N93-22642

RESEARCH OBJECTIVES, OPPORTUNITIES AND FACILITIES FOR MICROGRAVITY SCIENCE

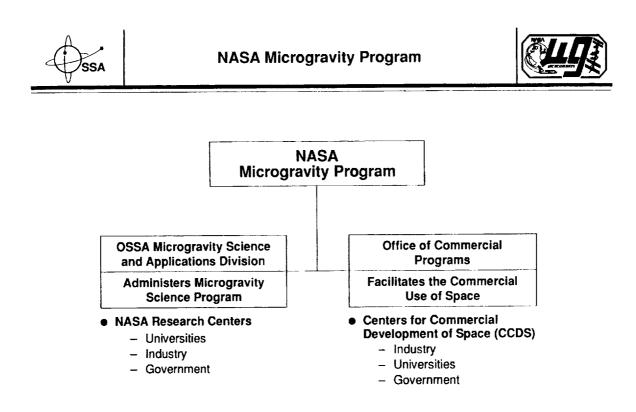
Presented by Robert J. Bayuzick Office of Space Science and Applications NASA Headquarters and Vanderbilt University

ABSTRACT

Microgravity Science in the U.S.A. involves research in fluids science, combustion science, materials science, biotechnology and fundamental physics. The purpose is to achieve a thorough understanding of the effects of gravitational body forces on physical phenomena relevant to those disciplines. This includes the study of phenomena which are usually overwhelmed by the presence of gravitational body forces and, therefore, chiefly manifested when gravitational forces are weak. In the pragmatic sense, the research involves gravity level as an experimental parameter.

Calendar year 1992 is a landmark year for research opportunities in low earth orbit for Microgravity Science. For the first time ever, three Spacelab flights will fly in a single year. IML-1 was launched on January 22; USML-1 was launched on June 25; and, in September, SL-J will be launched. A separate flight involving two cargo bay carriers, USMP-1, will be launched in October. From the beginning of 1993 up to and including the Space Station era (1997), nine flights involving either Spacelab or USMP carriers will be flown. This will be augmented by a number of middeck payloads and get away specials flying on various flights.

All of this activity sets the stage for experimentation on Space Station Freedom. Beginning in 1997, experiments in Microgravity Science will be conducted on Station. Facilities for doing experiments in protein crystal growth, solidification and biotechnology will all be available. These will be joined by middeck-class payloads and the microgravity glove box for conducting additional experiments. In 1998, a new generation protein crystal growth facility and a facility for conducting combustion research will arrive. A fluids science facility and additional capability for conducting research in solidification, as well as an ability to handle small payloads on a quick response basis, will be added in 1999. The year 2000 will see upgrades in the protein crystal growth and fluids science facilities. From the beginning of 1997 to the fall of 1999 (the "man-tended capability" era), there will be two or three utilization flights per year. Plans call for operations in Microgravity Science during utilization flights and between utilization flights. Experiments conducted during utilization flights will characteristically require crew interaction, short duration and less sensitivity to perturbations in the acceleration environment. Operations between utilization flights will involve experiments that can be controlled remotely and/or can be automated. Typically, the experiments will require long times and a pristine environment. Beyond the fall of 1999 (the "permanently-manned capability" era), some payloads will require crew interaction; others will be automated and will make use of telescience.



Microgravity Science and Applications Division Research Objectives, Opportunities, and Facilities

Presented to: Space Station Freedom Utilization Conference August 3 - 6, 1992 Huntsville, Alabama

Robert J. Bayuzick

9207-005-01CAW-07/18/92

PRECEDING PAGE BLANK NOT FILMED

Program Goal

Develop a comprehensive research program in fluids science, combustion science, materials science, biotechnology, and fundamental physics for the purpose of attaining a structured understanding of gravity-dependent physical phenomena and those physical phenomena made obscure by the effects of gravity.

9207-005-03CAW 07/18/92 +[9111-002-14CAW 11/04/91]+ =[9107-016-05CAW 07/19/91]=

p 3/RJB/SN/8-5-92

Fluid Dynamics and Transport Phenomena Research Areas

- Multiphase flow and heat transfer
- Suspension/colloid/granular media mechanics
- Solid-fluid interface dynamics
- Capillary phenomena
- Magneto/electrohydrodynamics
- Transport phenomena

- Ignition, smolder, solid materials
- Gaseous diffusion flames
- Gaseous premixed flames
- Heterogeneous (particles and droplets)
- Metals and combustion synthesis

9207-005-05CAW 07/18/92

p 5/RJB/SN/8-5-92

Materials Science Research Areas

Electronic and Photonic Materials

Metals and Alloys

Glasses and Ceramics

or

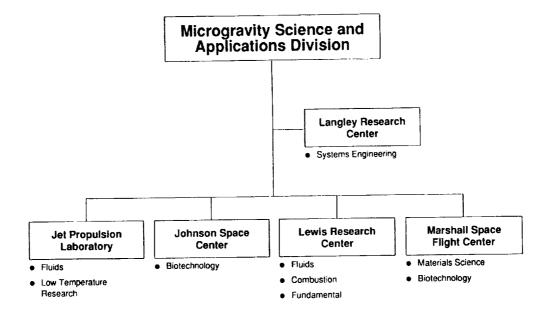
Crystal Growth

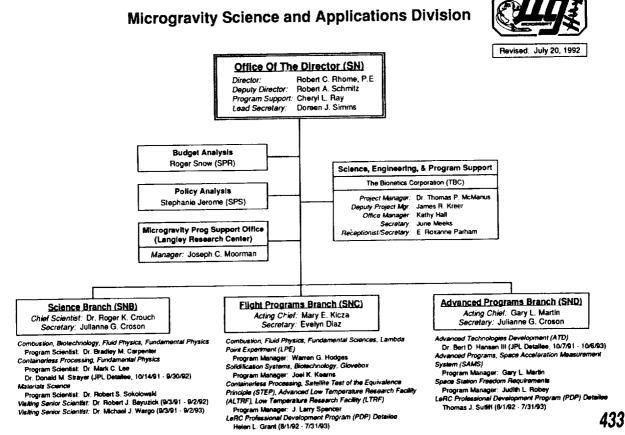
Solidification Fundamentals

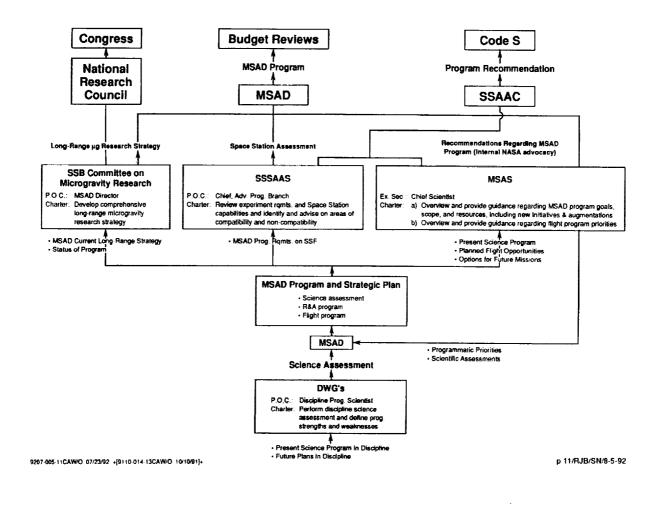
Thermophysical Properties

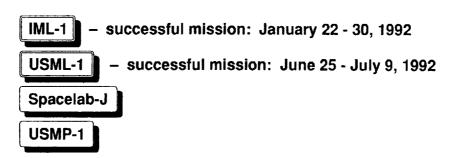
- Cell physiology
- Cell differentiation
- Protein crystal growth
- Biological separations

