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ABSTRACT

The objective of this project is to devise a method to determine the position and
orientation of the links of a PUMA 360 using fiducial marks, As a result, it is
necessary to design fiducial marks and a corresponding feature extraction algorithm.
The marks utilized are composites of three basic shapes, a circle, an equilateral
triangle and a square. |

Once a mark is imaged it is thresholded and the borders of each shape are
extracted. These borders are subsequently utilized in a feature extraction algorithm.
Two feature extraction algorithias are utilized to determine which one produces the
most reliable results. The first algorithm is based on moment invariants and the
secdndralgorrithm is based on the disci‘éce version éf the ¥ - s curve of the boundary.

The latter algorithm is clearly superior for this application.
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CHAPTER 1
INTRODUCTION

1.1 Overview

Computer vision is an essential part of any intelligent robotic system. It
serves as a means to identify the envirowment and to verify the robot’s location
and orientation. This information provides the parameters to determine the proper
action to be taken by the system.

In the verification of the vobot's position and orientation, a means must be
found to identify the position and orientation of each joint. The use of fiducial marks
on each link seems to be an effective and cost efficient way to accomplish this task.
The marks provide a way of uniquely ideniifying each link and locating a point on
the link. This point along with two calibrated CCD cameras can determine the 3D
location.

There are several criteria the marks must satisfy to be effective tools. They
must be simple enough so that they are identifiable even under conditions of low
resolution, perspective distortion, rotations, scale changes, and translations. The
above can be stated in another way. There must exist an algorithm that can extract
features from the marks that are rotation, translation, and scale invariant, and
the features should be as insensitive as possible to perspective distortion. For a
discrete image it is not possible to have features that are truly rotationally and scale
invariant. [n reality the features are a function of the resolution of the digitizing grid.
Features that satisfy the above constraint~ are sufficient for the task of determining
the status of the link. The position and orientation of a link can be modeled, in
three dimensional space. as an ordered rotation about the x, y, and z axis and a

translation. This transformation. the link and its corresponding mark are subjected
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to a projective transformation which is a noninvertible transformation of three-

dimensional world space into a two-dimensional image plane. Therefore, every point

in the image is a function of its positon in world coordinates, the focal length of

the CCD camera. and the ﬁélcl of view ol the carﬁéra. In addition, the image of
the fiducial mark is a function of the distribution of the points around its centroid,
the three rotation angles of the plane that the marks lie upon, the position of the
centroid, the focal length and the field of view.

Mbments provide an excellent way to characterize mass distributions: such as
horizontal and vertical centralness, diagonality, horizontal and vertical divergence,
and horizontal aud vertical imbalance. \nother convenient feature of moments is
their ability to be normalized for scale changes and rotations and translations in the
image plane. Many of these invariants can he obtained by using either the theory of
algebric invariants, introduced by Cayley. Hamilton, and Sylvester, or by requiring
that certain lower order moments have a prescribed value, and normalizing the other
moments with respect to these lower ovder moments. Another convenient feature of

moments is their ease of calculation.

1.2 Literature Survey

Many papers have been written on the use of moments in pattern recognition
applications. One of the first is the paper written by Hu[l]. In this paper Hu
discusses recognition of two-dimensional geometric patterns by using the classical
theory of algebric invariants to derive inoment invariants that are insensitive to
scale, position. and orientation. This method uses invariant moments based upon
uniquely determined principal axes and the method of absolute moment invariants.
These moment invariants are subsequentls stored in a feature vector and compared,

using a minimum distance formulation. to teature vectors of known patterns.
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Udagawa et alia[2] use muments to identify capital letters of the English al-
phabet. Their method consists of normalizing linearly distorted patterns by setting
certain conditions on the lower order moments. The method essentially normalizes
for any distortion due to an affine transformation. The normalized moments are
used as recognition features.

Alt[3] uses moments to identify letters and numbers. He normalizes each pat-
tern with respect to position. size, stretcling and squeezing in the x or y directions
and slanting in the x direction. The pattcrns are not rotationally invariant. The
rotational variance is done to facilitate the discrimination of 6’s and 9’s. The slant
invariance is utilized to identity it.alic;‘ra‘ml bold faced letters as the same pattern.
Normalization is accomplished by utilizing the standard deviation and the regres-
sion coefficient of x on y. Third through sixth order moments are calculated for the
twenty-six capital letters and nine numbers. The discrimination algorithm searches
for gaps in the values of a particular momeut. These gaps are discrimination points
that separate certain patterns from others. Once subregions are formed based on
these points, another moment is used to hreak the subregions into smaller regions.
The process continues until each subregion consists of one element.

Casev[4] deals with the problem of normalizing handprinted characters. Be-
cause of the large disparity in handwriting styles, recognition of characters is a
difficult task. He models the distortion as an affine transformation. This infor-
mation is used to direct the direction ol scan of an optical character recognition
device to obtain a more uniform scan of lerters. He uses the same methodology as
Udagawa.

Smith and Wright[3] uses the method of moments to estimate the location, ori-
entation, length, width, and heading of a ship. The estimates are obtained by taking
moments of a ship photograph and using linear, quadratic, and cubic polynomial

functions of the moments as estimators ol the ship descriptors. The best moments
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for each polynomial ave chosen using linear regression. This research verifies the
feasibility of using moments to interpret ship photographs. s
=

Dudani, Breeding, and McGhee[6] acddress the problem of aircraft identifica-
' : : -
tion. The images of the airplanes are binearized and moment invariants are extracted i

from the image. They preprocess the two-dimensional binary image of the three-

dimensional aircraft and extract a clean silhouette and its corresponding boundary.

The algorithm employed is orientation invariant. The dimensionality of the feature

vector is kept as low as possible and is shown to be invariant to translation in the

plane normal to the optical axix. The moment invariants employed are the Hu in-

variants divided by a power of the radius of gyration. They calculate two sets of

moments, one for the silhouette and one [or the boundary. The boundary moments

are found to contain a large amount of inlormation on the high frequency content of

the image. To identify the images they created a recognizer that consisted of 3,000

live images of six types of aircrafts. These samples are obtained by imaging each

aircraft at various orientations. They then map the feature space to a space defined

by the set of eigenvectors corresponding to the training sample covariance matrix.

The set of feature components is ordered according to the information content. Two
types of decision rules are employed to classify unknown images, Bayes decision rule

and the distance-weighted k-nearest neighbor algorithm. The results of the algo-

rithms are compared to the decisions made by human observers. Both algorithms

outperform the human observers. but each computer decision took thirty seconds

whereas the human observers take between ten and fifteen seconds. The algorithm =
achieves reasonable accuracy in estimating the aircrafts inclination. The errors are =
. : -
typically between five and ten degrees.

Teague(T] addresses the issue of classifying and manipulating optical informa- =
-

tion by utilizing moments. He siunmarizes rhe properties of the lower order geomet-
ric moments. The merits of Zernike moments are addressed in relation to rotational -
-
. —
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invariance and optimal reconstruction of an image. It is also shown that Zernike
moments can be easily derived from the geometric moments. He demonstrates the
advantage of using the Orthogonal moments in image reconstruction.

Wong and Hall[8] use geometric moment invariants to match radar images
to their correspouding optical images. Because the invariants are calculated for
continuous images these momeunts are not strictly invariant for digital images. The
amount of discrepancy is a function of the amount of the scale, translation and
rotation change. According to their data, reasonably good results can be obtained
for rotations up to forty-five degrees and scale changes of less than a factor of two.
They designed a hierarchical search technique to match the radar to the optical
scenes. This scheme consists ol extracting a structural set of images, both radar
and optical, which are of decreasing size and resolution. The match sequence starts
with the lower resolution images. A thresholding algorithm and decision rule is
utilized to guide the search from a lower resolution level to a higher resolution level.
The rules are selected to find the most promising locations at each level. Only
these areas are tested at the next higher resolution. A product correlator is used to
match the invariant moments ol the radac subimages to their corresponding optical
subimages.

