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The shift due to Jovian gravitational deflection in the apparent angular position

of the radio source P 0201+ii3 was measured with very long baseline interferometry

(VLBI) to demonstrate a differential angular tracking technique with nanoradian
accuracy. The raypath of the radio source P 020I+113 passed within 1 mrad of

Jupiter (approximately 10 Jovian radii) on March 21, 1988. Its angular position
was measured 10 times over 4 hours on that date, with a similar measurement set

on April 2, 1988, to track the differential angular gravitational deflection of the

raypath. According to general relativity, the expected gravitational bend of the
raypath averaged over the duration of the March experiment was approximately

1.45 nrad projected onto the two California-Australia baselines over which it was
measured. Measurement accuracies on the order of 0.78 nrad were obtained for

each of the ten differential measurements. The X 2 per degree of freedom of the data

for the hypothesis of general relativity was 0.0, which suggests that the modeled
dominant errors due to system noise and tropospheric fluctuations fully accounted

for the scatter in the measured angular deflections. The )_ per degree of freedom

for the hypothesis of no gravitational deflection by Jupiter was 4. I, which rejects the

no-deflection hypothesis with greater than 09.990-percent confidence. The system

noise contributed about 0.34 nrad per combined-baseline differential measurement
and tropospheric fluctuations contributed about O. 70 nrad. Unmodeled errors were

assessed, which could potentially increase the 0.78-nrad error by about 8 percent.

The above X 2 values, which result from the full accounting of errors, suggest that

the nanoradian gravitational deflection signature was successfully tracked.

I. Introduction

This article describes the first demonstration of a muir.i-

source, wide-fie]d very long baseline interferometry (VLBI)

tracking technique, with temporally differential accur_ies
on the order of 1 nrad. In the standard mode of space-

craft angular tracking, called Delta Differential One-Way

Ranging (ADOR), the VLBI delays from a target space-

craft and one reference radio source are differenced in order
to cancel common mode errors. An extension of this tech-

nique to include observations of multiple reference sourcesl

along with that of the target was proposed to improve on

ADOR performance [1]. As compared with typical ADOR
errors of 10-30 nrad, the multiple source, or "local ref-

erence frame," approach yields 1-nrad performance; the

demonstration reported here was the first test of the mul-
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tiple source approach. The sensitivity of the DSN, coupled

with wide recorded and spanned bandwidths for the VLBI

data, enables a single angular determination with the mul-

tisource observation strategy in approximately the same

amount of time (approximately 30 minutes) required for

a single ADOR measurement with the narrow-bandwidth
operational system.

In this demonstration, a natural source rather than a

spacecraft was used as the target. In the first phase of

demonstrating advanced angular tracking techniques, nat-
"ural radio sources have frequently been used as targets

instead of spacecraft [2,3]. The principal reasons for using

natural sources are that (1) they exist in sufficient num-

ber and strength that a variety of target-reference source

geometries are available at any time and (2) their "trajec-
tories" are well known. In most natural source demonstra-

tions, the goal is to see how closely a stationary target can

be tracked. In this demonstration, the goal was to track

the angular shift of the target source, resulting from plan-

etary gravitational deflection, between two epochs. The

angular position of the radio source P 0201+113 was mea-
sured ten times during each of two VLBI sessions, on

March 21, 1988, and April 2, 1988. According to general

relativity, the proximity of the target's raypath to Jupiter

(I mrad, or 10 Jovian radii), on March 21, 1988, produced

an average gravitational deflection of about 1.45 nrad. On
April 2, 1988, the raypath passed within about 3 degrees

of Jupiter, which produced an expected deflection of less

than 0.10 nrad, and the same observation schedule was

repeated to attempt to track the differential gravitational

signature. This differential signature was equivalent, for
example, to a spacecraft motion of about 1 km at Jupiter

between the March and April sessions. It has been shown,

for example [4], that tracking at this level on approach to
Jupiter would improve the determination of time of arrival
and altitude above Io for Galileo.

During the period of mutual visibility (about 4 hours),
the near-occultation event was observed ten times over

two California-Australia (approximately 10,600-kin) DSN

baselines, with DSS 13, DSS 15, and DSS 43. Along

with the target source, P 0201+113, several other sources
were observed to estimate parameters characterizing clock,

Earth rotation, and tropospheric effects [I]. Because the

session-to-session differences in the angular positions of

P 0201+113 were inferred from the VLBI data, the results

were largely insensitive to stationary radio source position

or structure uncertainties. The results were also largely

insensitive to any other error source, such as antenna de-

formation, which is a function of antenna position, and

therefore repeats with the same sidereal schedule. Details

of the experimental procedure are presented in Section II

following a description of high-precision astrometric VLBI

tracking below.

In astrometric VLBI tracking measurements, the angu-

lar position shift of a radio source from its expected or a

priori value is inferred from the residual geometric delay)

The geometric delay is the difference between the arrival

times, at each station of a baseline, of an electromagnetic

wavefront from a radio source, which can be either a space-

craft or natural radio source. In this article, the geomet-

ric delay is defined to be positive if the wavefront arrives

at Station 2 later than Station 1. The residual geomet-

ric delay for a single observation, Arg, is defined here to

mean the delay due only to a shift Asp of the apparent
source coordinate from its expected value, projected onto

the baseline. The quantities Asp and Arg are related by

(see, for example, [1]):

Asp = cAr9 (1)
Bp

where Bp is the projection of the baseline onto the plane
of the sky and c is the speed of light. The baseline vector,

of which Bp is a component, points from Station 1 to Sta-
tion 2. In the absence of measurement or modeling errors,

Asp includes contributions from gravitational deflections
induced by masses close to the raypath, and from radio

source position and structure uncertainties. For spacecraft

measurements, Asp also contains position departures from
those given by a priori trajectories. In this analysis, solar

deflection has been modeled in the a priori estimates of the

geometric delay. The gravitational deflection signatures

contributing to Arg, and therefore to Asp, are due only
to Jupiter. The accuracy of the solar deflection modeling
will be discussed in Subsection V.B. Special relativistic ef-
fects have also been modeled. In the differences between

Asp determined from two sessions at the same sidereal
time, stationary position and structure errors largely can-

cel, while the changes in gravitational signatures between
the two sessions remain. In this natural source demonstra-

tion, the differences in gravitational signatures between
the March and April sessions mimic unmodeled differen-

tial spacecraft motion. The set of measured differences in

Asp are the final result of this demonstration. It will be
shown below that these differences, 6Asp, arise primarily

from (1) the difference in the strength of Jovian gravita-

tional deflection between the two sessions and (2) modeled
stochastic errors.

