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SUMMARY

Propulsion-system-specific results are presented from the application of the integrated methodology

for propulsion and airframe control (IMPAC) design approach to integrated flight/propulsion control
design for a short-takeoff-and-vertical-landing (STOVL) aircraft in transition flight. Tile lMPAC

method is briefly discussed and the propulsion system specifications for the integrated control design are
examined. The structure of a linear engine controller that results from partitioning a linear centralized

controller is discussed. The details of a nonlinear propulsion control system are presented, including a

scheme to protect the engine operational limits: the fan surge margin and the acceleration/deceleration
schedule that limits the fuel flow. Also, a simple but effective multivariable integrator windup protection

scheme is investigated. Nonlinear closed-loop simulation results are presented for two typical pilot com-

mands for transition flight: acceleration while maintaining flightpath angle and a change in flightpath

angle while maintaining airspeed. The simulation nonlinearities include the airframe/engine coupling, the

actuator and sensor dynamics and limits, the protection scheme for the engine operational limits, and the

integrator windup protection. Satisfactory performance of the total airframe plus engine system h)r tran-

sition flight, as defined by the specifications, was maintained during the limit operation of the closed-loop
engine subsystem.

INTRODUCTION

The concept behind integrated flight and propulsion controls (IFPC) is the management of the

interactions between the airframe and the propulsion system to achieve the desired performance of the

entire vehicle while reducing the pilot workload. In the past, IFPC had not been necessary because the
propulsion system normally generated only a single thrust component and the effects of tile airframe on

the engine were treated either as disturbances or as performance limits for the aircraft. Recent advances

for propulsive systems, such as thrust-vectoring nozzles and the use of multiple nozzles from a single

engine core, have increased the flexibility of the control design for aircraft. The Harrier is an example of

an aircraft that uses propulsive lift to increase low-speed control effectiveness. Also, vectored thrust is

now being used in highly agile aircraft to enhance maneuverability and controllability, for example, for

post-stall maneuvers (ref. 1). Vectored thrusts have magnitude and direction and they generate moments

because they do not necessarily pass through the aircraft's center of gravity. With propulsive forces and

moments being used for more than just forward momentum (pitch control, for example), disturbances to
the operation of the engine can influence more than just the forward acceleration of the airframe. Thus,

airframe-to-engine coupling, such as (1) inlet distortion due to the angle of attack, the sideslip angle, or

hot gas ingestion during hover and (2) bleed flow extraction from the high-pressure compressor for the
reaction control system, must be examined more closely during the control design and evaluation.



The literatureon IFPChasgenerallyfocusedon the mission-levelaircraft performancespecifica-
tionsandthe resultingclosed-loopresponseof theaircraft. In this report the closed-loop performance of

the propulsion subsystem that results from tile use of the integrated methodology for propulsion and air-

frame control (IMPAC) design method is examined for the transition flight mode.

The report is organized as follows: A brief review of the IMPAC design rneLhodology outlines the

design steps. The vehicle model is then described, including the details of the propulsion system. Next,

the propulsion system operational limits and the engine specifications and how they were accounted for in

the centralized control design are discussed. The linear engine controller that resulted from the appli-

ation of the partitioning of the centralized control design is described, and the details of engine control

structure are reviewed. The implementation details of the limit protection and the multivariable inte-

grator windup protection are examined. Performance results for the integrated system are shown for two

pilot commands typical of the transition flight. Finally, the main results of the paper are summarized.

