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Abstract for the Dro!ect (reDrinted from the DrODosal) /9. '_/

Mariner 9 UV spectrometer data would be reinverted for the ozone

abundance, cloud abundance, dust abundance, and polar-cap albedo. The

original reduction of the spectra ignored the presence of atmospheric

dust and clouds, even though their abundance is substantial and can mask

appreciable amounts of ozone if not accounted for (Lindner, 1988). The

Mariner 9 ozone data has been used as a benchmark in all theoretical

models of atmospheric composition, escape, and photochemistry. A sec-

ond objective is to examine the data for the interrelationship of the

ozone cycle, dust cycle, and cloud cycle, on an annual, inter-annual, and

climatic basis, testing predictions by Lindner (1988). This also has

implications for many terrestrial ozone studies, such as the ozone hole,

acid rain, and ozone-smog. A third objective is to evaluate the efficacy

of the reflectance spectroscopy technique at retrieving the ozone abun-

dance on Mars. This would be useful for planning ozone observations on

future Mars missions or the terrestrial troposphere.

II. Summary of Research to Date

I1.1 Model develooem_nt,

The photochemical-radiative transfer model of Lindner (1985;

1988) has been updated. The code has been modified to run on AER's

computer system, has been updated to use new cloud and dust scattering

parameters as determined by Clancy and Lee (1991), and has been

updated with new improvements to the Discrete Ordinate Method by

Stamnes et al. (1988). Briefly, the code runs in 3 parts. First a code has

been written which sets up the base atmosphere, including photochem-

istry, and then computes the wavelength-dependent atmospheric opacity,
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single-scattering albedo and phase function. Figure 1 shows the atmo-

spheric opacity as a function of wavelength for one atmosphere scenario.

This opacity includes Rayleigh scattering (strongest at 1500 Angstroms,

and decreasing rapidly with wavelength), CO2 absorption (the prominent

component of the opacity shortward of 2000 Angstroms), and ozone

absorption (the "bump" in opacity between 2000 and 3000 Angstroms). In

addition, there is a virtually wavelength-independent opacity of cloud

and dust. It is this "bump" that leaves a characteristic signature of the

ozone abundance in the measured UV spectra. The radiative transfer

model then computes intensities as a function of wavelength based on

this atmospheric opacity and scattering. Finally, a code has been writ-

ten which converts these intensities into a ratio of UV spectra which

can be compared to the data.

11.2 Acauire Mariner 9 UV Spectrometer data.

While at the MSATT workshop held in Boulder, Colorado Sept. 23-

25, 1991, the principal investigator discussed the procedure for obtain-

ing the Mariner 9 UV Spectrometer data with Steve Lee, the director for

the node of the Planetary Database System (PDS) at the University of

Colorado. This and subsequent discussions have indicated that the data

are not on the PDS system as promised years ago, and are not expected to

be on the PDS for several years, due mostly to budget cuts. Steve has

offered to help us retrieve the original data, however, we have been

denied access to this data by Charles Barth of the University of Colorado,

despite our requests to him to release this 20 year old data.

Nonetheless, there have been several good spectra published in Lane et

al. (1973) and Wehrbein (1977), which are quite adequate for us to com-

plete all of our objectives for this project, although objective 2.2 will
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Figure 1. Vertical opacity of the atmosphere for 30 i_m-atm of

ozone, no dust and no cloud. A winter polar temperature profile is

adopted (see Lindner, 1988).
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be somewhat reduced in scope. A sample data spectra is shown in Figure

2. Discussions continue with Barth as to this original dataset.

11.3. Simulate UV Spectra.

The theoretical model was run with a variety of inputs to generate

synthetic UV spectra. Parameters within the base atmosphere were

varied as shown in Table 1 and synthetic spectra were calculated for

each case. This is done to examine how changes in atmosphere affect

ozone retrieval efficacy, affect errors in retrieved ozone abundance, and

affect scatter in data. For ease of comparison to data (see Fig. 2), we

have computed ratio of spectra to that at 20N latitude, where little

ozone is present. Computed spectra for 20N latitude show little wave-

length dependence. Figure 3 shows how spectra can vary for a single

base atmosphere depending upon the viewing geometry of the spacecraft.

Hence, comparison of synthetic spectra to observed spectra must prop-

erly account for the correct geometry. Synthetic spectra for various

scenario for base atmospheres are shown in Figures 4 through 7.

\

\

\

TABLE 1

Synthetic spectra calculated for the following ranges in oarameter_

Ozone

Ozone distribution

Solar Zenith Angle

Dust opacity

Cloud opacity

Ice albedo

Look Angle

Azimuth of Look Angle

0 to 100 p.m-atm.

well-mixed, and concentrated down low

50 to 85 degrees

0to 1

0to 1

0.3 to 0.8

0 to 90 degrees

0 to 90 degrees

7
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Figure _[ Ultraviolet spectrum measured by Mariner 9 at 57"N latitude on orbit

144 (upper plot). To enhance the ozone absorption feature, this spec-

trum was divided by one obtained at 20°N latitude on orbit 144, where

ozone abundances are minimal. The ozone absorption feature for orbit

202 is compared to laboratory data in the lower plot (laboratory data

is offset to facilitate comparison). Both figures are taken from Lane

et al. (1973).
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Figure 3. Synthetic ultraviolet spectra, ratioed to synthetic spec-
tra for 20N latitude, shown for various viewing geometries (viewing an-

gle theta relative to the zenith and azimuthal angle phi relative to the
sun). As with Lane et al. (1973; see Fig. 2), intensity is unitless and

relative• 30 _m-atm ozone, no dust or cloud, a solar zenith angle of 75
degrees, ice albedo 0.5, and uniform mixing ratio of ozone are assumed.
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Figure 4. Synthetic ultraviolet spectra, ratioed to synthetic spectra for

20N latitude. Viewing geometry in all cases is viewing angle of 60
degrees, and azimuthal angle of 0 degrees. Atmospheric and surface

parameters for the plots are as follows (showing ozone abundance, solar

zenith angle (SZA), ice albedo, and cloud and dust opacity):

4(a) Ozone 30 I_m-atm, SZA 75 degrees, Albedo 0.5, No dust, No cloud

4(b) Ozone 30 i_m-atm, SZA 75 degrees, Albedo 0.5, dust 0.3, cloud 1.0

4(c) Ozone 100 I_m-atm, SZA 75 degrees, Albedo 0.5, dust 0.3, cloud 1.0
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Figure 5. Synthetic ultraviolet spectra, ratioed to synthetic spec-

tra for 20N latitude. Viewing geometry in all cases is viewing angle of

60 degrees, and azimuthal angle of 0 degrees. Atmospheric and surface

parameters for the plots are as follows (showing ozone abundance, solar

zenith angle (SZA), ice albedo, and cloud and dust opacity):

5(a) Ozone 30 i.tm-atm concentrated low in the atmosphere, SZA 75

degrees, Albedo 0.5, No dust, No cloud

5(b) Ozone 30 _tm-atm concentrated low in the atmosphere, SZA 75

degrees, Albedo 0.5, dust 0.3, cloud 1.0

5(c) Ozone 100 _tm-atm concentrated low in the atmosphere, SZA 75

degrees, Albedo 0.5, dust 0.3, cloud 1.0
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Figure 6. Synthetic ultraviolet spectra, ratioed to synthetic spectra for
20N latitude. Viewing geometry in all cases is viewing angle of 60
degrees, and azimuthal angle of 0 degrees. Atmospheric and surface
parameters for the plots are as follows (showing ozone abundance, solar

zenith angle (SZA), ice albedo, and cloud and dust opacity):
6(a) Ozone 30 i_m-atm, SZA 75 degrees, Albedo 0.5, No dust, No cloud

6(b) Ozone 30 l_m-atm, SZA 75 degrees, Aibedo 0.5, dust 0.3, No cloud

6(c) Ozone 100 i_m-atm, SZA 75 degrees, Albedo 0.5, dust 0.3, No cloud
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Figure 7. Synthetic ultraviolet spectra, ratioed to synthetic spectra for

20N latitude. Viewing geometry in all cases is viewing angle of 60
degrees, and azimuthal angle of 0 degrees. Atmospheric and surface

parameters for the plots are as follows (showing ozone abundance, solar
zenith angle (SZA), ice albedo, and cloud and dust opacity):
7(a) Ozone 30 pm-atm, SZA 75 degrees, Albedo 0.5, No dust, No cloud

7(b) Ozone 30 pm-atm, SZA 75 degrees, Albedo 0.5, dust 1.0, cloud 1.0

7(c) Ozone 100 pm-atm, SZA 75 degrees, Albedo 0.5, dust 1.0, cloud 1.0
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11.4. ComDare synthetic and observed spectra.