I The term residualused throughout this article means the difference
between the measured value of a quantity and an a priori estimate.
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According to general relativity, the contribution to the

terrestrially measured Arg due to the curvature of space-
time around a spherically symmetric body of mass M is

approximately

Arg,ret -- 2MGlnrl+Fl-k
c3 r_ + _. k (2)

where G is the gravitational constant equal to 6.67 x 10 -s

cma/gm.s 2, V/is the vector pointing from the center of the

gravitating body to the ith station of the baseline, and ]¢

is the unit vector pointing from the center of the gravitat-
ing body to the radio source. A term which differentially

cancels between two observations at equal sidereal times

has been dropped. This term, which compensates for the

coordinate time of flight increment due to tile body's field

at the Earth (e.g., [5,6]), is less than one picosecond for
Jupiter, even without differential cancellation.

In the next section, the experimental approach and de-

tails will be given. Sections III and IV describe the anal-

ysis procedures and the results, respectively. Section V
enumerates unmodeled error sources, and Section VI con-
tains conclusions and future directions.

II. Experimental Approach

A. The Local Reference Frame VLBI Technique

Ill the local reference frame technique, the residual geo-
metric delay of a target radio source is inferred from VLBI

observations of the target and several reference sources.

For the target observation, the measured residual delay

between the two antennas, At, contains the desired geo-

metric contribution, Arg, along with other unwanted delay
effects caused by errors in clock, Earth rotation, and tro-
posphere characterizations. The basic idea of the VLBI

technique used here is, for each of the target observations

in a single experiment, to first separate the Arg component
of Ar from other contributions to the measured target in-

terferometric delay. From the set of Arg's, a set of appar-

ent angular deflections, Asp's, are inferred, as indicated by
Eq. (1). This procedure is then repeated for a later exper-

iment and the Asp determinations at equal sidereal times
are differenced to form the final result, a set of differential

apparent positions, 6Asp's. In order to understand the

extraction of the target residual geometric delay from the
measured residual delay, the latter is expressed in terms

of the residual geometric delay and other residual delays
due to the effects mentioned above:

Ar =Arg + Arepoch

+ Arra_e + Arrow1 + A_'rot_

+ Ar_opl + Avtrop_ + e (_

In Eq. (3), Ar_voch and Ar_ate are tile delay errors associ

ated with offsets in tile clock epochs and rates between th

two stations of the VLBI baseline. Delay errors due to un

calibrated Earth rotations about each of two axes orthog.
onal to the baseline are represented by Argot1 and Ar_ot_

The errors due to static tropospheric delays at each statiol

are represented by Artropl and Artrop_ for Station 1 anc
Station 2, respectively. The quantity e represents all othe

errors not explicitly included. Associating one paramete

with each explicit term in Eq. (3) means that a minimun

of seven observations, one target and six reference scans

are needed to estimate all indicated error parameters a_

well as the actual source shift. An expression similar te

Eq. (3) can be written for each reference source scan, witt

Arg equal to zero. The geocentric delays are set to zero an-
ticipating that stationary reference radio source positior

and structure uncertainties, which can each be as large
as 5 nrad [7,8], will have identical contributions to ref-

erence residual geometric delays at corresponding epochs
for each session. As with target observations, solar deflec-
tion effects have been modeled and removed from reference

source delays (see Subsection V.B). By using Eq. (3) and
the analogous equations for the reference source observa-

tions, the target Arg is extracted from the measured target

and reference Ar's. As noted above, repeating the obser-
vation sequence in a later session enables the extraction of

6Arg,_i, the change in relativistic delay between observa-
tion sessions. This is actually accomplished by differencing

Asp determinations extracted for the target during each

session. An equation analogous to Eq. (3) can be written

for the residual delay rates [1]. The temporally differen-
tial local reference frame technique can be regarded as an

extension of the technique used to measure gravitational
bending in [9] with one important distinction: Spatially

differential observation errors are parameterized in terms

of explicit physical effects (e.g., Earth rotation), as op-
posed to a parameterization linear in arc length separa-
tions on the sky.

B. Experimental Details

As indicated by Eq. (3), multiple reference sources were

used to estimate systematic delay effects for each of two
experiments. The near-occultation event was observed

from March 20, 1988, 23:30 UT, to March 21, 1988, 03:28

UT, and the entire observing schedule was repeated from
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April 2, 1988,22:39UT to April 3, 1988,02:37UT.The
MarkIII VLBI dataacquisitionsystem[10]wasoperated
at eachstationin modeA, whichentailsreceivingand
recordingdatafrom282-MHzchannelsspreadoverthe
rf band. The centroidsof the 2-MHzchannelsspanned
twobands(S-bandandX-band)for chargedparticlecal-
ibration. The spannedbandswereapproximately2285
q-I9 MHz and 8450 4-53 MHz. The characteristics of the
three antennas used are summarized in Table 1.2,3

The target and reference radio sources observed are
listed in Table 2. The table shows source coordinates and

formal errors, 4 but the errors are preliminary and should

be used to gauge relative measurement uncertainties of

source coordinates. For a given source, these errors de-

pend on its strength, the number of times it was observed,

the baseline-source geometries, and the parameterization

of the VLBI delays from which they were estimated in

the global reference frame analysis. The true source posi-

tion accuracy is probably never better than about approx-

imately 2 nrad due to a number of possible systematic
effects at that level. The baseline components used in the

analysis are given in Table 3.