9207-005 07CAW 07/18/92


p 7/RJB/SN/8-5-92


- Critical point phenomena
- Gravitational physics




p 9/RJB/SN/8-5-92

• Four MSAD missions in CY92:

Apparatus/Experiment	Acronym	Principal Investigator	Country of Origin	
Fluids Experiment System	FES		U.S.A.	
 A Study of Solution Crystal Growth in Low Gravity 	TGS	Dr. R. B. Lal	U.S.A.	
 Casting and Solidification Technology 	CAST	Dr. M. H. McCay	U.S.A.	
Vapor Crystal Growth System	VCGS	Dr. L. van den Berg	U.S.A.	
Mercuric lodide Crystal Growth	MICG	Dr. R. Cadoret	France	
Protein Crystal Growth	PCG	Dr. C. Bugg	U.S.A.	
Organic Crystal Growth Facility	OCGP	Dr. Kanbayashi	Japan	
Cryostat	CRY		Germany	
 Protein Crystal Growth in Cryostat 		Dr. McPherson	U.S.A.	
 B-galactosidase/Inhibitor-Single Crystal Growth 		Dr. W. Littke	Germany	
 Crystal Growth of Electrogenic Membrane Protein 		Dr. G. Wagner	Germany	
Bacteriorhodopsin				
Critical Point Facility	CPF		ESTEC	
 Critical Fluid Thermal Equilibrium 		Dr. A. Wilkinson	U.S.A.	
 Heat and Mass Transport at the Critical Point 		Dr. D. Beysens	France	
 Light Scattering and Interferometry Experiments 		Dr. A. Michels	Netherland	
Space Acceleration Measurement System	SAMS	Dr. R. DeLombard	U.S.A.	

9207-005-13CAW 07/23/92 =[9011-024-14CAW 12/18/90]=

SSA

p 13/RJB/SN/8-5-92

U.S. Microgravity Laboratory (USML-1) Microgravity Science and Applications Experiments

Apparatus/Experiment	Developer	Principal Investigator
Crystal Growth Furnace (CGF)	MSFC	
 Orbital Processing of High Quality Cd-Te 		D. Larson
 Crystal Growth of II-VI Semiconducting Alloys by Solidification 		A. Lehoczky
 Study of Dopant Segregation Behavior During Growth of Ga-As in Microgravity 		D. Matthlesen
- Vapor Growth of Hg-Cd-Te in Microgravity		H. Wiedemeier
Drop Physics Module (DPM)	JPL	
 Science and Technology of Surface Controlled Phenomena 		R. Aptel
 Drop Dynamics Investigation 		T. Wang
 Drop Dynamics investigation Measurement of Liquid-Liquid Interfacial Tension of a Compound Drop 		M. Weinberg
Protein Crystal Growth (PCG)	MSFC	C. Bugg
 Solid Surface Combustion Experiment (SSCE) 	LeRC	R. Altenkirch
Surface Tension Driven Convection (STDCE)	LeRC	S. Ostrach
Glovebox Experiment Module (GEM)	MSFC	17 experiments
Zeolite Crystal Growth (ZCG)	Battelle Adv. Materials Center	A. Sacco
Generic Bioprocessing Apparatus (GBA)	Center for Bioserve Technology	L. Stodleck
Astroculture (ASC)	Wisconsin Ctr. for Auto. & Robotics	T. Tibbets
 Space Acceleration Measurement System (SAMS) 	LeRC	R. DeLombard

Apparatus/Experiment	Acronym	Country of Origin
Acoustic Levitation Furnace	ALF	Japan
Bubble Behavior Experiment Unit	BBU	Japan
Crystal Growth Experiment Furnace	CGF	Japan
Free Flow Electrophoresis Unit	FFEU	Japan
Gas Evaporation Experiment Facility	GEF	Japan
Gradient Heating Furnace	GHF	Japan
Image Furnace	IMF	Japan
Liquid Drop Experiment Facility	LDF	Japan
Marangoni Convection Experiment Unit	MCU	Japan
Organic Crystal Growth Experiment Facility	OCF	Japan
Pool Boiling Experiment (GAS)	PBE	U.S.
Protein Crystal Growth	PCG	U.S.
Space Acceleration Measurement System	SAMS	U.S.
Solid Surface Combustion Experiment	SSCE	U.S.

9207-005-15CAW-07/30/92

p 15/RJB/SN/8-5-92

the second second second

The second second second second second

*

U.S. Microgravity Payload (USMP-1) Microgravity Science and Applications Experiments

Apparatus/Experiment	Developer	Principal Investigator
Lambda Point Experiment (LPE)	JPL	J. Lipa
· MEPHISTO	CNES	
- The Morphological Stability and		J. Favier
In Situ Monitoring of Binary Alloy		
Solidification		
 In-Situ Monitoring of Crystal 		G. Abbaschian
Growth		
Space Acceleration Measurement	LeRC	R. DeLombard
System (SAMS)		

Microgravity Science and Applications Division Baseline Plan: 1994 - 2004

	FUN	DAMENTAL SCIENCE	MATER		BIOT	ECHNOLOGY
S P A	Condensed Matter Physics	Lambda Point Experiment Critical Fluid Light Scattering Experiment Critical Fluid Viscoelty Messurement Experiment Low Temperature Research Facility Satellite Test of Equivalence Principle	Metaia and Alloys	Isothermal Dendrite Growth Experiment TEMPUS (F) Large Isothermal Furnace (F) Bases Station Furnace Facility	Ceil Science	RAMSES (F) Detailed Supplemental Objectives Bioreactor Bioreactor Biotechnology Facility
C E M I S S I	Fluids & Transport Phenomena	Surface Tension Driven Convection Experiment Drop Physics Module Critical Point Facility (F) Bubble, Drop, and Particle Unit (F) Geophysical Fluid Flow Cell Mechanics of Granular Meterials Advanced Fluids Middecks Advanced Fluids Module Fluids Physics Opnemics Facility	Glasses and Ceramics 	Drop Physics Module Modular ContainerTess Processing Facility Crystal Growth Furnace MEPHISTO (F)	Macro- molecular Crystal Growth	Protein Crystal Growth Cryostat (F) Advanced Protein Crysta Growth Crysta Growth Facility
0 N S	Combustion Science	Noduler Containerless Processing Facility Solid Surface Combustion Experiment Advanced Combustion Middecks Advanced Combustion Module Moduler Combustion Facility	Photonic Materials	Advanced Automated Direction Solidification Furnace Programmable Multizone Furn Space Station Furnace Facility	18Cê	
0 & DA	Space	Acceleration Measurement System Glovebox Experiment Module	Accel	eration Characterization and Orbital Acceration Res	d Analysis Proje earch Experime	ect rnt
R&A	D	rop Tubes/Towers	Parabolic Fligh	nis	Sounding Roo	kets
ATD			t Temperature		.lght Scattering	•