The synthetic and observed spectra compare quite favorably. In

fact, the inclusion of dust and cloud absorption and scattering improve

the synthetic fit to the slope in the data from 2100 to 2300 Angstroms.

Further comparison will be undertaken in the next year with more spec-

tra, ensuring that all parameters are the same (i.e., particularly look

angles and sza's).

Comparison of Figures 4 and 5 shows how difficult it is to try to

infer the ozone distribution from UV spectra. Two radically different

ozone profiles were used, and yet the spectra exhibit similar behavior.

Wehrbein (1977) examined the data in depth to retrieve the ozone distri-

bution, and concluded that ozone is fairly well mixed in the atmosphere.

Lindner (1988) also showed that ozone should be fairly well mixed based

on theoretical simulations of atmospheric chemistry.

11.5. Error in inferrina 03 without considerina dust/cloud.

Ozone has been classically inferred from the spectra by fitting the

depth of the absorption at 2500 Angstroms. We have summarized the

depth of absorption in Table 2 for many cases we have tried. What can be

most clearly seen is that for all the cases we have tried, the amount of

ozone inferred from the UV spectra is underestimated by about a factor

of 3 when the inversion uses simply ozone absorption (i.e. ignoring cloud

and dust). This is seen in Table 2 in that approximately 3 times as much

03 is needed to produce the same depth in absorption for scenario in

which we fully include the masking effects of cloud and dust to the case

for which cloud and dust are ignored. This is particularly noteworthy in

that even if the effect of cloud and dust is included in the retrieval, the
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TABLE 2

2550/3200 ANGSTRQM RATIO

03

30

30

5O

100

30

100

30

100

30

30

100

30

30

100

30

30

100

30

30

100

30

30

100

SZA

75

75

75

75

75

75

75

75

75

75

75

75

75

7_

75

75

7,_

85

85

85

5O

50

50

DUST CLOUD

0

0.3

0.3

0.3

0.3

0.3

1

1

0

0.3

0,3

0

0.3

0.3

0

0.3

0.3

0

0.3

0.3

0

0.3

0.3

0

1

1

1

0

0

1

1

0

1

1

0

1

1

0

1

1

0

1

!

0

1

1

ALBEDO

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.8

0.8

0.8

0.3

0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.5

03 DIST.

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

low

low

10W

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

RATIO

0.15

0.43

0.30

0,14

0.27

0,07

0.52

0,20

0.18

0.56

0.30

0.12

0.41

0.13

0.21

0.45

0.14

0.14

0.40

0,10

0.17

0.35

0.!0
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uncertainty in cloud and dust opacity and scattering properties will still

leave an uncertainty in retrieved ozone abundance of a factor of 2!

Considering that the published ozone abundances retrieved from the

Mariner 9 data are used as a benchrnark by all photochemical models of

the Mars atmosphere, this has important implications for much of the

modeling work done over the last 20 years.

Figure 6 shows that even simply ignoring a minimal dust opacity of

0.3 in a cloud-free atmosphere will underestimate the ozone abundance

by a factor of 2. This is noteworthy in that dust was completely ignored

in the earlier inferences of ozone from the spectra by Lane et al. (1973)

and others. Dust abundances are always of this order or higher (Pollack

et al., 1979).

Figure 7 shows that for high dust/cloud loading the inferred ozone

abundance is a factor of 4 or 5 below what is truly there. Pollack et al.

(1979) note that perhaps 20% of the martian year has this extent of dust

loading or greater.

Table 2 does show that errors in retrieval are the same for all

solar zenith angles we looked at, and for all ice albedo below 0.5. For

high ice albedo, ozone becomes even more severely underestimated.

11.6. Reflectance SoectroscoDy efficacy,

Figures 3 through 7 and Table 2 show that to properly retrieve the

ozone abundance from the Mariner 9 UV spectra with the reflectance

spectroscopy technique, the effects of cloud and dust must be consid-

ered. Therefore, the efficacy of the reflectance spectroscopy technique

is only as good as the accuracy with which we know the opacity and

scattering properties of the dust and cloud itself. Clancy and Lee (1991)

have done the definitive study to date of retrieving these cloud and dust
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parameters. However, even with their study, there remain large uncer-

tainties in the spatial and temporal variability in opacity and scattering

properties, and also in the wavelength dependence of these properties.

The amount of other spacecraft sensors and observations needed to

obtain these properties to the degree needed to obtain ozone abundance

to within a 10 to 20 % uncertainty is enormous. This raises serious

doubts about the efficacy of this technique for retrieving ozone. We

seriously recommend that other techniques be examined before designing

future Mars Aeronomy sensors; perhaps detecting ozone at other wave-

lengths such as in the infrared.

11.7. Presentations made at conferences.

Several conferences were attended which were partly or fully

funded by this contract. Reprints of papers and abstracts published at

these meetings are included in the Appendix.

IUGG Assembly, I attended the International Union of Geodesy and

Geophysics Assembly in Vienna, Austria, in August 11-24 1991, and pre-

sented a paper entitled "Mars seasonal CO2-ice lifetimes and the angular

dependence of albedo" in the special Mars climate session. The abstract

appeared in the conference proceedings (see Appendix). Half of expenses

were paid by NASW-4614 and half were paid by another contract.

PCI SymDosium. I attended the International Symposium on the

chemistry and physics of ice, held in Sapporo, Japan Sept. 1-7, 1991, and

presented a paper entitled "Why is the north polar cap on Mars different

than the south polar cap?" in the extraterrestrial ice session. The

abstract appeared in the conference proceedings (see Appendix). This

trip was personal in nature and was not funded by any grants.
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MSATT Workshop. I attended the Mars Surface and Atmosphere

Through Time Workshop, held in Boulder, Colorado Sept. 23-25, 1991, and

presented a paper entitled "Simulations of the seasonal polar caps on

Mars". The abstract appeared in the workshop proceedings put out by the

Lunar and Planetary Institute in Houston (see Appendix). NASW-4614

paid for expenses, but these were limited mostly to airfare and regis-

tration due to gratis accommodations, food, and car.

11.8. Publications

A paper entitled "Ozone heating in the martian atmosphere" was

published in Icarus, Volume 93, pp. 354-361, 1991. A reprint is

included in the Appendix.

A paper entitled "Sunlight penetration through the martian polar

caps: Effects on the thermal and frost budgets" has been accepted by

Geophysical Research Letters and is in Press. A preprint is included in

the Appendix.

A chapter in the book Physics _,n_ Chemistry. of Ice entitled "CO2-

ice on Mars: Theoretical Simulations" has been published by Hokkaido

University Press, Sapporo. A reprint is included in the Appendix.

III, Pr0gr__m of Future ReE,i_,rch

II1.1. Research T_,_;ks

Considering that we are virtually on schedule to date, we expect

the remaining objectives for this contract will be completed in year 3,

as originally proposed. Specifically, the next year will begin with more

simulations of spectra. We will also examine the ability to accurately

retrieve some measure of the cloud and dust opacity and scattering

properties from the UV spectra, in order to decrease the uncertainty in
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ozone retrieval. We will also examine the ability to simultaneously

retrieve the polar cap albedo. We will examine the scatter in Mariner 9

data as to whether this can be explained by cloud and dust masking of

ozone (see proposal). Most importantly, we will begin climate studies,

as defined in the proposal.

