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ABSTRACT

R is well-known that stresses (and strains) calculated by a displacement-based finite element analysis
are generally not as accurate as the displacements. In addition, the calculated stress field is typically
discontinuous at element interfaces. Because the stresses are typically of more interest than the
displacements, several procedures have been proposed to obtain a smooth stress field, given the finite
dement stresses, and to improve the accuracy [1,2]. Hinton and Irons [3] introduced global least squares
smoothing of discrete data defined on a plane using a finite element formulation. Tessler and co-workers
[4,5] recently developed a conceptually similar formulation for smoothing of two-dimensional data based
on a discrete least square approximation with a penalty constraint. The penalty constraint results in a

stress field which is CZ-continuous, a result not previously obtained. The approach requires an additional,

'smoothing' finite element analysis and for their two-dimensional application, they used a conforming C"°-
continuous a'iangular finite element based on a conforming plate element [6].

This paper presents the results of a detailed investigation into the application of Tessler's smoothing
procedure to the smoothing of finite element stresses from one-dimensional problems. Although the one-
dimensional formulation has some practical applicability, such as in truss, beam, axisymmetric mechanics
and one-dimensional heat conduction, the primary motivation for developing the one-dimensional
smoothing case is to explore the characteristics of the general smoothing strategy. In particular, it is used
to describe the behavior of the method and to explore the suitability of criteria proposed for the smoothing
analysis. Prior to presenting numerical results, the variational formulation of the smoothing strategy is
presented and a criterion for the smoothing analysis is described.

Consider the problem of representing a set of discrete stresses fit, = f(xt,), where Xp is the position

vector in a three-dimensional domain f2, with a smooth, scalar-valued continuous function tr(x). The
problem may be cast as a minimization of the least-squares/penalty-constraint functional

N
_= Y. [fp-O'(xt,)]2+_/ [(G.l-Ol)2+(O',2-O2)2+(O'3-O3)2]d_ (1)

p=l Ll

where N is the total number of data points, _, is a large "penalty" number, and OI, 02, and O3 are

independent continuous functions. The minimization of q_ is performed with respect to the coefficients

in cr and Oi (i=1,2,3) which serve as the unknowns in this problem. The fh'st term in Eq. (1) represents the

error in fit, as compared with o'(xt,). The second term forces, for large _, the equivalence of 0i and the
first derivatives of o.

The finite element method is used to minimize Eq. (1). The domain is discretized by smoothing finite

dements, each element having a characteristic size hs. Approximations for the variables crand 01 are

denoted as o"h, and Oih*, where the superscript tts refers to the association of these variables with a

smoothing finite element mesh. Since the spatial derivatives of the field variables in Eq. (1) do not

exceed order one, only C°-continuous shape functions need to be adopted for o& and Oih,. While Eq.
(1) is written for the general three-dimensional case, the reduction to two- and one-dimensions is trivial:
omit terms associated with subscript 3 (2-D) or subscripts 2 and 3 (l-D). The latter is the focus here.

The variational methodology for stress smoothing involves a second finite element analysis, and
hence a smoothing finite element mesh is required. A low-order, two-node smoothing element is used

here, such that tr h, is interpolated quadratically and oths linearly [7]. The stresses from thefirst finite
element analysis provide the input to the smoothing analysis. These finite element stresses can be written
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in terms of the exact stresses as ¢rh = <7exact +O(hra), where h represents the finite element size and the
exponent m is related to the interpolation order of the finite elements and the definition of stress
(assuming no singularity). In elasticity problems, m = p + 1, where p is the order of the polynomial in
the displacement interpolation. It is argued that the optimum smootlfing mesh would result in the same
order of accuracy as the original solution. Hence, the smoothing mesh is controlled by the relation

hs - h ml(p'+l) where Ps is the order of the smoothing element. If the optimal finite element stresses are

used as input to the smoothing analysis, then this approach should result in smoothed stresses with
optimal accuracy over the entire domain.

A one-dimensional problem defined on the domain (0,1) has been analyzed to evaluate the effective-
ness and behavior of the present smoothing method. The problem is analyzed with uniform meshes of 2-,
3-, and 4-node, isoparametric finite elements that use, respectively, linear, quadratic, and cubic
interpolation of displacement. The results from the analyses are smoothed using the 2-node smoothing
element. The smoothing meshes were based on the above equivalent accuracy criterion.

Figures 1 and 2 show the point-wise and energy convergence of both the finite element and smoothed
stresses. It is clear that the smoothed stresses are consistently more accurate than the raw finite element
stresses, especially for the linear and quadratic finite elements. For the cubic finite dement, the results are
not as good, which indicates that smoothing elements should be at least as high order as the finite
elements whose results they are meant to smooth. Note that the smoothed stresses for the linear and
quadratic elements display convergence which is at least one order higher than the finite element stresses.
Figure 3 shows the distribution of stress and the error in stress over the entire domain for the case of right,
2-node finite elements and four, 3-node finite elements. Also shown are the optimal stress points, which
were used as input data to the smoothing analysis. It is clear that the smoothing analysis extends the
accuracy of the optimal stress points over the entire domain of finite element discretization.

Results indicate that the smoothed stresses are usually at least an order of magnitude more accurate
than the original finite element stresses provided interpolation functions for the smoothing element are the
same degree or higher than those of the finite element. The accuracy corresponds to a finite element
analysis of much higher refinement. Therefore, althotigh an additional, smoothing analysis is required, it
is much more efficient than refinement of the finite element mesh.

A more detailed explanation of the method and the results can be found in [8]. Application of the
smoothing analysis is potentially of use in several areas, including the calculations of transverse shear
stresses in plate theory, error estimation based on local equilibrium, and improved potential energy
estimation In frequency analysis.
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Figure 1. Error in finite element and smoothed stresses at x = 0.5 and x = 1.0 for (a) linear, (b) quadratic,
and (c) cubic finite elements
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Figure 2. Energy norm of error in finite element and smoothed stresses t'or (a) linear, (b) quadratic, and
(c) cubic finite elements
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Figure 3. Distribution of stress and stress error for (a) 8 linear and (b) 4 quadratic finite elements
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