SYMBOLS
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ALRRc s

ARRRc s

ALYRc s

ARYRc s

APRcs

h
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q

RCS
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TLRRc s

TRRtlc s

TLYRcs

TRYRcs

TPRcs

u

V

v

left-roll RCS area, in. 2

right-roll RCS area, in. 2

left-yaw RCS area, in. 2

right-yaw RCS area, in. 2

pitch RCS area, in. 2

altitude, ft

roll rate, rad/s

pitch rate, deg/s

dynamic pressure, lbm/fta(ft/s) 2

reaction control system

yaw rate, deg/s

left-roll RCS thrust, lbf

right-roll RCS thrust, lbf

left-yaw RCS thrust, lbf

right-yaw RCS thrust, lbf

pitch RCS thrust, lbf

axial velocity, ft/s

true airspeed, ft/s

acceleration along flightpath, ft/s 2

lateral velocity, ft/s
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DP/P

ERAM

ETA
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N2

N25
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P1

P2

P6

P14

vertical velocity, ft/s

angle of attack, deg

sideslip angle, deg

rate of change of sideslip angle, deg/s

left-elevon deflection, deg

right-elevon deflection, deg

rudder deflection, deg

flightpath angle, deg

pitch attitude, deg

roll attitude, deg

heading angle, deg

Engine

aft-nozzle area, in. 2

ventral-nozzle area, in. 2

aft-nozzle vectoring angle, deg

ventral-nozzle vectoring angle, deg

ratio, (P14 - PS14)/P14

inlet ram pressure recovery

ejector butterfly valve angle, deg

aft-nozzle thrust, lbf

total ejector thrust, lbf

ventral-nozzle thrust, lbf

engine fan rotor speed, rpm

engine core rotor speed, rpm

corrected engine core rotor speed, N25. _f'_std/T25)

fan inlet total pressure, psia

recovered inlet pressure, P1.ERAM, psia

tailpipe entrance pressure, psia

fan discharge total pressure in bypass duct, psia
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PC

PE3

PS3

PS14

SM2

T2

T25

TE3

Tm

Tstd

W2R

W25

WB3

WF36

h

A

Aa,Ba,Ca,D a

Aec,Bec,Cec,Dec

a

Bae,Dae

c

e

e

eL

est

L

x

z

ambient pressure, psia

combustor

compressor bleed pressure, psia

high-pressure-compressor discharge static pressure, psia

fan discharge static pressure in bypass duct, psia

fan compressor surge margin

fan inlet temperature, °R

high-pressure-compressor inlet temperature, °R

compressor bleed temperature, °R

metal temperature, °R

standard temperature, 518.67 °R

engine inlet mass flow rate, corrected for temperature

engine core mass flow rate, Ibm/s

RCS bleed mass flow rate, lbm/s

fuel flow, lbm/hr

propulsion controller integrator windup protection gain matrix

integrator windup protection scalar gain

General

matrices defining linear airframe system

matrices defining linear engine controller

subscript, airframe

engine-to-airframe interface matrices

subscript, commanded variables

subscript, engine

error in tracking command

subscript, engine limited variable

subscript,

subscript,

subscript,

subscript,

perturbed

perturbed

perturbed

estimated variable

limited variables

horizontal body-axis thrust component

vertical body-axis thrust component

input vector

state vector

output vector



Yea

(')

perturbed engine-to-airframe coupling vector

rate of change

IFPC CONTROL DESIGN METHODOLOGY

An IFPC design method called IMPAC that takes into account coupling between the airframe and

the propulsion system in the early phases of the control design is currently under development at NASA

Lewis Research Center. The details of the IMPAC methodology presented in reference 2 will be briefly

reviewed. Figure 1 shows the IMPAC methodology flowchart. As seen from the flow chart, there are six

major steps in IMPAC: (1) control model generation; (2) centralized or integrated linear control design;

(3) controller partitioning into linear subcontrollers; (4) full-envelope subsystem control design;

(5) subsystem nonlinear control design; and (6) full-system evaluation. Steps 1 and 2, the details of the
centralized control design, have been presented in references 3 and 4, and step 3, controller partitioning,

was presented in reference 5. Step 4 considers controller scheduling and operating mode switching logic.

Because this paper only considers the control design around a transition operating point, step 4 is not

discussed herein. The discussion of steps 5 and 6, the subsystem nonlinear control design and the
integrated system evaluation, will follow after the vehicle model is described.

VEHICLE MODEL

The model discussed here is used to evaluate the control system around the transition design point

while considering many of the airframe and propulsion system nonlinearities. Transition is defined as the

flight region in which the forces that support the weight of the aircraft shift from predominately aero-

dynamic lift to propulsive lift. The model of the airframe, a delta-wlnged E-7D supersonic short-takeoff-

and-vertical-landing (STOVL) airframe, is the same linear model that was used in the linear integrated

control design discussed in references 3, 4, and 6. The model of the variable-cycle turbofan engine is a

nonlinear component-level model (CLM) (ref. 7). As shown in figure 2 the aircraft is equipped with a

convergent-divergent, vectorable aft nozzle; a vectorable ventral nozzle; two wlng-root-mounted ejectors;

a jet reaction control system (RCS); and the aerodynamic control surfaces: left and right elevons and

rudder. At the nominal transition design point the propulsion system supports approximately 60 percent
of the weight of the aircraft. The ejector and ventral thrusts were adequately distributed to provide the

necessary pitch trim for the aircraft. The RCS was not used for trim, so that the nominal compressor

bleed flow was zero. The transition fllght-mode model to be discussed is representative of a STOVL air-

craft during the approach-to-landing task.

