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Abstract

In the past few years significant interest has developed in using artificial neural networks to

model and control nonlinear dynamical systems {8]. While there exists many proposed schemes

for accomplishing this and a wealth of supporting empirical results, most approaches to date tend

to be ad hoc in nature and rely mainly on heuristic justifications. The purpose of this project

was to further develop some analytical tools for representing nonlinear discrete-time input-output

systems, which when applied to neural networks would give insight on architecture selection, prun-

ing strategies, and learning algorithms. A long term goal is to determine in what sense, if any,

a neural network can be used as a universal approximator for nonlinear input-output maps with

memory (i.e., realized by a dynamical system)i This property is well known for the case of static

or memoryless input-output maps [1,5].

The general architecture under consideration in this project was a single-input, single-output

recurrent feedforward network described by the n nonlinear difference equations

• (t+ l) = _(A_(t)+ bu(t)), _(o)= _o (_)
_(t) = c_(l), (2)

where _ i - 1,... n are the individual activation functions for each neuron, b and e are the input

and output connection vectors, A is the recurrent neural network weight matrix, and x(-) is the

state vector composed of the outputs of each neuron [4]. For the purpose of modelling input-output

behavior we found it convenient to introduce a state-space transformation z - _-l(x) such that

the system in (I)-(2) is input-output equivalent to

_(t+ I) = /(_(t))+o(_(t)),,(t),_(o)= ,,-'(xo)=zo" (3)
y(t) = h(_(t)), (4)

where f(z) - A_r(z), g(z) = b, and h(z) - c#-'(z). The main advantage to using this latter

state-space model is that the system is afline in u, and thus, more amenable to analysis by the

geometric methods used in nonlinear control theory [2,6]. The basic objective was then to determine

s tractable functional expansion of the input-output map corresponding to system (3)-(4) in terms

of the realization (f,o,h, z,,). A Volterra type expansion

oo Oo

v(t)= _ _ Vk(i,,...,i,)u(t-i,)...u(t-i,) (5)
k=0 i_...i_---I
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hasbeenpublishedin the literature[4,9],but theexpressionsfor the Volterrakernels,gh, are too

complex for any serious analysis. Thus, we took the alternative approach of deriving a discrete-

time analogue of the Fliess functional expansion for general discrete-time nonlinear systems and

then applying it in particular to the neural network realization in equations (3)-(4). The resulting

expansion was significantly simpler in structure than those published to date and appears promising

for future analysis of such systems.

An interesting innovation resulting from this work was the discovery of a natural adaptation of

Fliess's work to discrete-time systems. This subject has been studied by other researchers [7,10],

but it appears that this particularly tractable approach has been overlooked. One of two main

results is described in the following theorem [3]:

Theorem Suppose the sequence {u(k)} is bounded in magnitude on [0, N] and each function o/

a discrete-time realization (f,g,h, zo) is analytic on an open subset U of_". Then for sufficiently

smell N, the input-output mapping can be represented by a convergent generating series

F : u -_ y : _ c(,)E,, (6)
qEl"

where

I" is the set of multiindices for the indez set I = {O, 1}; (7)

c(_) = e(it...io) = Lg,o ...L,,th(z,, ) (go(Z) _ f(z) - z); (8)

i--I

Eq(t) -'- E,,...,o(t ) = _ u,, (j) E,_._ ,...,o (j) t e [0, N] (9)
j'--O

(E,(t) l,  0(t) l, a.d u,(t) u(t)). (10)

(Lfh denotes the Lie derivative of h along g.)

Clearly this result applies to the system (3)-(4). Furthermore, as in the continuous-time case,

it is possible to derive a simple series expansion for each Volterra kernel in terms of the coefficients

{c(n) : n E I'}. The details of this analysis are reported in [3].
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