
Creating an Open Environment Software Infrastructure

by

Michael J. Jipping
Assistant Professor

Hope College

Department of Computer Science

Holland, MI 49423

N93-16 774

Abstract

As the development of complex computer hardware accelerates at increasing rates,

the ability of software to keep pace is essential. The development of software

design tools, however, is falling behind the development of hardware for several

reasons, the most prominent of which is the lack of a software infrastructure to

provide an integrated environment for all parts of a software system. The research

undertaken by the author at NASA LaRC in the summer of 1992 has undertaken to

provide a basis for answering this problem by investigating the requirements of

open environments.

1 Introduction

With the rapid development of digital processing technology, NASA programs have become

increasingly dependent on the capabilities of complex computer systems. Current flight control

research, for example, advocating active controls and fully integrated guidance and control sys-

tems, relies heavily on digital processing technology. These advanced guidance and control sys-

tems, designed to optimize aircraft performance, will demand high-throughput, fault-tolerant

computing systems. The functional performance, reliability, and safety of these systems are of

great importance to NASA and thus research within NASA's Aeronautics Controls and Guidance

Program is directed toward the development of design, assessment, and validation methodologies

for flight crucial systems.

The state-0f-the-art of this technology, however, is reflected in a primary issue resulting from a

NASA-LaRC workshop on digital systems technology i.e. " lack of effective design and valida-

tion methods with support tools to enable engineering of highly-integrated, flight-critical digital

systems". Design methods are generally fragmented and do not support integrated performance,

reliability, and safety analysis and there is a growing recognition that such integrated studies will

require an integrated design and evaluation environment.

The research focus of the Systems Architecture Branch of NASA-LaRC is the Automated Design

Technology (ADT) for engineering safety-critical software and architecture systems for advanced

aircraft avionics. This work is motivated by the belief that focused research on application-spe-

cific domains will result in significant gains in productivity and quality. The need for such

research was also recommended in a 1989 National Research Council Computer Science and

Technology Board workshop - "it is critical to recognize the legitimacy of specialization to the

domain at the expense of expressive generality".

128



2 The Project

In order to support ADT, a project was initiated to construct and evaluate an open environment

software infrastructure as the framework for this design technology. The environment was based

on the Integrated Project Support Environment model of software integration, where a complete
infrastructure is build in which software tools _ embedded. Further, the environment was built

in accordance with the Portable Common Tool Environment standard of IPSE systems. The main

advantages of using PCTE are many; the biggest advantages are (1) a common data infrastructure

were all data is viewed as objects and resources are provided to all program in the environment to

manipulate those objects, and (2) all objects are highly organized by relationships to each other,

thus enabling easy reference and access to any object in the system.

The project, shown in Figure 1, was undertaken to show the advantages of PCTE in practical

terms. In this scenario, we have a three engineers working in a PCTE environment. The software

engineer is designing software, which is being cataloged by the reuse librarian and being executed

on a system designed by the architecture engineer. The software engineer sees her software in

terms of control and data flow graph information; the reuse librarian see coding characteristics;

and the architecture designer sees the load information the software will put on the hardware he is

designing. Each engineer has a perspective of the software being design; it is the software infra-

structure that allows these perspectives to be integrated into one software model. Our scenario

combined three "real" programs jointly developed with NASA LaRC: CASE for software design,

InQuisiX for the reuse librarian, and ADAS for the hardware design tool.

PCrE allows objects and their manipulation to be hidden from the user and her software. Each
user's software accesses what it should in the correct format and translations or information deri-

vation is under the surface of the IPSE.

It is hoped that the construction and demonstration of this software infrastructure will inspire oth-

ers to use an IPSE to design and implement their software systems. Examples are numerous: dif-

ferent, off-the-shelf geographic modelling programs implementing their own GIS models as

perspectives of some common geographic object; spreadsheets from different vendors on differ-

ent computers sharing complex information on mission launches as if they were in the same for-

mat; database systems accessing each others information.

Figure l: The PCTE-based Demonstration Environment

Softwwe Reuse Architecture

Diwlgner Lbradan De#gner