!11.2. Conferences

MSATT Workshoo. I will attend the Mars Surface and Atmosphere

Through Time Workshop on innovative instrumentation for the in situ

study of atmosphere-surface interactions on Mars to be held in Mainz,

Germany October 8-9. Results presented in this report will be presented

in a paper entitled "Does UV instrumentation effectively measure ozone

abundance?" (see Appendix). Grant NASW-4614 will pay for at least

partial support.

Lab. Research Planetary Atm0_0heres Conference. I will attend the

Fourth International Conference on Laboratory Research for Planetary

Atmospheres to be held in Munich, Germany October 10-11. A paper

entitled "How well is martian ozone inferred with reflectance spec-

troscopy?" will present results from this contract (see Appendix). Grant

NASW-4614 will pay for at least partial support (note that this confer-

ence is concurrent with the MSATT Workshop, limiting costs).

Planetary Science Conference. I will attend the American

Astronomical Society Division of Planetary Science Conference to be

held in Munich, Germany October 12-16. A paper entitled "Martian polar

cap seasonal regression simulations" will be presented (see Appendix).

Grant NASW-4614 will pay for at least partial support (note that this

conference is concurrent with the MSATT Workshop, limiting costs).

L
-i
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MSATT Workshop. I plan on attending the Mars Surface and

Atmosphere Through Time Workshop on The Polar Regions of Mars:

Geology, Glaciology, and Climate History to be held in Houston, Texas

November 13-15. Grant NASW-4614 will pay for at least partial support.

AMS Annual Meetino Chemistry Session. I plan to attend the

American Meteorological Society Annual Meeting Session on Atmospheric

Chemistry to be held in Anaheim, California January 1993. A paper enti-

tled "Atmospheric chemistry on Mars" will present results from this

contract (see Appendix). The bulk of support will come from another

contract, but grant NASW-4614 will at least pay for registration and

publication costs for this session.

111.3. Publications in Progress

A manuscript entitled "The hemispherical asymmetry in the mar-

tian polar caps" is undergoing review by J. GeoDhys. Res. for publication

in their special MSATT issue commemorating papers presented at the

Workshop on the Martian Surface and Atmosphere Through Time. One

favorable review has been received, and ! am awaiting the other review.

A manuscript describing some of the results presented here will be

written, with the intention of submittal to Nature or Science.
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Table 1. Three Year Plan of Work

(as presented in the proposal)

T_,_;k Time

Year 1

3.1 Obtain the Mariner 9 UV spectra ................................................ 2 man-weeks

3.2 Update the Lindner (1988) model ............................................... 3 man-weeks

3.3a Compute simulated UVspectra ................................................... 2 man-weeks

3.9a Attend LPSC conference, attend MSATT working.

group meeting, prepare Year 1 report to NASA .................... 2 man-weeks

Total .................................................................................................................. 9 man-weeks

Year 2

3.3b Compute simulated UV spectra .................................................. 4 man-weeks

3.4 Compare simulated spectrum to observed spectrum ....... 3 man-weeks

3.5 Study how 03 changes with cloud and dust opacity ......... 2 man-weeks

3.6 Determine error in deriving 03 abundances without

including dust/cloud absorption/scattering ....................... 2 man-weeks

3.9b Attend conference, prepare Year 2 NASA report ................ 2 man-weeks

Total .................................................................................................................. 13 man-week

Year 3

3.7 Evaluate efficacy of reflectance spectroscopy ................. 3 man-weeks

3.8 Climatic changes in martian photochemistry ..................... 5 man-weeks

3.9c Publish results in journal ............................................................ 3 man-weeks

3.9d Present results in conference and final report .................. 2 man-weeks

Total ................................................................................................................ 13 man-week

Total - Three years 35 man-weeks
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Reprints and preprints of publications made under this contract
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WHY IS THE NORTH POLAR CAP ON MARS DIFFERENT THAN THE SOUTH POLAR CAP?

Bernhard Lee Lindner, Atmospheric and Environmental Research, Inc. . ///_" _"_

840 Memorial Drive, Cambridge, Mass. 02139-3794, USA

Introduction. One of the most puzzling mysteries about the planet Mars is I_

the hemispherical asymmetry in the polar caps. Every spring the seasonal polar

cap of CO 2 recedes until the end of summer, when only a small part, the residu-

al polar cap, remains. During the year that Viking observed Mars, the residual

polar cap was composed of water ice in the northern hemisphere [Kieffer et al.,

Science, 194, 1341, 1976] but was primarily carbon dioxide ice in the southern

hemisphere [Kieffer, J. GeoDhys._R s., 84, 8263, 1979]. Scientists have sought

to explain this asymmetry by modeling observations of the latitudinal recession

of the polar cap and seasonal variations in atmospheric pressure (since the

seasonal polar caps are primarily frozen atmosphere, they are directly related

to changes in atmospheric mass). These models reproduce most aspects of the

observed annual variation in atmospheric pressure fairly accurately. Further-

more, the predicted latitudinal recession of the'northern polar cap in the

spring agrees well with observations, including the fact that the CO 2 ice is

predicted to completely sublime away. However, these models all predict that

the carbon dioxide ice will also sublime away during the summer in the southern

hemisphere, unlike what is observed. This paper will show how the radiative

effects of ozone, clouds, and airborne dust, light penetration into and through

the polar cap, and the dependence of albedo on solar zenith angle affect CO 2

ice formation and sublimation, and how they help explain the hemispherical

asymmetry in the residual polar caps. These effects have not been studied with

prior polar cap models.

Ozone. Clouds. and Airborne Dust. Since 03 is more prevalent in the

northern hemisphere than in the southern hemisphere, 03 was suggested as a

cause for the hemispherical asymmetry in the residual polar caps by Kuhn et al.

(J, Geophys, Res,, 84, 8341, 1979). However, Lindner (submitted to Icarus,

1991) has shown that 03 has a minor effect on the atmospheric temperature, and

hence on the infrared radiation which strikes the polar cap, and Lindner (J.

_Geophys, Res., 95, 1367, 1990) has shown that 03 absorbs less than 1% of the

total solar radiation absorbed by the polar cap. Thus, 03 is not an important

consideration in the polar cap energy budget.

Lindner (1990) has computed the solar and thermal flux striking the polar

cap of Mars for various ozone, dust, and cloud abundances and for three solar

zenith angles. These calculations have been inserted in the polar-cap models



of Lindner (Eos Trans ACU, 6_77, 1078, 1986) and Jakosky and Haberle (J, Ceo-

phys, Res., 9__55,1359, 1990). Vertical optical depths of dust and cloud ranging

from zero to I cause little change in the total flux absorbed by the polar cap

near its edge but increase the absorbed flux significantly as one travels pole-

ward. Observed hemispherical asymmetries in dust abundance, cloud cover, and

surface pressure comblneto cause a significant hemispherical asymmetry in the

total flux absorbed by the residual polar caps, which helps to explain the

dichotomy in the residual polar caps on Kars.

Light Penetration. Penetration of solar radiation into the cap itself is

included in my polar cap model, based on the theoretical work of Clow (Icarus,

72, 95, 1987). I find that the inclusion of light penetration slightly

decreases the albedo needed in the model to keep C02-1ce year-round at the

south pole by on the order of 1%. The required albedo is decreased because

some solar radiation is used to heat the subsurface, and not all of this heat

is transported back to the surface. Overall, I conclude that penetration of

light into the polar cap has only a small effect _n the polarcap energy budget.

Albedo and the Solar Zenith An_le. Warren et al. (J, Geophys. Res., 95,

14717, 1990) has computed the dependence of the albedo of the martian polar

caps on solar zenith angle, and these calculations have been includedln my po-

lar cap model. Since the albedo of ice increases and becomes more forward

scattering at hlgher solar zenith angles, and since the solar zenith angle be-

comes higher as one approaches the pole, the albedo is greatest at the pole.

This decreases absorption of sunlight, hence increasing survivability of CO 2

ice. In fact, this increases the survivability of ice enough to offset the de-

crease in survivability of ice due to the radiative effects of clouds and dust.