Boyce and Hossack[9] construct fearuve vectors of arbitrary order while main-
taining the significance of the higher order components of the feature vector. The
features are Zernike moments and the rotational moments. Reconstruction of the
images based upou a finite number of Zernike moments is discussed. The invariants
used in the feature vector are rotational moments. The transformation is invariant
to scale, intensity. rotation. and translation. The goal is to create features that are
independent and are of approximately eqnal orders to magnitude. This insures that
the information content is not overly sensitive to noise. The rotational moments

are used to identify the image and the Zernike moments are used to reconstruct the
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image.

 Khotanzad and Ho‘ug[l()]i describe new rotationally invariant features using
Zernike moments. and a systematic method to select the desired number of features.
This is accomplished by evaluating the discrimination power of the information con-
tent of the ith ovdered features of different classes. The patterns are grouped into
pairs. The pairs are subsequently rotationally aligned, and the Hamming distance
of the information content of the pair is taken. A cumulative measure of the Ham-
ming distance is obtained. and this is divided by the total number of pixels. This
value is divided by one more than the feature number to provide a measure of the
discrimination power. When this discrimination power exceeds a preset threshold
then the number of fea,tui'es necded is known for thé rpa.ir. The maximum value of

all the pairs is taken as the number of fearnres needed for the given patterns.

1.3 Author’s contribution

It is necessary to identify the position and orientation of the links of a robotic
manipulator (PUMA 560). To accomplish this task several fiducial marks will be
placed upon each link. What remains is to identify each fiducial mark (a pattern
recognition problem) and to locate a point associated with each link (the centroid).
The first portion of the problem consists ol designing an adequate number of simple
fiducial marks. This is done to label the links sufficiently and to facilitate the
extraction of recognizable features under conditions of low resolution and perspective
or orthogonal projection.

The marks emploved are designed froin simple shapes - such as circles, squares,
and equilateral triangles. Since it is necessary to generate a large number of marks
from these basic shapes, the idea of nesting <hapes within shapes is introduced. Each
composite pattern is designed such that each interior shape is completely contained

in its parent shape, and each interior shape has a grey level intensity value that
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contrasts with its parent shape. Using this methodology and two level of nesting, it
is possible to generate twenty seven unique fiducial marks.

Since the twenty seven generated fiducial marks are composites of the three
basic shapes, the extraction of the bovders of each of the shapes contained within
the mark reduces the recognition problem from one of extracting the features from
twenty seven unique patterns to that of extracting features of three shapes. Once
the borders of each of the interior shapes are identified, the results are combined to
yieldr the correct identification of the mark.

Moments are extracted from each ol the borders to determine whether they
are reliable features. Since the moments are relatively simple to calculate, it is
of interest to determine il thev can be used to identify the shapes in binary, low
resolution, perspective distorted images. It is also of interest to determine whether
the normalized moments of orders two and three can be used to accomplish this
recognition problem.

Features based on the i-s curves of the boundary are also used in this study.
In particular, the measures of curvature obtained from these functions were used
as features. These curvature measures are essentially local feature descriptors, and
therefore are more susceptible to noisy border extractions and quantization effects.

Tt is of interest to determine how these fealures perform under poor image conditions.

L~ o
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. .. CHAPTER 2
MATHEI\/[ATICAL B ACKGROUND

2.1 Rotation Matrices In Three-Dimensional Space

In many vision and or rohotics applications, it is convenient to represent ro-

tations of bodlea or pomts around axbmm\ axes ina convement matrxx form. Fol-

lowing [12], consider the derivation of the rotation matrix for rotatlons ‘about the
X+, ¥, and z-axes (ﬁO'ure 2.1).

7 A comement way to view EhlS IOtdllull is to consider two coordmate systems,
XYZ and UVW centered at tlw origin and lmtxa,lly comc1dent

Consider now a point P in this three- rhmensmnal space. It has a representation

in each of the coor clmate systems denote«l by

PlL PJ:
B, | and P,
P, P,

The point P is assumed to be rigidly attached to the UVW system. The goal is to
find a rotation matrix that represents the rotation of the UVW coordinate system
and the point P about the XY7 coordinatc system.
The poinf Pm.rw can be represented ax a linear combination of the basis vectors
of the UVW system.
P, = Pyiy ~ Py, + Puku. (2.1)
To obtain the mapping of P onto each of the basis vectors of the XYZ axes the dot

product of P is taken with respect to the above basis vector. The results are as

follows:

P.o=i,eP=i,0i,P +i;9j,P +i;eky,Py, (2.2)

P,=j,eP=j,ei,P, +j, 0P+, ek Py (2.3)

Ju
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Figure 2.1: UVW and XYZ Coordinate Systems
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Figure 2.2: Rotation of the UVW coordinate system about the x axis

P.=k.eP=k.ei, P, +k. o) P, +k.ok,P,. (2.4)

This can be expressed in matrix form as

PJ‘ ir ¢ i:r i, ¢ ju iI . kw Pu
Py = jy.ir .i‘z; .ju jy.kw Py
P. kooip kooj, kook, ) \ P,

Keeping in mind that any rotation can be achieved by successive rotations about
each of the three axes in the NXYZ system. all that needs to be done is to obtain
a matrix representation of rotations abonr each of the coordinate axes and then
multiply the three matrices to obtain a composite rotation matrix. A rotation
around the x axis by an angle o leaves the i, axes fixed in relationship to the XYZ
coordinate system (figure 2.2). Since the i, axis is coincident with the i, axes,

and the j. and k, are rotated by an angle a with respect to the j, and k, axes
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respectively, the following rotation matrix is obtained

1 0 0
Rsa=1] 0 cosa —sina
0 sinax cosa

The same procedure is followed [or rotations about the y-axis to obtain the following

matrix:
coso 0 sing

Ryo= 0 1 0
sind 0 cosé¢
Rotation about the z-axis is represented hy:
cosf —sind 0
R.s =] sinf cos@ O
0 0 1
A composite rotation matrix is obtained by multiplying the matrices together.
Since matrix muplication is not commutative, the order of multiplication is impor-
tant. For example, if one wanted to obtain the composite rotation matrix for a
rotation about the z-axis by #. followed by a rotation about the y-axis by ¢, and
then a rotation about the x-axis by a. the composite rotation matrix would be:

R=R;sR,,R:4. where R=

1 0 0 . cosg 0 —sing cosf —sinf 0
0 cosn —sina 0 l 0 sinf cos8 O
0 simn  cosa sing 0 cos¢ 0 0 1

To represent the rotated point P, in terms of the XYZ coordinate system,

it is premultiplied by the composite rotation matrix.

P, P,
p, | =R| A,
Y P s P w

(.-ﬁ REAE AU £ 3
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Figure 2.3: Pinhole Camera Model

2.2 Perspective Transformation

Following [13] the perspective projective transformation for a camera is mod-
eled by a pinhole camera. This model maps points from a three-dimensional world
space into a two-dimensional image plane. 1t is initially assumed that the coordinate

" systems for the image points are coincident and centered in the image plane. This

is shown in figure 2.3.
From the above, it is readily observed that any imaged point lies on the plane
connecting the object point to the center of the projection. Using this observation,

a relationship belween the imaged point and the object point is obtained:

/‘(Pc - Pc) = (P‘. - Po)a (25)

Uy 0 0 ity
Loy, =10 1=]01 -1 % (2.6)
0 f f <0

ik
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/\\”L‘,’ —Io
Ry = —Yo
—kf f—2

Solving for image points in terms of ubject points, the following is obtained

r = -
k
)
y‘ - k .
Solving for k., it 1s found that
= /- ‘30
-f

finally, solving for the image points in terms of object points and focal length,

the following is obtained:

Y =7

2.3 Homogenous Coordinates

The use of homogeneous coordinates is an extremely useful tool for dealing
with coordinate transformations. Theyv provide an efficient matrtix form for the
representation of a combination of perspective transformations, rotations, about the
X, v, or z axis, scale changes. and translations. As a result the use of homogeneous
coordinate extends to the feld of computer graphics, robotics, and computer vision.
What follows is a brief introduction to the topic.

