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Abstract

Thc design process associated with large engineering systems requires an initial decomposition of the
complex system into subsystem modules which are coupled through transference of output data. The
implementation of such a decomposition approach assumes the ability exists to determine what subsystems
and interactions exist and what order of execution will be imposed during the analysis process.
Unfortunately, this is quite often an extremely complex task which may be beyond human ability to
efficiently achieve. Further, in optimizing such a coupled system, it is essential to be able to determine
which interactions figure prominently enough to significantly affect the accuracy of the optimal solution.
The ability to determine 'weak' versus 'strong' coupling strengths would aid the designer in deciding
which couplings could be permanently removed from consideration or which could be temporarily
suspended so as to achieve computational savings with minimal loss in solution accuracy. An approach that
uses normalized sensitivities to quantify coupling strengths is presented. The approach is applied to a

coupled system composed of analytical equations for verification purposes.

Introduction

Several decomposition approaches have recently been demonstrated to be applicable for performing
optimization in non-hierarchic engineering systems 11-3]. However, substantial room for improvement and
advancement on these methods exist. One possibility of improvement lies in the incorporation of a
knowledge-based system to assist in the determination of subsystem interactions, participating disciplines,
and order of execution of the decomposed subsystems. An intelligent decomposition approach, based on
Rogers' DeMAID (Design Manager's Aide for Intelligent Decomposition) [4], is presented which
incorporates artificial intelligence and data management techniques in such a manner to achieve an efficient
integrated design capability. This approach has applications in any highly coupled environment in which
the input and output information associated with each participating analysis can be quantified. A human
interaction capability allows for inclusion of problem-dependent heuristics and designer experience. A
system sensitivity analysis provides information corresponding to analysis coupling strengths, thus
permitting intelligent choice of participating analyses, according to their impact on the overall system
solution. The identification of 'weak' versus 'strong' couplings is made based on normalized sensitivities
associated with the Global Sensitivity Equation (GSE) Method [1 ].

Intelligent Decomposition Approach
A non-hierarchic system is one in which the interactions among subsystem modules cannot be distributed
in a traditional top down hierarchy. Non-hierarchic systems are characterized by subsystem analyses
coupled through transference of output data, creating a complex network. The solution for such systems
begins with a decomposition approach which effectively breaks large intractable problems into smaller
subproblems, while maintaining the couplings among them. Such an approach is particularly amenable to
the design organization setting in which engineers work in groups divided by task and disciplinary
specializations, thus taking advantage of the division of labor, while permitting the concurrency of
operations. A representative non-hierarchic system is shown in Figure 1, where three subsystems interact.

Each participating discipline or analysis in the complex system can be modeled as a subsystem for which
inputs and outputs are identifiable. The complex system of Figure 1 can be represented as a square design
structure matrix [5], wherein each of the subsystems is denoted as a box along the diagonal. The influence
of one subsystem upon another depends on the location of the interface between the two subsystems, with
feedforwards In the upper diagonal and feedbacks in the lower. A module with a feedback requires
information before it is actually available, thus necessitating initial guesses with an associated iterative
framework to achicYc convergence. Therefore, it is beneficial to minimize the number of feedbacks by
reordering thc modules along the diagonal. Applying DeMAID to thc analytical system of coupled
subroutines associated with the system of Figure 1 results in the ordering shown in Figure 2. Each

subroutine is denoted by a reference to its subspi!¢m and to the output associated with it. Modules
pertaining to the design variables are included to ma[,e the identification of subsystem inputs easier.
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NormalizedSensitivitiesfor DeterminingCouplingStrengths
In this work. coupling strengths are defined in terms of local normalized sensitivities. These local
sensitivities are used in the GSE to obtain total behavioral response derivatives with respect to the design
variables. The local derivatives are thus already available to the designer. The GSE approach involves
defining total derivatives of the output response quantities in terms of local sensitivities of the outputs of
each subsystem with respect to that subsystem's inputs. For example, for the coupled system of Figure 3 in
which two subsystems, A and B, interact through transference of output information, local sensitivities

would be JYA/JYB, cTt'A/agXA,aYB/agYA, and_YB/_XB. Since the components of the output response vector
Y and the design variable vector X are of varying magnitudes, a normalization scheme [6] is implemented
to ensure that the conditioning of the system is such that accuracy of the solution is not threatened. The
local subsystem sensitivity information can be used to quantify the strengths of participating analysis
couplings. Such information can then be used to provide the basis for developing heuristics that will
indicate which couplings are "weak" enough to be temporarily or permanently suspended. Obviously, in a
complex problem involving computationally expensive analyses which must be performed within an
iterative framework (such as structural finite element analyses) the ability to reduce the system complexity
without sacrificing solution accuracy is of utmost importance. The question then becomes, "to what extent
may solution accuracy be compromised in order to achieve solution efficiency?"

