## AWT ICING DISCUSSION

JOHN J. REINMANN
HEAD, ICING RESEARCH SECTION
NASA LEWIS RESEARCH CENTER

N92-7649

## AWT ICING SYSTEMS TASK TEAM



## **OBJECTIVES**

- O PROVIDE AN ICING AND SEVERE WEATHER CAPABILITY FOR THE AWT IN BOTH THE HIGH AND LOW SPEED TEST SECTIONS
- O ENSURE THAT ALL AWT COMPONENTS ARE DESIGNED TO PERFORM IN THE SEVERE WEATHER ENVIRONMENT WITH MINIMUM IMPACT ON PERFORMANCE AND WITH HIGH RELIABILITY

#### ICING SYSTEMS TASK TEAM

## KEY PROBLEMS TO BE ADDRESSED

#### NOZZLES

- o SUPERCOOLED CLOUDS
  - WIDE LWC RANGE
  - SMALL DROPLETS
  - ACCURATE CONTROL
- O HEAVY RAIN/FREEZING RAIN
  - LARGE DROPLETS
  - VERY WIDE LWC RANGE
- o SNOW
- SNOW FLAKE GROWTH RATE VERY SLOW
- SIMULATE WITH FROZEN DROPLETS?

#### INSTRUMENTATION

- O CALIBRATION STANDARDS NEEDED FOR LWC AND PARTICLE SIZING
- O CURRENT INSTRUMENTS LIMITED TO ONLY LOW SPEEDS

#### ICING SYSTEMS TASK TEAM

## KEY PROBLEMS TO BE ADDRESSED (CONT'D)

#### SPRAY CLOUD

- O SIZE AND UNIFORMITY
  - SCALING OF SPRAY MIXING PROCESS
  - EFFECT OF BELLMOUTH FLOW DISTORTION AND SECONDARY FLOWS
  - UNIFORM CLOUD AT LOW LWC'S
  - HIGH LWC AT HIGH SPEEDS
- O CLOUD CHARACTERISTICS
  - DROPLET SIZE CHANGE DUE TO EVAPORATION
  - SUPERCOOLING/FREEZE-OUT
- o RAIN
  - DROPLET BREAK-UP AT HIGH SPEEDS
  - DROPLET TRAJECTORY/SPRAY BAR PLACEMENT

# AWT ICING SYSTEMS TASK TEAM KEY COMPONENTS AFFECTED BY ICING



#### ICING SYSTEM TASK TEAM

#### **APPROACH**

#### **NOZZLES**

- o TEST CURRENT DESIGNS
- O DESIGN AND EVALUATE NEW DESIGNS
- O CANDIDATE FACILITIES
  - IN-HOUSE SINGLE NOZZLE RIGS
  - AEDC

#### CLOUD INSTRUMENTATION

- O USE IN-HOUSE INSTRUMENTATION WHERE AVAILABLE
- O PURCHASE EXISTING INSTRUMENTATION AND MODIFY AS NEEDED
- O DEVELOP CALIBRATION PROCEDURES AND STANDARDS
- O CONTRACT FOR HIGH SPEED INSTRUMENTATION

#### SPRAY CLOUD

- O ANALYTICAL MODELING
  - SPRAY MIXING PROCESS
  - FLOW FIELDS AND PARTICLE TRAJECTORIES
- O EXPERIMENTAL MODELING CANIDATE FACILITIES
  - PSL 3/4 (10 TO 15% SCALE)
  - AWT PILOT WIND TUNNEL (~15% SCALE)
  - ICING RESEARCH TUNNEL (6 FT. X 9 FT.)

#### SINGLE NOZZLE TEST RIG

#### NOZZLE SERVICES:

#### WATER:

FLOW RATE O TO 0.5 GPM (FREEZING RAIN, HEAVY RAIN--MUCH HIGHER) PRESSURE 10 TO 500 PSIG TEMPERATURE 70 to 200 F

#### AIR:

FLOW RATE O TO 0.4 LB/SEC PRESSURE 10 TO 400 PSIG TEMPERATURE 70 to 200 F

PRESSURE MEASUREMENT ACCURACY: + 1% OF READING FOR AIR PRESSURE AND DIFFERENTIAL PRESSURE (PWATER-PAIR)

## SECONDARY AIR:

1 ATM **PRESSURE** 0 TO 75 MPH SPEED -20 TO 70<sup>0</sup>F TEMP **HUMIDITY** 20 TO 100%



#### HIGH SPEED/HIGH ALTITUDE ICING TEST FACILITY

#### TUNNEL

MACH NO 0 TO 0.8

ALTITUDE S.L. TO 22,000 FT

TOTAL TEMP -20 TO 70°F

FLOW RATE 0 TO 140 LB/SEC

RELATIVE HUMIDITY 20 TO 100%

STEAM

85 PSIG, 2 INCH LINE

## INSTRUMENTATION

DROPLET SIZING SYSTEM
HEATED WAKE SURVEY PROBE
WALL PRESSURE TAPS
VIDEO CAMERA AND LIGHTING

#### SUPERCOOLED CLOUD SPRAY BARS

WATER:

FLOW RATE 0 TO 20 GPM
TEMP 70 TO 200<sup>O</sup>F

PRESS 10 TO 500 PSIG

DEMINERALIZED

AIR:

FLOW RATE

O TO 12 LB/SEC

TEMP

70 TO 200<sup>O</sup>F

**PRESS** 

10 TO 400 PSIG

## FREEZING & HEAVY RAIN SPRAY BARS

WATER:



577

MA COLUMN MANCE AN MIAN ANDER 174 SM CHASHE TECT CEL

