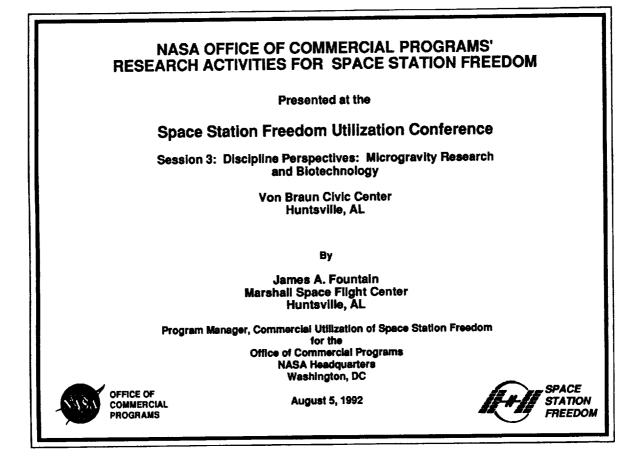
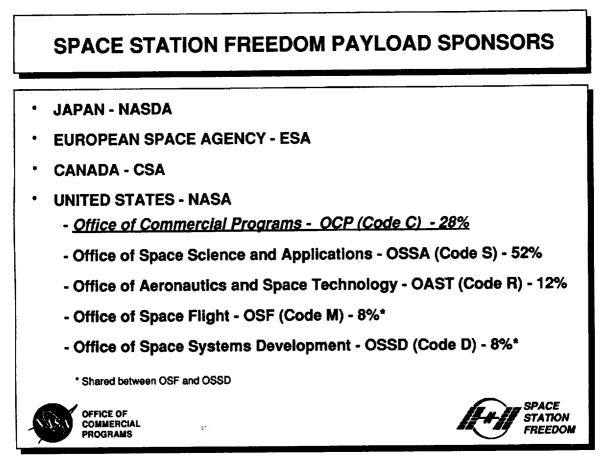
N93-22647,

OFFICE OF COMMERCIAL PROGRAMS' RESEARCH ACTIVITIES FOR SPACE STATION FREEDOM UTILIZATION

Presented by James A. Fountain Office of Commercial Programs NASA Headquarters

ABSTRACT

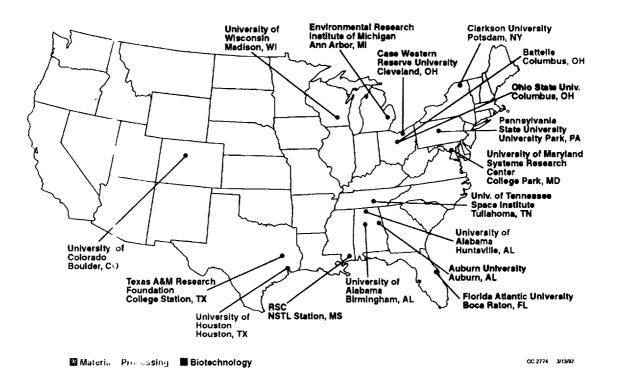

One of the Objectives of the Office of Commercial Programs (OCP) is to encourage, enable, and help implement space research which meets the needs of the U.S. industrial sector. This is done mainly through seventeen Centers for the Commercial Development of Space (CCDSs) which are located throughout the United States. The CCDSs are composed of members from U.S. companies, universities, and other government agencies. These Centers are presently engaged in industrial research in space using a variety of carriers to reach low Earth orbit. One of the goals is to produce a body of experience and knowledge that will allow U.S. industrial entities to make informed decisions regarding their participation in commercial space endeavors. A total of 32 items of payload hardware have been built to date. These payloads have flown in space a total of 73 times.