DiscuSsion. The combination of the effects of solar zenith angle on albe-

do and the radiative effects of clouds and dust act to extend the lifetime of

CO 2 ice on the south pole relatively more than on the north pole, explaining

the hemispherical asymmetry in the residual polar caps without the need of a

hemispherical asymmetry in polar cap albedo Another positive aspect this

solution is that neither the inclusion of solar zenith angle effects on ice

albedo nor the radiative effects of clouds and dust should appreciably change

model predictions of the annual cycle of pressure or polar cap recession equa-

torward of 75" latitude, since approximately 90% of the seasonal CO 2 frost is

equatorward of 80" latitude. Hence, the good model agreement noted by prior

researchers to the seasonal cycle in atmospheric pressure and to the recession

of the polar cap equatorward of 80" latitude is retained.



MARS SEASONAL CO2-ICE LIFETIMES AND THE ANGULAR DEPENDENCE OF ALBEDO

Bernhard I_e_e Lindner, AER, 840 Memorial Drive, Cambridge-MA 02139 USA

The albedo of the polar caps on Mars brightens appreciably at high

solar zenith angle (Warren et al., J, Geophys, Res,, 95, 14717, 1990),

an effect not included in prior polar-cap energy-balance models. This

decreases absorption of sunlight by the polar cap, hence decreasing

sublimation of CO 2 ice. Lindner (J, Geophys. Res., 95, 1367, 1990)

has shown that the radiative effects of clouds and airborne dust will

increase sublimation of CO 2 ice over thatpredicted by prior polar-cap

energy-balance models. Furthermore, .observations hint that more

cloud_ may exist in the northern hemisphere, which Lindner (1990) has

shown would sublime CO 2 ice more quickly in the north than in the

south. I show here that the effects of the solar zenith angle depen-

dence of albedo and the radiative effects "of clouds and dust offset

each other, but act to extend the lifetime of CO 2 ice on the south

pole more than on the north pole, possibly explaining the observed

hemispherical asymmetry in the residual polar caps without the need of

a hemispherical asymmetry in polar-cap albedo required by prior

models. Another positive aspect of this solution is that neither the

inclusion _f the solar zenith angle dependence of albedo nor the radi-

ative effects of clouds and dust should appreciably change prior model

agreement with observations of the annual cycle of surface pressure

and the recession of the polar caps equatorward of 75" latitude.

LINDNER, Bernhard Lee, Ph.D., Atmospheric andEnvironmental

Research, Inc., 840 Memorial Drive, Cambridge, MA 02139 USA

The Climate of Mars Symposium, Symposium MI3
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SIMULATIONSOFTHESEASONALPOLARCAPSONMARS Bernhard Lee Lindner, _

Atmospheric and Environmental Research, Inc., 840 Memorial Drive, Cambridge,

Mass. 02139-3794, USA

Introduction. One of the most puzzling mysteries about the planet Mars

is the hemispherical asymmetry in the polar caps. Every spring the seasonal

polar cap of C0 2 recedes until the end of summer, when only a small part, the

residual polar cap, remains. During the year that Viking observed Mars, the

residual polar cap was composed of water ice in the northern hemisphere [Kief-

fer et al., Science, 19___4, 1341, 1976] but was primarily carbon dioxide ice in

the southern hemisphere [Kieffer, J, ZGeophys, Res,, 8__44,8263, 1979]. Scien-

tists have sought to explain this asymmetry by modeling observations of the

latitudinal recession of the polar cap and seasonal variations in atmospheric

pressure (since the seasonal polar caps are primarily frozen atmosphere, they

are directly related to changes in atmospheric mass). These models reproduce

most aspects of the observed annual variation in atmospheric pressure fairly

accurately. Furthermore, the predicted latitudinal recession of the northern

polar cap in the spring agrees well with observations, including the fact that

the CO 2 ice is predicted to completely sublime away. However, these models

all predict that the carbon dioxide ice will also sublime away during the sum-

mer in the southern hemisphere, unlike what is observed. This paper will show

how the radiative effects of ozone, ci0uds, and airborne dust, light penetra-

tion into and through the polar cap, and the dependence of albedo on solar ze-

nith angle affect CO 2 ice formation and sublimation, and how they help explain

the hemispherical asymmetry in the residual polar caps. These effects have

not been studied with prior polar cap modeis.

Ozone, Clouds, and Airborne Dust Since 03 is more prevalent in the

northern hemisphere than in the southern hemisphere, 03 was suggested as a

cause for the hemispherical asymmetry in the residual polar caps by Kuhn et

al. (J, Geophys, Rest, 8__44,8341, 1979). However, Lindner (submitted to Icar-

u__s, 1991) has shown that 03 has a minor effect on the atmospheric temperature,

and hence on the infrared radiation which strikes the polar cap, and Lindner

(J, Geophys, Res., 95, 1367, 1990) has shown that 03 absorbs less than 1% of

the total solar radiatlon absorbed by the polar cap. Thus, 03 is not an im-

portant consideration in the polar cap energybudget.

Lindner (1990) has computed the solar and thermal flux striking the polar

cap of Mars for various ozone, dust, and cloud abundances and for three solar

zenith angles. These calculations have been inserted in the polar-cap model

of Lindner (Eos Trans, AGU, 67, 1078, 1986). Vertical optical depths of dust

and cloud ranging from zero to 1 cause little change in the total flux absorb-

ed by the polar cap near its edge but incYease the absorbed flux significantly

as one travels poleward. Observations hint that hemispherical asymmetries in

dust abundance and cloud cover exist, and these would combine to cause a sig-

nificant hemispherical asymmetry in the_total flux absorbed by the residual

polar caps, which helps to explain the dichotomy in the residual polar caps.

LIKht Penetration. Penetration of solar radiation into the cap itself is

included in the polar cap model of Jakosky and Haberle (J. Geophys. Res., 9__5,

1359, 1990), based on the theoretical work of Clow (Icarus, 7_/2, 95, 1987).

Lindner and Jakosky (B,A.A.S., 2_/2, 1060, 1990) find that the inclusion of

light penetration slightly decreases the albedo needed in the model to keep

C02-1ce year-round at the south pole by on the order of 1%. The required al-

bedo is decreased because some solar radiation is used to heat the subsurface,

and not all of this heat is transported back to the surface. Overall, we con-

clude that penetration of light into the polar cap has only a small effect on
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the polarcap energy budget.

Albedo and the Solar Zenlth AnKle. Warren et al. (J, Geophys. Res., 955,

14717, 1990) have computed the dependence of the albedo of the martian polar

caps on solar zenith angle, and these calculations have been included in my

polar cap model. Since the albedo of ice increases and becomes more forward

scattering at higher solar zenith ingles, and since the solar zenith angle be-

comes higher as one approaches the pole, the albedo is greatest at the pole.

This decreases absorption of sunlight, hence increasing survivability of CO 2

ice. In fact, this increases the survivability of ice enough to offset the

decrease in survivability of ice due to radiative effects of clouds and dust.

Discussion. The combination of the effects of solar zenith angle on al-
bedo and the radiative effects of clouds and dust act to extend the lifetime

of CO 2 ice on the south pole relatively more than on the north pole, possibly

explaining the hemispherical asymmetry in the residual polar caps without the

need of a hemispherical asymmetry in polar cap albedo. This does not imply

that a hemispherical asymmetry in polar cap albedo does not exist, but that

one is not necessary.

Observations of the regression of the "polar caps and the annual cycle in

atmospheric pressure are reproduced fairly well by the model, as shown in the

figures, although further improvement is needed. When CO 2 ice is retained at

the south pole, the model predictions of the annual cycle in atmospheric pres-

sure have a phase shift relative to the data, no matter what model input para-

meters-are used. We are investigating other processes not included in prior

polar cap models.
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SUNLIGHT PENETRATION THROUGH THE MARTIAN POLAR CAPS:

EFFECTS ON THE THERMAL AND FROST BUDGETS

Bernhard Lee Lindner

Atmospheric and Environmental Research, Inc.

Abstract. An energy balance model of the seasonal polar

caps on Mars is modified to include penetration of solar radia-

tion into and through the ice. Penetration of solar radiation has

no effect on subsurface temperature or total frost sublimation if

seasonal ice overlies a dust surface. An effect is noted for sea-

sonal ice which overlies the residual polar caps. For the case

of an exposed water-ice residual polar cap, the temperature at

depth is calculated to be up to several degrees warmer and the

calculated lifetime of seasonal CO2 frost is slightly lower

when penetration of sunlight is properly treated in the model.

