination has been checked by in-
dependent data sets and reduction software. VLBI and -

SLR each produce relative station locations with 2- to 3-

cm accuracy. SLR and LLR independently determine the

geocenter to 10-cm accuracy or better. The time depen-

dence of the DSN station locations (i.e., plate motion) and
the rotation of the station locations into inertial space are

also well known. There is no reason that interplanetary

spacecraft navigation cannot take advantage of these high-

accuracy station locations.

X. Conclusion

A determination of the rotational offset between tile

planetary ephemeris DE200 and the radio reference frame _ :

has been presented based on a comparison of VLBI and

LLR Earth orientation measurements. The accuracy of
the frame tie is about 25 nrad. The frame tie resu]t is sub-

stantiated by comparison with determinations from other ....

techniques. The frame tie result is made possible by the

ability to determine the location of DSN tracking stations

with accuracy better than 10 cm. Tile frame tie result,
combined witb proper use of accurate station locations,

will enable more accurate interplanetary spacecraft navi-

gation.
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Table 1. Lunar Laser Ranging station coordinates.

Station No. x, m y, m z, m

McDonald 107-in. 7206 -1330781.1660 -5328755.6310 3235697.6320

McDonMd MLRS a 0108 -1330120.9160 -5328532.2060 3236146.6410

Haleakala 0210 -5466006.9080 -2404428.1360 2242188.5400

Grasse 7845 4581692.2540 556195.8208 4389354.8430

aMLRS = McDonald Laser Ranging System.

ax, m au, m az, m

0.0300 0.0300 0.1000

0.0300 0.0300 0.1000

0.0300 0.0300 0.1000

0.0300 0.0300 0.1000

Table 2. DSN VLBI station coordinates.

........ =

Station No. x, m y, m z, m ax, m

DSS 14 1514 -2353621.0830 -4641341.5930 3677052.3000 0.0312

DSS 43 1543 -4460894.4630 2682361.6260 -3674748.7600 0.0341

DSS 63 1563 4849092.7130 -360180.6860 4115108.9730 0.0324

a_, m az, m

0,0318 0.0315

0.0311 0.0317

0.0320 0.0338
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Table 3. VLBI nutstlon, polar motion, and UT1 estimates.