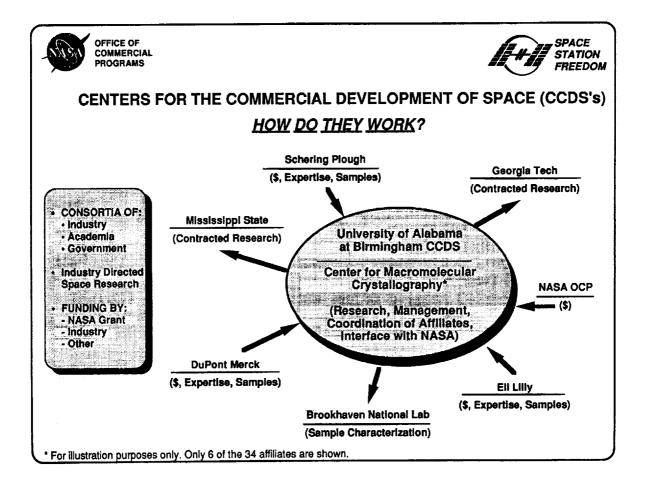

The carriers range from the KC-135 parabolic aircraft and expendable launch vehicles to the Space Shuttle. This range of carriers allows the experimenter to evolve payloads in complexity and cost by progressively extending the time in microgravity. They can start with a few seconds in the parabolic aircraft and go to several minutes on the rocket flights, before they progress to the complexities of manned flight on the Shuttle. Next year, two new capabilities will become available: COMET, an expendable-vehicle-launched experiment capsule that can carry experiments aloft for thirty days; and SPACEHAB, a new Shuttle borne module which will greatly add to the capability to accommodate small payloads.

All of these commercial research activities and carrier capabilities are preparing the Office of Commercial Programs to evolve those experiments that prove successful to Space Station Freedom. OCP and the CCDSs are actively involved in Space Station design and utilization planning and have proposed a set of experiments to be launched in 1996 and 1997. These experiments are to be conducted both internal and external to Space Station Freedom and will investigate industrial research topics which range from biotechnology to electronic materials to metallurgy. Some will be designed to make maximum use of the quiescent microgravity conditions in the "ground-tended" phases during the early years of Space Station Freedom operations.

.

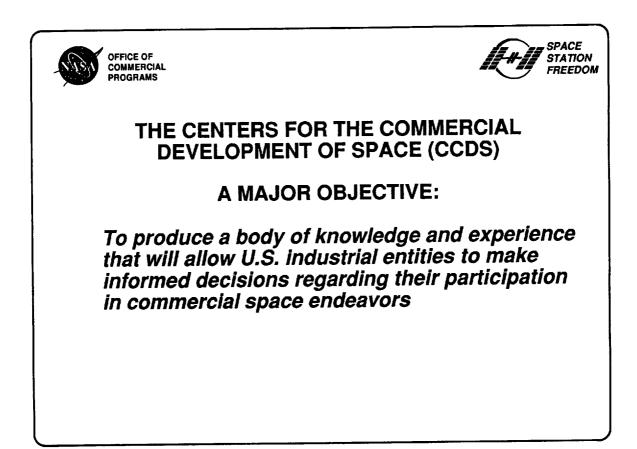
•

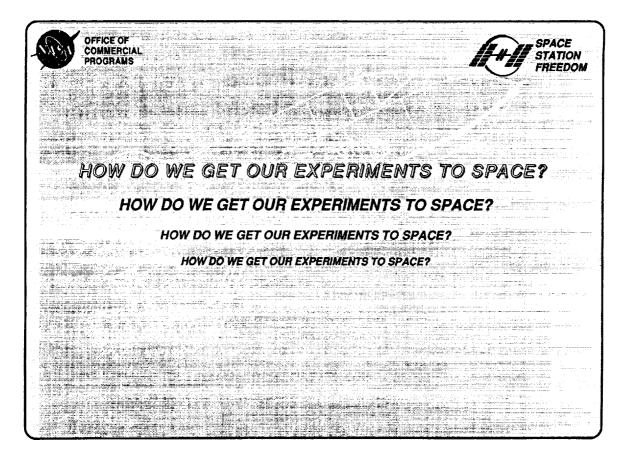



PRECEDING PAGE BLANK NOT FILMED

.

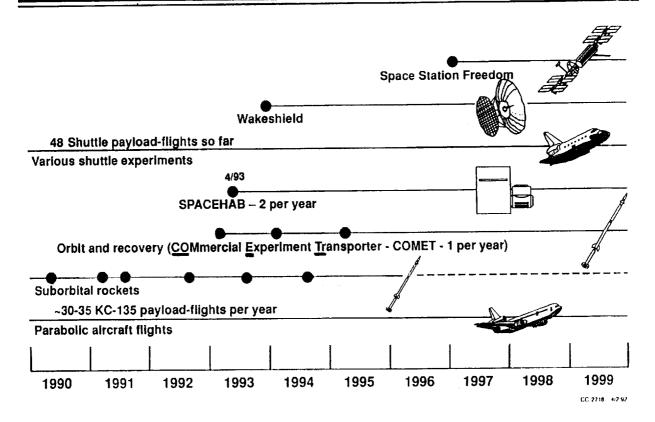
Centers for Commercial Development of Space (CCDS)



