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Summary

A compilation of generation rates and chemical composi-

tions of potential waste streams in a typical crewed space

habitat, reported in a prior NASA Technical Memoran-

dum and a related journal article, has been updated. This

report augments that compilation by the inclusion of the

following new data: those data uncovered since comple-

tion of the prior report; those obtained from Soviet litera-
ture relevant to life support issues; and those for various

minor human body wastes not presented previously

(saliva, flatus, hair, finger- and toenails, dried skin and
skin secretions, tears, and semen), but included here for

purposes of completeness. These waste streams comple-
ment those discussed previously: toilet waste (urine,

feces, etc.), hygiene water (laundry, shower/handwash,

dishwash water and cleansing agents), trash, humidity

condensate, perspiration and respiration water, trace con-

taminants, and dust generation. This report also repro-
duces the latest information on the environmental control

and life support system design parameters for Space Sta-
tion Freedom.

Introduction

For relatively short-duration human space missions, as in

space shuttle flights, essential consumables (e.g., food,

water, oxygen) are provided at launch, and the wastes

generated are returned to Earth, in what is called open-
loop life support. However, for future long-duration

human space missions - as in Space Station Freedom or,

at a still later date, the establishment of a lunar base or a

piloted mission to Mars - it is essential to close as fully as
possible the major life support functions by recycling

water and air, by treating or recycling various waste prod-

ucts, and by growing plants for food. Partial closure of the
atmospheric and water loops is now achievable, but fur-

ther closure is expected to result in minimizing launch

weight by reducing the need for large quantities of

expendables and may even eliminate resupply require-

ments (Evanich, 1988).

As one facet of developing a fully regenerative or closed-

loop life support system for extended human space mis-

sions where resupply is not feasible, waste management

or processing must be perfected, and this calls for an iden-
tification and characterization of the potential waste feed

streams in a typical crewed space habitat. Towards that

end, we recently presented a compilation of generation

rates and chemical compositions of the major waste

streams emanating from humans and equipment in a

closed environment in space (Wydeven and Golub, 1990,

1991) that need to be factored into NASA's Physical/

Chemical Closed-Loop Life Support Research Project

(P/C CLLS). This report aims to update and extend that

compilation by the inclusion of the following data not
considered in the prior reports: those data obtained from

Soviet literature relevant to life support systems for space,
and those for various minor human wastes. Besides

including some additional data uncovered since comple-

tion of the prior reports, we also reproduce the latest
information on the Environmental Control and Life Sup-

port System (ECLSS) design parameters for Space Station

Freedom (Anon., 1990).

As before, we consider in this report a hypothetical long-

duration, human space mission in which food is supplied

at launch, no recycling processes or scientific experiments
are involved, and no plant growth (for food and/or oxygen

and water regeneration) occurs. Thus, we disregard at this

stage such waste streams as inedible biomass, those result-

ing from on-board experiments, and secondary streams

arising from the processing of primary streams, such as
ash from incineration of trash. For an examination of

waste streams present in a space habitat having higher

plants as a source of food, see the paper by Wydeven et al.
(1989); and for a survey of waste recycling issues in

bioregenerative life support and related matters, see the
recent issue of Advances in Space Research (MacElroy

et al., 1989).

As in the prior reports, this one is again concerned with

waste management for extraterrestrial closed environ-
ments and not with that of the "mundane" ten'estrial

sphere, which is also a closed environment. However, the

waste streams for a typical crewed space habitat have

their counterparts on Earth, and where differences exist

between the two types of closed systems, they are more of

a quantitative character than qualitative. Indeed, one may
think of the Space Station environment as a miniature

model of the Earth. Thus, one may foresee the develop-

ment of innovative schemes for adapting terrestrial waste

management and recycling practices to future long-dura-

tion manned space missions, taking into consideration, of
course, such factors as zero or partial gravity in space vis-

h-vis Earth gravity, and different types of optimal power

or energy sources used in space and on Earth. Recipro-

cally, novel procedures developed specifically for space

application may well result in important spin-offs for

waste management at the terrestrial level.

The authors express their appreciation to David A.
Chaumette, M.S. in Aero-Astronautics from Stanford

University, who carried out a detailed literature survey
that forms the basis for this updated report on waste

streams in a space environment. Thanks are also due
Mark G. Ballin, of NASA Ames Research Center, for

making available the ECLSS regenerative life support

data (daily inputs and outputs) presented in table I.