Application to Analytical System
Figure 4 graphically identifies the "largest" and "smallest" normalized sensitivities associated with the
couplings for the analytical system and aids in the determination of which couplings to remove or
temporarily suspend during the optimization process. From Figure 4 it can be seen that the smallest

absolute value of the normalized sensitivities is associated with module number 16, which corresponds to
output z3. Both the feedbacks associated with z3 are considered to be small in comparison with the
system's other normalized sensitivities. Therefore, it can be hypothesized that z3 could be either removed
from the analysis altogether or suspended for some number of cycles during the optimization, which turns
out to be the case. When the analysis associated with z3 is removed altogether, the percent differences in
the system solution is uniformly less than 1%. Figure 4 also demonstrates that the output z2 (module 10)
has small normalized sensitivities in comparison with the other output analyses. Two of its four interactions
are considered very small while two others are in a medium range. Therefore, one might hypothesize that
removal of z2 would result in percent differences that are slightly higher than those associated with the
removal of z3, which Figure 5 demonstrates. The largest percent difference in subroutine solutions was for
w2 in which a 7.153% difference was calculated, with the next associated with yl, while all other differences
were less than 1%. The final possibility for simplifying the system is with respect to the subroutine for zl
(module 15). With only one of its three feedbacks considered weak, however, one would not expect to
obtain a high level of system solution accuracy with its elimination. Furthermore, one can see that zl is a
feedback into y3 and wl. Both of these modules have large normalized sensitivities associated with their
outputs. This increases the chances of large errors associated with the remaining analyses if zl were to be
eliminated. Figure 6 demonstrates that an almost 21% difference in the yl solution results with elimination
of zi. The heuristics previously developed regarding removal of modules was incorporated into an
analytical optimization problem to determine the potential effects on the optimal solution. Figure 7 shows
the convergence history associated with the elimination of z3 from consideration as a changing output. It
demonstrates that the difference in optimal solutions is minimal, with the convergence history paralleling
the original path.

Concluding Remarks
Large coupled systems are not amenable to traditional top-down hierarchies and require a framework which
permits the exploitation of discipline-dependent technologies and computer facilities that correspond to
groups within a design organizat|on setting. An intelligent decomposition approach was presented which
uses technologies of artificial intelligence and concurrent information management to facilitate use in a
design organization setting. A system sensitivity analysis was introduced which provides information
eorrespondinl_ to analysis coupling strengths, thus permitting intelligent choice of participating analyses in
the optimization process. The approach was applied to a coupled system composed of analytical equations
for verification purposes. Results obtained demonstrated that elimination and/or suspension of couplings
can be achieved with minimal loss of solution accuracy. Numerous areas for future work exist. Two of
these include application of the approach to a physical problem and incorporation of an embedded
knowledge-based system to control the decision-making process regarding participating disciplines or
subsystems,
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Figure 1. Non-hierarchic analytical system providing testbed for coupling strength comparisons.
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Figure 2. Subroutine modules with minimized
feedbacks.

Figure 3. Interactions in two subsystem
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Figure 4. Comparison of normalized sensitivities for
coupled systcm.

Figure 5. Differences in w2 and yl solutions
with removal of z2 and z3.

S1%1

S IX2

S2X 1

$2X2

S2X3

$3X2

S3X 1

S2V3

S!141

S3Z2

S 1¼2

S2Y 1

$2¥4

S3Z3

i

i!i i;ii
3,40o

_ . " _ 2,900

|

I 20.5826% diffel_nc¢ in w2 solution (with zl negccied)(All others less than 1% difference)

2,400

objective funclion

I

i L /.--=" ..... i_= " I -- Pull S°luti°n
: // _' .. <-." --: -- + { -t- Solution w/out i3

........... f" _; ; _{, _ =t_S_ .; ,.;-:_:;_"_7 ,/,'_-3], ,:,

3 5 7 9 11 13 15 17

cycle number

Figure 6. Percent differences in w2 solution with
removal of zl module.

Figure 7. Optimization convergence history
for full and modified problem.
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