(F) - Foreign Hardware

Second Station Freedom Facility

9207-005-17CAW 07/30/92 =[9110-014-07CAW 10/10/91]= =[9107-016-11CAW 07/19/91]=

p 17/RJB/SN/8 5 92

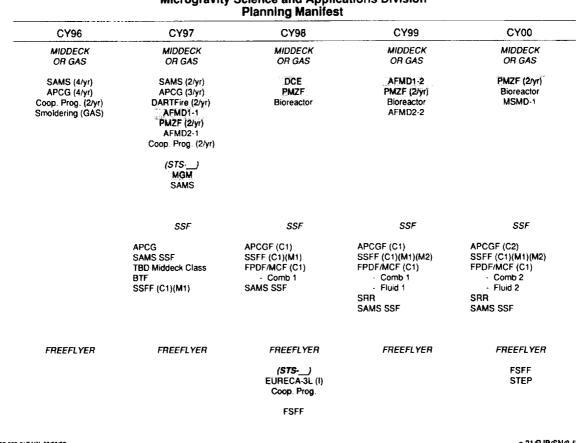
Microgravity Science and Applications Division Planning Manifest

CY91	CY92	CY93	CY94	CY95
SLS-1	IML-1	SL-D2	IML-2	USML-2
(STS-40)	(STS-42)	(STS-55)	(STS-66)	(STS-73)
LD - 6/5/91	LD - 1/22/92	LRD - 1/27/93	LRD - 7/30/94	LRD - 5/6/95
SAMS	FES/VCGS	BIOLABOR (I)	APCF (I)	SAMS
SSCE-2	SAMS		SAMS	CGF
GaAs (GAS)	PCG		TEMPUS (I)	GFFC
	CRYOSTAT (I)		BDPU (I)	STDCE
	CPF (I)		FFEU/TEI-HT (I)	GBX
	MICG (I)		RAMSES (I)	MGM
	OCGF (I)		CPF (I)	APCG
			LIF (I)	CVTE
	USML-1		VIBES (I)	
	(STS-50)		QSAM (I)	SL-E1
	LD - 6/25/92			(STS-70)
	PCG		USMP-2	LRD -1/28/95
	DPM		(STS-62)	Coop. Prog.
	CGF		LRD - 1/25/94	
	STDCE		AADSF (A-1)	USMP-3
	SSCE-4		IDGE	(STS-72)
	SAMS		CFLSE	LRD - 4/4/95
	GBX		SAMS	AADSF (A-2)
	OARE		SAMS	SAMS
			MEPHISTO (I)	SAMS
	SL-J		••	MEPHISTO (I)
	(STS-47)			
	LRD - 8/12/92	NOTES:		
	PCG		eadiness Dates and STS flight	numbers
	SAMS	from SSP Basel	ne Manifest, Mar. 20, 1992	unders
	SSCE-5 PBE Proto. (GAS)	- (LD) Launch Dai	le	
	PBE Proto. (GAS)	- (I) indicates non	-U.S. hardware on which U.S.	
	USMP-1	Investigators are	flying (International)	
	(STS-52)	- (U) indicates U.S	5. non-MSAD hardware In which	MSAD
	(313-32) LRD - 9/24/92	Investigators are		
	LPE	- + indicates enha	inced/upgraded version	
	SAMS	- * Will not fly if	Space Station is available	
	SAMS	- Candidate	transition hardware	
	MEPHISTO (I)			p 18/RJB/SN/8-5-92

		Planning Manifest		
CY96	CY97	CY98	CY99	CY00
	USML-3	USMP-5	USMP-6	USMP-7
	(STS)	(STS-97)	(STS)	(STS)
	LRD//97	LRD - 3/18/98	LRD7_ /	LRD/_/
	STDCE+	IDGE+	MEPHISTO (I)	AADSF (A-2
	APCG	SAMS	AADSF (A-1)	SAMS
	CGF+	SAMS	SAMS	SAMS
	SAMS	AADSF (A-2)	SAMS	
	GBX	MEPHISTO (I)	LTRF-20	
	DCE			
	SL-E2			
	(STS-94)			
	LRD - 11/18/97			
	Coop. Prog.			
	USMP-4			
	(STS-86)			
	LRD - 1/25/97			
	AADSF (A-1)			
	IDGE+			
	SAMS			
	SAMS			
	MEPHISTO (I)			

Microgravity Science and Applications Division Planning Manifest

9207-005-19CAW 07/30/92


to the state of the set and a set and a set of the set

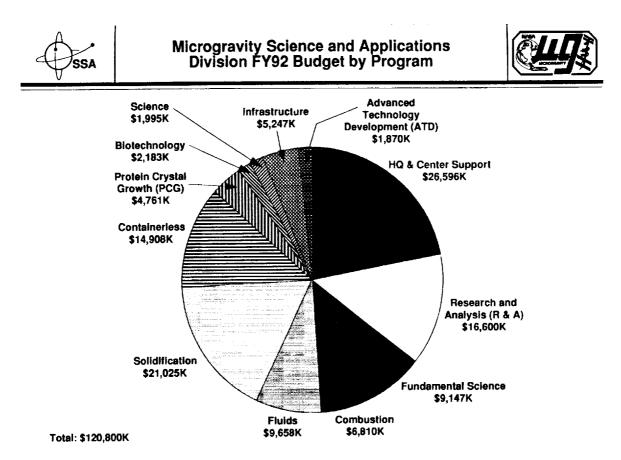
.