A block diagram of the nonlinear airframe plus engine model that was used for the control evaluation

is shown in figure 3. The aircraft portion of the model comprised a linear airframe model, a nonlinear model
of the airframe actuators, and a nonlinear RCS model. The small-perturbation linear airframe model was

generated at an 80-knot, -3 ° flightpath angle, and 7° pitch attitude flight condition and is of the form

xa = Aa_a + Ba_a + Bae Tea; -_a : Ca_a + Da_a + Dae Tea (1)

where ua, Ya, Yea, and [a are the perturbed airframe input, airframe output, engine-to-airframe inter-

face, and state vectors as shown here:



Ua = [_e l, _e r, _r, TLRRcs, TRRRcs, TLYRcs, TRYRcs, TPRcs] T

Ya = [V,'q, O, q, 7, ¢, P, _,fl, r]T

Tea = [ FGgx, FG9z, FGEx, FGEz, FGVx, FGVz, W2R, ERAM] w

xa = [ u, v, w, p, q, r, ¢, 8, ¢, hi w

The outputs _Yea and Ya are a relevant subset of the available outputs. The airframe actuators,

6el, _er, and _r, are first order with bandwldths of 20 fads/s, and they include rate and range limits.

The nonlinear RCS model calculates the resultant RCS thrusts corresponding to each RCS nozzle area

(ALRRcs, ARRRcs, ALYRc s ARYRcs, and APRcs) on the basis of a and q, PE3, TE3, and Pamb
as shown in figure 3. The RC_ model also calculates the required RCS bleed mass flow rate, WB3. For

the transition flight mode, WB3 is the primary airframe-to-engine coupling.

The propulsion system model that was used in the control evaluation comprised a nonlinear,

component-level model (ref. 7) of the engine and nonlinear actuator and sensor models. Figure 4, from
reference 8, shows a schematic of the engine components and the station designations. The components

are the low-pressure compressor (fan), the high-pressure compressor (HPC), the combustor, the high-
pressure turbine (HPT), the low-pressure turbine (LPT), and the exit areas( ventral and aft nozzle and

ejectors). The flow for the aft and ventral nozzles and the primary flow for the ejectors are obtained
from the mixing plane of the engine where the core and bypass flows mix as shown in figure 4. The sec-

ondary air for the ejectors is an entrained alrstream that is external to the engine as displayed in figure 2.

The two butterfly valve angles that control the primary airflow to the ejectors are commanded identi-

cally, so that no differential ejector thrusts are used in this study. The nonlinear engine model state com-

prised six variables: two rotor speeds (N2 and N25) and four component metal temperatures (TmHpc,

Tmpc , TmHPT, and TmLPT). The metal temperatures have very slow dynamics and the rotor speeds
dominate the engine dynamic response. The actuator models have delays and range and rate limits for

the engine control inputs WF36, A8, ETA, A78, ANG79, and ANG8. Note in figure 3 that the subscript

L indicates that these actuator commands have already been subjected to the engine limit protection

scheme, which is part of the control to be discussed later. Although the HPC does have stator vanes, the

vane angles are on an open-loop schedule, are not adjusted by the dynamic controller, and thus do not

appear in figure 3. Note that the WB3 that is calculated by the RCS model is limited as a percentage

of the maximum engine core mass flow by limiting the commanded RCS nozzle areas. The sensor models

for T25, N25, PS3, and DP/P are linear first-order lags with fixed time constants, except for T25, which

has a time constant that is a function of W25. The engine model outputs Ye are N2, N25, FG9, FGE,