Mean date Time Ae,
me_

UT1-

a(Ae), A¢, a(A¢), UTC, a(UT1-UTC)
m_8 m_8 m_ ms mas mas mas ma_

Dec. 20, 1979 13:39:24 0.64

Dec. 21, 1979 16:56:57 0.50

Jan. 25, 1980 23:37:29 0.87

Jan. 27, 1980 14:44:25 1.01

Feb. 14, 1980 05:02:33 -1.36

Feb. 14, 1980 22:04:27 -1.34

Feb. 23, 1980 18:32:42 0.52

Feb. 24, 1980 12:47:20 0.95

Dec. 8, 1981 16:03:38 2.91

Dec. 9, 1981 09:45:29 2.51

May 20, 1983 20:10:50 0.03

May 22, 1983 09:05:59 0.08

Nov. 18, 1983 10:55:03 2.79

Nov. 19, 1983 10:09:52 2.56

Dec. 17, 1983 11:12:20 4.67

Dec. 18, 1983 10:00:46 5.33

Mar. 24, 1984 22:55:12 0.50

Mar. 25, 1984 22:01:27 0.82

May 12, 1984 12:02:11 -1.19

May 13, 1984 04:09:50 -1.00

Jul. 14, 1984 14:44:35 0.48

Jul. 15, 1984 14:23:34 0.70

Sep. 28, 1985 18:08:45 -0.04

Sep. 29, 1985 20:52:30 0.61

Mar. 22, 1986 23:46:10 4.09

Mar. 23, 1986 07:44:37 4.23

Apr. 19, 1986 12:47:01 1.86

Apr. 20, 1986 12:31:53 2.O1

Jun. 28, 1986 19:00:33 1.53

Jun. 29, 1986 20:51:35 1.69

Apr. 18, 1987 22:17:11 3.61

Apr. 19, 1987 15:30:21 3.52

May 9, 1987 09:49:51 -0.61

May 10, 1987 19:22:27 -0.77

Jan. 9, 1988 10:59:49 3.36

Jan. 10, 1988 02:56:59 3.48

Oct. 1, 1988 18:10:17 -0.03

Oct. 1, 1988 22:20:34 0.04

0.48 2.40 1.56 --324.83 0.16

1.05 1.55 2.85 --327.65 0.17

2.32 2.46 3.44 583.53 0.15

2.47 1.52 3.42 579_54 0.18

0.96 1.86 2.57 539.85 0.09

1.16 1.59 2.71 538.03 0.15

0.56 4.32 1.94 514:35 0.15

1.09 5.24 3.09 512.45 0.12

1.26 10.70 5.28 69.45 0.15

1.03 10.33 5.01 67.72 0.17

0.24 -0.29 0.55 --164.44 0.10

0.54 --3.42 1.54 --168.12 0.06

0.49 --7.94 1.71 489.12 0.14

0.51 -6.53 1.49 486.73 0.09

0.63 --1.79 1.38 427.56 0.09

0.55 --5.61 1.39 425.85 0.13

0.56 --0.86 1.29 255.08 0.08

0.25 -1.16 0.64 253.06 0.11

0.74 0.02 1.72 161.00 0.I0

1.13 -0.49 2.88 159,83 0.18

0.83 --7.05 1.55 90.22 0.10

0.91 -8.32 1.58 89.50 0.13

0.78 - 14.46 2.03 472.50 0.09

0.55 --13.42 1.30 470,64 0.13

3.35 -8.31 8.91 200.13 0.18

3.36 -8.77 9.00 199.71 0.22

3.74 -2.03 9.58 155.94 0.23

3.86 --1.91 9.78 154.45 0.21

1.04 --4.07 2.74 75.10 0.12

0.52 --4.15 1.49 74.39 0.14

3.45 --8.79 10.87 --305_34 0.25

3.50 --9.08 11.15 --306.40 0.27

0.64 --2.26 1.31 --336.87 0.12

0.52 --2.81 1.22 --338.75 0.07

1.62 --8.73 6.99 353.65 0.20

1.71 --9.15 7.12 352.66 0.12

2.81 --16.21 7.11 24A5 0.11

2.93 --15.88 7.14 24.03 0.18

150.16 2.23 273.76 0.77

150.18 2.22 271.91 1.20

123.28 2.55 214.17 2.69

120.90 2.56 211.90 2.52

83.77 1.61 189.25 1.50

82.80 1.71 188.50 1.23

73.39 2.16 184.22 0.78

72.80 2.14 183.70 1.20

-110.76 2.15 324.21 2.01

-110.51 2.18 325.74 1.80

143.35 1.19 542.34 0.42

150.14 1.00 539.78 0.96

19.05 1.28 19.99 0.81

14.88 1.09 20.67 1.18

-89.02 1.10 59.67 1.15

-92.03 1.27 61.98 0.76

- 225.02 1.04 389.58 1.07

-223.82 1.21 393.11 0.63

-84.21 1.34 540.76 1.60

-81.94 1.52 541.95 1.37

175.04 1.19 520.60 1.24

179.03 1.34 518.19 0.89

213.43 1.30 411.71 1.06

214.63 1.43 408.48 0.60

-16.50 4.73 125.40 3.62

-17.15 4.70 125.81 3.52

-69.80 4.69 173.06 4.26

--71.56 4.69 174.99 4.36

--70.61 1.96 319.24 1.16

--69.09 1.97 321.68 0.72

74.90 3.73 206.40 5.54

73.98 3.77 206.10 5.46

54.37 1.26 203.11 0.82

52.68 1.06 202.90 1.18

--5.?8 3.61 423.26 2.19

--4.69 3.65 423.58 2.31

9.17 4.63 131.47 2.45

8.41 4.60 131.58 2.33
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Table 4. CDP VLBI station coordinates.

