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Abstract

Relativity compensations mast be made in precise and accurate measurements whenever an observer

is accelerated. Although many believe the Earth-centered frame is sufficiently inertia_ accelerations of the

Earth, as evidenced by the tides, prove that it is technically a noninertial system for even an Earth-based

observer. Dr. Einstein introduced the concept that time was essentially a fourth component that could be

added to any three-dimensional position. Using the constant speed of light, a set of fixed remote clocks in

an inertial frame can be synchr_nized t_ a_xed master clock transmitting its time in that frame. The time

on the remote clock defines the coordinate time at that coordinate position. However, the synchronization

procedure for an accelerated frame is affected, because the distance between the master and remote clocks

is altered due to the acceleration of the remote clock toward or away from the master clock during the

transmission interval.

An exact metric that converts observations from noninertial frames to inertial frames was recently

derived. Using this metric with other physical relationships, a new concept of noninertial coordinate

time is defined. This noninertiai coordinate time includes all relativity compensations. This new defini-

tion raises several timekeeping issues, such as proper time standards, time transfer processes, and clock

synchronizations, all in the noninertial frame such as Earth.

Background

Relativity compensations must be made in precise and accurate measurements whenever an

observer is accelerated. Noninertial reference frames are ones that experience accelerations, which

include rotations. A reference frame centered on the Earth would appear to be inertial, but the

observation of the tides demonstrates the existence of a force acting on the oceans. This force is

the product of mass and acceleration, which proves that the mass of the Earth is being accelerated.

The existence of the tides proves that any Earth-centered frame is not sufficiently inertial.

Dr. Albert Einstein accurately assumed that the speed of light (i.e. any electromagnetic radiation)

in a vacuum is always the same constant for all inertial frames. He accurately predicted that a

moving clock would appear to run slower than an identical, but stationary, clock. Dr. Einstein

developed the concept that time was a relative quantity that essentially is a fourth coordinate

associated with any three-dimensional position of a chosen reference frame. This resulted in the

definition of coordinate time unique to every reference frame.

Conversion of position and time coordinates between inertial frames was accomplished

by Dr. Einstein through the Lorentz transformation. The current practice in relativity science is
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to use comoving inertial reference frames to match a noninertial reference frame and then apply
the Lorentz transformation to convert observations from one inertial frame to another.

Only recently, an exact transformation which converts observations from noninertial frames to iner-

tial frames was derived[I]. This was developed by Dr. Robert Nelson, and this transformation will

be designated as the Nelson transformation to eliminate confusion. The metric for an accelerated,
rotating frame has been derived as:

A Plgoo = - 1+_-_-

1

goj = _(_×P)j)

gij = _ij

2

x,q
+ J

Definition of Noninertial Coordinate Time: A New Concept

The Nelson metric was modified in the goo term to include gravity effects[2] from the post-
Newtonian approximation as follows:

2 4
goo = -1+ goo + goo + ..... 1 - 2cI) + ... (1)

One fundamental property that remains invariant in relativity regardless of the reference frame is

"proper time,"denoted here as r. The proper time of an object is defined as the time measured by

an ideal clock attached to the moving object[a]. An invariant equation relates coordinate time (t)
and coordinate position ()_) with proper time (r).

(c dr) 2 = (c dt) 2 - dx 2 - dy 2 - dz 2 (2)

To facilitate the use of the relativity equations, the modified Nelson metric and the proper time
used in Equation 2 have been converted from Einstein's repeating Roman index notation to the

more familiar vector notation. The modified Nelson metric (Equation 1) was inserted into the

invariant equation (Equation 2). Equation 3 was completely derived[4] using Equations 1 and 2.

dr= l +-Tg- + 7_-- dt (a)

where

(I) = the sum total of each gravitational potential at the remote clock's location

as contributed by each measurable mass source. For locations near or on the

Earth's surface, (I) = g(¢)h as defined below.

r = the proper time of the noninertial Earth at the geoid.
= the acceleration vector of the remote clock in the chosen inertial reference

frame.

I7 = the velocity vector of the remote clock in the chosen inertial reference frame.

= the velocity vector of the master clock in the chosen inertial reference frame.
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= the remote clock's geodetic latitude relative to Earth's geoid if that clock is
near or on the Earth's surface.

= the perpendicular gravity constant at the remote clock at the Earth's surface,

which is a function of the geodetic latitude ¢bof the remote clock's location.

= the altitude of the remote clock above the Earth's geoid for applications
when that clock is on or near the Earth's surface.

= the speed of light (i.e. any electromagnetic radiation) in a vacuum of an
inertial frame.

= tile range vector from the remote clock to the master clock in the inertial
reference frame.

= the noninertial coordinate time of the remote clock at reception.

Noninertial coordinate time is therefore defined as a function of proper time of the remote clock in

the noninertial frame. The square root term in Equation 3 includes the relativity contributions for

nongravitational accelerations -W gravity and w,locity This square root term is the

time dilation factor that will always exceed the value of' one for a noninertial frame. So, division of

this factor into proper time yields the noninertial coordinate time interval, which is always smaller
than the proper time interval.