For the ease of a residual polar cap which is pemhnlally cov-

ered by CO2 frost, the calculated lifetime of seasonal CO2

frost is very slightly increased as a result of sunlight penetra-

tion through the ice. Hence, penetration of sunlight into the

ice helps to stabilize the observed dichotomy in the residual

polar caps on Mars, although it is a small effect.

Introduction

Computer simulation of the condensation and sublimation

of CO2 frost in the martian polar caps has been fairly success-

ful in reproducing the annual cycle in atmospheric pressure

observed by the Viking Landers [Leighton and Murray, 1966;

Cross, 1971; Briggs, 1974; Davies et al., 1977; James and

North, 1982; Lindner, 1985, 1986]. However, these studies

have not been able to uniquely explain why CO2 frost survives

summer in the southern hemisphere and not summer in the

northern hemisphere. Several theories have been advanced to

explain this discrepancy, including hemispherical asymmetries

in albedo [Paige, 1985; Paige and Ingersoll, 1985; Lindner,

1985; 198o7, in snowfall [Pollack et al., 1990], in the radiative

effects of clouds and airborne dust [Briggs, 1974; James and

North, 1982; Lindner, 1990; 1992], in subsurface heat

conduction [Jakosky and Habede, 1990], and in ozone [Kuhn

et al., 1979; Lindner, 1988; 1990; 1991]. It is also possible

that a permanent reservoir of CO2 frost from an earlier epoch

is being uncovered in the southern hemisphere, although this

seems unlikely [e.g., Jakosky and Barker, 1984].



Prior modelshave usedthe assumptionthat all non-re-
flectedsunlightis absorbedatthesurface,whenin reality sun-
light penetratesinto thesurface,sometimesto severalmeters
depth[Clow, 1987]. This paperdescribesstudiesof how this
phenomenonaffectsthethermalandfrostbudgetsof thepolar
capsandthesubsurface.

Modeling Approach

To perform this study, the energy-balance model of

Jakosky and Haberle [1990] is combined with the ice micro-

physics model of Clow [1987]. The energy budget at the sur-

face of the geographic poles involves balance between ab-

sorbed sunlight, absorbed and emitted thermal-IR radiation

(from the surface to space and from the atmosphere.to the sur-

face), conduction to or from the subsurface (the subsurface is

taken to begin at the base of the seasonal ice), and condensa-

tion or sublimation of CO2. The instantaneous energy balance

at the surface can be written as

-A)P(t)cos(t) - eo'T4(z,t) - K _T(z't)] + L dm(t) = 0 (1)8z [z=0 dt

where So is the solar constant at 1 AU corrected for atmo-

spheric absorption and scattering [Lindner, 1985; 1990;

Lindner et al., 1990]; R is the distance of Mars from the Sun

in AU; A is the bolometric Bond albedo of the surface material

at the pole; P(t) is the fraction of non-reflected sunlight which

is absorbed by the seasonal polar cap at time t (the remainder

being absorbed by the surface underneath the seasonal ice); t is

the solar incidence angle; e is the effective emissivity of the

surface; G is the Stefan-Boltzmann radiation constant; T(z,t) is

the temperature at depth z (surface temperature is set to the

condensation temperature of CO2 if CO2 frost is present); K is

the thermal conductivity of the surface and subsurface mated-

als; L is the latent heat of sublimation of CO2 frost; dm(t)/dt is

the time derivative of the CO2 surface frost abundance (set to

zero when no frost is present); and the temperature gradient

b'T/Sz is evaluated at the surface (_--0).

Sunlight penetration and heat conduction into the subsur-

face are accounted for by

_2T(z't) -_2 _F(z,t)._T(z,t) 1 {K + (1-A)(I-P(t)) (2)
St - pC 8z 2 cos(t)----_z !

where p is the bulk density of the subsurface material, C is its

specific heat, and _F(z,t) is the fraction of the sunlight which
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passes through the seasonal cap and is absorbed within depth

_z of the subsurface. The derivatives in (2) apply locally. The

values used for p and C of the subsurface dust are 0.93 gem -3
and 0.15 cal g-t K-1, respectively, and K is allowed to vary

depending on the thermal inertia. The albedo and thermal in-

ertia for dust material is assumed to be comparable to the typi-

cal regolith values (0.25 and 0.006 cal cm-2s - I/2K-I, respec-

tively). The albedo and thermal inertia for a residual polar cap

are taken to be like those of the north residual polar cap (0.45

and 0.03 cal cm-2s - l/2K-1, respectively [see Kieffer et al.,

1976; Paige, 1985]. When the model uses an albedo of 0.65

for seasonal CO2 ice, all seasonal ice sublimes during the

summer and the underlying surface becomes exposed. Hence,

an albedo of 0.65 is used to simulate the case of an exposed

residual polar cap. An albedo of 0.74 is n_ed in this model

to retain seasonal CO2 ice through the summer. While energy

is deposited at depth by solar radiation, it is not effectively

transported by IR radiation relative to conduction. Optical

absorption coefficients are large in the IR, and temperatures

are low, both of which inhibit transport by radiation. Hence,

IR radiation is not included in (2). Terms in (1) and (2) other

than P and F are evaluated as in Jakosky and Haberle [1990].

Clow [1987] calculated the multiple scattering of sunlight

by the matrix of water-ice grains and dust particles on Mars by

inserting the average single-scattering parameters for these

particles into the &Eddington method of solving the radiative-

transfer equation. Figure 1 shows the integral of net short-

wave flux with respect to depth, which Clow calculated for

pure snow and dirty snow (1000 ppmw dust) and for fine-

grained snow (ice-grain radii of 50 _tm, bulk density of 50 kg

m-3) and coarse-grained snow (ice-grain radii of 1000 i.tm,

bulk density of 400 kg m-3). Values for P, the fraction of

non-reflected solar radiation absorbed by the S_onal polar

cap, are extracted from Figure 1 using the thickness of the sea-

sonal polar cap as predicted by the energy balance model.

Values for F(z), the fraction of non-reflected solar radiation

absorbed by the surface under the seasonal ice, _ then com-

puted by taking the remainder (l-P) of the non-reflected solar

radiation and apportioning it with depth as shown in Figure 1.

Kieffer [1990] and Moore [1988] have both deduced that

ice-grain radii in the residual polar cap are over i00 _tm and

that dust concentrations are less than 1/1000. This means that

ice in the residual polar cap is believed to be between fine-

grained and coarse-grained and between pure and dirty, as I

have defined them. There is no evidence for the grain size and

dust content of seasonal ice, although it is likely to be less



- I

dirty and more fine grained than ice in the residual polar cap. I

have assumed that the residual polar cap is at least several me-

ters thick, which is believed to be the case [Toon et al, 1980].

The Clow [1987] calculations presented in Figure 1 as-

sume water ice, perfectly valid for the residual polar cap com-

posed of water ice. Recent calculations by Warren et al.

[1990] suggest that CO2 ice on Mars is more absorbing than

water ice on Mars. Greater absorption of sunlight by ice

would decrease the penetration depth of sunlight shown in

Figure 1 (G. Clow, personal communication, 1992). Hence,

the penetration of sunlight calculated here for seasonal ice may

be an upper limit case, which enhances the conclusions as
shown below.

To apply the model, (2) is numerically integrated at the ge-

ographic pole through a martian orbit around the Sun, subject

to the boundary condition of (1). The model is iterated for six

Mars years, by which time convergence is achieved. The sub-

surface is divided up into discrete layers, each of which is de-

scribed by a center temperature. A 5 cm surface layer thick-

ness is used. This is required since the layering needs to be on

a finer scale than the sunlight penetration depth (see Figure 1)

and the thermal skin depth. The thermal skin depth varies

from 1 m to 10 m at the pole, depending on the choice of sub-

surface material. Succeeding layers are thicker by a factor of

1.2 each; this reaches to a depth of 37 m (over 4 annual skin

depths). This subsurface thermal model produced excellent

agreement to the depth profiles of temperature computed by

Kieffer [1990] for the same case he presented in his Figure 3.