The observing sequence was divided into ten sub-

sequences, one for each target measurement. In each sub-

sequence, reference sources preceded and followed the tar-

get. The subsequences included target observations at the
epochs given in Table 5 on results. The target observations

at the first, fourth, and eighth epochs were surrounded by
six other reference observations. The target observations

for all other epochs were preceded and followed each by

a single observation of the closest source, P 0202+14. As

emphasized in Subsection V.D, in order to minimize error
contributions due to radio source position or structure un-

certainties, observation schedules were duplicated as much

as possible between the March and April sessions. There-
- fore, if a reference scan was missed on an individual base-

line for one epoch of a session, it was deleted from the

analysis, for that baseline, at the corresponding epoch in
the other session. All target scans were successful. One to

J. C. Breidenthal, DSN/Flight Interface Design Handbook 810-5,
Rev. D, vol. I, Module VLBI-IO, Table 2 (internal document), Jet

Propulsion Laboratory, Pasadena, California, June 1, 1990. See

also S. D. Slobin, Module TCI-IO, Rev. E; R. W. Sniffen, Module

TC[-_O, Rev. C; and S. D. Slobin, TCI-30, Rev. D in the same
document.

a L. J. Skjerve, personal communication regarding the characteris-
tics of DSS 13, Tracking Systems and Applications Section, Jet

Propulsion Laboratory, Pasadena, California, February 1991.

40. J. Sovers, personal communication regarding radio source cat-

alog derived from JPL International Radio Interferometric Sur-
veying and Crustal Dynarnics Project data, Tracking Systems and

Applications Section, Jet Propulsion Laboratory, Pasadena, Call-

fornia, February 1991.

two reference source scans were deleted from each baseline.

The determination of VLBI delays, rates, target positions,

and modeled error parameters are described in the next
section.

III. Analysis Procedures

The standard procedures for analyzing VLBI data are

discussed in [11,12,13]. In this section, the analysis of the

gravitational deflection VLBI data will be discussed, with

emphasis on the departures from the standard procedures.

The extraction of interferometric delays and target source

coordinates is followed by a discussion of the errors mod-

eled in the analysis.

A. Extracting Interferometrie Delays

_From Eqs. (1), (2), and (3), it can be seen that the
interferometric delays Ar are required to infer the mea-

sured Arg,r_l and the resulting angular deflections Asp for
each session. The first step in tile VLBI processing was

to obtain the interferometrie group delays for each few-

minute scan from the signals recorded at each station for

each baseline. Since the integer cycle ambiguity associ-

ated with the group delay is much larger than that associ-

ated with the phase delay, group delays were used because

they require less-accurate a priori information. The sig-
nals recorded at the stations included the broadband noise

from the radio sources, background noise, and phase cali-

bration tones to measure instrumental stability. Interfero-

metric group delays were determined by cross correlation
of the radio source data at the JPL/Caltech Block II pro-

cessor [14]. Phase calibration signals were also extracted
at the correlator. Both interferometric and phase cali-

bration delays were refined with post-correlation fringe-

fitting procedures. 5 A combination of phase calibration

delays and short-baseline interferometric delays from the
DSS 13-15 baseline were used to detect and correct signif-

icant instrumental effects in the long-baseline data. The

corrected group delays were then used to estimate target
source coordinates for the March and April sessions, as
described below.

B. Extracting Source Coordinate Shifts by Parameter

Estimation

The ultimate product of the data analysis is the set of

projected, differenced source coordinate shifts of

P 0201+113, 6Asp, due to 6Ars,ret at each of the ten ob-
servation epochs. The projected coordinate shift at each

5 S. T. Lowe, Theory of Post-Block II VLBI Observable Extraction

(internal document), Jet Propulsion Laboratory, P_sadena, Cali-

fornia, March 1992.
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epoch was determined by fitting the group delays and

phase delay rates for all target and reference source obser-

vations to a set of projected source coordinate parameters

for P 0201+113, as well as other parameters describing the

errors in Eq. (3). The group delays were more important
than the phase delay rates in the fit because, as discussed

in the next section, typical delay errors were equivalent to
about a 0.78-nrad error in the source coordinate shift per

differential observation, while rate errors were equivalent
to about a 30-nrad error.

Since VLBI delays are sensitive only to the component

of the residual source position that lies along the baseline

vector, this projection was estimated at each observation

epoch for each session. The projection of the angular shift
of P 0201+113 onto the baseline was determined by esti-

mating the shifts of right ascension (Aa) and declination

(AS) from a priori values. In order to constrain the source
coordinate shifts to lie along the baseline projection, Aa

and A6 were forced to obey the following equation:

Ac_(t)(l_(t) -- [_(t). _sinS) + _(/3(t) x g)z = 0
COS 0

(4)

where the residual right ascension and declination shifts

are at epoch t, and g is a unit vector in the direction
of P 0201+113. The unit baseline vector /3 and its z-

component /3_ must be evaluated in the same celestial

frame as Aoc and A6. The constraint of Eq. (4) was used

in the analysis because MODEST [13], the parameter esti-

mation software used, was set up to estimate Ac_ and AS.

An equivalent approach, which would have required writ-

ing new parameter estimation code, would have been to

estimate the projected coordinate shifts, Asp(t), directly,
without using the intermediary shifts As and AS. Using

the existing code, tile values of Asp (t) were then calculated
from Ao_ and A5 according to

= cos + (5)

In addition to a projected residual source coordinate

per epoch per session, at least one parameter per _erm in

Eq. (3) was also estimated for each session. The equations

for the partial derivatives of the delay and delay rate with

respect to these parameters and source coordinate shifts

are described in [13]. A more schematic treatment of the
partial derivatives is given in the appendix of [1]. Four

sets of station-differential clock epochs and rates were es-

timated for each session, over intervals of approximately

one hour. Earth rotation signatures were assumed to b

linear over each session, during which a single set of thre

Earth rotation parameters was estimated. The rates c

change of the Earth rotation parameters over the 4-hr ses
sions were inferred from 5-day differences in Earth rotatioJ

tables [15]. In MODEST, the rotation parameters wer,

the magnitudes of the standard UT1, polar motion-x, am

polar motion-y rotations. Since a single baseline is sensi
tive to only two components of Earth rotation, the thre,

parameters were constrained as follows:

b_AO v + bvAO_ - b, AO, = 0 (6:

where b_, bu, and b, are the components of the unit base-

line vector in an Earth-fixed frame, and A0_, A0v, an6
A0, are the z-pole, y-pole, and UT1 residual rotatiow

magnitudes. The constraint of Eq. (6) ensures that the

magnitude of the rotation about the baseline vector tc
which the data are insensitive is not estimated. The othel

estimated errors indicated by Eq. (3) are the static tro-

pospheric delays at each station. A single zenith delay

parameter per station per session was estimated from the
data. The stochastic nature of the troposphere was in-

cluded in the analysis with delay and rate troposphere co-

variance matrices described in the next subsection.