Homogeneous coordinates essentially transform a nx1 vector into a (n+1) x1
vector. This is accomplished by multiplying each of the n elements of the orjganal

vector by a constant scale factor, denoted hy w. These scaled quantities become the
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first n elements of the new vector. The (n+1) position of the new vector is occupied
by the scale factor. This concept can be clarified using the following example. Given

a point in three dimensional cartesian space, denoted by the vector,

The homogeneous repreéenta‘tion of this point would be denoted by

oy
WAL

)'-/’14'
Zjw

i

It is readily observed that a transtormation from homogeneous coordinates
back to the original vector space is accomplished by dividing the first n elements
of the homogeneous coordinate vector. An example might prove useful in clarifying

the transformation. Given a homogeneous coordinate vector

4

o

The cartesian vector is represented as

The above concept will prove to be extremely useful in the analysis of coordi-

nate transformations.
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2.4 Coordinate Transformations Using Homogeneous Coordinates

A homogeneous transformation matrix is defined as an nxn matrix that maps
an n dimensional homogeneous vector and transforms it into another homogeneous
vector. In the case of a tx4 transformation matrix, a 4x1 homogeneous vector
in one coordinate system is mapped into a 4x1 homogeneous vector in another
coordinate systen.

For the special case of three-dimensional vector manipulations, the homoge-
neous transformation matrix can be subdivided into four distinct operations: ro-
tation, translation. scaling, and perspective transformation. Combinations of these
transformations can be obtained by multiplving the matrices of the component trans-
formations.

The rotational transformation can be represented as
Ry Ry Riz O
Ryy IRy: Rog O
Ry 3, Rap 0

0 0 0

—

where R is a three dimensional composite rotation matrix.

The translation transformation is defined as

1 00 P,
010 P
00 1 P,
00 0 1

ke U0 O
0 k, 0 0
0 0 k 0|
0 0 0 1
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where &, k,, and &, are scalar factors in the X, y, and z directions respectively.
For the case of a perspeciive transformation using a pin hole camera model

and back projection, the homogeneous transformation matrix can be represented in

two forms.
f 00 0 1 00 0
0 f 00 0 100
or ,
0 0 f O 0 010
-1 0 0 f —§001

typically, the latter form is employed.

2.5 Geometric Moments

Moments have been utilized in a wide variety of applications ranging from
aircraft to character identification. They ave rvelatively simple to compute and can
be made invariant to rotation, scale, and rranslation. They are one of a general class
of shape descriptors. In the presentation that follows the two-dimensional moments

are analyzed.

Given a piecewise continuous irradiance function, denoted by f(x,y), the (p+q)

ordered moments are

= [ [ ) dedy, (27)

X
p,g=0.1,2.....

It should be noted that the moment sequence m,, is uniquely determined by
the irradiance function f(x.v) given that {(x.v) has nonzero values in a finite portion
of the plane. As a cousequencc. the function f(rx,y) is uniquely determined by its
moment Sequence N,,. 1o ha.\'(:‘ thilit}' in pattern recognition, moments should be

invariant to parallel translations, rotation~ in the plane normal to the optical axis,

and scaling.

CRIANAL PAGE 13
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2.6 Central Moments

It is possible to make the geometric moments invariant to parallel transla-
tion. This property is obtained by transtorming the geometric moments into central

moments. These central moments are defined as
e ] .
Hpg = / / (41' - 'z')p(!/ - .’7)qf(x1 y)d(l - i)d(y - g)v (28)
-0 J =
where
T = myg/Noo- § = Mo1/Mao- (2.9)
The translation invariance of the central moments is easily shown consider the map-

ping
= a+h (2.10)

y=y+k (2.11)

which transforms the nonzero region A of f(x,y), into A7. The central moments of

A/ are
Blpy = //A/(a-/ — Ny — ghf(x.y)d(zr — 20)d(y = 1), (2.12)
where
T = inligfmigy. 4! = Ml [T/go. (2.13)
Since
mly, = iy + K, (2.14)
Ml = N+ R, (2.13)
and
Mgy = Moo, (2.16)

substitution into 2.12 yields 2.3

The central moments can be represented in terms of the ordinary moments.

p= [ e = oty = 1) dedy (2.17)

ORIGHNAL PAGE 3
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po= [ [ T X G (=) f e y)dedy
TSN =0\ S -

j=0
Combining summations
o ~ P 14 p q '_‘_ ST
Krq =/ / > (=)' (=9)" 72"y’ f(z, y)dzdy
=20 =X =0 j=0 : J .
Interchanging summations and integrals
PJ D { np_i g [
Fpq =ZZ (=2)P(=5)" J/ / 'y’ f(z,y)dzdy
i=0j=0\ 1 j | -0 J—o0

From equation 2.7 and equation 2.20 it is clear that

p q . :
(=2)P"(=7)" My;.

P9
Fpq = Z Z

i=0 /=0 \ 1 J

2.7 Algebraic Invariants

13

(2.18)

(2.19)

(2.20)

(2.21)

Algebraic invariants have surfaced in the works of Lagrange and were redis-

covered in the works of Gauss. but neither of these men decided to develop their

observations into a formal theorv. It was not until Boole, Cayley, and Sylvester that

the study of the theory of algebraic invariants flourished.

Hu is usuallv credited with the application of algebraic invariant theory to the

formulation of rotation aud scale invariant functions of moments. The derivation

that follows is credited to him [L].

Given a binary algebraic form of u and v expressed as

- p »
= Z ((z(p_,-)_i)up-’uz.

(=0 pP— ‘

or using the Cayley notation as

F=lauap i iagpon: agp)(u, v)P.
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A homogeneous polynomial of the "a” coefficients is an algebraic invariant of
weight w, if

I((L/P(),...,a/()p) = A“’I(apo,...,aop) (224)

where a/p, . . ., alo, are the coefficients obtained from substituting the following gen-

eral affine transformation into the original algebraic binary form.

u o w/
= (2.25)
v 8 6 vt
and A is the determinant of the linear transformation
A=ab—3v#0. (2.26)

If the weight of the invariant is zero, it is an absolute invariant; otherwise it is
a relative invariant. There exist certain aifine transformations that allow A to be
something other than the determinant of the transformation. These transformations
are useful in deriving the necessary moment invariants. It is also useful to introduce

another pair of variables, x and y, and sub ject them to the transformation

£ n B T
= ) (2.27)
y/ v 0 v
Transformation 2.23 is referred to as the contragredient transformation, and trans-

formation 2.27 is referved to as the cogredient transformation. The eight variables

X, ¥, w, v, o/ y/, v/, and v/ share the invariant relationship
e+ vy = vlel = vyl (2_28)

To apply the theory of algebraic invariants to moments, it is necessary to define
an algebraic binaty form which has as it~ coefficients the moments of order p. One

such function is the moment generating function which is defined as

o
i~
O
~—

RS | ]
M. = /_ _ 3 -p-;(u-i' +vy)? f(z,y)dzdy. (2.

=0 P



Interchanging integration and snmmation produces

3 _ = 1 e & P Dp—i i, p—i 14 | 2
M., _;ZBP_'/—/ > 2Py f(z, y)dzdy (2.30)

p—1!