Waste Stream Data

Life Support and Personal Requirements

Table 1 presents the most recent estimates for the ECLSS

design parameters for Space Station Freedom (Anon.,

1990), showing nominal, daily inputs per person of oxy-

gen, food and various water supplies together with daily

outputs of metabolic products and assorted waste waters.

This table also offers a direct comparison with the corre-

sponding waste stream production rates for a typical

crewed space habitat given previously (see table ! in each

of the two papers by Wydeven and Golub, 1990, 1991).

Except for the absence of data on trash and on certain

toilet and hygiene solid wastes (e.g., toilet paper,

cleansing agents), the daily outputs indicated in the pre-

sent table constitute an update of the waste streams given

earlier. The ECLSS design parameters shown in table 1

assume that each occupant of a space habitat will require

about 31 kg/day of supplies. Recently, Hightower (1990)

depicted an idealized P/C CLLS system in which there is
100% reclamation of air and water, but excluding recy-

cling of solid wastes and food, and which reduces the

daily input from 32 kg/day to 3.5 ks/day. These input val-
ues were based on Hightower's estimate for the following

non-recyclable supplies (in kg/day): maintenance supplies

(1.3), plastic and paper supplies (0.7), moist food (1.0)

an d nitrogen (0.5). The special supply of nitrogen is
needed to replace leakage of air to space, while the corre-

sponding loss of oxygen (= 0.15 kg/day) is assumed to be

recoverable via electrolysis of excess water.

As observed before, the principal contributor to solid

waste in the short-duration closed space environments

examined to date, such as space shuttle flights, has been

trash. By way of addition to the wet weight formation
rates of trash given previously for Space Shuttle Flights

STS-29 and -30 (I.49 and 1.62 kg/person-day, respec-

tively), Shuttle Flight STS-35 (63 man-days versus 25 and
20 for STS-29 and STS-30, respectively) generated only

1.14 kg/person-day (Grounds, 1990). This reduction in

weight formation rate was achieved in large measure by
the replacement of polyethylene square beverage pack-

ages, used in STS-29 and STS-30, by Teflon-lined alu-
minum foil beverage pouches used in STS-35. A corre-

sponding reduction in volume formation rate of trash was
also observed for the latter flight: 0.24 ft 3 (-0.68 x 10-2

m 3) per person-day for STS-35 versus 0.49 and 0.47 ft 3

(--!.39 and 1.33 x 10 -2 m 3) per person-day for STS'29

and STS-30, respectively. The pouches were reported to

reduce the volume of the beverage packages by 48%, and

their weight by 56% (Grounds 1990, private communica-

tion), as compared to the plastic square beverage pack-

ages. Flight STS-35 was notable also for having been the

first shuttle flight that employed a prototype trash com-

pactor intended to provide data necessary for the design of

a compactor for Space Station Freedom; compacted trash,
which was collected in 11 bags, consisted of 60% alu-

minum food cans, 30% empty beverage pouches, 5%

uneaten food and 5% paper, and amounted to about 33%

by weight of the total trash. As for the solids content of
the trash in the three shuttle flights mentioned, they were

all quite similar: 72.7, 64.7 and 73.2 weight %, for

STS-29, -30 and -35, respectively. No breakdown of the

trash comparable to that reported for Space Shuttle

Flight 51D (see table 8 in Wydeven and Golub, 1990, or

table 5 in Wydeven and Golub, 1991) was reported for

those three "STS" flights.

A recent report issued in the UK (Oakley et al., 1989) for

the European Space Agency proposed categorizing

spacecraft wastes into a limited number of general classes,

based on the phase of the material and whether the mate-

rial might be suitable for regeneration or recycling. The

categories and their overall production rates are as fol-
lows: Biodegradable liquid waste (e.g., hygiene and
metabolic water, toilet and extravehicular activity, or

EVA, waste water), 24.51 kg/person-day; biodegradable

solid waste (e.g., trash, hygiene and toilet solids),

0.3 i kg/person-day; non-biodegradable but reusable solid

waste (e.g., charcoal, lithium hydroxide cartridges,
clothing, towels), 1.19 kg/person-day; metabolic gaseous

waste (e.g., CO2, EVA CO2, CH4), 1.7 kg/person-day;

and non-regenerable solid waste (e.g., food and medical

containers, books, papers, pens, wipes), 0.4 kg/person-

day. Two other categories for which no information was

available are non-regenerable liquid waste (e.g., products

from scientific experiments) and non-regenerable non-

metabolic gases (volatiles from materials outgassing). The

foregoing categories total 28.11 kg/person-day of waste,

which is not very different from the total of 31.0

kg/person-day indicated in table 1.