FGV, T25, PS3, SM2, DP/P, W25, TE3, PE3, P6, T2, and P2, and Tea is the engine-to-airframe coupling

vector as defined in eqfiation (1). SM2 is not a measured output but is provided for evaluation of the
engine response near the fan stall line. FG9, FGE, and FGV are used to evaluate the engine control,

but the closed-loop system controls the estimated thrusts, which are discussed later. The vector Tea

acts as an input on the aircraft. The x-z thrust components provide the necessary propulsive forces and

moments. W2R and ERAM are used to calculate the inlet drag due to the engine mass flow and the

inlet ram pressure recovery.
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PROPULSIONSYSTEMOPERATIONAL LIMITS

Typicaloperationallimits for a turbofanenginearethe fanand corecompressorsurgemargins,the
maximumfan andcorerotor speeds,the maximumfan turbine inlet temperature(FTIT), the maximum
combustorpressure,andthe maximumandminimumcombustionfuel/air ratios. Of theselimited vari-
ables,onlythe eombustorpressure,the FTIT, andthe rotor speedsaredirectly measurable.TheFTIT
measurementisnot currentlyusedfor controlbecausereliablemeasurementsarelacking. Thelimits on
the unmeasurablevariablesarereflectedbackonto the enginecontrolinputs,resultingin input limit
schedulesthat area functionof themeasurableengineoutputs. Two suchlimits arethe fuel flow accel-
erationanddeceleration(accel/decel)limit andthe minimumfansurgemarginlimit.

Theaccel/decelscheduleis a setof variableboundson thefuel flow as a function of N25, T25,
and P3. This limit schedule is determined a priori by using an open-loop nonlinear simulation of the

engine. The schedule imposes a rate limit on core rotor speed as a function of the minimum and maxi-

mum fuel/air ratios (lean and rich blowout), the maximum turbine temperature, and the compressor surge

margin, as shown in figure 5, from reference 9. The accel/decel limit is reflected back on the engine con-

trol input by imposing a limit schedule on the fuel/air ratio. The fuel/air ratio is a function of the
WF36/P3 ratio because the HPC discharge pressure is indicative of the combustor air mass flow rate.

The accel/decel schedule is implemented as minimum and maximum bounds on the WF36/P3 ratio as a
function of the corrected core rotor speed, N25R. An example turbofan engine limit schedule from refer-

ence 10 shows a normalized WF36/P3 ratio as a function of N25R in figure 6. In figure 6 the a I "droop
lines" are lines of constant engine thrust for fixed inlet conditions. The rotor speed schedule determines

the "steady state line." A typical engine acceleration from a I to a 2 is shown in figure 6. Note how
the normalized WF36/P3 ratio increases at nearly constant rotor speed because of the rotor speed lag.

Once the accel limit is reached, WF36/P3 follows the accel limit until the desired thrust setting is

obtained. Finally, WF36/P3 settles down until the steady-state line is reached. Note that when WF36/P3
is determined by the accel limit, the fuel flow is determined by the engine outputs, P3 and N25R. The

feedback of these variables links the rate of change of fuel flow (WF36) to the rate of change of the core

rotor speed (N25) whenever the fuel flow limit is encountered. Thus, the accel/decel limit defines the

large-perturbation performance of the engine (assuming no special thrust wasting or off-design schedule
engine operating mode). Other limits, such as the maximum fan speed and the minimum combustor

pressure, also affect fuel flow, but they were not found to be critical during the transition flight mode and
are not considered herein.

The minimum fan surge margin is another critical limit in turbofan engines. Figure 7, from refer-

ence 11, shows how the fan surge margin decreases during engine deceleration for a turbofan engine with
an appropriately scheduled nozzle area. During a gross thrust decrease on a turbofan engine the surge

margin decreases quickly as the fan pressure ratio increases. With the surge margin limited, the much

slower fan rotor speed follows along the surge limit line until the desired operating point is reached. The
surge margin cannot be directly measured, but it can be correlated with a function of the "delta P over P"

pressure ratio (DP/P) as discussed briefly in references 11 and 12. Therefore, it is possible to limit the fan

surge margin by limiting DP/P. Imposing a limit schedule on the minimum value of DP/P imposes a

varying minimum value on the total engine flow exit area. If the total exit area decreases too quickly,
backpressure builds up across the fan and DP/P drops. The limit protection scheme will then increase

the total exit area to keep DP/P, and thus the fan surge margin, above the minimum value. In a multi-

nozzle engine all the nozzles contribute to the total area, and they all have an effect on the fan surge mar-

gin through the bypass duct as can be seen in figure 4. The distribution of the limit protection total area

increase over the available nozzles is part of the integrated control design.