Station No. x, m y, m z, m ax, m ay, m az, m

DSS 13 1513 -2351128.9948 -4655477.0834 3660956.8432 0.0027 0.0053 0.0047

DSS 45 1645 -4460935,0547 2682765.7891 -3674381.6368 0.0195 0.0130 0.0117

Haleakala 7120 -5465998.3924 -2404408.5665 2242228.4099 0.0142 0.0074 0.0071

DSS 65 1665 4849336.7823 -360488.9205 4114748.5369 0.0125 0.0049 0.0132

Grasse 7605 4581697.8187 556125.6265 4389351.2470 0.0067 0.0026 0.0075

DSS 15 1615 -2353538.6234 -4641649.5275 3676669.9431 0.0044 0.0088 0.0075

McDonald 7850 -1330008.0136 -5328391.5430 3236502.6372 0.0028 0.0102 0.0063

z

=

18

Table 5. Ground tie vectors.

Site From To x, m y, m z, m ax, m au, m az, m

McDonald a 7206 7086 655.9005 229.0262 452.6222 0.0100 0.0100 0.0100

McDonald b 7086 0108 4.3560 -5.6310 -3.5570 0.0100 0.0100 0.0100

McDonald _ 7086 7850 117.2017 135.0619 352.4838 0.0100 0.0100 0.0100

Haleakala c 7210 0210 -0.4830 -0,2120 1.0030 0.0100 0.0100 0.0100

Haleakala a 7120 7210 -8.0140 -19.4100 -40.9270 0,0100 0.0100 0.0100

Grasse a 7835 7845 0.5780 36.4730 -4.4390 0.0100 0.0100 0.0100

Grasse d 7605 7835 -6.0150 33.7350 8.1020 0.0100 0.0100 0.0100

Goldstone e 1513 1514 -2492.0800 14135.5350 16095.4150 0.0100 0.0100 0.0100

Goldstone e 1513 1615 -2409.6220 13827.5670 15713.0940 0.0200 0.0200 0.0210

Madrid e 1665 1563 -244.1140 308.2930 360.3200 0.0200 0.0200 0.0200

Canberra e 1645 1543 40.6580 -404.1520 -367.1850 0.0100 0.0100 0.0100

a Crustal Dynamics Project Site Catalog, Goddard Space Flight Center, Greenbelt, Maryland,

May, 1989.

b T. M. Sager and J. L. Long, internal memorandmn, Bendix Aerospace Corporation, Columbia,

MaryIand, April 11, 1985.

c L. S Baker internal memorandum, National Geodetic Survey, Rockville, Maryland, October

24, 1975.

d C. Boucher, personal communication, Institut Geophysique, St. Mande, France, April 1990.

e C. S. 3acobs, personal communication, Jet Propulsion Laboratory, Pasadena, California, De-
cember 1989.



Table 6. Transformation parameters from CDP VLBI coordinate system to DSN or

LLR system.

System Tl,cm T2,cm T3,cm D(10 -9) R1, nrad _R2, nrad R3, 1wad

DSN -0.74-2.3 -2.44-2.3 6.64-2.3 5.54-3.5 -5.24- 4.9 -0.54- 4.6 -1.54-5.0

LLR -8.04-6.2 -3.24-7.7 4.34-8.0 -9.84-4.4 6.04-21.5 -4.14-15.0 1.84-5.3

Table 7. Input coordinate residuals.

Site System No. x, mm y, mm z, mm

Goldstone DSN 1514 3.2 25.1 -18.9

Canberra D SN 1543 - 20.2 - 11.6 0.4

Madrid DSN 1563 14.7 -13.1 21.3

McDonald LLR 7206 10.3 -30.5 51.1

McDonald LLH 0108 4.5 -3.7 -4.5

Haleakala LLR 0210 2.2 29.5 -3.2

Grasse LLH 7845 ' 17.1 4.7 -43.4

DSS 13 CDP 1513 0.1 0.O 0.2

DSS 45 CDP 1645 6.6 2.0 -0.1

Haleakala CDP 7120 -0.5 -1.8 0.0

DSS 65 CDP 1665 -2.2 0.3 -3.3

Grasse CDP 7605 0.8 0.0 0.2

DSS 15 CDP 1615 -0.3 -1.8 0.7

McDonald CDP 7850 -0.1 4.0 -0.2

Table 8. Ground fie residuals.