Trace Contaminants in Space Shuttle Flights

As a follow-up to the data on trace contaminant load

models given in table I I of Wydeven and Golub (1990),
table 2 of this report presents the results of a series of

analyses by the Toxicology Group at NASA Johnson
Space Center of the cabin air taken during Space Shuttle

Flights STS-30 through STS-36. The aim of these analy-

ses (involving gas chromatography and mass spectrome-

try) was to help determine the effectiveness of the con-
tamination control measures designed to maintain a clean,

safe living environment during the space missions. In all
cases, the detected contaminants were well below their

spacecraft maximum allowable concentrations (SMAC).

In one flight (STS-31), benzene was found at a typically



highlevels in the inflight sample, although the
concentration (0.01 mg/m 3) was well below the 7-day

SMAC of 0.32 mg/m 3. Most of the substances listed in

table 2 are probably not derived from human excretions
but from materials used in the Shuttles. Methane is

probably intestinal; acetone and 2-propanol may come in

part from human metabolism; and ethanol (alcohol) has

been used as a surface wipe to avoid formation of water

droplets at zero G.

Waste Stream Data from Soviet Literature

The rates of excretion into the air environment of a very

wide assortment of organic compounds present in various

human wastes were recently reported by Dmitryiev et al.

(1987) who employed a gas-chromatograph/mass spec-

trometer and a computer library of spectra for the analysis

of complex mixtures. The waste products, obtained from

the exhaled air, intestinal gas, urine, saliva, perspiration

and feces excreted by 56 healthy individuals, provide

another list of contaminants to complement those given in

table 11 of the prior report (Wydeven and Golub, 1990)

and that may be expected to appear in the closed envi-

ronment of a space habitat. Of the 136 compounds listed

by the Soviet workers, only 74 are given in table 3, and

their ordering in that table follows that in the previously

cited table of trace contaminants for ease in comparison of

the corresponding entries. It should be noted that some of
the compounds in table 3 (e.g., the various halocarbons)

presumably arose from non-human sources (as in out-

gassing of plastic materials). Apart from indicating the
content of toxic metabolites, table 3 provides data con-

cerning compounds that may be significant for biomedical

evaluation of individuals subjected to the confined atmo-

sphere of a spacecraft. The special merit of table 3 is that

it offers metabolic rates for the bulk of compounds ema-

nating from human waste for which such rates were stated
as zero in the aforementioned table 1 I. Where non-zero

metabolic rates were given for some of the co mp6un_is in
the latter table, the metabolic rates from table 3 are simi-

lar to those in table ! I in a few instances but dissimilar in

others. This is illustrated in table 4, where the metabolic

rates for 9 compounds reported in the Soviet study (con-

vened to mg/person-day by multiplying the total excretion

in lag/h by 24 [h] and dividing by 56 [persons]) are com-

pared with those given in table I !. Evidently, the new
data on metabolic rates of different compounds should be

factored into the trace contaminant load models for Space

Station Freedom, although in all cases the data for overall

generation rates of contaminants (for two different

models) given in table 11 of the prior report do exceed the

corresponding metabolic rates.

In a review article on habitability and life support in a

space station, Nefedov and Adamovich (1988), drawing

upon ground-based studies of small sealed environments,

listed the following major trace contaminants identified in
human expired gas, with maximal amounts in mglm 3

given in parentheses: acetaldehyde (0.1), formaldehyde

(0. I), acetone (0.35 + 0.30), methyl ethyl ketone

(0. ! 2 + 0.02), propionaldehyde (0.1), ethanol

(0.86 + 0.50), methanol (0.19 + 0.10), propanol (0. I ),

isopropanol (0.1), formic, acetic, propionic, isovaleric and

valeric acids (0.41 + 0.08), ammonia (0.51 + 0.07),

dimethyl amine (0.1), methane (I.24 + 0.07), ethane (0.1),

ethylene (0.1), propane (0.1), hexane (0. I ) and carbon

monoxide (nonsmokers, 4.9 + 1. I; smokers, 14.3 + 4.2).