Thelinear integratedcontrol design has been discussed in detail in reference 3, but the propulsion

specifications in the integrated control design are discussed here. Before setting up the "design plant"

(i.e., the linear model used in the H® design, which in reference 3 included scalings, frequency weights,

and internal noise models to build in robustness to specific uncertainties), an open-loop analysis was per-

formed on the system models. In order to gain an understanding of the limit operation of the propulsion
system, an open-loop analysis was performed on the engine model with the limit protection scheme in

place, as shown in figure 8. From this open-loop analysis it was determined how close the nominal oper-
ating point was to the limits, to what extent the actuators could be used before limits were imposed, and

what gross effect the limits have on the thrust response (i.e., the region of validity of the small-perturbation

linear engine model was determined relative to the operational limits). This information was used in selecting
the weights that were used in the linear integrated design. For example, at the design point the accel

schedule was reached when the fuel flow was stepped by approximately 600 Ibm/hr. The maximum fuel

flow available is in the tens of thousands. Using 1000 lbm/hr for scaling the fuel flow in the integrated
design instead of the maximum value possible reduced the probability that the fuel flow limit schedule

would be encountered. Similarly, when a first-order model was selected to represent the fuel flow actua-

tor in the linear design plant, the bandwidth of this model was based on the phase response of the non-

linear actuator because fuel flow has a significant phase lag due to the fuel transportation delay. This
open-loop analysis of the propulsion model with the limit protection scheme in place documented the

small- and large-perturbation thrust response of the engine. The engine still encounters limits whenever

large thrust changes are requested and thus limit protection is still required, but using this information in
the integrated control design develops a system that only encounters the engine limits for large-perturba-

tion pilot inputs. Examples of typical, large-perturbation pilot inputs that drive the propulsion system
into the limits are discussed shortly.

DESCRIPTION OF ENGINE CONTROLLER

Application of step 2 in the IMPAC methodology (linear integrated control design) resulted in a

linear, time-independent, state-space controller at the design point (ref. 4). Applying step 3 (controller

partitioning) resulted in the partitioning of the linear centralized controller into lateral and longitudinal
controllers. The longitudinal controller was specified to have a hierarchical structure composed of a

longitudinal airframe controller and an engine controller. The longitudinal airframe controller calculates

three thrust commands that are tracked by the propulsion control. The partitioned propulsion control is

completely separate from the airframe controller. This is important so that engine manufacturers can
benchtest the propulsion control system independently of the airframe and airframe controller.

The details of the overall engine controller that is built around the partitioned, linear controller are

shown in figure 9. The linear partitioned engine controller is of the form

Xec = Aecxec + Becfec ; Uec = Cec_ec + Dec_ec (2)

where Tee , uec , and

two are described here:

Xe¢ are the perturbed engine controller input, output, and state vectors; the first

Yec = [ eN2, eFG9, eFGE, eFGV, N2, WB3e8 t ]T

Uec = [ WF36 c , A8 c , ETAc , A78c IT
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Thelongitudinalairframecontrollercommands thrusts from the three nozzles, FG9c, FGEc, and

FGV c. The engine controller uses these commands to determine the fan speed command that is based on
the fan speed schedule. The controller then regulates N2 and the three thrusts. Thrust is not measured

directly, but a nonlinear estimator is used to estimate the three thrusts. As shown in figure 9 the inputs
to the thrust estimator are the sensed values for the actuators WF36, A8, ETA, and A78, the engine

outputs P6, N2, DP/P, T2, and P2, the estimated RCS bleed flow WB3est, and Pamb" We are using

the nonlinear RCS model to generate WB3es t. The error between the estimated thrust and the thrust
computed by the engine model is less than 3 percent of the engine model thrust for both steady-state and

dynamic values. This error can be large in terms of perturbation quantities for a linear system. Because

the engine controller tracks the commanded thrusts with estimated thrusts, it is important to ensure that

thrust estimation errors do not lead to degradation in the integrated system performance.