p 19/RJB/SN/8-5-92

Microgravity Science and Applications Division Planning Manifest

		Planning mannest		
CY91	CY92	CY93	CY94	CY95
MIDDECK	MIDDECK	MIDDECK	MIDDECK	MIDDECK
OR GAS	OR GAS	OR GAS	OR GAS	OR GAS
(STS-37)	Cell Cult. DSO (1)	SAMS (4/yr)	SAMS (3/yr)	SAMS (3/yr)
LD - 4/5/91		APCG (4/yr)	APCG (4/yr)	APCG (3/yr)
PCG-III-4	(STS-45)	APCF (I)	Cell Cult. DSO	Coop. Prog. (2/yr
	LD - 3/24/92	Coop. Prog. (1/yr)	PBE (GAS)	Smoldering (GAS
(STS-43)	GaAs (GAS)		CVTE-3 (U)	
LD - 8/2/91		(STS)	APCF (I)	SOUNDING
SSCE-3	(STS-54)	2/93	Coop. Prog. (1/yr)	ROCKET
PCG-III-5	12/3/92	SSCE-7		Pool Fires (2/yr)
SAMS-1	SSCE-6		(STS)	
		Spacehab-1	MGM	
(STS-48)		(STS-57)	SAMS	
LD - 9/12/91		LRD - 4/22/93		
PCG-II-2		SAMS	SOUNDING	
		CVTE-2 (U)	ROCKET	
(STS-44)		Cell Cult. DSO	Pool Fires	
LD - 11/24/91		PBE (GAS)		
Cell Cult. DSO				
		(STS-58)		
		LRD - 6/22/93		
		Cell Cult. DSO		
		Spacehab-2		
		(STS-60)		
		LRD - 10/21/93		
		SAMS		
		(STS)		FREEFLYER
		7/93		
		SSCE-8		(STS-71)
				LRD - 2/21/95
				EURECA-2L (I)
				Coop. Prog.

Microgravity Science and Applications Division


9207 005 21CAW 07/30/92

p 21/RJB/SN/8-5-92

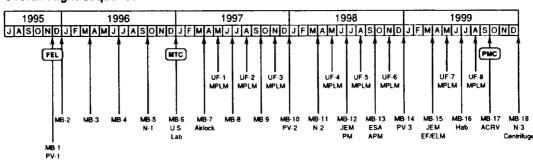
SSA	Microgravity Science and Applications Division	
-----	---	--

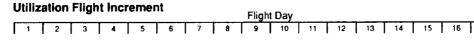
Planned Research Announcements

Calendar Year:	<u>91</u>	<u>92</u>	<u>93</u>	<u>94</u>	<u>95</u>	<u>96</u>	<u>97</u>
Combustion Science			\bigtriangledown		\bigtriangledown		
Biotechnology	\bullet			\bigtriangledown			\bigtriangledown
Fluids and Transport	▼		\bigtriangledown			\bigtriangledown	
Materials Science	▼		\bigtriangledown			\bigtriangledown	
Fundamental Science	▼			\bigtriangledown			\bigtriangledown
Ground-Based Research		\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown
Combustion			•	•		•	•
Biotechnology		•	•	•	•		
Fluids and Transport		•		•	•		•
Materials Science		•		•	•		•
Fundamental		•	•		•	•	

9207-005-23CAW 07/30/92 -[9205-018-10CAW 05/18/92]- -[9111-007-10CAW 11/13/91]-

p 23/RJB/SN/8-5-92

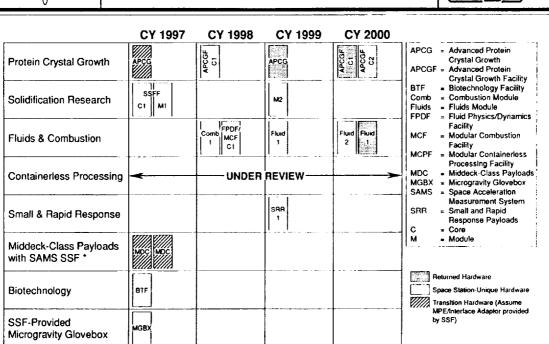

Microgravity Science and Applications Space Station Facilities





17

Overall Flight Sequence

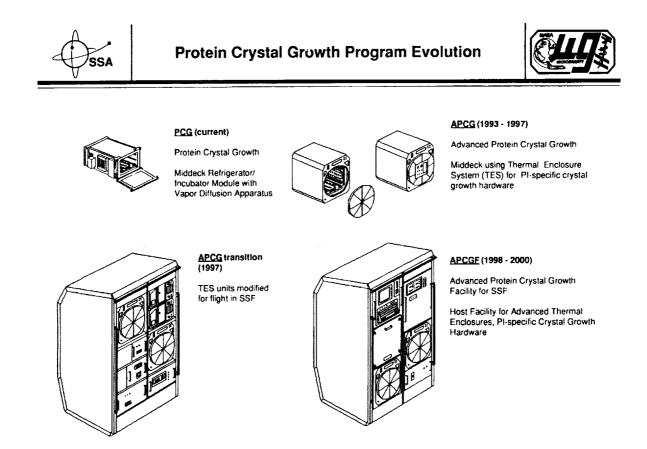


9207-005-25CAW 07/30/92

p 25/RJB/SN/8 5 92

MSAD Space Station Payload Traffic Model (April 1992)

* SAMS SSF is Station-unique hardware, not transition hardware

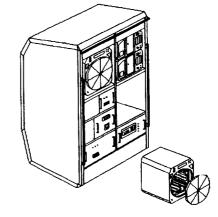


- Evaluate the effects of gravity on the growth of protein crystals
- Study physics/dynamics of macromolecular crystal growth
- Support biotechnology research by growing high quality macromolecular protein crystals which can be used for x-ray crystallography

9207-005-27CAW 07/30/92 -[9112-017-33CAW 12/12/91]= -[9112-015-44CAW 12/11/91]=

p 27/RJB/SN/8-5-92

p 28/RJB/SN/8-5-92



- Power
 0.5 kW nominal/1 kW peak
- Mass 300 kg
- Volume 1 rack

TRANSITION HARDWARE

2 Thermal Enclosure System (TES) units with crystal growth apparatus

SSFP provides adapter hardware, integration

- APCG plans to accommodate second generation crystal growth hardware in TES units
 - Vapor Diffusion Apparatus
 - Thermally-controlled batch process
 - Liquid-liquid diffusion
 - Dynamically-controlled systems
- Automated experiment initiation and deactivation

9207-005-29CAW 07/30/92 #[9204-019-07CAW 04/10/92]+ +[9201-028-07DFI 01/31/92]+

p 29/RJB/SN/8-5-92

Advanced Protein Crystal Growth Facility (APCGF) Payload Description (1998 - 2000+)