Noninertial coordinate time is the time given by a fixed remote clock in a noninertial reference frame

synchronized to a fixed master clock in that frame, which includes all relativity compensations. Even

the theorization of all the relativity compensations in a noninertial frame was not possible before

the advent of the Nelson metric, and only assumptions and approximations for these relativity

compensations have been previously available.

Conclusions

Based on the new definition of noninertial coordinate time, a reexamination of several timekeeping

issues is warranted. A few of these issues include the proper lime standard, the time transfer

process and the clock synchronization procedure, all in a noninertial frame (e.g. the Earth).

Inertial coordinate time standards (e.g. TAI), which are based on time calibrations in an inertial

frame, beat faster than a moving proper time standard, which undergoes time dilations in its

noninertial reference frame. Theoretically, the leap second between TAI and UT1 standards may

be the result of this difference. Work is ongoing to quantify what portion of the leap second is due

to differences between inertial and noninertial coordinate times. It is recommended that a study

be initiated to determine whether the current atomic time standard, which is correctly, defined for
an inertial reference frame, is appropriate in Earth's noninertial frame.

Time transfers are currently done between two remote precise time stations that simultaneously
observe a satellite time transmission. Time transfers determine the time differences between stations

A and B without having to transport physical clocks for comparison. Global Positioning System

(GPS) time transfers use a GPS time receiver to get a coordinate time at reception. The time

transfer equation is [A-tA] - [B-tB] = A - B when tA = tB at equivalent time marks. The local

proper times of the atomic clocks are A and B, respectively, and tA and tB are the noninertial
coordinate reception times from GPS receivers.

Time transfers are also affected by Earth's rotation. The Earth's geoid is a theoretical construct

where all ideal clocks will beat at the same rate. However, even on the geoid, the nongravitational
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relativity effects have first and second order dependence on the velocity of the local clocks in the

noninertial local frame. The time transfer relationship between a satellite clock (e.g. GPS) and the

fixed local clocks not on the geoid of the rotating Earth, has been derived. The Earth's gravity,

the rotational acceleration and tangential velocity were inserted into Equation 3 to yield:

o.,,x R-p
g(¢)_ (_ x R)_ - (_ x ,_geold)_ t + (4)

taps = 1 + c2 + 2c 2 c2

where /_geoid is the position vector where receiver would be on the geoid if the receiver had no
altitude.

Equation 4 is used to compute the noninertial coordinate times t for the two remote stations for tA

and tB. The transmission time from the GPS satellite is tGps, and t is the noninertial coordinate

time at reception for the local clock. When the noninertial coordinate time tA equals tB, the thne

transfer algorithm correctly gives the difference in proper times of A and B of the two clocks.

The last term in Equation 4 is equivalent to the Sagnac effect, which corrects for the first order

change in the geometric range as the clock moves toward or away from the satellite during the time

interval of transmission. Two new relativity compensations in Equation 4, which were not previ-

ously included in GPS time transfers, affect the noninertial coordinate time t. The gravitational

effect, g¢-_, is due to the additional change in gravity due to the altitude h as compared to the ex-

pected gravity in GPS at the Earth's geoid. The nongravitational effect, _ 1[_]
is difference in the expected tangential velocity due to Earth's rotation as compared to the expected

tangential velocity in GPS at the Earth's geoid..

It is assumed that the current GPS receivers correct for the geometric range, which is the last term

in Equation 4. The additional gravitational effect for an atomic clock 2000 meters above the Earth's

geoid, would result in a drift rate of 2.18 x l0 -13 s/s or 18.8 as/day. The nongravitational drift

rate for an atomic clock affected by Earth's rotation when elevated 2000 meters above the geoid

at the equator would be 7.55 x 10 -16 s/s or 0.06 ns/dav. Such offsets in frequency contributions

may currently be attributed to mechanical errors in the clocks rather than these uncompensated
relativity effects.

Clock synchronization is simple to perform in an inertial frame, and all stationary clocks will beat

the same for both proper and coordinate time. Clock synchronization in an inertial frame is simply
accomplished by :

tremote : ttransmitted master time Jr-
distance between remote and master

speed of light

However, with a noninertial frame, clock synchronization between a master clock and a remote

clock at rest must be accomplished differently. The distance that the master clock transmission

must travel to the remote clock varies, because the remote clock can be accelerated toward or

away from the master clock during the transmission interval. In general, the noninertial master

clock beats will fluctuate differently from the noninertial remote clock rate, compared to the steady

beat of any synchronized inertial clock. To perform clock synchronizations in a noninertial frame,

Equation 3 must be used to convert proper time of a remote noninertial clock to its noninertial

coordinate time. Only then will the remote noninertial clocks be synchronized to the noninertial
master clock in that frame.
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In summary, noninertial coordinate time includes all the relativity compensations required with a

noninertial reference frame. Since the Earth-centered frame is not sufficiently inertial, the potential

applications for noninertial coordinate time are far-ranging. Timekeepers concerned with optimium

accuracies would achieve substantial improvements by using this concept.
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