The partitioned linear controller yielded good small perturbation performance, but even with the

scaling in the design plant to help distribute the control authority in order to avoid the engine limits, it
was known early in the design that the engine will encounter limit operation in order to meet the extremes

of the integrated system performance. The limit protection scheme and the accompanying integrator windup

protection scheme are discussed in the next section.

IMPLEMENTATION OF PROPULSION CONTROL LIMIT OPERATION

The two primary engine limits that are encountered in the transition mode are the accel schedule
for the fuel flow and the fan surge margin. The accel schedule and fan surge margin limit protection

schemes from reference 13 were implemented as engine limit schedules, shown as a block in figure 9. The

accel/decel schedule is similar to the scheme for the F100 engine that was previously described. The

scheme for protecting the fan surge margin is implemented as previously discussed, by limiting the mini-

mum value for DP/P. If the DP/P limit is reached, all of the nozzle areas are opened by a percentage
of their contribution to the total nozzle area. Thus, the fan surge margin limit is shared over all three

nozzles (aft, ventral, and ejectors), and all three thrusts are affected when the fan surge margin is reached.
Alternative fan surge margin protection schemes that take advantage of redundancies in the pitch control

of the airframe are possible but have not yet been investigated.

When the outputs of a controller are limited, the controller integrator must be constrained to pre-

vent integrator windup. Windup is defined as an open-loop, unbounded increase in the magnitude of a
controller integrator that does not manifest itself as an increase in the magnitude of the value of the actu-

ator that is seen by the airframe. There is a disconnect between the value calculated by the control and

the actuator-commanded value. In the control literature, little attention has been given to developing

integrator windup protection schemes for general multivariable controllers. However, reference 13 does a

good job of pulling together many of the existing antiwindup schemes. The following discussion is based

on the general antiwindup and bumpless transfer (AWBT) scheme discussed in reference 13. Figure 10 is

a detailed block diagram of the implementation of the "tracking mode" version of the AWBT scheme.
The AWBT action is based on modifying the controller state variable by using the difference between the

limited and the commanded actuator values, eu = UeL - Uec , such that the modified controller outputs
track the limited actuator values. The integrator windup protection gain matrix A, is defined as h = _C:c ,

where C:c is the pseudoinverse of Cec. The modified controller then has the form

xec = Aecxec + BecYec + Aeu (3)

Uec = Cecxec + DecYec



By using the definition of eu, the modified controller state equation can be written as

Xec" = (Aee- A Cec*"N'Cec)Xee + (Bec- A Cec'N'Dec)Yec + AUeL (4)

where N is a diagonal matrix of ones and zeros with the ones corresponding to a limited actuator and

the zeros corresponding to the unlimited actuators. For this example, a one in the (1,1) element of the

N matrix would indicate that the fuel flow was limited. Similarly, ones in the (2,2), (3,3), and (4,4) ele-

ments would indicate that the fan surge margin limit was encountered. Ideally, the product C_c.N.Cec

results in a diagonal matrix, and the scalar value A is used to push the diagonal elements of the modified

controller A matrix farther into the left half-plane. This AWBT action results in a mode switch, so

that the controller now regulates the actuator command at the limited actuator value while maintaining

the original control objectives of tracking the specified commands. Because Cec is not an invertible square
matrix, it is not possible to speed up all of the engine controller poles. No detailed analyses on the

robustness of this AWBT scheme have yet been performed.

To demonstrate the effect of integrator windup protection (IWP), figure ll compares the response

of the closed-loop propulsion system with and without the integrator windup protection for an large FG9 c

step command. This FG9 c request encounters a hard fuel flow limit because it requests more than the
maximum thrust that the engine can deliver. Figure ll(a) shows the steady-state error that develops in

FG9 when the hard limit is encountered. Figure ll(b) shows the corresponding limited fuel flows (WF36L)

for the two cases and the WF36 c that is commanded by the linear controller for the case without inte-
grator windup protection (without IWP). Note how WF36¢ grows unbounded whereas the actuator

response is limited. When FG9 c returns to the initial value, the system without IWP takes longer to
come off the limit, as shown in figure ll(b), owing to the time taken by the controller integrator to

unwind. This delays the FG9 response and also increases the coupling to the other nozzles as shown by

the FGV response in figure ll(c). In summary, the AWTB scheme offers good limit tracking while keep-

ing the regulated variables near the commanded values for a variety of inputs.