C. Modeled Stochastic Errors

The errors assigned to the difference between projected

source coordinate shifts for the March and April experi-
ments were derived from the standard least-squares for-

malism (e.g., [16]). These errors in the final results are
solely a function of the modeled covariance of the e error

term in Eq. (3) and of the partial derivatives relating delay
and rate observations to estimated parameters. Modeled

stochastic observational errors, assumed to be independent

between the two sessions, included only the white VLBI

system noise and correlated tropospheric noise. The sys-

tem noise error for each group delay and phase delay rate

was calculated during the delay and rate extraction proce-
dure [17], s and is based solely on the number of indepen-

dent data samples in each scan and the observed correlated

amplitude of the radio source over the baseline. Typical

system noise errors were about 10-20 picoseconds per ob-

servation (0.34-0.68 nrad) for the delay and 1.5 ×10 -15
to 3 × 10 -15 sec/sec (0.58-1.16 nrad) for the delay rate.:

The system noise errors for intercontinental baselines using

DSS 13 were about twice as large as those using DSS 15,
which is consistent with the station characteristics of Ta-
ble 1.

6 Ibid.
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The delay and rate covariance due to wet tropospheric
fluctuations was calculated using the model of Treuhaft

and Lanyi [18]. Their model accounts for spatial and tem-

poral correlations of the tropospheric fluctuations. Stan-
: dard wind speeds of 8 m/see and wet tropospheric scale

heights of 2 km were adopted. Because the model predicts

that the tropospheric contribution to the delay rate data

far outweighs the system noise contribution, the rate data
were used to estimate the level of tropospheric fluctuations

for each session. The key model parameter derived from
the VLBI rates was the structure constant of the refrac-

tivity structure function. This structure function, D×, for

- two points in the atmosphere separated by a distance r, is

given by

! Dx(r ) = C2r 2/3 (7)

For each experiment, normalizing structure constants C,
for each station, were chosen to make the reduced X 2 of

a rate-only fit equal to unity. Since the rate data were
fit for each experiment separately, and since these data

have a very small effect on the final astrometric result, as

compared with the delays, this method of normalizing the

troposphere covariance is essentially independent of the fi-

nal differential angular result. It is therefore an a priori

method of estimating the error due to tropospheric fluctua-
tions and does not use the consistency of the final result to

scale the assigned errors. If the rms rate scatters induced

by the troposphere over each of the California stations are

assumed to be equal, then the short (approximately 21-

km) baseline can be used to infer the level of fluctuation
in California. The long baseline rates can then be used
to determine the Australia fluctuation contribution. The

values of the derived single-station rms delay rates trd, and

structure constants C are given in Table 4 for the two lo-

cations.

These structure constants were used to calculate tropo-

sphere observation covariance matrices for each baseline,
for each session. These matrices were added to the diag-

onal system noise matrices to form the total observation

covariance in the estimation of the Asp's. In combining
the baselines from a single session, the delay and delay-

rate system noise errors from each baseline can be consid-
ered independent, but the tropospheric noise is correlated
between baselines. The correlation arises because the two

baselines share the common Australia station, and to a

lesser degree, because the California stations are separated

by 21 kilometers. The tropospheric correlations between
observations on different baselines were explicitly included

in the analysis. Assuming that tropospheric fluctuations
in California and Australia are uncorrelated, the tropo-

sphere covariance matrix element between the ith VLBI

delay of the DSS 13-43 baseline 7"13-43, and the jth delay

of the DSS 15-43 baseline _'15-43`; is given by

COV(T13_43,, 7"15--43; ) = COV(T43,, T43j) "4- COV(T13,, T15i)

(8)

where cov indicates the covariance between the two tropo-

spheric delays in the argument, and v43,, for example, is

the tropospheric delay at DSS 43 for the ith scan.

The level of error induced by the tropospheric fluc-

tuations, assuming the structure constants in Table 4,

was approximately 0.70 nrad for each differential mea-
surement. This combines with an average system noise of

about 0.34 nrad to give a total error of about 0.78 nrad per
differential observation for the combined baseline system.

Because the modeled troposphere covariance downweights

delay rate measurements in accordance with the trdr val-
ues in Table 4, the delay rates are much less powerful in

determining the final differential angles than the delays.

Delay rates alone would have determined angular deflec-
tions with accuracies worse than 30 nrad per differential

measurement.

IV. Results

The results of the gravitational deflection measure-

ments are shown in Figs. l(a), l(b), and l(c). Figures

l(a) and l(b) are plots of the measured angular differ-

ences, gasp, between the March and April experiments on
the baselines between DSS 13 and DSS 43, and between

DSS 15 and DSS 43, respectively, as a function of Uni-

versal Time for the March experiment. Figure l(c) shows

the combined result for the two baselines, accounting for

tropospheric correlations between baselines as described
by Eq. (8). The curved lines of Fig. 1 show the pre-

diction of general relativity for Jovian deflection, which

can be obtained from Eqs. (1) and (2), and the hori-

zontal, zero-deflection line is shown for reference. The

general relativity curve decreases with time largely be-
cause the projection of the apparent coordinate shift on
March 21 decreased as the baseline vector rotated. The

unprojected effect decreased by approximately 10 percent
over the 4-hour session, due to the decreasing colinearity of

P 0201,4,113, Jupiter, and the Earth. The larger error bars

at earlier epochs are due to low-elevation observations in

Australia, where tropospheric fluctuations were strongest,
as can be seen from Table 4. In order to produce Figs. l(a)

and l(b), the parameters discussed after Eq. (5) were es-

timated along with the values of Asp. In order to produce
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the combined-baseline solution of Fig. l(c), the identical
set of parameters was estimated, with an additional set of

clock parameters to account for the independence of the
clocks at DSS 13 and DSS 15.