Equation 2.30 is equivalent to

1 » o

-)—(upo, oty (u, v)?. (2.31)
By combining equations 2.25, 2.27, and 2.29 the following is obtained:

Mi(ut, v1) = /N /\- Zi’ (el + U/y/)pf/(:cl,y/)ﬁdr/dy/ (2.32)

where J is the jacobian of transformation 2.27, fr(z/, y/) is equal to f(x,y) and

M1(us,vt) is the moment generating function of the transformation. Since
™~ (=) )
g =/ / (2N (yh) f(zt, yrdzldy!, (2.33)

=01
Ml vl = Z —; (750, %+ 1u/0p)(u,1 vl)P. (2.34)

Combinihg the results of 2.29. ‘2.30, 231, 2.32 and 2.34 it is shown that if the
binary algebraic form of ovder p has an algebraic invariant then the pth order mo-

ments have the same invariant but multiplied by the absolute value of the Jacobian

of the cogredient transformation. In other words if
]((’/])D ..... (l/()p) = Aluj((lpo. cey aop), (235)

then
It culgy) = [ AT (ugg, .. ., ugp)- (2.36)

Under the scale change denoted by

i o 0 T

I

, (2.37)
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each coefficient of the binary algebraic form is an invariant
— Ate
Wy = 0 ap,. (2.38)

Therefore, the relative moment invariants are multiplied by the Jacobian of 2.37
producing
1oy = aPT I e, (2.39)

To obtain an absolute scale invariant, the value of a is obtained from the relationship

between the zeroth order momeuts.

/
a =22 (2.40)
Hoo

substituting 2.40 into 2.39 obtains:

Moo _ Fes (2.41)
(40)

(E—?H) (Noo)(a?.ﬂ)‘
What follows is a derivation of rotational invariance. For a rotational transformation

the contragredient transformation is

i cosf sind ul
= ; (2.42)
v —sinf cosd v/
and the cogredient transformation is
vl cosf# —sind I
= ) (2.43)
y! sinfl  cos#é Yy

Since the Jacobian of the cogredient transformation is equal to one, the algebraic
invariant is equivalent to the moment invariant. Therefore, treating the moments

as the coefficient of the binary form
(0 - tton ) (1w, v0)?, (2.44)

and using the following transtormation



and
L 2 u/
Vit [ —2 v/

the following relations are obtained:
U1 =Ue™ V1= Ve?
Substituting 2.47. 2.46, and 2.15 into 2.44,

(loo .- - I MU VY = (e es teop)(u,v)
(Lo T WUV = (oo pilop) (0, vl)?

(L. .- .. L) (D) = (00, I, ) (Ue™, Ve )P

equating like terms in 2,49 obtains
iré
I’I.o = ¢ [p()
j - ilp=2)8 . .
[,p—l.l = € ¢ Ip—l,l;-'-;
— -ir=2)8 .
Iy = €7 ) Iy poy;

J’/“p — f—l/)ujop.

(2.47)

(2.48)

(2.49)

(2.54)

From the identity of the first two expressions, it is clear that [,_,, is the complex

conjugate of I, ,_. and

Ip—r,r =
[(tp0: fipmsi oot ppmze 2 ) UL D) (ot 13 93,30 -5 Hpm2r—12re1 (L, 1)T5 05
(N'Zr.p—zr: U2 p=2r=20-- -1 IUOp)( L )']( L, _i)p—?r,

where p - 2r > 0. and

Ip/'Z.p/Z = lipo + fp—daty ooy + lopy

p/2 ) 2
+
l. )

where p is even.
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For rotation and reflection the cogredient transformation is

al cosfl  sind z
= (2.36)

y! sinf —cosf Y

and

I, = eIy (2.57)
Iyoyo = e (2.58)
[/1,;,..[ = ei(p-_’}ﬂ]'p_lll; (259)
Iy, = €1, (2.60)

From the above derivation Hu obtains six rotation invariants and one skew invariant.
They are as follows:

fau F Loz
(a0 — po2)’ + 4pt
(ptao — 3p12)® + (321 — poa)?

(pta0 + p12)® + (s + fios)?

(30 = 3pt12)(pra0 + v (a0 = 112)% = (ka1 + po3)?) +

(3pra1 — ptas) (e + po3)[3(as0 + p12)? = (a1 + tos)?))

(p20 = po2) {4130 + ) = (o + po)] + 4#11[(#30 + /lxg?(/l:n + uo3)]

(3par = to3) (130 + i) (s + i2)? = 3{par + oa)?] —

(pan — 3prve) (s + poa)[3a0 + 12)? = (g1 + poa)’-
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Figure 2.4: Square and corresponding ¢ - s curve

2.8 1 - s curves

The utilization of v - s curves is one way to characterize the shape of an image
using its boundary. It is essentially a chain coded representation of the boundary. ¥
is the angle formed between the a reference line and the tangent to the curve, and s
is the arc length as the boundary is traversed. It can be shown that staight lines in
an image correspond to horizontal lines in rhe ¢ - s curve and circles correspond to
straight lines with slopes of 2. The ¢ - s curve for a closed boundary is periodic with
a discontinuous jump from 27 to 0 as the curve is retraced to the starting point.
Figures 2.4. 2.3 and 2.6 show the ¢ - 5 curves for a square, circle, and equilateral

triangle, respectively.
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Figure 2.5: Circle and corresponding ¥ - s curve
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i 21 31

Figure 2.6: Equilateral triangle and corresponding ¥ - s curve
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CHAPTER 3
PROBLEM STATEMENT

I

The objective consists of determining the position of each link of a PUMA arm

using fiducial marks. Each link should bhe uniquely identifiable regardless of the

orientation of the arm providing that the link is in the field of view of the camera.
The placement of multiple Aducial marks on the arm provides an excellent method %
to accomplish this task. The methodology behind utilizing multiple fiducial marks =
to label each link of the PUMA is task effcicnt and éffectjve. The fiducial mark itself |
is a planar ébject of specified dimensions. Because of the dimensional specification, =
the location of each affixed mark is known relative to the arm-centered coordinate =
system. This reduces the original objective to one of distinquishing fiducial marks _
and locating an associated point. .

When the marks are viewed by the CCD camera all the points on the fiducial ;
marks are subjected to a perspective projective transformation that maps the three
dimensional coordinates of the mark into two dimensional points in the image plane.
This mapping is a nouinvertible transforiiation. Therefore, any point in the image -
plane can correspond to an infinite number of points, in the arm-centered coordinate -
system that lie upon the line connecting the image point to the focus of the camera. =
However, it is possible to locate the arm-centered coordinates of the mark by utilizing -
two calibrated cameras. If an algorithm 1s employedr to locate a particular point ;;.E;
in both image planes the two locations can be used in a triangulation algorithm
to identify the location ol the point in the arm-centered coordinate system. The %
triangulation algorithm is straightforward. Therefore, it will not be addressed any )
further. - : -

If the arm-centered coordinate system is aligned with the image coordinate = .

system. the perspective transformation would take the form given in Chapter Two.