Site From To x, ro.m y, mxn z, m_m

McDonald 7206 7086 1.1 -3.4 0.5

McDonald 7086 0108 -0.5 0.4 0.0

McDonald 7086 7850 1.6 -3.8 0.5

Haleakala 7210 0210 -0.2 -3.3 0.O

Haleakala 7120 7210 -0.2 -3.3 0.0

Crasse 7835 7845 1.9 -0.5 0.4

Grasse 7605 7835 1.9 -0.5 0.4

Goldstone 1513 1514 -0.3 - 2.5 1.9

Goldstone 1513 1615 6.2 9.3 -5.3

Madrid 1665 1663 - 5.6 5.1 - 7.5

Canberra 1645 1543 1.7 1.2 0.0
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Table 9. Lunar Laser Ranglng estimated UT0.

UT0- UT0-
x, y, Sz ,

Date Time UTC UTC
mas mas mas/mas

ms a, ms

Site

Jan. 26, 1980 03:16:19 573.695 0.304 114.042 213.383 -0.03837

Jan. 27, 1980 01:00:23 571.010 0.589 112.599 212.!43 0.04666

Jan. 28, 1980 04:02:20 569.085 0.449 110.804 210.599 0.00398

Feb. 24, 1980 02:54:08 506.952 0.469 67.877 181.884 -0.03957

Feb. 25, 1980 02:28:28 503.540 0.350 66.969 181.103 0.00981

Dec. 8, 1981 05:42:44 71.082 0.424 -115.685 324.240 -0.07837

Dec. 9, 1981 06:09:18 66.559 0.457 -115.550 326.493 -0.05714

Dec. 10, 1981 04:41:58 65.207 0.266 -115.426 328.571 -0.00842

Nov. 17, 1983 04:12:40 489.83 0.367 20.977 16.719 0.00295

Dec. 17, 1983 05:01:36 430.525 0.598 -92.780 57.207 -0.00951

May II, 1984 23:23:32 193.926 0.355 -88.808 536.713 0.62278

Jul. 16, 1984 08:37:45 78.004 0.698 178.951 513.587 0.01670

Mar. 22, 1986 02:13:30 200.782 0.221 -19.178 124.652 0.07114

Mar. 23, 1986 03:01:29 199.584 0.117 -21.201 125.789 0.04375

Apr. 18, 1986 20:10:57 167.546 0.151 -71.066 170.577 0.27160

Apr. 19, 1986 03:47:27 157.666 0.132 -71.532 171.207 -0.03970

Apr. 19, 1986 20:58:15 165.807 0.230 -72.629 172.553 0.26490

Jun. 29, 1986 14:2§:11 65.176 0.253 -74.057 319.475 0.26536

Apr. 19, 1987 14:36:20 313.090 0.385 74.779 204.107 0.10398

Apr. 20, 1987 15:02:45 313.976 0.283 73.923 203.901 0.14778

May 8, 1987 03:57:04 339.732 0.148 55.129 200.679 -0.04213

May 8, 1987 08:39:43 341.488 0.094 54.920 200.634 -0.13585

May 9, I987 04:27:15 341.479 0.084 53.998 200.431 -0.04549

May 9, 1987 09:11:16 343.184 0.286 53.742 200.368 -0.19244

May 10, 1987 04:54:11 343.459 0.101 52.672 200.107 -0.02686

Jan. 9, 1988 14:34:02 342.844 0.088 -7.259 420.476 0.01294

Oct. 1, 1988 13:02:10 19.006 0.121 9.764 129.043 0.26353

Oct. 2, 1988 13:55:35 18.314 0.093 6.340 129.105 0.27412

0.15363

-0.18683

-0.01595

0.15844

-0.03928

0.31382

0.22880

0.03371

--0.01182

0.03868

--0.07560

-0.06688

--0.28499

-0.17528

-0.03297

0.15902

--0.03216

-0.11673

--0.04574

-0.06501

0.16879

0.05976

0.18223

0.08465

0.10761

--0.00569

--0.11592

--0.12058

McDonald

McDonald

McDonald

McDonald

McDonald

McDonald

McDonald

McDonald

McDonald

McDonald

G rasse

McDonald

MLRS _

MLRS

_r_sse

MLRS

Grasse

Haleakala

HaleakaJa

HaleakaJa

MLRS

HaleakMa

MLRS

Haleaka]a

MLRS

HaleakaJa

I laleakala

Haleakala

MLRS = McDonald Laser Ranging System.
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Fig. 3. Offset between the VLBI and LLR UT1 series.

21