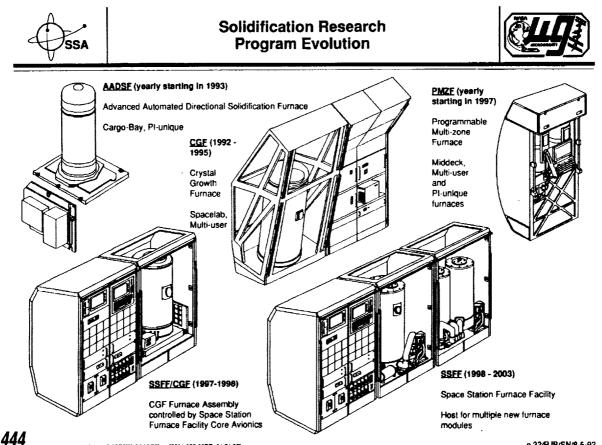
- Power
 - Mass 616 kg
- Volume 1 rack
 - Space Station-unique hardware

2.1 kW nominal/2.4 kW peak

Advanced thermal enclosures

Enhanced diagnostic systems with imaging capability

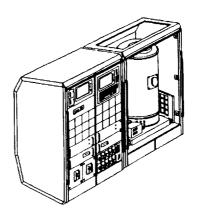
- Third generation protein crystal growth hardware
 - May accommodate a larger number of experiments than APCG by using advanced thermal enclosures
 - Can accommodate current TES, new thermal enclosures, or PI-supplied thermal enclosures for long-duration crystal growth, and enhanced diagnostics
 - Automated experiment initiation and deactivation



- Gain understanding of the mechanisms which correlate directional • solidification parameters and materials properties for various technologically important materials
- Explore potential for utilization of low gravity environment to develop . unique materials or materials structures which have unique, crafted properties
- Measure thermophysical properties of materials

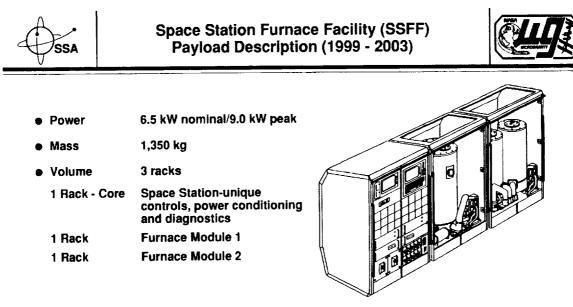
9207-005-31CAW 07/30/92 -[9112-017-23CAW 12/12/91]- -[9112-015-34CAW 12/11/91]-

p 31/RJB/SN/8-5-92



- Power 2.0 kW nominal/4.0 kW peak
- Mass 1050 kg
- Volume 2 racks
 - 1 Rack Core Space Station-unique controls, power conditioning and diagnostics

CGF furnace

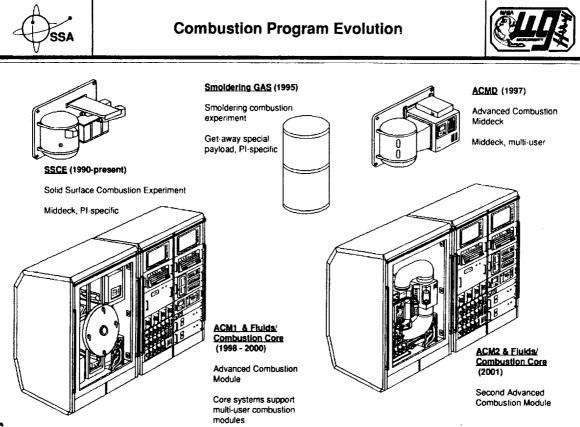

- 1 Rack
- Pressure vessel with flexible glovebox
- Reconfigurable furnace module
- Furnace translation mechanism
- Automated sample exchange
- mechanism (up to six samples)

- Gradient zone thickness can be optimized before launch, and a heat extraction plate can be included to obtain steeper gradients
- Interface demarcation will be available by mechanical and current pulsing

9207-005-33CAW 07/30/92 -[9204-019-13CAW 04/10/92]- +[9201-028-13DR 01/31/92]+

p 33/RJB/SN/8-5-92

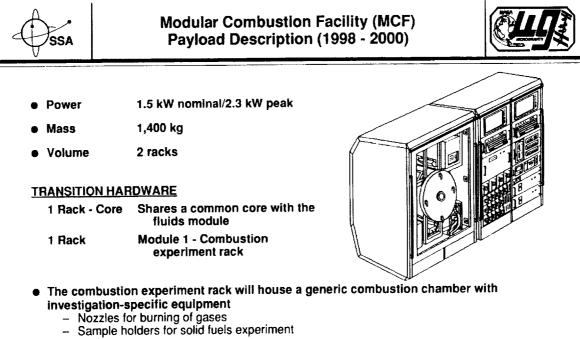
- Furnace Modules -- to be determined from NASA Research Announcement/ Announcement for Opportunity (NRA/AO) selection -- first PI selections in August 1992
- Modules being considered
 - Upgraded programmable Multi-Zone Furnace (used for planning purposes)
 - Transparent Furnace
 - Bridgman with Quench
 - Float-Zone Crystal Growth Furnace



- Provide better understanding of fundamental theories of combustion processes and phenomena, such as:
 - Premixed gaseous fuel combustion
 - Laminar and turbulent diffusion flames
 - Flame spreading and smoldering with solid fuels
 - Flame spreading over liquid pools
 - Effectiveness of fire extinguishing techniques
 - Droplet, particle, and spray combustion
 - Metals combustion
- Provide scientific and engineering data for a variety of combustion related applications, such as spacecraft fire safety

9207-005-35CAW 07/30/92 -[9112-017-42CAW 12/12/91]= -[9112-015-53CAW 12/11/91]-

p 35/RJB/SN/8-5-92


- Power 120 W
- Mass 400 kg
- Volume 4 middeck lockers

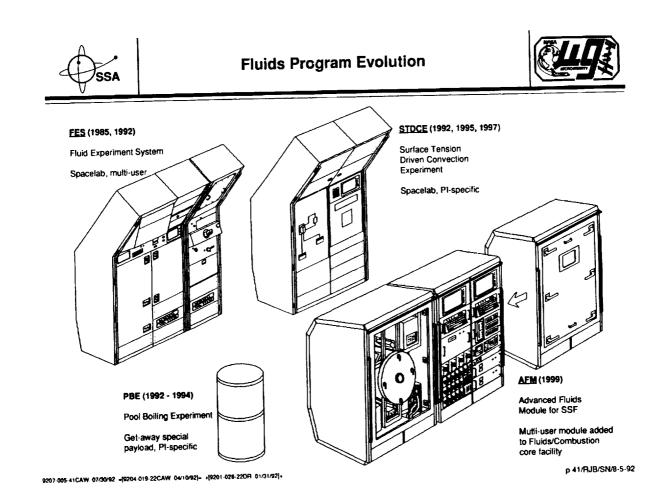
- A CoDR was held in December 1991
- Will have the capability to do multiple experiment samples intensified video for low luminosity
- Studying the capability for chamber atmosphere clean-up