245
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For the two coordinate systems to be aligned, it is necessary to align the x-axis
and y-axis of the arm-centered system with the u-axis and v-axis of the image,
respectively. Since this is generally not the case, it is necessary to pre-multiply
the arm-centered coordinates by a composite rotation and translation matrix that
transforms the original coordinates to coordinates relative to a three-dimensional

coordinate system that has its origin aligned with the image plane origin, its x-axis

I”W, '

- aligned with the u-axis. its y-axis aligned with the v-axis, and its z-axis aligned
with the optical axis. Once the linear transtormation is achieved the perspective

transformation given in Chapter Two is valid. Since the cameras are calibrated

v’

and the transformation is known, obtaining the coordinates of the point in the
arm-centered coordinate system is accomplished by post-multplying the coordinates
obtained via triangulation with the inverse of the transformation matrix. Therefore,
it is evident that the recognition of the sysiem of marks and their associated points
determines the position and orientation of the arm. The main emphasis of this work
is the design and recognition of the fiducial marks.
- The imaging of an object using a CC1 camera produces a substantial amount
of distortion. Perspective transformation. quantization and sampling produce the

most distortion. but the pincushion and harrel effect also contribute to the degrada-

tion of the object representation. As a consequence, it is necessary to design marks
- and feature extraction algorithms that ave insensitive to these effects. Perspective

distortion of a mark occurs when there are points in the mark that have different

optical axis coordinate values. [t is essentially the converging railroad effect. It can
transform squares into trapezoids and circles into distorted ellipses. Because it is
proportional to the inverse of rhe distance along the optical axis, it is difficult to
account for without an approximate knowledge of the position and orientation of
the mark. When all the points within a mark lie in a plane perpendicular to the

optical axis only a scale change vesults. Therefore, if successive images are taken
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of a mark that is only translated in the direction parallel to the optical axis, the
images only differ by a scale factor.

Representation of a continuous object by a finite number of pixels inherently
prodﬁces an inaccurate 1'ex)1'esenr.é.tion. A= the ratio of the image size to pixel size
decreases, the image distortion increases. If the ratio of image size to pixel size
becomes too small. the image becomes um'ééognizable. This effect is similiar to the
aliasing effect for one-dimensional periodic signals.. -

For the particular robotic system employed in this work, the mark will be no
greater than two meters away from the canera. The resolution of the frame grabber
is 512x480 pixels and the Reld of view iz approximately two square meters. This
produces a pixel resolution-of a,pproxirﬁa!ely two millimeters when the object is
two meters away from the image plane. This implies that the marks should be as
large as possible to compensajte‘ for the large pixel size at that distance, but there
_is a limitation on the size of the pixels. This limitation is caused by the link size.
Each link has six sides and at least four of these sides can be used to affix a mark.
The smallest side of a link is approximately 3.5 inches. Therefore, this is the upper

bound of the size of the fiducial mark.
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CHAPTER 4
FIDUCIAL MARK IDENTIFICATION

The problem consists of generating a sufficient number of fiducial marks to label the

robot arm reqardless of its position and orientation in space and the background it

is placed upon.

4.1 Design of the Fiducial Marks

It was decided that marks based llxpun simple geometric figures might aid in
the identification process. In any recognition process involving several patterns it is
necessary to extract a set of features that when utilized in a decision making function
will yield a unique value for each of the patterns. If this criterion is not satisfied
then two or more of the patterns cannot be distinquished. For this reason the
circle, square, and equilateral triangle seemed like excellent candidates for fiducial
marks. They possess features readily extracted and uniquely determined. Some of
the features that can be extracted are moment invariants, contour signatures, and
compactness measures.

Another criterion that needs to be addressed is the size restriction of the marks.
The marks are restricted to a 3.3 inch box. This restriction exists due to the fact
the marks have to be placed on the arm. Flach mark must fit on each face of every
link.

Another criterion that necds to be addressed is the quantity of unique marks
used to label the links of the arm. The three basic shapes must generate at least
twenty-seven unique composite shapes to accomplish the labeling task. This can be
accomplished by nesting shapes within viher shapes. The sizes of the shapes are
chosen to maximize the size of the inner shape while insuring that there is at least

a three pixel wide horder separating the shapes. The inner shape size is maximized

20
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to minimize the distortion due o digitizing. As the ratio of the shape size to pixel
size is decreased the shapes become increasingly more difficult to distinquish. All
the shapes designed consist of a black shape within a white shape within a black

shape within a white rectangular border. This configuration generates twenty-seven

unique composite figures.

4.2 Segmentation of the Marks from the Background

For the algorithm to succeed, it is necessary to segment the mark from its
surroundings. The placement of the shapes within a white rectangular region enables
the compoaxte patterns to remain mtact If the outer white rectanvular region is
not present and the marks are placed upon a blac backvround the outer figure
mxght be umecoxmable in the image. It is )0351ble for the outer whxte rectangular
region to be distorted bw its ba( 1\0101111(1 }ut thlS is of no consequence because the
algorithm only searches for a white border and doesn’t try to classify the shape.
Thxs a.lcrorlthm is e\ttemel\ efficient for bac Lglounds with a relatwely small number

of whlte regions. After a white region is located, the algorithm searches the inner

region to determiue the presence of a mark.

4.3 Extracting the Outer, Inner, and Middle Borders

Extraction of each of the borders is vitally important in of)training' a reliable
feature space. If an error s produced in rhe border extraction process, the subse-
quent feature space calculations will yield inaccurate results. In general, the method
chosen to extract the bovder depends upon the border definition. For a continuous

image a boundary point is usually defined as tollows

Definition 1 4 boundary point of a scl s a point having the property that every

neighborhood of it contains points in the scf and points not in the set.
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This definition usually refers to the set of points within some connected region and
the set of points outside the region, wherc cach region consists of an infinite number
of points, and the neighborhood of each point is infinite. For a discrete image every
region contains an finite set of points or pixels and each neighborhood consists of at
most eight pixels. Because of this distinction, it is necessary to modify the above
definition. Before a definition of the border pixel for a discrete image is given, it is
necessary to define two related terms. These terms are the four-neighbors and the

eight-neighbors of a pixel.

Definition 2 Giren a pivel P at coordivates (x,y), the four-neighbors of the pizel

are given by the pivels with the coordinates (v-1,y), (x,y+1), (z+1,y), and (x,y-1).

Definition 3 Giren a pirel P at coordinates (x,y), the eight-neighbors of the pizel

are given by the four-neighbors of the purcl and the pizels with the additional coor-

dinates (z-1.y+1). (x+1y+1). fr+1,y-1). and (x-1,y-1).
Now, the definition of a border pixel can proceed.

Definition 4 4 pivel P at coordinates (r.4) is a border pizel if and only if P has at
least two eight-neighbors in the same sel u~ P. and P does not have more than three
four-neighbors in the same set us P, awhor the set P contains all of the the pizels

that have intensities that wre allowed to be connected.

For binary images the images ave divided into two sets, pixels with a value of one
and pixels with a value of zevo.

To extract the boundary of each shape. the algorithm searches for a boundary
candidate. Once a candidate is lound it searches the eight-neighbors of this pixel in
a clockwise fashion for another border candidate. If another candidate is found it
searches the eight-neighbors of this pixel. It continues this search until it reaches the

first border element. If at any point it cannot find another border pixel, it returns
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to the previous pixel and searches the remaining eight-neighbors. If the algorithm
backtracks to the starting point and cannot find any border elements among the
remaining eight-neighbors it returns and noves on to the other starting points. If
no borders are found in the admissable vegion a failed flag is returned.

Once the border from an enclosing shape is obtained, the algorithm restricts its
search region to the region enclused by thie border and searches for border elements

that belong to the opposite intensity set ol the enclosing border.

4.4 Moments as Feature Parameters

Moments and functions ol moments have been utilized as pattern features in
a number of applications involving the recognition of planar objects. Functions of
moments can be utilized to obtain featurcs which are invariant to scale, rotation
and translation. They are cousidered to he reliable features if they are insensitive
to image degrading effects such as quantization, and sampling. Moments are global
descriptors which characterize the distribution of the points of an image. One of the
major drawbacks of using moments is the large number of multiplications involved
in the computational process. The straighttorward method of calculating moments
requires 10MN multiplications for an M= N image. Unless the system has a dedicated
math coprocessor. the extraction of these [catures in real time is infeasible. However,

there have been several fast algorithms devised for this problem.