Table 5 shows the results in numerical form. The val-

ues of the reduced X 2, X_, of the data about the general

relativity and zero-deflection curves are given in Table 6
for each baseline and the combined result. In these X_

calculations, correlations are included between the values

of Asp estimated at different epochs within each exper-
iment. The X_ for the general relativity curves are all

within one standard deviation of unity for the X_ distribu-

tion with 10 degrees of freedom. Based on the combined

no-Jovian-deflection X_ of 4.1, that hypothesis is rejected

with greater than 99.999-percent confidence, given the er-

ror modeling discussed in the previous section. The rms
scatter of the combined result about the hypothesis of gen-

eral relativity was 0.76 nrad. This is a measure of the

demonstrated tracking accuracy per data point, or per 25-

to 30-minute time interval. The X_ values for general rel-
ativity and no-Jovian deflection were subject to shifts of

0.2 and 0.4, respectively, when plausible modeling varia-

tions were tried. An example of one such variation was the
alteration of the wind vector direction in the troposphere
covarianee calculation.

V. Unmodeled Error Contributions

In the next few subsections, the levels of possible errors
not included in the estimated or modeled error terms of

Eq. (3) will be explored.

A. Stochastic Behavior of Clocks and Earth Rotation

As described in Section III.B, both clock and Earth ro-
tation effects were characterized with linear trends. In

the case of the clocks, both the slope and intercept of

the linear trend were estimated. Clock epochs and rates

were estimated over approximately one-hour periods to re-

move the stochastic wandering of the hydrogen maser stan-
dards used at the DSN stations. This characterization is

only an approximation of the actual stochastic clock be-

havior. Typical DSN clocks have Allan standard devia-

tions between 10 -15 sec/sec and 10 -14 sec/sec [19], over

time spans of a few thousand seconds. The clock rate

parameters, Ar,.at_ of Eq. (3), estimated from the short-
baseline analyses, implied an approximate single-station

Allan standard deviation of 5 x 10 -is sec/sec. Simulations

were performed to determine the effect of clock behavior
characterized by Allan standard deviations with tempo-

ral dependences, 7 normalized to the short-baseline results

The simulations showed that deviations from tile piecewis_
linear clock behavior contributes about 0.05 nrad of addi-

tional error to angular deflection estimates of Fig. 1(c)

This angular error is much smaller than that expected

from either system noise or the troposphere, which is wh:_
stochastic clock behavior was not modeled.

Earth rotation stochastic behavior was also modeled as

linear due to similar reasoning. The variation of Earth

rotation offsets during the 4-hour sessions was assumed tc

be equal to that derived from the published rate over 5-day

periods surrounding each epoch [15]. Earth rotation rates

over 4-hour periods can differ from those nominal 5-day

rates by less than 5 nrad per 4-hour observing schedule. A

sensitivity analysis showed that such a departure in Earth
rotation rate would contribute less than 0.10 nrad of error

to the estimated source coordinate shifts in Fig. l(c).

B. Solar Deflection Modeling

One possible contribution to the results of Fig. 1 is the

incomplete removal of solar gravitational bending. If the

solar gravitational deflections from each day, of both tar-
get and reference sources, were not removed, the apparent

differential angular deflections of P 0201 + 113 between ses-
sions would have been on the order of 50 nrad. Therefore,

accurate solar gravitational deflection modeling is needed
to separate the Jovian effect from that of the Sun. In

addition to analytically confirming the general relativity

calculation in the modeling segment of MODEST [13], s

an empirical test of the solar deflection model was per-

formed by considering another source in the schedule, P

0202+14, as the target. This source is 4 degrees away
from P 020I+113 and from Jupiter and should therefore

show no planetary gravitational deflection signature be-
tween the two sessions. This test, although consistent with

zero deflection for P 0202+14, was a very weak one. The
correlations between the deflection results for P 0202+14

and those for P 0201+113 were very high because both re-

sults came from essentially the same data. The P 0202+14

solution is mentioned to report that this obvious test was

tried, and that it was consistent with accurate solar mod-
eling. However, the analytic check of the MODEST mod-

eling is a much stronger reason to doubt solar gravitational

modeling errors. The analytic check showed that the solar

modeling was accurate to better than about 3 picoseconds,

r j. B. Thomas and R. N. Treuhaft, personal communication re-

garding the treatment of relativity by MODEST software, Track-

ing Systems and Applications Section, Jet Propulsion Laboratory,
Pasadena, California, October 1990.

s/bid.
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or about 0.10 nrad, for a single epoch, which should be re-

garded as an upper bound for the differential result. The

calculated Jovian deflection in Fig. 1 is accurate to a much

higher level.

The level of solar deflection for both target and ref-

erence sources mentioned above suggests that these data

could have been analyzed to determine solar deflection to

an accuracy on the order of one percent. As a consistency

check, the data set was reanalyzed to solve for the 2/pa-

rameter of relativistic gravitational theories [20]. Based
on the differential solar deflection signatures between the

March and April sessions, due to the motion of the Earth

about the Sun between those sessions, 7 was determined

to be equal to 1.011 -I-0.036. This value is consistent with

general relativity's prediction that 3' be equal to unity, and

can be obtained by using the VLBI data from the March

andApril sessions. In order to investigate the electron

columnar content along the line of sight to P 0201+113,

Fig. 2 shows the difference in electron columnar content

between adjacent scans of P 0201+113 and P 0202+14

versus time, differenced between the March and April ses-
sions. This double difference was formed to look for an in-

creased charged particle columnar content along the line of

sight to P 0201+113 during the March session. Differenc-

ing the electron content between sources compares the line

of sight near Jupiter with one far (4 degrees) from Jupiter,
and differencing between sessions reduces geometric effects

due to the different slant angles through the ionosphere of

the two raypaths. The electron contents of Fig. 2 are de-
rived from the DSS-15 to DSS-43 S- and X-band delays.