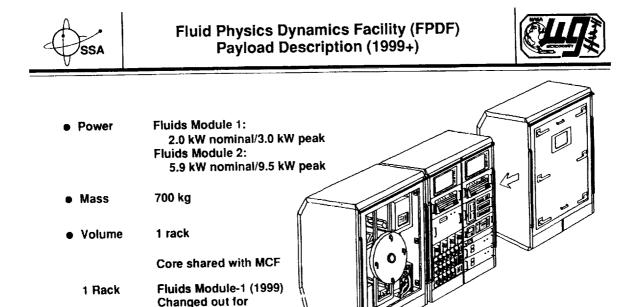
9207 005-37CAW 07/30/92 -[9204-019-19CAW 04/10/92]= +[9201-028-19DR 01/31/92]+

p 37/RJB/SN/8-5-92

- The combustion chamber will have ports to accommodate different modular diagnostics systems:
 - CCD video system
 - Infrared imager
 - Schlieren imaging system
 - Temperature measuring probes
 - Gas sampling probes

- Power 5 kW nominal/7.1 kW peak
 Mass 1,400 kg
 Volume 2 racks
 STATION-UNIQUE HARDWARE
 1 Rack Core Core 2 shared with fluid modules
 1 Rack Module 2 combustion experiment rack
 Module 2 to be determined from NRA/AO selection
 - Two candidate experiment racks under study
 - Quiescent Combustion Chamber
 - Low-Speed Combustion Tunnel


9207 005-39CAW 07/30/92 -[9204 019 21CAW 04/10/92]- +[9201-028 21DR 01/31/92]+


p 39/RJB/SN/8-5-92

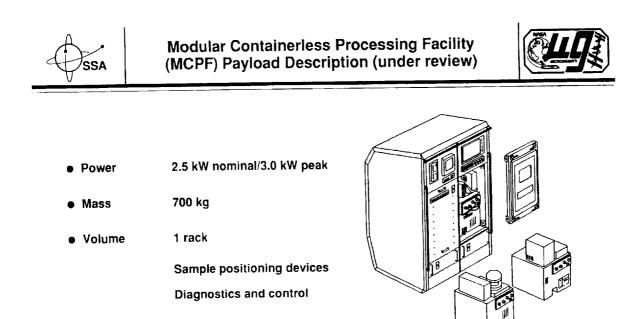
- Provide advances in theories of fluid physics
- Provide improvements in thermophysical property measurement
- Provide scientific and engineering data related to fluids-related applications and systems
- Experiments may cover a broad area of interest:
 - Isothermal-isosolutal capillary phenomena
 - Capillary phenomena with thermal/solutal gradients
 - Thermal solutal convection and diffusive flows
 - First order phase transitions in a static fluid
 - Multi-phase flow

448

Modules 1 and 2 -- to be determined by AO/NRA selection

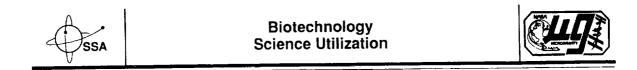
Fluids Module-2 (2000)

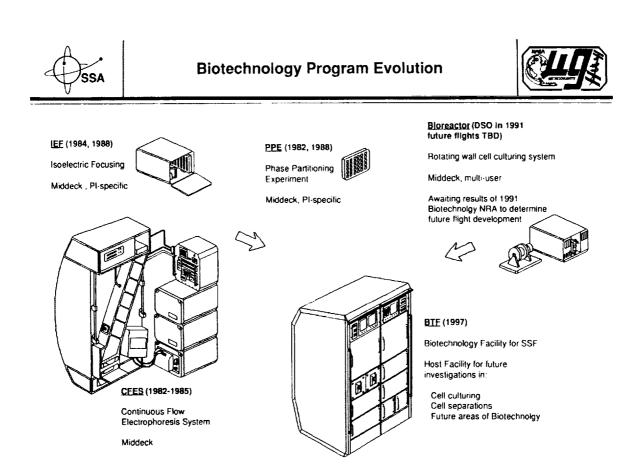
- Two candidate experiment racks under study
 - Support dynamic fluid experiments in a multi-phase apparatus
 - Vibration isolation containment enclosure for sealed-cell experiments


- Accommodate experiments requiring the positioning and manipulation of materials without physical contact with container walls
- Conduct research on properties and phenomena that on Earth are seriously affected by container contamination, container-generated nucleations, and gravity effects

9207-005-43CAW 07/30/92 -[9112-017-30CAW 12/12/91]= -[9112-015-41CAW 12/11/91]=

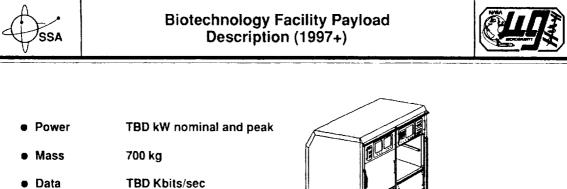
p 43/RJB/SN/8-5-92


-

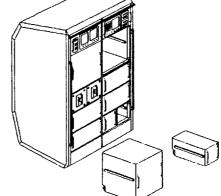

- Levitation modules to position the sample may be electrostatic, electromagnetic, acoustic fields, or a hybrid combination
- Gain understanding in vast area of physical sciences ranging from the behavior of liquid drops in space, the measurement of thermophysical properties of materials, and the characterization of metals, glasses, and ceramics heated to temperatures up to 2700°C

9207-005 45CAW 07/30/92 =[9204-019-31CAW 04/10/92]= -{9201-028-31DR 01/31/92}+

p 45/RJB/SN/8-5-92

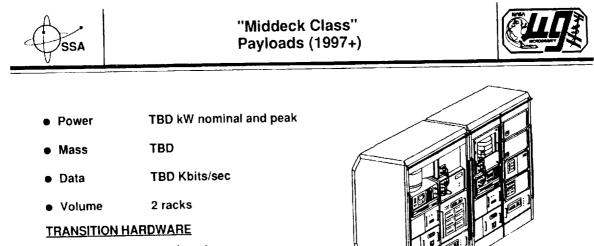


- Study cell function and differentiation in a low mechanical stress environment
- Culture end-differentiated tissue models for studies of genetic regulations



9207 005 47CAW 07/30/92 =[9204-019-32CAW 04/10/92]= +[9201-028-32DR 01/31/92]+

p 47/RJB/SN/8-5-92


Volume 1 rack

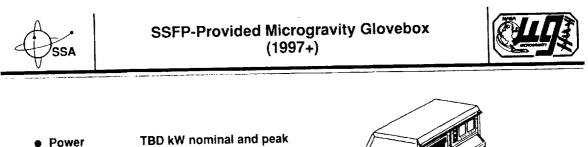
- The BTF will accommodate a series of PI-developed, self-contained biotechnology experiments. BTF "services" will include power conditioning and distribution, video and data processing, and basic gases and fluids.
- Concept may serve as the basis for a Small and Rapid-Response (SRR) Payload (1999)