4.4.1 Moments of a Generalized Rectangle

Consider the generalized rectangle represented by Figure 4.1 where a; is the

width, T(a;) is the length. and T is the arbitrary scale factor. Consider the region

in the u-v plane represented by figure +.2

The central moments of the region are denoted as follows:

[¢3] ‘T'!} V
I =/ / Pyldzdy (4.1)
-1 - :"11
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Figure 4.1: Generalized Rectangle

(Ta ,a)

Figure 4.2: Rectangular region in the u-v plane
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ay ‘l.i)’f'l T

ai
Hpy = /;01[1)_{__ li—Tallyq:dy (42)

P+l . yq+1 ﬁl
= [T a 4.3
oo = (S T 12 (+.3)
(Tay) ' (=Ta)P*! aé’“ ~ —aiﬂ] (4.4)
oo = p+1 “g+1 g+1 '

1

fpy = TpTl)(r}'—+1)[<T(«1)”+‘<t — (=PRI (1 = (-] (4.5)

13

— 7*([)*}-1) (p4+2) 1 — (-1 p+1 1 —(—1 g+1 46
oy = T T = (D = (D] (48)
It can be readily seea that if either | or q is odd then p,, = 0. If p and q is

even then p,, is given by

1
T — Ll PLash ] (4.7)
‘ (p+Dlg+ 1

To calculate V,,. the scale normalized central moments, the following is used

= L (4.8)

7 .
P T1
3 +1
Hoo

Using the results of equation 4.3

a1y (P+9+2)
4TU= DT

I”,,, = 5 1o (4.9)
LT p+ (g + 1)
AT {Pr 7Y (4.10)
T = RO TR () L (4 1) |
) T ey
" = (4.11)

A (g + 1)

B/ NI wmwn w0 mmi Rl W

L 11

L[

(L
|




U

1

The first rotationally invariant moment, ¢1, is given by

é1 = Nw + Moz,
where 1y 18
o T
Nw = 1—2
and 792 1s
_ i
0 = BT
As a result.
. I'+1/T
="

For the special case of a scquare, T=1.
oy = 1/6.
For the case where T=2.
oy = /24
the second rotationally invariant moment é; is given by

2

0y = (N0 — )" + ini,.

Since 7]11:—"0.

(T -1/T)

for all rectangles.
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(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

It is clear from equations +.15 and 4.16 that the moment function ¢} — @, is invariant
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4.4.2 Moment Calculations for a Generalized Ellipse

”The calculation of the momenrts of a generalized ellipse is sufficient t<; obtain
the moments of a circle. It was decided to extract these features. This extraction
may prove to be useful in the analysis of the effects of the distortion of a circle
introduced by orthogonal projection. If the ellipse is represented by Figure 4.3, the

central moments of the region under the change of variables

r=1Tr cosb

and

y =1 sind

1s denoted by

2T ry
Fopy = / / (Trcos MP(rsin8)Trdrdf.
Jo Jo
Grouping 1’s and extracting the scale factor produces

2 "
gy = (TP )/ / P o8P sin? Gdrdl
o Jo

The first iterated integration produces

Tip+1), (ot
T "
/""])’] - -

/-’ cos? sin? 8d0
(p+q+2) Jo

The evaluation of the second itcrated inteeral produces

Tip+1),lpti+d) (1)_1)(l)_:{j..,:3. (g—~1)---3-1
HFpr = 1 1 i 5 |27 (4.17)

1
p+a+2) prgiptg—ci(p+2) g -4
for p and ¢ even. and zero otherwise.

Substitution of p=2 and =0 into eqnation 4.17 yields

17
Hwo = T

ke

Substitution of p=0 and q=2 into equation 4.17 yields
Tr
4

~tde

o2 = T

B

mi
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Figure 4.3: Ellipse in the u-v plane
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Calculation of the second ovder scale invariant moments produces

T
n- T —
120 .
1
Tor = rr

The first and second rotation, scale and translation invariant moments are

, T+1/T
oy = T/ (418)

and
T-1/T

-7

I (4.19)

-

Og = [
It is clear from equations 4.13 auc 4.19 that the moment function ¢? — ¢, is invariant

for all ellipses. : .

4.4.3 DMoment Calculations for an Equilateral Triangle

Given the equilateral triangle in Figure 4.4 with side length 2a, the central

moments are defined as follows:

;l[)’] =

243 _,.,1-/13:5",‘_3_572] > 4
2Pyidady

a3 S -

Performing the first integration vields

—7- et 13‘—’[“’ —177]
F yidy.

p+!s velCatbeyed

Substituting for x.

i o - 2q
— (o S ypt+log
P = 0 sl g
for p even.
9 .vz" .')a
—_— i, = et g
Hpy = (/’ + !)3(,',_,}_1)/3 /-_/.) [!j 31/2] Yy dy

BiE

!l
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Figure 4.4: Equilateral triangle in the u-v plane

39



40

Using the binomial expansion.

lu
\
q
*u
...
~3
+
—
R~
+
!

Epq = (P'i' 1) 3p+1)/

Performing the second integration yields

_9 p+1 p+3+2-1 9 2a
2 a . - ‘;;Tﬁ

o = y = (oY
T (p A 3 g+ 2 =10 3 S

substituting for y.

-2 pt! 1 —2a,;.. 2a : —a :
_ < ] { = p+a+2-1 _ [ ip+q+2-:
Hpg = ([)+ 1‘)3(;)-{-1)/‘2 Z(:)[)_l,_q 31/2} ([31/2] {31/2} )

4.4.4 Moments of orthogonally projected shapes

In many situations. it becomes possible to approximate the perspective pro-
Jectwe transformation ot an imaging dew e b\ an orthogonal transformation. One
such situation is the case wheu the Vauatmn in object point distances is negligible

with respect to the object plane to image plane distance. In this case the distance

of the object along the optical axis may he considered fixed. For example, since

v =

yi = —=

and fand =, are fixed. the translormation hetween object and image points is equiv-

alent to a scale change.

and

Yi = Rl

where k is the constant —-é? This is the orthograpic projection model, and it

facilitates the development of moment functions for the basic shapes.
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Consider the situation where one ol the basic shapes is arbitrarily rotated
about the object centered coordinate system. This can be represented by the mul-
tiplication of the composite rotation malrix R with each object point [z/, y/, 2/,],

where R is given by

and ry; is a trigonometric function of the rotation angles a and ¢ given in Chapter

- Two. Under this votation and orthogonal projection,

v = ket + eyl + 1)

yi = k(raxfy + rayhe +1,)

Given the endpoints of two parallel line segments in the object coordinate

system denoted by for line 1
(v )21 + D,y + Ay)

and for line 2

(v2 2 M2y + S,y + Az).

Now if both line segments are subjecied to the same rotation and orthogonal

projection, the points of line 1 transform into
k(rpay + oy + Ty + s + 1,) (4.20)
and
R(raley 4+ 00) + raly + Dy) + 1ol +60) +re(in + Ay) + Ty),
and those of line 2 transform into
k(roxs +raye + Ty +roye + 1)) (4.21)

CRiuNAL FGE IS

OF POLR QUALITY



and

| E(rig(ay + Ax) + rilye + ’—S.U) + T,).ra(z: + Az) + raay2 + Ay) +T,)

From equations +4.20 and +.21 it is clear that the slopes of both transformed line

segments are equivalent and the slope is given by

7'22’_\y + I'QIA.L'
1'21Ay + 1'1]_&\1;

The line segment lengths are given by

\ﬂ"nﬁf + Ayt + (rady +rpdz)?

Since under rotation and orthogonal projection, parallel line segments remain
parallel, it is evident that a square under this transformation must be converted to
a rectangle. As a result. the inoments of an orthogonally projected square are given

by those of the generalized rectangle, where o o

v/ r + r2
T=Y__ 2 (4.22)

Similarily. rotation and orthogonal projection of a circle produces an ellipse

and T is given by equation +4.22.