The electron content at time t, TEC(t), is calculated from

the error is equivalent to a 1.8-percent measurement of so- the [esidual group delays at S-band and X-band, Ars(t)

lar deflection, and Arx(t) as follows:

C. Propagation Through Jupiter's Magnetosphere

Another possible mechanism contributing to the mea-

sured deflections of Fig. 1 is refractive bending through

Jupiter's magnetosphere. Although this error source
would not be a concern for demonstrations with sources

far from Jupiter, it is described here because it is impor-
tant in this experiment and could conceivably be of oper-

ational importance for a spacecraft in orbit about Jupiter.

As noted in Section II.B, charged particle effects were cal-

ibrated by observing at S-band (2285 MHz) and X-band

(8450 MIh). Magnetic fields or electron columnar contents
(electron densities integrated along the direction of prop-

agation) much larger than those found near Earth would
require higher order corrections than the simple dual fre-

quency method used here. From Voyager 1 measurements,
the magnetic field at 10 Jovian radii, near the equatorial

plane, is approximately 4 mG [21]. This field strength is
about 100 times smaller than that of the field at the sur-

face of the Earth. The differential field across the base-

line is a few tenths of a milligauss. Voyagers 1 and 2

plasma wave measurements indicate that the equatorial
electron content, differenced between the ends of a 10,000-

kin baseline, for a ray at 10 Jovian radii is about 5 x 10 is

electrons/m 2 [22]. The presence of these baseline differ-

ential magnetic fields and electron columnar contents will
cause delay errors equivalent to less than 0.001 nrad in

the angular measurement, if the dual frequency approach
to charged particle calibration is used. 9

An empirical determination of the electron content

along the line of sight through Jupiter's magnetosphere

9 S. T. Lowe, op. cit.

2 2

TEC(t) = mc WsW x (a s(0 - (9)
_X -- _)S

where m is the electron mass in grams, e is the vacuum

speed of light in centimeters per second, e is the elec-

tron charge in statcoulombs, and ws and wx are the S-

and X-band centroid frequencies [23]. From the figure,
it can be seen that the temporally differential columnar
content differs between the two sources by less than 10 is

electrons/m 2, or about an order of magnitude lower than
the number derived from the literature above. Since the

raypath of the target passed 10 Jovian radii to the north
Of the planet, the baseline differential electron content de-

rived from the equatorial Voyager data should be regarded

as an upper bound. In Fig. 2, there may be some iono-

spheric contribution to the observed electron contents due

to the changes in Sun-radio source angles between the two

sessions, and a possible change of ionospheric activity be-
tween the two sessions. Both of these effects would cause

an imperfect cancellation of the geometric ionospheric ef-
fect mentioned above and would further lower the differen-

tial electron content ascribed to the Jovian magnetosphere.

This empirical study of the magnetospheric electron con-

tent suggests that the 10-picoraAian error derived from the

Voyager data is probably an overestimate and not a con-

c_ for the error budget of this experiment.

D. Radio Source Position and Structure Errors

There are two classes of radio source position and struc-

ture errors: stationary and fluctuating. As has been men-

tioned, stationary reference radio source position or struc-

ture errors identically cancel between sessions in which the
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observation sequence is exactly repeated, as long as the

equations that relate measured residual delay to parameter
shifts are also identical for each session. This cancellation

occurs because any delay or delay rate effect that exactly
repeats will affect the apparent coordinates of P 0201+ 113

identically in both sessions. If the observation sequence is

changed, or if the analysis equations are changed, even de-
lay and delay-rate position or structure effects which side-

really repeat between schedules will cause errors in the

final results [1]. Stationary radio source structure errors

can therefore affect the differential results presented here

because: (1) Beginning and ending sidereal times for each

scan differed slightly between the March and April epochs,

and, as indicated in Table 4, (2) a different ratio of tro-

pospheric error to system noise error was ascribed to each

session. The effect of stationary reference source position

errors on the measured angular deflection of P 0201+113
was calculated by assuming stationary position errors and

determining their effect on the final result for each epoch.
It was found that reference sources temporally close to the

target observation in question were most important and

that the incurred error in the target position was on the

order of l0 percent of the average stationary errors in those

reference sources. By conservatively considering possible

systematic errors, an average accuracy of 2.42 nrad was as-
cribed to the radio source coordinates in Table 2. It follows

that errors on the order of 0.24 nrad could result from typ-
ical stationary reference source uncertainties. While data

editing could have reduced this error further by making
the observation sequences more similar to each other, it
did not seem warranted for an error of this size. It is also

important to note that had the resulting sensitivity to sta-

pected. Covariance studies show that these errors wouh

propagate into about 0.10-nrad errors in the P 0201+11:

coordinates. Thus, the combined stationary and fluctu
ating radio source coordinate errors could add about (

percent to the nominal 0.78-nrad formal errors in this ex

periment.

E. Geophysical Effects

The geophysical model used to calculate the residual

delays of Eq. (3) contains many components which could

conceivably contribute to a differential error between the

two observation epochs. Delays due to the tides, base-

line length uncertainties, ocean loading, and tropospheric
mapping functions could change between epochs and must

be removed in order to avoid aliasing into the gravitational
deflection signature. Each of these effects was estimated

with a sensitivity analysis, and they evidenced typical sig-

natures of less than 0.05 nrad apiece. An overall error of

0.10 nrad is assigned to geophysical effects.

F. Summary of Unmodeled Errors

Table 7 summarizes the unmodeled error effects. Added

in quadrature, the unmodeled effects could contribute up
to 0.32 nrad. The total unmodeled error could therefore

add 8 percent to the 0.78-nrad modeled error. However,

there is no indication from the X_ values of Table 6 that
unmodeled errors were important in the analysis of these
data.

It is worth noting that the accuracy of the ephemeris of

tionary errors been higher, the inequality of the observabiel Jupiter is not a concern for the analysis of this experiment. _

troposphere covariance between sessions could have been

adjusted. In this set of experiments, using a suboptimal

covariance matrix for the troposphere of one experiment
to make it more equal to that of the other was deemed

unnecessary. In other differential experiments, the error
incurred by the inequality of the tropospheric covariance

matrix between sessions may be large. In that case, sub-

optimal tropospheric matrices may be adopted in order

to desensitize the differential result to stationary reference
source uncertainties; a trade-off between these two error
sources must be considered.