452

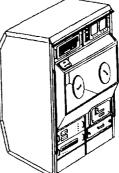
3

Middeck-class experiments

SSFP provides adapter hardware, integration


 The SSFP-provided Middeck Class Payload Adapter (MDC) will host a series of small to moderate-scale microgravity experiments by providing an interface that emulates the Shuttle middeck

Experiments in Fluids and Transport Phenomena, Combustion, Materials Science


 MDC Accommodations will be similar to those provided by the SSFP interface hardware used for the APCG Transition Payload

9207-005-49CAW 07/30/92 =[9204-019-37CAW 04/10/92]= +[9201-028-36DR 01/31/92]+

p 49/RJB/SN/8-5-92

- Mass 700 kg
- Data TBD Kbits/sec
- Volume 1 rack

- The SSFP-Provided Materials Science Glovebox (MSG) provides an enclosed work space isolated from the SSF ambient environment for handling microgravity science samples and hardware
- The MSG will accommodate a series of small-scale microgravity science experiments and technology demonstrations
- MSG services will include video and film cameras with appropriate lighting, temperature control and heat rejection in the work volume, power outlets for use by experiments and apparatus for recovering fluid spills

Utilization Flights

- All Microgravity Science and Applications Division (MSAD) payloads plan to operate during utilization flights
- Some operations will be very similar to Spacelab
 - High-speed film cameras for data storage
 - Discipline-emphasis crew skills
- Operations unlike Spacelab
 - On-orbit rack changeout
 - Logistics/resupply (gases), sample harvesting, and changeout for return
 - Experiment set up for ground-tended runs

9207 005 51CAW 07/30/92 -[9112 017 14CAW 12/12/91]- -[9112 015 23CAW 12/15/91]-

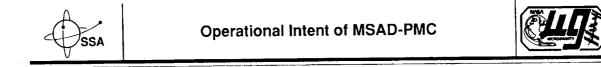
p 51/RJB/SN/8-5-92

454

MSAD Payload Operational Assumptions

Unmanned Operations

- All MSAD payloads except combustion plan to operate during groundtended operations
- Payloads will require uplink communications
 - For initiating run sequences
 - Power on/off
 - Restart experiment run
- Payloads will require downlink
 - Monitoring experiment runs
 - Health and safety
 - Quick-look analysis



- Two to three 16-day utilization flights each year
- Operation of facilities during utilization flights
 - Experiments requiring crew interaction
 - Shorter duration experiments
 - Experiments that are less sensitive to "noisy" acceleration environment
- Operations between utilization flights (ground-tended periods)
 - Experiments that can be controlled remotely and/or automated
 - Longer duration experiments
 - Experiments requiring a pristine environment
- Operations during assembly flights
 - Conducted on a non-interference basis
 - May be limited to changing out samples and setting up experiments to be initiated later

9207-005-53CAW 07/30/92

p 53/RJB/SN/8-5-92

- Payloads requiring crew interactions
- Automated payloads utilizing telescience methods
- Crew time is a limited resource

Summary

- Science return from MSAD payloads will begin in 1997 after launch of the U.S. Laboratory and will continue through 2000+
 - MSAD plans to conduct a broad range of experiments during the unmanned periods prior to PMC, during utilization flights, and PMC and beyond on SSF
- Science operations conducted during the utilization flights will be similar to Spacelab flights except for the added tasks of collecting and securing of samples, experiment setup for unmanned runs, and rack/module equipment changeout
- Unmanned operations will require automation of payloads and telescience but minimal two-way communications between MSAD payloads and the ground is intended

9207 005-55CAW 07/30/92 +[9112-017-49CAW 12/12/91]+ +[9112-015-60CAW 12/11/91]+

p 55/RJB/SN/8-5-92

456

Microgravity Science and Applications Program Summary

- Active, growing, diverse program
- Areas of research
 - Biotechnology
 - Combustion
 - Fluids Science
 - Fundamental Physics
 - Materials Science
- Continuing to find new experimental possibilities
 - Encouraging science community to participate
 - Soliciting science proposals through NRA's
 - Facilitating their development
- Collaborating with the international science community
 - Sharing use of facilities
- Looking forward to an exciting decade in microgravity research

Back Up Charts

9207-007-01CAW 07/23/92

Community involvement in the program

 Four DWG's plus Microgravity Subcommittee to Space Science and Applications Advisory Committee (SSAAC)

National Academy of Sciences

- Microgravity Science Committee of the Space Studies Board
 - -- Established in 1988
 - -- First meeting in 1990
- Development of long-term strategy for microgravity sciences
- Integrate microgravity initiatives into OSSA program
 - SSAAC review and advice
 - OSSA Strategic Plan

Chairperson

William A. Sirignano (6/94) Dean, School of Engineering University of California at Irvine [Combustion]	Franklin D. Lemkey (6/92) Materials Technology Laboratory United Technologies Research Center [Metals]	Thomas A. Steitz (6/94) Department of Molecular Biophysics and Biochemistry Yale University [Protein Crystalography]
Richard C. Hart Space Studies Board National Academy of Science	Simon Ostrach (6/94) Department of Mechanical and Aerospace Engineering Case Western Reserve University [Fluid Flow and Transfer]	Warren C. Strahle (6/94) School of Aerospace Engineering Georgia Institute of Technology [Combustion]
Robert A. Brown (6/92) Head of Chemical Engineering Mass Institute of Technology [Fluid Dynamics & Elec Mats Model]	Morton B. Panish (6/94) Distinguished Member of the Technical Staff AT&T Bell Laboratories [Electronic Materials]	Julia R. Weertman (6/94) Department of Materials Science and Engineering Northwestern University [Metals]
Martin E. Glicksman (6/94) Department of Materials Science Rensselaer Polytechnic University [Metals]	John D. Reppy (6/94) Laboratory of Atomic and Solid State Physics Cornell University [Physics]	[Biotechnology]

9207-007-03CAW 07/23/92 -[9111-002-36CAW 11/04/91]-

p BU-3/RJB/SN/8-5-92

.