Results

In the case where seasonal ice overlies a dust surface, our

model calculates no changes in either the frost budget of the

polar cap or the thermal structure of the subsurface due to sun-

light penetration. The top grains of dust under the ice absorb

the solar radiation which passes through the ice, and it is much

easier for these top grains to conduct or radiate heat back to the

overlying ice than deep into the subsurface. Effectively, all

non-reflected sunlight is absorbed by the seasonal frost, as

was assumed in previous polar-cap models.

The behavior for seasonal CO2 ice overlying a residual

polar cap is different. Solar radiation which passes through

the seasonal ice may penetrate quite deeply into the residual

polar cap (see Figure 1). For a water-ice residual polar cap,

the sunlight which penetrates the seasonal polar cap heats the

residual polar cap by up to 3°K, primarily in late summer when

4



theseasonalice is thinnest, with the greatest heating occurring

at 1 m depth in the residual polar cap (see Figure 2). Most of

the penetrating radiation actually gets absorbed near the surface

of the residual polar cap, but that easily conducts or radiates

away to the seasonal CO2 ice, accounting for the low heating

rate at the surface of the residual polar cap. Dirty ice exhibits

the same behavior seen in Figure 2, but with only half the

magnitude of subsurface heating. The results are essentially

the same no matter whether fine-grained or coarse-grained ice

is used. However, the heating may be less than shown in

Figure 2 since the seasonal ice may be more absorbing in the

visible than assumed here. Different values for thermal inertia

also change the degree of subsurface heating, with lower

thermal inertia producing greater heating. For a residual polar

cap which contains CO2 ice, any subsurface heating goes into

subliming local CO2 ice, and does not change the local tem-

perature until all local CO2 ice has sublimed.

For the ease of an exposed water-ice residual polar cap, the

maximum surface temperature at the pole occurs just after the
last of the seasonal ice sublimes. This is also when the maxi-

mum change due to sunlight penetration occurs in the calcu-

lated temperature at depth, as shown in Figure 3. I find that

surface temperatures are cooler in early summer (_ = 270 ° to

Ls = 310 °) for the model with light penetration than for the

model which has no penetration. Solar radiation which pene-
trates into the subsurface must conduct to the surface to heat

the surface, which is not as effective at heating the surface as

direct absorption of all the solar radiation by the surface. In

late summer (Ls = 310 ° to 360°), the surface is actually warmer

for the model with light penetration, due to the increased heat

conduction by the warmer subsurface. After Ls = 360 °, the

surface becomes covered with seasonal CO2 frost. Again, the

maximum subsurface heating occurs at 1 m depth in a water-

ice residual polar cap.

The model which includes penetration of sunlight predicts

less seasonal ice all year for the exposed water-ice residual cap

case, as shown in Figure 4. By allowing solar radiation to be

absorbed at depth, the surface does not become as warm in

early summer when surface temperatures are their warmest.

This decreases the annual-total energy lost as infrared radiation

emitted by the surface and increases the amount of energy

stored in the subsurface, which in turn decreases the amount

of frost condensation needed in the early winter to maintain

balance (see equation 1). Thus, there is an increasing differ-

enee in predicted frost abundances between the models from

Ls = 0 ° to 180 °. After Ls = 180 °, the difference in the CO2
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frost amount between the modelsdecreasesbecausesome
sunlightpenetratesthe seasonalice to heattheresidualpolar
capinsteadof sublimingseasonalice. However,thiseffectis
notenoughto compensatefor theincreasedconductionof heat
duringearly winter, andthe netresultis thattheseasonalice
sublimesawayearlierin theyearfor themodelwhich includes
penetrationof sunlight. Furthermore,seasonalice may be
moreabsorbingthanassumedhere,whichwill decreaseheat-
ing of the residual polar capwhile seasonalice is present,
resulting in a slightly larger difference betweenmodels in
Figure 4. The effectof light penetrationon the frost budget
for dirty iceshowsthesamebehaviorasin Figure4, butonly
half themagnitude.

Discussion

The inclusion of light penetration in an energy balance

model slightly decreases the albedo needed in the model to

keep seasonal CO2 ice on a residual polar cap through the

summer. Furthermore, the number of days that an energy-bal-

ance model calculates for which an exposed water'ice residual

polar cap is free of seasonal CO2 ice is increased by approxi-

mately 5 days when light penetration is included in the model.

Thus, since the effect of light penetration slightly decreases

CO2 ice lifetimes when the ice does not exist year-round and

slightly increases CO2 ice survivability when ice does exist

year-round, it also enhances the Jakosky and Haberle [1990]

conclusion that there are two stable states for the residual polar

caps; perennially covered by CO2 ice or exposed every sum-

mer. These results also enhance the conclusion of Jakosky

and Haberle that conduction of heat to and from the subsurface

plays an important role in the energy balance of the polar cap.

Currently CO2 ice does not survive summer on the north-

ern residual polar cap while CO2 ice does survive summer on

the southern residual polar cap. The CO2 ice at the south pole

could have originated from an earlier epoch, but that would

make the large abundances of water vapor observed in south-

ern summer in 1969 harder to explain [Jakosky and Barker,

1984]. The inclusion of light penetration in an energy balance

model makes it slightly easier for energy balance models to

maintain seasonal CO2 ice on an existing CO2 residual polar

cap, as now exists in the south, and to totally sublimate sea-

sonal CO2 ice on an exposed water ice residual polar cap, as

now exists in the north. Hence, the effect of sunlight penetra-

tion makes it easier for energy balance models to explain the

dichotomy in the residual polar caps.



While of someimportance directly at the poles, the pene-

tration of light into the polar cap has only a small effect on the

globally-integrated energy budget of the polar cap, specifically

the globally-integrated CO2 sublimation and condensation as

inferred by the Viking Lander measurements of atmospheric

pressure and as predicted by theoretical models of the general

atmospheric circulation. Given the uncertainties currently pre-

sent in albedo and other parameters, the effect of light penetra-

tion is second order, and can be currently neglected in models

of the globally-integrated energy budget of the polar caps.

Further work remains to be done on other processes involved

in the frost budget of the polar caps, as discussed in the intro-

duction. These processes would not affect the major results of

our work, but may have a significant impact on the globally-

integrated frost budgets.
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Fig. 1. The integral of net shortwave flux with respect to

depth for clean and dusty water snow on Mars, using the

mean-annual incident solar flux at latitude -38 °. Curves (A)

correspond to a snow with ice grain radii of 50 lxm and bulk

density 50 kg m -3 while curves (B) are for a snow with 1000-

I.tm ice grains and a density of 400 kg m -3. (Reproduced by

permission from Clow [1987]).

Fig. 2. Temperature versus depth in a water-ice residual polar

cap for the case where seasonal ice sublimes completely in the

summer. The surface is still covered by CO2 ice at this time

0ate summer, Ls = 260°). The dashed curve is simulated by

the model including the effect of penetration of solar radiation,

and the solid curve is simulated by the model with no penetra-

tion of solar radiation. Surface values are shown at 1 cm

depth. Seasonal ice albedo and thermal inertia is 0.65 and

0.03 cal cm "2 s-l/2 K -I, respectively. The flux profile for

clean, fine-grained ice in Figure 1 is used for seasonal ice and

that for clean, coarse ice is used for the residual polar cap.

Fig. 3. As in Figure 2, except after all seasonal ice has sub-

limed in the model (Ls = 280 °, 37 Mars days after Figure 2).

Fig. 4. Annual variation in seasonal C02 frost amount at the

south pole for the case where seasonal ice sublimes completely

in the summer. The difference between the two models is also

plotted, using the scale on the right side. The same ice prop-

erties as described for Figure 2 are used.
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Does UV instrumentation effectively measure ozone abundance?