Errors in the Jovian ephemeris would change the general

relativity curve of Fig. 1, which is obtained with Eqs. (1)
and (2). The current ephemeris accuracy of Jupiter is
about 200 nrad [25], which causes uncertainties in the the-

oretical curve of Fig. 1 at the level of less than 0.005 nrad.

Conversely, the position of Jupiter in the radio reference
frame is very poorly determined by this experiment, rela-

tive to the current ephemeris accuracy.

VI. Conclusions

Tile second type of radio source uncertainty is due to

fluctuations of apparent source position due to a chang-

ing radio source structure, which results in an effective

proper motion. From [24], it can be seen that average ra-

dio source position shifts clue to structure changes are on

the order of 5 nanoradlans per year. Assuming that the

apparent change in position is linear with time, over 13

days, 0.15 nrad of position change per source would be ex-

The technique of differential VLBI, over two DSN

California Australia baselines, was used to track the angu- :

far deflection of the raypath of P 0201+113 when it passed °

within 200 arcseconds (approximately 10 Jovian radii) of
Jupiter. Two experiments were performed: one at the time

of near-occultation and one 13 days later, when the ray-

path was about 3 deg from Jupiter. The results of Fig. l(c)
yield a X_ about the hypothesis of Jovian deflection of 0.6,
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and are therefore consistent with Jovian gravitational de-

flection of the raypath. The X_ about the hypothesis of
zero Jovian deflection is 4.1, which rejects that hypoth-

esis at greater than the 99.999-percent confidence level,

and suggests that the deflection was successfully tracked

- at the nanoradian level. The tracking demonstration in-

volved estimating clock, Earth rotation, and tropospheric

parameters from observations of a local reference frame of

radio sources surrounding P 0201+113. Because the ref-

erence sources were many degrees from the target to be

tracked, the experiments reported in this article demon-

strate a wide-field differential astrometric tracking tech-

nique with 0.78-nrad accuracy.

The dominant errors in the measurements were white

system noise due to sky and instrument background and

correlated tropospheric noise. The effect of the white sys-

tem noise can be calculated from the number of samples,

or bits, cross-correlated in the VLBI processing and the

observed correlated amplitude. The effect of the corre-

lated tropospheric errors was assessed with a statistical

model of tropospheric fluctuations. This model was nor-

malized separately for each experiment and station by us-

ing the phase delay rate data from both the short and long

baselines formed by the three stations. The system noise

and tropospheric errors contributed about 0.34 nrad and

0.70 nrad to the final 0.78-nrad uncertainty per differential

measurement. The values of X_ derived from the hypoth-
esis of general relativistic, Jovian deflection suggest that

these two modeled error sources fully account for observed
errors in the final results. However, unmodeled effects due

to the stochastic behavior of clocks and Earth rotation, so-

. lar deflection mismodeling, charged particles in Jupiter's
magnetosphere, radio source position and structure errors,

and geophysical effects could add approximately 8 percent

to the 0.78-nrad uncertainty.

There are several improvements in observation and cal-

ibration strategies which could result in higher measure-
ment accuracies for future wide-field astrometric experi-

ments (for a more complete discussion, see [1]). If the
highly accurate phase delay could be used instead of the

group delay, the system noise error would be reduced by
about two orders of magnitude to about 10 prad. Efforts to

resolve phase-delay ambiguities on intercontinental base-

lines are currently under way. The ultimate precision of

this astrometric technique is determined by the system
noise level of the phase delay measurement. It is therefore

worth considering means for reducing other errors to that
level. It is possible that water vapor radiometry [26,27]

could be used to calibrate the wet tropospheric fluctua-

tions, the other dominant error source. Refractivity fluc-
tuations in the dry atmosphere will also contribute to the

astrometric error. The exact level of the dry fluctuation

contribution has not been measured, but it is probably
about a factor of 5-10 smaller than the wet fluctuation

contributions. Barometric arrays or other radio metric

techniques might be useful in calibrating the dry fluctua-

tions. Finally, as noted in Section V, radio source structure

fluctuations are important for differential measurements,

made within a few weeks of each other, at the level of 0.10

nrad. For differential measurements made over longer time

periods, the structure errors will exceed the 0.10-nrad ef-

fects reported in this article. If all other error sources

have been reduced to the approximately 10-prad level, it

may become necessary to account for radio source struc-

ture fluctuations, even over periods as short as a few days.

In addition to mapping reference and target radio sources

over time, another possibility, as yet unexplored, is to add

structure parameters to Eq. (3) and estimate time-varying

structure effects directly from the astrometric VLBI obser-

vaLions. This possibility will be explored in the Advanced

System Program next fiscal year.

An interesting byproduct of this tracking technique is

the measurement of solar gravitational deflection. Be-

cause the solar gravitational effect on tile data presented

here was on the order of 50 nrad (the target was about

25 degrees from the Sun), this experiment constituted a

2-percent solar gravitational measurement. If the target
were a few degrees from the Sun, the solar deflection could

be measured, with better than 0.1-percent accuracy, with

two experiments of the duration of those reported here.

Solar plasma fluctuations would be a possible obstacle,
but with sufficient signal strength, it may be possible to

freeze the solar plasma fluctuations on short time scales

in conjunction with dual frequency calibration. If success-

ful, repeated measurements near the Sun could begin to
improve on the state-of-the-art measurement of the post-

Newtonian 7 parameter of gravity theories [28]. Proof-

of-concept solar deflection experiments are currently sup-

ported by the TDA Science Office.

This demonstration was done with a natural radio

source target, P 0201+113. A nanoradian-tracking demon-
stration on Galileo had been planned before the high-

gain antenna availability became an issue. Unless high-

gain transmission is restored, spacecraft system noise and
charged particle errors incurred with the low-gain S-band
downlink will make a l-nrad Galileo demonstration vir-

tually impossible. A key difference between the space-
craft and natural source targets is in the bandwidth of the

received signals; spacecraft transmit tones, while natural

sources are broadband in nature. Dispersive phase effects

in the receiving electronics may therefore affect the tar-

get spacecraft and natural reference source signals differ-
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ently. Studies of the dispersive nature of the DSN receiv-

ing electronics 1° will be necessary before demonstrating

nanoradian accuracy on future spacecraft, such as Cassini.