The foregoing list of compounds and their concentrations

can be regarded as supplementing the information given
in column 3 of table 3. It was stated that Soviet scientists

set maximum acceptable levels of virtually all the above

compounds as a function of space flight duration, but such

data were not given for Salyut or Mir. It was also stated,

but with few details, that a total of 200 synthetic materi-

als, including many toxic sustances, have been identified

as products of polymer outgassing. The article also men-

tioned the supplies needed to support a cosmonaut for

each day of normal human existence during spaceflight:

800 g oxygen, 2500 g potable water and about 700 g food

(3000-3500 calories) - daily inputs that are very close to

the corresponding numbers given in column 2 of table I.

Polyakov et al. (1986), in a study of the effective reclama-

tion by reverse osmosis of wash water likely to be

encountered in long-duration spaceflight, indicated that

the total impurities in that water was about I g/l, the

principal constituents being the detergents (a mixture of

alkyldimethylbenzylammonium chloride, or Catamine

AB, and alkyldimethyl-amine oxide, amounting to

174 mg/1). Although the nature of that hygiene water was

not discussed, the weight percent solids (=0. 1%) was

comparable to that (=0.08-0.15%) obtained for the

combined laundry and shower/hand-wash water given in

table 1 of each of the two papers by Wydeven and Golub,

1990, 1991). From an analysis of the wash water

recovered from showering with detergents, Berlin and
Chekanova (1987) concluded that the composition of the

wash water was comparable for men and women, despite

the fact that the latter were allowed cosmetics, perfumes,
creams and deodorants. This indicated that the sex of

crewmembers can be disregarded in the design of water

reclamation systems for spacecraft. Nevertheless,

women's wash water showed a higher chloride content
than that for men: 39.14 vs. 20,54 mg/1, with standard

deviations of 11.35 and 9.49 mg/I, respectively, for a

group of essentially healthy men and women 25 to

50 years of age (12 each). Menstruation had only a slight



effect on the composition of wash water from females. It

was also noted that the composition of the wash water

depended on the health status of its users, in particular,

when the subjects had a cold or elevated blood pressure.

To conclude this survey of pertinent Soviet literature, we

mention the work of Pak et al. (1989) who examined the

hygienic aspects of wash water reclamation systems. The

major parameters characterizing used shower water were
bichromate oxidizability, electroconductivity and chloride

ion concentration (as in the prior work of Berlin and

Chekanova 1987) plus pH. The total concentration of

microorganisms in the wash water, without the use of
detergents, was 104- 105 microbial bodies per ml, which
concentration was reduced to 8 x 102- 6 x 103 microbial

bodies per ml when detergents were used. Microbial

parameters for women were close to those of men. The
most numerous microorganism was staphylococcus, while

other organisms found represented the natural microflora

of human skin. This work confirmed the desirability of

using detergents with disinfecting properties. However,

the concentrations of organic substances in the used wash

water, as measured by oxidizab!lity, increased from

- 120-310 mg O2/1, without the use of detergents, to

---1350-1730 mg O2/I, with the useof detergents. At the
same time, the concentrations of chlorides increased from

= 16-23 mg/I to =34-40 mg/l, the organic contaminants

arising from surface dirt on the skin as well as products of
secretion of sebaceous and sweat glands.

Minor Human Body Waste Streams

Table 5 constitutes an addendum to the two tables I of

Wydeven and Golub (1990, 1991) in presenting produc-
tion rates and solid contents of the following minor waste

products generated by the human body: saliva, flatus, hair,

finger- and toenails, dried skin, tears and semen. Details
on these minor waste streams were omitted from the prior

report partly for convenience but mainly because they
were deemed inconsequential from the standpoint of their
masses relative to those of the other waste streams dis-

cussed in that report. However, for purposes of complete-

ness in updating that report and also because the minor

body wastes might have an impact on the trace contami-
nant load or the waste management system, especially in

prolonged confinementir_ aspacecraft, such streams merit
inclusion here.

The chemical compositions of flatus, skin secretions and
tears are shown in tables 6-8. Saliva, which is approxi-

mately 99.4% water, contains a wide assortment of elec-

trolytes, nitrogen compounds, enzymes, vitamins and

miscellaneous organic compounds, all of which can con-

tribute but very sma!l amounts tothe contaminant load,

and then only if the saliva leaves the body. For informa-

tion on the range in composition of some 65 substances

present in saliva, the reader may consult the comprehen-
sive survey by Webb (1964), which also contains more

complete compositional data on the other streams indi-
cated in table 5, e.g., hair, nails and semen. Finally, that

survey also lists the following composition in weight per-

cent of ear wax: total lipids (44), protein (24) and residue

(32).

