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Abstract

The design process associated with large cngineering sysiems requires an initial decomposition of the
complex system into subsysiem modules which arc_coupled through transference of output data. The
implementation of such a dccomposition approach assumes the ability exists o detcrmine what subsystems
and interactions exist and what order of cxecution will bc imposed during the analysis process.
Unfortunately, this is quite oficn an extremely complex task which may be beyond human ability to
efficiently achieve. Further, in optimizing such a coupled system, it is esscntial to be able to determine
which interactions figure prominently enough to significantly affect the accuracy of the optimal solution.
The ability to determine ‘weak’ versus ‘strong’ coupling strengths would aid the designer in deciding
which couplings could bc permanently removed from consideration or which could be temporarily
suspended so as to achieve computational savings with minimal loss in solution accuracy. An approach that
uses normalized sensitivities to quantify coupling strengths is presented. The approach is applied to a
coupled sysiem composed of analytical cquations for vcrification purposcs.

Introduction

Several decomposition approaches have rccently been demonstrated to be applicable for performing
optimization in non-hierarchic enginecring systems |[1-3]. However, substantial room for improvement and
advancement on these methods cxist.  One possibility of improvement lics in the incorporation of a
knowledge-based system to assist in the detcrmination of subsystem interactions, participating disciplines,
and order of execution of the dccomposed subsystems. An intclligent decomposition approach, based on
Rogers’ DeMAID (Design Manager's Aide for Intelligent Decomposition) [4], is presented which
incorporates artificial intelligence and data management techniques in such a manner to achieve an efficient
integrated design capability. This approach has applications in any highly coupled environment in which
the input and output information associated with each participating analysis can be quantified. A human
interaction capability allows for inclusion of problem-dcpendent heuristics and designer experience. A
system sensitivity analysis provides information corresponding to analysis coupling strengths, thus
permitting intelligent choice of participating analyscs, according to their impact on the overall system
solution. The identification of ‘wcak’ versus ‘strong’ couplings is made based on nomnalized sensitivities
associated with the Global Sensilivity Equation (GSE) Method [1].

Intelligent Decomposition Approach

A non-hierarchic system is onc¢ in which the interactions among subsystem modules cannot be distributed
in a traditional top down hicrarchy. Non-hicrarchic systems arc characterized by subsystem analyses
coupled through transference of outpul data, crealing a complex network. The solution for such systems
begins with a decomposition approach which cffectively breaks large intractable problems into smaller
subproblems, while maintaining the couplings among them. Such an approach is particularly amenable to
the design organization setting in which engincers work in groups divided by task and disciplinary
specializations, thus taking advantage of the division of labor, whilc permitting the concurrency of
operations. A representative non-hicrarchic system is shown in Figure 1, where threc subsystems interact.

Each participating disciplinc or analysis in the complex sysicm can be modcled as a subsystem for which
inputs and oulputs are identifiable. The complex system of Figure 1 can be represented as a square design
structure matrix [5], wherein cach of the subsystems is denoted as a box along the diagonal. The influence
of one subsystem upon another depends on the location of the interface between the two subsystems, with
feedforwards in the upper diagonal and feedbacks in thc lower. A module with a feedback requires
information before it is actually available, thus nccessitating initial guesses with an associated iterative
framework to achicve convergence. Thercfore, it is beneficial to minimize the number of feedbacks by
reordering the modules along the diagonal. Applying DcMAID to the analytical system of coupled
subroutines associated with the system of Figurc 1 results in the ordering shown in Figure 2. Each
subroutine is denoted by a rcference to its subsysiem and to the output associated with it. Modules
pertaining to the design variables arc included to make the identification of subsystem inputs casicr.
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Normalized Sensitivities for Determining Coupling Strengths