Applications of nanoradian accuracy include Jovian

ephemeris development on approach for Galileo, ring anal-

ysis at Saturn for Cassini, and aerocapture approach tra-
jectory optimization for missions to Mars. Temporally dif-

ferential results have been presented in this article. While

temporally differential measurements frequently yieId use-

10C. Edwards and K. Zukor, "Video Converter Local Oscillator Sta-
bility for Block I and Block II VLBI," JPL Interoffice Memoran-
dum 335.1-90-055 (internal document), Jet Propulsion Laboratory,
Pasadena, California, October 30, 1990.

ful navigation products (for example, Jovian ephemeris d_

velopment on approach), absolute positions relative to s(
lar system bodies are also needed. It should be noted thz

radio-source structure at the 5-nrad level and planetary pc

sition errors in the radio frame as high as 200 nrad lirnJ

some classes of body-relative measurements. Temporal_
differential high-accuracy results in the radio frame, hov_

ever, are necessary precursors to nanoradian body-relativ

demonstrations. Temporally differential demonstration

of the sort reported here address a large subset of th

body-relative errors, namely system noise and atmospheri
fluctuations; in fact, analysis of high-accuracy temporall:

differential measurements of planetary orbiters can locat.
those bodies in the radio frame.
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Table 1. Characteristics of the DSN antennas used In the gravitallonal deflection
measurements,

Antenna Location Diameter, m System temperature, K Efnciency, percent

DSS 13 Goldstone 26 30 45

DSS 15 Goldstone 34 20 72

DSS 43 Australia 70 20 66

Table 2. Target and reference radio sources used in the gravitational deflection measurements.

Source name
Right ascension Declination Right ascension Declination

error, msec error, mas
hr rain sec deg mln sec

P 0201+113 02 03 46.65701 11 34 45.4107 0.03 0.B

P 0019+058 00 22 32.44122 06 08 04.2692 0.03 0.9

P 0106+01 01 08 38.77107 01 35 0.3179 <0.01 0.1

GC 0119+04 01 21 56.86167 04 22 24.7347 <0.01 0.2

CTD 20 02 37 52.40567 28 48 08.9904 <0.01 <0.1

GC 0235+16 02 38 38.93011 16 36 59.2750 0.01 0.1

OD 166 02 42 29.17090 11 01 00.7275 0.03 0.4

3C 454.3 22 53 57.74793 16 08 53.5610 <0.01 0.1

Baseline

DSS 13-43

DSS 15-43

Table 3. California-Australia DSN baseline vectors.

X, m Y, In Z, m Length, in

-2109765.511 7337838.348 --7335705.773 10588085.819

-2107355.861 7324010.785 --7351418.891 10588930.183

Table 4. Single-station delay rates and tropospheric refractivity structure function constants.

aar - California, O'dr - Australia, C - California, C -- Australia,
Session

psec/sec psec/sec I0-7m-I/3 10-Tm- I/3

March 21, 1988 0.023 0.086 0.46 1.70

April 2, 1988 0.025 0.060 0.41 0.99
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Table 5. Measured angular deflections of P 0201 + 113 between March 21 and April 2, 1988.

Observation

time past

March 21, 1988

hr rain see

DSS 1343

measured

deflection,

nrad

-00 19 40 2.63 4- 2.09

00 22 14 2.29 4- 1.27

00 39 14 3.25 -l- 1.18

00 56 17 1.00 4- 1.06

01 36 40 3.25 4- 1.28

01 54 05 3.10 4- 1.33

02 11 06 0.75 4- 0.94

02 28 05 1.62 4- 0.99

03 07 05 -0.79 4- 1.11

03 24 04 -1.51 4- 1.41

DSS 15 43 Combined

measured measured Expected
deflection,

deflection, deflection, nrad
rrrad nrad

--0.42 4- 2.39 1.44 4- 1.69 3.21

3.72 4- 0.90 3.52 4- 0.84 2.49

2.85 4- 0.82 3.01 4- 0.78 2.21

2.10 4- 0.76 1.86 4- 0.72 1.95

0.99 4- 0.90 1.67 4- 0.84 1.38

-0.05 4- 0.66 0.49 4- 0.63 1.18

1.01 4- 0.65 1.06 4- 0.61 1.00

-0.16 4- 0.65 0.35 4- 0.61 0.85

0.44 4- 0.66 0.28 4- 0.62 0.61

0.79 4- 0.77 0.47 4- 0.71 0.55

Table 6. The X 2 values for general relativity and no Jovian

deflection hypotheses.

DSS 13-43 DSS 15-43 Combined

Hypothesis X2u X_ X_

General relativity 1.0 1,1 0.6

No Jovian deflection 2,8 3.7 4.1

Table 7. Unmodeled error contributions to 6_Sp.

Unmodeled effect Error, nrad

Clock stochastics

Earth rotation stochastics

Solar deflection

Magnetosphere propagation

Stationary source position/structure

Fluctuating source structure

Geophysical effects

0.05

0.10

0.10

<0.01

0.24

0.10

0.10

Root-Sum- Square 0.32
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Fig. 1. The measured angular deflections, ver-

sus time, of the target radio source P 0201+113
between the March 21, 1988, and April 2, 1988,
sessions for the DSS 13-43, DSS 15-43, and com-
bined baselines, respectively. The curve In each
figure is the baseline-projected deflection, versus
time, caused by the changes In the target ray-
paths' proximity to Jupiter between sessions, ac-
cording to general relativity.
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Fig. 2. The difference In measured electron columnar content be-

tween adjacent scans of the target, P 0201+113, and the closest

reference source, P 0202+14, versus time, differenced between

the March and April sessions. The columnar contents were In-

ferred from the dual frequency VLBI data to Investigate charged

particle propagation effects through Jupiter's magnetosphere.
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