Bernhard Lee Lindner

AER, 840 Memorial Drive, Cambridge, MA 02139 (617)349-2280

Measurements of 03 on Mars provide significant information about the chemistry and

composition of the atmosphere [1], including long-term changes [2]. The most extensive and

accurate data were inferred from the Mariner 9 UV spectrometer experimen_ some of which are

reproduced in Fig. 1. Mars 03 shows strong seasonal and latitudinal variation, with column

abundances ranging from 0.2 lam-atm at equatorial latitudes to 60 lam-atm over the northern winter

polar latitudes [1] (1 lam-atm is a column abundance of 2.689x1015 molecules cm-2).

The Mariner 9 UV spectrometer scanned from 2100 to 3500 Angstroms in one of its two

spectral channels every 3 seconds with a spectral resolution of 15 Angstroms and an effective field-

of-view of approximately 300 km 2. Measurements Were made for almost half a martian year, with

winter and spring in the northern hemisphere and summer and fall in the southern hemisphere.

The detectability limit of the spectrometer was approximately 3 lam-atm of ozone. The process

used by earlier investigators to extract the ozone abundance from the observed Mariner 9 _.cUa is

as follows [1]. Each spectrum was filtered to remove spurious data points, then compared to the

solar flux spectrum and shifted slightly in wavelength in order to compensate for any systematic

shift in the wavelength calibration of the spectrometer. Incoming solar radiation was assumed to

undergo Rayleigh scattering by CO2 and Mie scattering by the polar hood, and to be reflected by a

wavelength-independent surface albedo. The onlyatmospheric absorption in the 2000 to 3000

Angstrom region was assumed to come from the Hartley band system of ozone, and therefore the

amount of ozone was inferred by fitting this absorption feature with laboratory data of ozone ab-

sorption, as shown in Fig. 2. 03 absorption of sunlight is not strong enough to affect atmospheric

temperature on Mars [3], and hence cannot be inferred from temperature measurements.

I use a radiative transfer model based on the discrete ordinate method to calculate synthetic

radiance spectra. Figure 3 shows that when typical amounts of dust and cloud are present that

significant underestimation of 03 occurs. A factor of 3 times as much 03 is needed to generate the



same spectrum as for a clear atmosphere. If the scattering properties of martian clouds and dust

were well known, then their appearance would not be a problem, as a model would be capable of

retrieving the 03 abundance. However, these properties are not well known, which raises doubts

about the effectiveness of the current UV spectroscopy technique used to measure 03.

Spatial and temporal variability in temperature and water vapor account have been claimed

to account for the scatter of the data points in Figure 1 [4]. A decrease in temperature would result

in a decrease in water vapor, if saturated as expected at prevalent temperatures. A decreased water

vapor abundance decreases the availability of odd hydrogen, which converts CO and O into CO2

catalytically, decreasing the abundance of O needed to form 03. However, water vapor is a small

source of odd hydrogen in the winter polar atmosphere, and may not account for most of the vari-

ability in Figure 1 [5]. Masking by clouds and dust may also account for some of the observed 03

variability, because the nature and opacity of the clouds and dust in the polar hood change dramati-

cally in latitude and even on a day-to-day basis. As the maximum 03 abundance resides near the

surface [5], spacecraft must be able to observe through the entire cloud and dust abundance in

order to actually see the total 03 column abundance. If reflectance spectroscopy is used, as on

Mariner 9, then the cloud and the airborne dust must be traversed twice; first by the incoming solar

flux down to the surface, and then once again upon reflection from the surface out to the space-

craft. In addition, the large solar zenith angles at winter polar latitudes mean several times the ver-

tical opacity of cloud and dust must be traversed. Indeed, pan of the observed latitudinal variation

in 03 in Fig. 1 may be due to the inability of the spacecraft to observe through the increasing

effective optical depths as one goes poleward.

The UV spectrometer on Mariner 9 was incapable of penetrating the dust during dust

storms [1]; the single-scattering albedo and phase function of airborne dust and cloud ice are not

known to the degree required to extract the small UV signal reflected up from near the surface.

The reflectance specu'oscopy technique would also have difficulty detecting the total column abun-

dance of O3 in cases where large dust abundances exist together with the polar hood, especially at

high latitudes where large solar zenith angles magnify those optical depths; yet these cases would



contain the maximum 03, based on theoretical results [5]. It is quite possible that the maximum 03

column abundance observed by Mariner 9 of 60gm-atm is common. In fact, larger quantities may

exist in some of the colder areas with optically thick clouds and dust. As the Viking period often

had more atmospheric dust loading than did that of Mariner 9, the reflectance spectroscopy tech-

nique may even have been incapable of detecting the entire O3 column abundance during much of

the Mars year that Viking observed, particularly at high latitudes.
r
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Figure 1. Measurements of the 03 column abundance inferred from the Mariner 9 UV spectrometer

data during the northern winter, Ls = 330-360, in the northern hemisphere (see [2]).

Figure 2. Ultraviolet spectrum measured by Mariner 9 at 57N latitude on orbit 144. To enhance

the 03 absorption feature, this spectrum was divided by one obtained at 20N latitude on orbit 144,

where 03 abundances arc minimal [1].

Figure 3. Synthetic _ as would be observed by spacecraft for atmospheres with (A) no cloud

or dust and 30 pm-atm 03, (B) vertical opacities of dust and cloud of 0.3 and 1.0, respectively,

and 30 lam-atm of 03, and (C) vertical opacities of dust and cloud of 0.3 and 1.0, respectively,

and I00 gm-atm of 03. All casesassume a solara zenithangleof 75 (typicalforwinterpolar

observations),and viewing angleof 60, with azimuth angle of0 (typicalforMariner 9).Polarcap

albcdo of 0.6.
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C22 ice on Mars" Theoretical simulations

Bernhard Lee Lindner

Atmospheric and Environmental Research, Inc. , 840 Memorial Drive

bridge, Mass. 02139-3794, USA
, Cam -

ABSTRACT: A theoretical model of the energy budget of the polar caps of

Mars has been created which is used to study the hemispherical asymmetry

in CO 2 ice. The observations which show survival of seasonal CO 2 ice in
the southern hemisphere in summer and not in the northern hemisphere in

summer have been reproduced.

i. INTRODUCTION

One of the most puzzling mysteries

about the planet Mars is the hemi-

spherical asymmetry in the polar

caps. Every spring the seasonal

polar cap of CO 2 recedes until the

is observed, as is shown in Figure

i. This paper will show how the

radiative effects of ozone,

clouds, and airborne dust, light

penetration into and through the

polar cap, and the dependence of

albedo on solar zenith angle af-

end of summer, when only a small fect CO 2 ice formation and subli-
part, the residual polar cap, re- mation, and how they help explain

mains. During the year that Vik-

ing observed Mars, the residual

polar cap was composed of water

ice in the northern hemisphere (I)

but was primarily carbon dioxide

ice in the southern hemisphere

(2). Scientists have sought to

explain this asymmetry by modeling
observations of the latitudinal

recession of the polar cap and

the hemispherical asymmetry in the I
residual polar caps. These ef -_
fects have not been studied with

prior polar cap models.

2. MODEL DESCRIPTION

The energy budget of the surface

of Mars has been studied with a

model which includes all of the

seasonal variations in atmospheric processes shown schematically in
pressure (since the seasonal polar -

caps are primarily frozen atmo-

sphere, they are directly related

to changes in atmospheric mass).

These models reproduce most as-

pects of the observed annual vari-

ation in atmospheric pressure

fairly accurately. Furthermore,

the predicted latitudinal reces-

sion of the northern polar cap in

the spring agrees well with obser-

vations, including the fact that

the CO 2 ice is predicted to com-

pletely Sublime away. However,

these models all predict that the

carbon dioxide ice will also sub-

lime away during the summer in the

southern hemisphere, unlike what

Figure 2. The sources and sinks

of energy for a square centimeter

of surface include solar insola-

tion which strikes the surface,

modified for the absorption due to

clouds and aerosols ; infrared

emission by the clear atmosphere

and by clouds and aerosols to the

surface; infrared emission by the

surface to space; penetration of

solar radiation into the surface;

atmospheric heat transport as re-

presented by a thermal wind; heat

conduction in the subsurface; and
latent heat of condensation of

CO 2 . The net gain or loss of

energy integrated over one martian
day is used to compute either a



change in the surface temperature

or a change in the amount of CO 2

frost present. De_ail_, on Ehe mo-
del are presehted _elsewhere

(9,10,11).