4.4.5 Moment approximations due to digitization

For digital iimages. the double integration used to define the moments is typi-

cally approximated by double ssunmations and the moments are denoted as

MooN
My = Z Z 2yt e, y) (4.23)
=ty =U
MY
fpg = 9 9 (r =ity = Y flz,y), (4.24)
r=0 =0 . 7

where M and N are the image dimensions.
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di

Figure 4.5: Curvature plot of an equilateral triangle

Inherent in this approximation is the loss of strict rotational and scale invari-

ance. For a square it is shown by Teh and Chin [11], that the first invariant moment
1s
1—-1/a?
6
where a is the ratio of the squarc size to the pixel size. Tt is readily observed that &,
is no longer scale invariant. but depends on the size of the sampling grid. The loss
of rotational and scale invaviance avises because the sampling grid is not adequate

to represent the shapes. and as a vesulr changes in orientation result in a changed

representation of the object in the image plane.

4.5 Curvature as a feature parameter

Since most if not all of the shape information of an image is contained in its
boundary. The use of features based on rhe u - s curves of an image boundary seems
like an exceptable method to ohtain unique features. One feature that might yield
promising results is the curvature of the boundary.

The curvature of a boundary is delined as the rate of change of ¥ with respect
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Figure 4.6: Curvature plot of a square

ey

i/r

Figure 4.7: Curvature plot of a circle
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to the arc length. and it can be easily obtained trom the representation of the ¢ - s
curve of the boundary of an image. Analvzing the curvature plots in Figures 4.5,
4.6, and 4.7 it is readily observed that there are exactly three jump discontinuities
for the triangle. four discontinuities for the square, and no discontinuities for the
circle, and in general any quadrilateral will have four discontinuities, any triangle
will have three discontinuities. and any ellipse will have no discontinuities. This
‘nformation can be used to discriminate between the three shapes even if they are
perspectively distorted. It the boundary of an image is traced and the jumps in
curvature are counted, the shape will be determined. This formulation is based
on the assumption of a continnous image. Since the image is not continuous, a
modification has to be devised.

For a discrete image. the typical ¢ - s curve can be represented as an eight
directional chain code of the augles. This decreases the feasible angle space of an
image from infinity (in the continuous case) to eight, and As will either be 1 or V2.
As a result of the sampling. straight lines in the actual object will not correspond
to straight lines in the chain coded version of the image boundary. The chain code
essentially links angles that form an approximation of the slope of the line if the
angles are averaged. [f n is the number of link angles averaged, the approximation
will be within

+arctau(l/n)

of the actual slope of the line. Using the dillerence of the average of the links on both
sides of a particular chain code member will vield an approximation of the external
angle of the shape. A threshold can be used to determine which values correspond
to a significant angle change. With a proper selection of the threshold the square
and the triangle can be discriminated. The square should have four significant angle
changes and the triangle should have threc significant angle changes. The circle is

identified using a slightly different approacli. A digital representation of a circle will
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contain on average angle changes of less than 7/2 radians and both the square and
triangle will contain at least onc exterior angle that is greater than or equivalent to
/2 radians. Therefore, counting the number of angles greater than or equal to 7/2
will determine if the object is a circle. This is assuming of course that the number
of pixels averaged does not exceed 1/8 of the chain code. Of course if the sampling

grid is sufficiently coarse it will be impossible to distinquish any of the shapes.
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CHAPTER 5
EXPERIMENTAL SECTION

In the sections that follow a labeling convention for the fiducial marks will be utilized.
Each mark is labeled with a three letter code, where the first letter of the code is
the first letter in the name of the outer shape, the second letter of the code is the
first letter in the name of the middle shape, and the third letter of the code is the
first letter in the name of the inner shape. For example, the code ’cet’ corresponds

to the mark that contains a circle as the onter and middle shapes and a triangle as

the inner shape.

5.1 Simulation Results

Digital representations ol a square, a circle, and an equilateral triangle are
created. The shapes are represented initially by a finite set of points. For example,
a square would be represented by its four vertices. In the first series of tests, the
points are used to obtain a digital representation of the shape, and features are
extracted. In particular the moment invariants and the external angles changes
are extracted to verifv the analvtical resulis. To simulate the results of orthogonal
projection. the poinfs are votated in space and appropriately transformed. The
digital representation is obtainrwrcrl. éﬁd e features are extra;ted. This is done to
observe the feature changes under these rvpes of transformations. What follows is
the data obtained from these simulations.

The frst set of simulations consist ol rotating the square and equilateral tri-
angle in the image plane from 0 to 180 degrees in increments of 9 degrees. The
invariant momeunts are extracted at every orientation. This is repeated for different
scale factors (rativ of image size to pixel size). The scale factors range from 3 to 20.
The results for scale factors of 3. 10, and 20 are shown in Tables 5.1 and 5.2. Since

47
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Scale | Maximum | Minimum | mean standard deviation

3 0.187500 0.152733 | 1.1836400 | 0.01091

10 0.166600 0.164931 | 0.1656439 | 5.98x10~*

20 0.166875 0.165630 | 1.1663562 | 4.34x10~*

Table 5.1: First invariant moment of a rotated and scaled square

Scale | Maximum Minimum | mean standard deviation

3 0.2287390 | 0.173416 | ©.1915400 | 0.01765

10 0.197430 0.187741 | 0.19279755 | 2.45x1073

20 ).193099 0.191600 | 0.19251845 | 3.60x10™*

Table 5.2: First invariant moment of a rotated and scaled equilateral

triangle

there is no change in the digital represeniation of a circle undergoing rotation in

the image plane, it is sufficient lo extract the invariant moments once for each scale

factor. The results for scale factors of 3. 5. 10. 15, and 20 are shown in Table 5.3

It is clear from Tables 5.1. 3.2, and 5.3 that the moment invariants for a digital

image are not strictly invariant. but for the larger scale factors there is a negligible
deviation between the theoretical values and the ones obtained via simulation. For
example with a scale factor of 20, the percentage ervor between the theoretical value

and the experimental value of o for the square, circle, and equi

Scale |

3 158750
3 1539024
10 139120
13 139136
20 439143

Table 5.3: First invariant moment of a scaled circle

lateral triangle
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o (degrees) | a (degrees) | o &2 o3

27 9 0.1675388 | 0.000502 | 0.000000
27 27 0.170913 { 0.001510 | 0.000000
45 15 0.209200 | 0.016066 | 0.000000

Table 5.4: Invariant moments of a rotated and orthogonally projected
square

é (degrees) | o (degrees) | o o2 ®3

27 9 0.200274 | 0.009220 | 0.004566 1
27 27 0.241427 | 0.02765 | 0.011028
45 43 0.243370 | 0.031400 | 0.005398

Table 5.5: Invariant moments of a rotated and orthogonally projected
equilateral triangle

are 0.183, 0.0075. and 0.09 . respectivelv. It is also clear from the data that the
first invariant moments ave sufficient to distinquish the shapes obtained via this
simulation.

The next sevies of tests simulate rotation about the x-axis of the object-
centered coordinate svstem by an angle of « and about the y-axis of this system by
an angle o. where the values of a and o vary from 9 to 45 degrees in increments of
9 degrees. After rotation. the shapes are orthogonally projected, and the invariant
moments are extracted. Tables 5.4 and 5.7 show some of the results. Incidentally,

because of the similarity between the invariant moments of the circle and the square,

this table was omitted.