In this work, coupling strengths are defined in terms of local normalized sensitivities. These local
sensitivities are used in the GSE to obtain total behavioral response derivatives with respect to the design
variables. The local derivatives are thus alrcady available to the designer. The GSE approach involves
defining total derivatives of the output response quantities in terms of local sensitivities of the outputs of
each subsystem with respect to that subsystem'’s inputs. For example, for the coupled system of Figure 3 in
which two subsystems, A and B, interact through transference of output information, local sensitivities
would bc dYA/JYB, JYA/dXA, dYB/dYA, anddYBfaXB . Since the components of the output response vector
Y and the design variable vector X are of varying magnitudes, a normalization scheme [6] is implemented
to ensure that the conditioning of the system is such that accuracy of the solution is not threatened. The
local subsystem sensitivity information can be used to quantify the strengths of participating analysis
couplings. Such information can then be used to provide the basis for developing heuristics that will
indicatc which couplings arc “weak” enough to be temporarily or permanently suspended. Obviously, in a
complex problem involving computationally expensive analyses which must be performed within an
itcrative framework (such as structural finite clement analyses) the ability to reduce the system complexity
without sacrificing solution accuracy is of utmost importance. The question then becomes, “to what extent
may solution accuracy be compromised in order to achieve solution efficiency?”

Application to Analytical System

Figure 4 graphically identifies the “largest” and “smallcst” normalized sensitivities associated with the
couplings for the analytical sysicm and aids in thc dctermination of which couplings to remove or
temporarily suspend during the optimization process. From Figure 4 it can be secen that the smallest
absolute value of the normalized scnsitivitics is associated with module number 16, which corresponds to
output z3. Both the feedbacks associated with z3 are considcred to be small in comparison with the
system’s other normalized sensitivities. Thercfore, it can be hypothesized that z3 could be either removed
from the analysis altogether or suspended for some number of cycles during the optimization, which turmns
out to be the case. When the analysis associated with 23 is removed altogether, the percent differences in
the system solution is uniformly less than 1%. Figurc 4 also demonstrates that the output z2 (module 10)
has small normalized scnsitivitics in comparison with the other output analyses. Two of its four interactions
are considered very small whilc two others are in a medium range. Therefore, one might hypothesize that
removal of z2 would result in percent differences that arc slightly higher than those associated with the
removal of z3, which Figure 5 demonstrates. The largest percent difference in subroutine solutions was for
w2 in which a 7.153% differencc was calculated, with the next associated with y1, while all other differences
were less than 1%. The final possibility for simplifying the system is with respect to the subroutine for zl1
(module 15). With only one of its three feedbacks considered weak, however, one would not expect to
obtain a high level of system solution accuracy with its elimination. Furthcrmore, one can see that z1 is a
fecedback into y3 and wl. Both of thesc modules have large normalized sensitivities associated with their
outputs. This increases the chances of large errors associated with the remaining analyses if z1 were to be
eliminated. Figure 6 demonstrates that an almost 21% diffcrence in the y1 solution results with elimination
of zI. The heuristics previously devcloped regarding removal of modules was incorporated into an
analytical optimization problem to determine the potcntial cffccts on the optimal solution. Figure 7 shows
the convergence history associated with the elimination of z3 from consideration as a changing output. It
demonstrates that the difference in optimal solutions is minimal, with the convergence history paralleling
the original path.

Concluding Remarks
Large coupled systems are not amcnable to traditional top-down hicrarchics and requirc a framework which
permits the exploitation of disciplinc-dependent technologics and computer facilities that correspond to
groups within a design organization sctting. An intclligent decomposition approach was presented which
uscs technologies of artificial intelligence and concurrent information management to facilitate use in a
design organization setting. A systcm sensilivity analysis was introduced which provides information
corresponding to analysis coupling strengths, thus permitling intelligent choice of participating analyses in
the optimization process. The approach was applicd to a coupled system composed of analytical cquations
for verification purposes. Results obtained demonstrated that elimination and/or suspension of couplings
can be achieved with minimal loss of solution accuracy. Numecrous areas for future work exist. Two of
these include application of the approach to a physical problem and incorporation of an embedded
knowlcdge-based system to control the dccision-making process rcgarding participating disciplines or

subsystems.
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Figure 1. Non-hierarchic analyiical sysiem providing tcstbed for coupling strength comparisons.
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Figure 2. Subroutine modules with minimized Figurc 3. Interactions in two subsystem
feedbacks. 77 non-hicrarchic cnvironment.
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Figurc 4. Comparison of normalized scnsitivities for

coupled system.
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Figure 6. Percent differences in w2 solution with
removal of z1 module.
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Figurc 7. Optimization convergence history
for full and modified problem.