5

The second s

Membership of Microgravity Science and Applications Subcommittee (MSAS)

Chair:

Dudley Saville Chemical Engineering Department Princeton University

Exec. Secretary: Roger Crouch NASA Headquarters MSAD Chief Scientist

MEMBERS				
Gary Gilliland	John Perepezko			
National Institute for Standards and Technology	Department of Materials Science and Engineering			
Center for Advanced Research in Biotechnology	University of Wisconsin			
Biotechnology DWG Chair	Materials Science DWG Chair			
Gerard Faeth	Simon Ostrach			
Dept. Aerospace Engineering	Department of Mechanical and Aerospace Engineering			
University of Michigan	Case Western Reserve University			
Combustion DWG Chair	,			
	Alexander Mcpherson			
Stephen H. Davis	Department of Biochemistry			
Department of Engineering Sciences and Applied Mathematics	University of California			
Northwestern University				
Fluids & Transport DWG Chair				

SPACE STATION SCIENCE AND APPLICATIONS ADVISORY SUBCOMMITTEE (SSSAAS)

MEMBERS	AFFILIATION	7/21/92
Chairman: Dr. Charles A. Fuller	University of California, Davis	
Executive Secretary: Dr. Edmond M. Reeves	NASA Headquarters	
Dr. Charles E. Bugg	University of Alabama at Birmingham	
Dr. Robert J. Bayuzick	NASA Headquarters (Visiting Scientist)	
Dr. Charles R. Chappell	Marshall Space Flight Center	
Dr. Benton C. Clark	Martin Marietta Astronautics Group	
Dr. Earl L. Cook	3M Corporation	
Dr. Alan C. Eckbreth	United Technologies Research Center	
Dr. John E. Estes	University of California, Santa Barbara	. <u> </u>
Dr. Jeffrey A. Hoffman	Johnson Space Center	
Dr. Shannon W. Lucid	Johnson Space Center	
Dr. Herman Merte, Jr.	University of Michigan	
Dr. Cary Mitchell	Purdue University	
Dr. Robert W. Phillips	NASA Headquarters (Visiting Scientist)	
Dr. Sam L. Pool	Johnson Space Center	
Dr. David Robertson	Vanderbilt University	
Dr. Marc E. Tischler	University of Arizona	

Discipline Working Groups

Biotechnology

Chair: Dr. Gary Gilliland (NIST) Vice-Chair: Dan Carter (MSFC)

Combustion

Chair: Dr. Gerard Faeth (University of Michigan) Vice-Chair: Kurt Sacksteder (LeRC)

• Fluids and Transport

Chair: Stephen H. Davis (Northwestern University) Vice-Chair: Bob Thomson (LeRC)

Materials Science

Chair: John Perepezko (University of Wisconsin) Vice-Chair: Frank Szofran (MSFC)

Prof. John Perepezko (Chair)

Dept. of Metallurgical and Materials Engineering University of Wisconsin at Madison

Prof. Tim Anderson

Dept. of Chemical Engineering University of Florida at Gainesville

Dr. Reid Cooper (ad hoc assignment)

Dept. of Metallurgical and Materials Engineering University of Wisconsin at Madison

Prof Jonathan Dantzig

Dept. of Mechanical and Materials Engineering University of Wisconsin at Madison

Prof. Dennis Readey

Dept. of Metallurgical and Materials Engineering Colorado School of Mines

Dr. John Hurt

Division of Materials Research National Science Foundation

Dr. Frank Szofran (Vice-Chair) Space Science Laboratory NASA Marshall Space Flight Center

Dr. Richard Hopkins Science and Technology Center Westinghouse Electric Corporation

Dr. Robert Schaefer Materials Science and Engineering Laboratory National Institute of Standards and Technology

Dr. Rohit Trivedi Ames Laboratory Iowa State University

Prof. Peter Voorhees Dept. of Materials Science and Engineering Northwestern University

ESA Representative

Dr. Jean Jacques Favier CEREM/DEM - Section d'Etudes de la Solidification et de la Cristauigenese, Grenoble

p BU-7/RJB/SN/8-5-92

Fluid Dynamics Discipline Working Group

Prof. Stephen H. Davis (Chair) Dept. of Engineering Sciences and Applied Mathematics Northwestern University

Prof. Russell Donnelly

Dept. of Physics University of Oregon

Dr. John Huang Exxon Research and Engineering Company

Prof. Richard Lahey Dept. of Nuclear Engineering and Engineering Physics Rensselaer Polytechnic Institute

Dr. Michael Moldover

Center for Thermodynamics and Molecular Science National Institute of Standards and Technology Dr. Robert Thompson (Vice-Chair) NASA Lewis Research Center

Prof. Paul Nietzel School of Mechanical Engineering Georgia Institute of Technology

Prof. Harry Swinney

Dept. of Physics University of Texas at Austin

ESA Representative

Prof. Y. Malmejac Director de la Strategie et de l'Evaluation Centre d'Etudes Nucleaires de Grenoble

460

Prof. Gerard Faeth (Chair) Dept. of Aerospace Engineering University of Michigan

Dr. Robert Altenkirch College of Engineering Mississippi State University

Dr. Raymond Friedman Factory Mutual Research

Prof. Jack Howard Dept. of Chemical Engineering Massachusetts Institute of Technology

Prof. C. K. Law Dept. of Mechanical and Aerospace Engineering Princeton University

9207 007-09CAW 07/23/92 -9204-035-01CAW 04/30/92]- +[9202-017-10CAW 02/21/92]+

Mr. Kurt Sacksteder (Vice-Chair) NASA Lewis Research Center

Prof. Robert Santoro Mechanical Engineering Dept. Pennsylvania State University

Prof. Mitchell Smooke Dept. of Mechanical Engineering Yale University

Prof. Forman Williams Applied Mechanical and Engineering Science Dept. University of California at San Diego

ESA Representative

Dr. I. Gokalp CNRS - Laboratoire de Combustion et Systemes Reactifs, Orleans

p BU-9/RJB/SN/8-5-92

Biotechnology Discipline Working Group

Dr. Gary Gilliland (Chair) Center for Advanced Research in Biotechnology National Institute of Standards and Technology

Dr. Colette Freeman Division of Cancer Biology, Diagnosis, and Centers National Cancer Institute

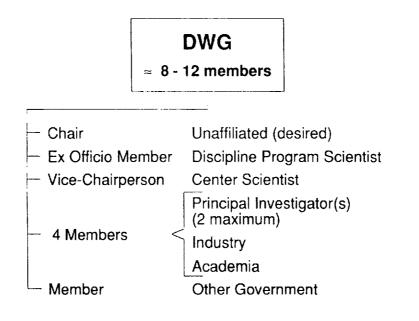
Dr. Scott Power Director of Biochemistry Genencor International

Dr. Frank Putnam Dept. of Biology Indiana University

Prof. Lola Reid Dept. of Molecular Pharmacology Albert Einstein College of Medicine Dr. Daniel Carter (Vice-Chair) NASA Marshall Space Flight Center

Dr. F. L. Suddath Vice-President for Information Technology Georgia Institute of Technology

Dr. Patricia Weber Central Research and Development Dept.


Dupont-Merck Pharmaceutical Company

ESA Representative

Prof. P. G. Pighetti Universita di Milano, Departmento di Scienze e Technologie Biomediche, Sez. Chemica Organica, Milano

9207-007-11CAW 07/23/92 -[9111-002-44CAW 11/04/91]=

p BU-11/RJB/SN/8-5-92