Since 03 is more prevalent in the

northern hemisphere than in the

southern hemisphere, 03 was sug-

gested as a cause for the hemi-

spherical asymmetry in the residu-

al polar caps (12). However, 0 3
has since been shown to have a mi-

nor effect on the atmospheric tem-

perature (13), and hence on the

infrared radiation which strikes

the polar cap, and it has been

shown that 03 absorbs less than i_

of the total solar radiation ab-

sorbed by the polar cap (9).

Thus, 03 is not an important con-

sideration in the polar cap energy

budget.

fO

The solar and thermal flux strik-

ing the polar cap of Mars has been

computed for various dust and
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Fig. I. The seasonal recession of

the south polar cap as observed

over the last 20 years (3) and as

predicted by (4,5,6,7,8). (The

aerocentric longitude of the sun,

cloud abundances and for three so- L is the seasonal index; L s -

lar zenith angles (9). These cal- 0 §', 90 °, 180 ° and 270" correspond•

culations have been inserted in to northern spring equinox, summer

earlier versions of polar-cap mo- solstice, autumnal equinox and

dels (I0,ii). Vertical optical winter solstice, respectively.)
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/N

IR IR

I SUBSURFACE

Fig. 2. Schematic of the modei for the energy budget of the poiar cap,

showing the physical processes included.



" de_ths of dust and cloud ranging

fro@ zero to I increase the ab-
F

sorbed flux significantly in polar

night, where the pole spends half

of the year, as shown in Table I

(9). Observed hemispherical asym-

. metries in dust abundance, cloud

cover, and surface pressure com-

bine to cause a significant hemi-

spherical asymmetry in the total

flux absorbed by the residual po-

lar caps (9), which helps to ex-

plain the dichotomy in the residu-

al polar caps on Mars.

TABLE i. Flux Striking the Surface of

the Polar Cap in Polar Night (90°N '

Latitude, L s - 343 °)

Dust Opacity

Wave I eng th

Interval, _m O. 0 O. 2 O. 5

5.4-10.0 0.0 0.7 1.3

i0.0-21.0 14.7 29.4 43.4

21.0-99.9 0.0 13.5 29.9

Penetration of solar radiation in-

to the cap itself is included,

based on theoretical work (14).

The inclusion of light penetration

slightly decreases the albedo

needed in the model to keep CO 2-

ice year-round at the south pole

by on the order of 14. The re-

quired albedo is decreased because

some solar radiation is used to

heat the subsurface, and not all

of this heat is transported back

to the surface. Overall, penetra-

tion of light into the polar cap

has only a small effect on the po-

larcap energy budget.

Calculations of the dependence of

the albedo of the martian polar

caps on solar zenith angle (15)

have also been included in the mo-

del. Since the albedo of ice in-

creases and becomes more forward

scattering at higher solar zenith

angles, and since the solar zenith

angle becomes higher as one ap-

proaches the pole, the albedo is

greatest at the pole. This de-

" creases absorption of sunlight,

hence increasing survivability of

CO 2 ice. In fact, this increases

the survivability of ice enough to

offset the decrease in survivabi-

lity of ice due to the radiative

effects of clouds and dust.

3. DISCUSSION

The combination of the effects of

solar zenith angle on albedo and

the radiative effects of clouds

and dust act to extend the life-

time of CO 2 ice on the south pole
relatively more than on the north

pole, explaining the hemispherical

asymmetry in the residual polar

caps without the need of a hemi-

Absorbed flux 14.7 43.6 74.7

The vertical optical depth of dust is

given. Flux values are given in units

of J cm -2 sol -I.

spherical asymmetry in polar cap

albedo. Another positive aspect

of this solution is that neither

the inclusion of solar zenith an-

gle effects on ice albedo nor the

radiative effects of clouds and

dust should appreciably change mo-

del predictions of the annual cy-

cle of pressure or polar cap re-

cession equatorward of 75 ° lati-,

rude, since approximately 904 of

the seasonal CO 2 frost is equator-

ward of 80 ° latitude. Hence, the

good model agreement noted by pri-

or researchers to the seasonal cy-

cle in atmospheric pressure and to

the recession of the polar cap

equatorward of 80° latitude is re-

tained.
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How well is martian ozone inferred with reflectance spectroscopy? _f
/

Bernhard Lee Lindner ,_ _._ _]_
AER, 840 Memorial Drive, Cambridge, MA 02139 (617)349-2280

The Mariner 9 UV spectrometer scanned from 2100 to 3500 Angstroms in one of its two

spectral channels every 3 seconds with a spectral resolution of 15 Angstroms and an effective field-

of-view of approximately 300 km 2. The only gaseous absorption in the 2000 to 3000 Angstrom

region was assumed to come from the Hartley band system of ozone, and therefore the amount of

ozone was inferred by fitting this absorption feature with laboratory data of ozone absorption[l]-.

Mars 03 as inferred from these spectra shows strong seasonal and latitudinal variation, with col-

umn abundances ranging from 0.2 _trn-atm at equatorial latitudes to 60 I.tm-atm over the northern

winter polar latitudes [1]. The detectability limit of the spectrometer was approximately 3 I.tm-atm.

I use a radiative transfer model based on the discrete ordinate method to calculate synthetic

radiance spectra. When typical amounts of dust and cloud are present, significant underestimation

of 03 occurs. A factor of 3 times as much O3 is needed to generate the same spectrum for cloudy,

dusty atmospheres as for a clear atmosphere. If the scattering properties of martian clouds and

dust were well known, then their appearance would not be a problem, as a model would be capable

of retrieving the 03 abundance. However, these properties are not well known, which raises

doubts about the effectiveness of the current UV spectroscopy technique used to measure 03.

Spatial and temporal variability in temperature and water vapor account have been claimed

to account for the scatter of the data points [2]. However, water vapor is a small source of odd

hydrogen in the winter polar atmosphere, and may not account for most of the variability [3].

Masking by clouds and dust may also account for some of the observed 03 variability, because the

nature and opacity of the clouds and dust in the polar hood change dramatically in latitude and even

on a day-to-day basis. As the maximum 03 abundance resides near the surface [3], spacecraft

must be able to observe through the entire cloud and dust abundance in order to actually see the to-

tal 03 column abundance. If reflectance spectroscopy is used, as on Mariner 9, then the cloud and

the airborne dust must be traversed twice; first by the incoming solar flux down to the surface, and

then once again upon reflection from the surface out to the spacecraft. In addition, the large solar

zenith angles at winter polar latitudes mean several times the vertical opacity of cloud and dust must

be traversed; yet these cases would contain the m_imum 03, based on theoretical results [3].

Indeed, part of the observed latitudinal variation in 03 may be due to the inability of the spacecraft

to observe through the increasing effective optical depths as one goes poleward. It is quite possi-

ble that the maximum 03 column abundance observed by Mariner 9 of 60prn-atm is common. In

fact, larger quantities may exist in some of the colder areas with optically thick clouds and dust [3].

As the Viking period often had more atmospheric dust loading than did that of Mariner 9, the re-

flectance spectroscopy technique may even have been incapable of detecting the entire 03 column

abundance during much of the Mars year that Viking observed, particularly at high latitudes.
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The Current state of our knowledge of atmospheric chemistry on

Mars will be reviewed, and differences with the Earth will be

highlighted. Improvements in modeling work have shown that the

excessively high atmospheric mixing required by earlier models (eddy

diffusion coefficients of 108 cm2s -I) to explain the atmospheric

composition observed by spacecraft is no longer necessary. Also,

recent work has shown that heterogeneous chemistry could be quite

important on Mars.

I will focus on the interactions between ozone and clouds and

airborne dust. The ozone abundance on Kars is sensitive to the

presence of clouds and airborne dust, in part due to the effects

clouds and airborne dust have on photodissociatlve solar radiation.

Also, the efficacy Of the reflectance spectroscopy technique used in

the past to infer ozone abundance on Mars is questioned due to

masking by clouds and dust.
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