It is clear from Tables 3.3 and 3.4 that merely using &; as a decision criteria
yields incorrect results because there are occasions when the value of ¢, for the
orthogonally projected shapes overlap. Bin the invariant moments can still be used

to discriminate between the three shapes. For example from Tables 5.5 and 5.4,
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it is readily observed that the third imvariant moment is less than 107° for the
square and is greater than 10~ for the equilateral triangle. Similiarily for the circle,
the third invariant moment is less than [07° This test éan be used to uniquely
identify the equilateral triangle. To differentiate between the circle and the square,
the orthogonal invariant dervived in Chapter Four can be utilized. This invariant is
given by ¢?—¢,. For a continuous square the orthogonal invariant is equivalent to &
and for a continuous circle it is equivalent to ﬁf For the discrete representations
of the circle a.nclrsquaﬂre, the deviation from these values are a function of the scale
factor. For a scale factor of thirtv. the percentage error obtained from the calculation
of the orthogonal invariant for the discrete vircle and square is less than 0.3 percent,
and for a scale factor of twenty. the percentage error is less than 0.8 percent. As a
result, The discrimination of the three digitally represented shapes under orthogonal
projection can be obtained.

The simulations that ave performed for the moments are repeated using the
features based on the w-s data. with the notable exception that the scale factor was
never reduced below 10. The algorithin performed well. Circles and squares are

always correctly classified. and the triangles are misclassified once.

5.2 Experimental Results

A Javelin CCD camera and Data (‘nbe frame grabber are utilized to obtain
grey level images of twenty-seven fiducial marks. The marks are placed at various
orientations within the feld of view. These images are subsequently thresholded

to obtain binary images. The borders of each shape within the fiducial marks

“are extracted. The ceutroid is obtained from the border of the outer shape and

the moment invariants and the chain coded representation of the ¥ - s curve are

extracted from each of the borders.
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Outer shape | 0.261084 | 0.030719 | 0.008405
Middle shape | 0.214408 | 0.004788 | 0.000631
[nner shape | 0.326525 | 0.022299 | 0.005739

Table 5.6: Invariant moment calculations of fiducial mark ttc

The rationale behind using the moments as features is to obtain an uncom-
plicated method to recognize the shapes. This is the reason that the approxima-
tion of the perspective transformation by an orthogonal projection is utilized. the
transformation properties of the moments based on this simplification would make
recognition of the shapes relatively simple. Tables 5.6, 5.7, and 5.8 contain the
moment invariants of a few tvpical fiducial mark images. From these tables, it
can be clearly observed that the calculatel moment invariants do not possess the
convenient properties associated with the moments of the orthogonally projected
shapes. This observation leads to conclusion that to extract reliable features from
the moments is necessary to utilize another methodology. One methodology is to
prescribe values for some of the higher ovder moments (higher than order two) in an
attempt to compensate [or the effects of the perspective transformation. This does
not completely compensate for the effect~. bhut better results are obtained. The ma-
jor problem with this approach is it becomes necessary to solve nonlinear equations
to obtain the values necessary to fix some of the higher order moments. This added
complication diminishes the value of usine the moments as features. As a result,
it is decided to focus on the data obtained from the ¥ - s curves to obtain reliable
features.

The features utilized to identify the marks are based on the i-s curves of
the boundary of each shape. These prove to be more reliable than the moments

invariants. Two experiments are devised. In the first experiment, The outer shapes
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_ o1 92 #s ]
Outer shape | 0.193425 | 0.000019 | 0.000071 =
Middle shape | 0.229801 | 0.011057 | 0.000982 -

Inner shape | 0.357245 | 0.018707 | 0.056625 ]
' ) ]

Table 5.7: Invariant moment calculations of fiducial mark tst
=
él ) C'52 ¢3 _
Outer shape | 0.182:459 | 0.000161 | 0.000064 =
Middle shape | 0.193400 | 0.009736 | 0.000233 =
[nner shape | 0.310022 | 0.025384 | 0.018699 _
=
Table 5.8: Invariant moment calculations of fiducial mark csc
, -
are identified 100 percent of the time, the middle shapes are identified 96.3 percent of

the time, and the inner shapes are never identified. The algorithm fails when trying l
to éiaééify the inner shapes because there is an inlpl{cit assumption that the length _
of a side of a sha.i)e is at least twice as large as the sample size utilized in the chain i
code averaging scheme, and since for boundary lengths of approximately twenty or —
less the assumption is not correct. the algorithm could not compensate. A second =
experiment is designed to correctly identilv shapes with relatively small boundary =
=

lengths. In this experiment. the squares awl triangles are discriminated 100 percent

of the time. but circles ave misclassified. The circles are classified as squares in 7

=

out of 9 attempts. and the remaining times they are classified as triangles.

Wil

Due to poor image quality. there arc two occasions when the extraction of a
useful middle border is not possible. Thesc cases correspond to the marks "ttc’ and N
'stc’. These images ave shown in Figures 3.1 and 3.2. Examples of images where =
the marks are idenrified are shown in Figures 5.3, 5.4, 3.6 and 3.3. The case where =
the middle shape is not correctly identified is shown in Figure 5.7. From this figure, -
the reason the algorithm misclassified the square as a triangle is clear. There is -
%

&)

oy

Q

%

o V5

S o

B 1

L

=
il



re 1" 1

!

53

a significant amount of curvature on one ~ide of the square, and since the external
angle change at the intersection of the curved segment and the line segment does net
exceed the preset threshold, it is not interpreted as the beginning of a new side. This
problem can be eliminated by adjusting the algorithm’s threshold. Examples where
the algorithm misclassified the inner circles as squares are shown in Figures 5.8 and
5.2. It can be seen from these figures that there exist some chain averaged external
angle changes that exceed the preset angle threshold. This causes the algorithm to
attempt to classify the shape as either a square or a triangle and it classifies the

shape as being closer to a square than a tviangle. The algorithm misclassifies the

inner circle of fiducial mark "tce” in Figure 3.9 as a triangle. This occurs , using the

same reasoning as previously mentioned, because the algorithm classifies the shape

as being closer to a triangle than a square.
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CHAPTER 6
CONCLUSION and FUTURE WORK

A method is proposed to identily the position and orientation of the links of the
PUMA 3560. To accomplish this task several fiducial marks will be placed on each
link. The goal is to uniquely identify and locate each fiducial mark. Two differ-
ent recognition algorithms are employed i an effort to ascertain the most reliable
method to identify the marks.

The first method utilized moment invariants and the second method utilized
the chain coded version of the t-s curve. lor this application, the algorithm based
on they-s curve outperforms the algorithim based on the moment invariants. The
latter algorithm does not prove to be very robust. The moment algorithm is not able

to compensate for the perspective distortion present in the imaged representations

- of the shapes. The features based on the v -s curve performed reasonably well, but

the algorithm can be improved.

To find the limitations of the current fiducial mark recognition algorithm, more
images will be examined. This can be accomplished by taking images of the fiducial
marks at many different angles of inclinarion with respect to the image plane while
constantly varying the distance to the inage plane. These images would be used
to determine which positions and orientation of the marks cause the algorithm to
function poorly. The careful analysis of these results add insight into the search for
more robust and efficient algorithms. The tests should encompass the full range of
the PUMA 360.

Utilizing the data from the g-s curve of the shape boundary, it is possible
to obtain more reliable recognition of the marks. Instead of only utilizing the sig-
nificant angle changes. the entire ¢-s curve can be utilized by segmenting it into

straight lines. These straight line segmetit provide valuable information regarding
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the curvature of the boundary. using this methodology, the percentage of the curved
portion of the boundary is obtained. This provides an efficient method to discrim-
inate the circle from the other shapes. For example if 70 percent of a boundary is
sufficiently curved, the shape is probably a circle. To distinquish between a rectangle
and triangle, one can keep track of the positions in the boundary that correspond
to the end points of line éegﬁieuts in the o- s curve. This information is used to
determine whether a particular line segment in the curve corresponds to a significant
portion of the boundary. If it does not then the segment can be interpreted as the
result of a poor image.

The improvements in the current algorithm and the verification of the corre-

spondence of the centroid in different views of the same scene are topics that will

be explored.
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