PERFORMANCE EVALUATION RESULTS FOR PILOT INPUTS

Several representative pilot inputs were used to evaluate the performance of the integrated system

in the presence of the engine operation limits. In the transition flight mode, typical pilot control tasks

are acceleration or deceleration to a desired airspeed while maintaining fllghtpath angle or change to a

desired filghtpath angle while maintaining airspeed. The response of the closed-loop system consisting of

the airframe plus engine model as shown in figure 3, the engine controller as shown in figure 10, and the
airframe flight controller as described in reference 4 is discussed in the following. An emphasis is placed

on comparing the system responses with and without active engine limit protection.

Figure 12 shows the vehicle response to a pilot-commanded deceleration of 0.2 g's to decrease the

forward velocity by 20 ft/s. Note that velocity responses for the limited (limit protection active) and

unlimited (limit protection disabled) systems are very similar as shown in figure 12(a). For the case with
limit protection active, WF36 rides the accel schedule for the interval from 3 s to 8 s as shown in fig-

ure 12(b). For the case with limit protection disabled, WF36 actually exceeds the corresponding accel
schedule for an interval from 3 s to 5 s. Note that the accel schedule is different for the limits-active and

limits-disabled cases because it is based on the engine outputs_ which are different for the two cases. Fig-

ure 12(c) shows that the case with limit protection active does have slightly more coupling in the flight-
path angle, which is due to the difference in the FGV responses shown in figure 12(d). In both cases the

10



fan surgemargin limit is not reached.Theresponseis interestingin that thedecelerationof the airframe
hasanendresult of "accelerating"theengine.Notethat thefuel flow is initially reducedto reducethe
aft nozzlethrust but is then increasedto increasethe ejectorand ventralnozzlethrustsin orderto com-
pensatefor the lost aerodynamiclift.

Figure13showsthe airframeandengineresponsesto a 4° commandedincreasein flightpath angle.
This commandis essentiallya vertical lift commandandrequiresa largeincreasein thrust. Figures13(a)
to (c)comparetheairframeresponsefor acontrollerwith andwithoutactivelimit protection.Theflightpath
andvelocityresponsesareveryclosein the two cases.Thereis aslight increasein thepitch coupling
with the limit protectionactive,but the responsein both casesshowsgooddecouplingfrom flightpath
command.Figure 13(d)showstheenginefuel flow responsesfor thesamecommand.Thesystemwith
limit protectionridesthe accelschedulefor the interval from 0.2s to 2.2s. Theencounterwith the aceel
schedulealsoslowsthefan speedresponserelativeto thecasewith no limit protection,but the steady-
statefanspeedscheduleismaintained. Thenominaloperatingpoint is suchthat on this maneuverthe
fansurgemarginlimit is only touchedbriefly around2 s. Theunlimitedcasedoesexceedthefan surge
marginlimit. Figure14comparestheairframe-commanded,estimated,and actual(engineCLM output)
ejectorthrust responsesto the flightpath commandfor thesystemwith limit protectionactive. In this
figurethesteady-statebiasbetweentheactualandestimatedor commandedthrustshasbeenremovedso
that at timezeroall the perturbedthrustsarezero. Notethat whilethereis somemismatchbetweenthe
actualandestimatedthrust, the airframeresponsesshownin figure 13arenot adverselyaffected.

SUMMARYOF RESULTS

Thispaperdescribesthe propulsion-system-specificresultsof a closed-loopintegratedflight and
propulsioncontrolsystemthat resultedfromusingtheintegratedmethodologyfor propulsionandair-
framecontroldesignmethod. A brief reviewof the methodologywasgivenalongwith a discussionof
howthe propulsionsystemspecificationsappearin the integrateddesign.Theoperationallimits for
turbofanengineswerediscussed,anda limit protectionschemeanda multivariable,'integrator windup
protectionschemeweredemonstratedin simulation. Simulated,closed-loop,timehistory responses
demonstratedthat theenginelimit protectioncanbewrappedaroundthe partitionedlinearenginecon-
troller without adverselyaffectingthe integratedsystemresponseto appropriatepilot-commandedinputs
for the transitionflying task.
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