Conclusions

As a sequel to our prior NASA Technical Memorandum

and related journal article dealing with the generation

rates and chemical compositions of the major waste

streams in a typical crewed space habitat, this report pro-
vides comparable information on various minor human

body wastes not discussed earlier, as well as a survey of

recent Soviet literature relative to waste stream defini-
tions, and offers some new data uncovered since comple-

tion of the previous report, including the ECLSS design
parameters for Space Station Freedom.
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Table 4. Comparison of metabolic rates in two reports a

Compound Report Ib Report II c

Butanol 1.33 4.17

Ethanol 4.00 5.41

Methanol 1.50 1.15

Ethanal (acetaldehyde) 0.09 2.73
Pentanal 0.83 0.42

Acetone 0.20 5.71

Methane 160 112
Indole 25 1.02 x 10-.3

Carbon monoxide 23 80
i

aData are given in units of mg/person-day.

bFrom table 11 in Wydeven and Golub (1990).

cCalculated from data of Dmitryiev et al. (1987) as indicated

in "total" column of table 3 of this report.

Table 5. Production rates and solid contents for minor human body wastes

Waste stream Wet weight formation rate, Weight percent solids, %

g/person-da_,
Saliva 500-1500 a 0.6 a

Flatus (100-2800) b

Hair 0.04-0.3c; 0.02-0.03 d 99.6c; 95.9 e

Nails 0.010 f 88-99,93 f

Skin 0.57-3.00g 30.6 h
Tears 0.7-1.0 i 1.8i,j

Semen (0.2-6.8) k 11.31

aFrom Lentner (1981), pp. 114-115. Daily production rate estimated at 500-1500 ml/day, and

specific gravity essentially 1.00.
bDischarged gas in ml/day for normal individuals on ordinary (cabbage-free) diet; single

emissions are between 25 and 100 ml (Webb, 1964).

CFrom Webb (1964). Various values cited for facial hair.

dFrom Webb (1964). Various values cited for scalp, facial and body hair.

eFrom Lentner (1981), p. 224.

fDatum from Webb (1964) for fingernails; corresponding datum for toenails is estimated at

0.0025 g/day. Hygroscopic nature of keratin causes considerable variation in water content.

gLoss of dried surface skin, from Webb (1964). For skin secretions (table 7), the weight percent
solids is 68.3%.

hFrom Lentner (1981), p. 224.

iFrom Webb (1964). Estimate based on secretion rate of 0.031-0.041 g/h.

JFrom Best and Taylor (1961), p. 1314.

kWeight in g/ejaculate, after at least 3 days of abstinence (Lentner, 1981, p. 185).

1From Lentner (1981), pp. 185-186, given a water content of 918 g/l and a mean density of
1.035.
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Table 6. Chemical composition of flatus a

Substance Formula

Carbon dioxide

Oxygen
Methane

Hydrogen

Nitrogen

Hyd_rogen sulfide

ii • r_l* | i i , .

Cabbage-free diet, Cabbage- and milk-free

7mean_ % diet, mean r %

CO 2 9.0 9.7

02 3.9 5.5

CH4 7.2 3.1
H2 20.9 12.0

N 2 59.0 70.0

H2S 0.0003 0.0002

aData from Webb (1964).

Table 7. Major components of skin secretions a

Component Weight percent
Water 31.7

Epithelial cells and protein 61.75
Fat 4.16

Butyric, valeric, and caproic acids 1.21
Ash |.i8

i

aFrom Webb (1964), which presents data on fatty acids in

human skin lipids and on major alcohols of the waxes and

sterol esters of human skin surface lipids.

Table 8. Solids content of tears a

i

Component Percent
Ash 1.05

Total nitrogen 0.158

Nonprotein N 0.05 !
Urea 0.03

Proteins (albumin and globulin) 0.669

sfigfir 0.65
Chlorides (as NaCi) 0.658

Sodium (as Na20) 0.60
Potassium (as K20) 0.14
Ammonia 0.005

aFrom Best and Taylor (1961 ). Total solids m

tears is given as 1.8%.
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