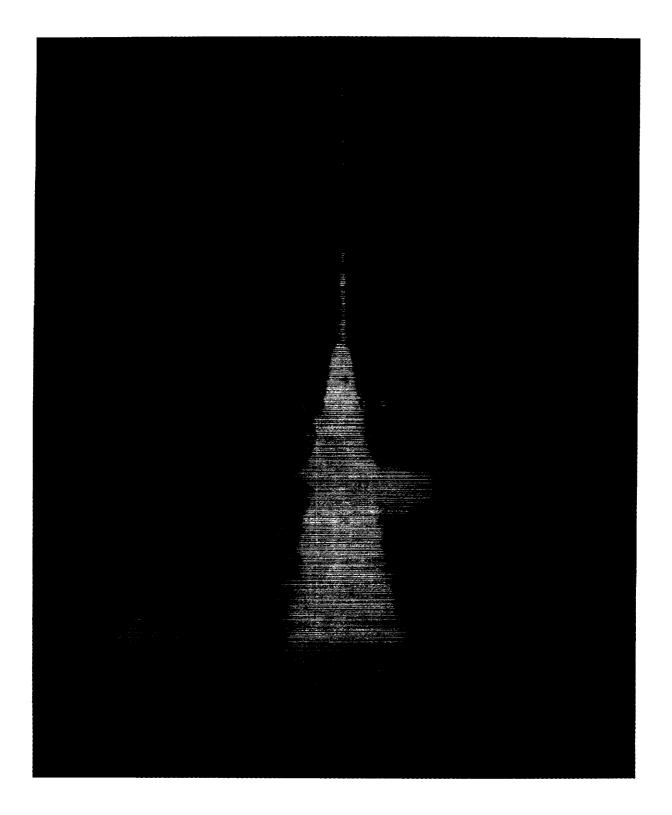


National Aeronautics and Space Administration Office of Commercial Programs

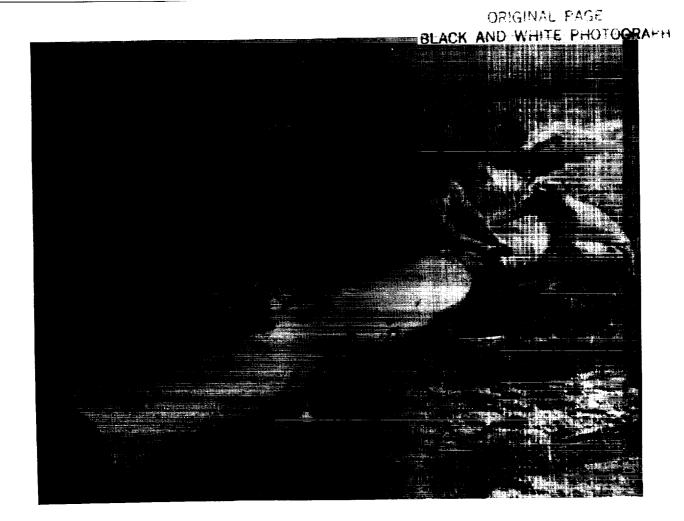
lubum	Penn State
Solar Furnace Satellite	Biomodule
Crystal Growth of Electronic Materials	Telemedicine
Computational Modeling of Casting Processes	Bioseparations
Componential meteoring of Commission	Bone Densitometry
Battelle	Physiological Systems Experiment
Solution Crystal Growth	Light Stimulator & Photon Detector
Polymer Composites	Commercial Electrophoresis System
Float Zone Crystal Growth - CdTe	Commarcial Electrophoneala Cystem
	SpARC
Zeolite Crystal Growth	Autonomous Rendezvous & Docking
Doped Non-Linear Optic Substrates	Automated Microgravity Materials Processing
Investigations into Polymer Membranes	Automated Microgravity Materials Frocessing
Blanchia	SRSC
Bloserve Diset Grouth Apparetus	Remote Sensing & Applications
Plant Growth Apparatus	transfer o energy a rightinger and
Blood Rheology Experiment	SVEC
Generic Bioprocessing Module	Chemical, Molecular Beam Epitaxy Growth
Autonomous Biomedical Test Apparatus	
	Texas A&M
Case Western	Micro Heat Pice Evaluation
Materials Exposure - Basic, Advanced, & Applied	Frozen Startup of Heat Pipe
01	Microwave Power Transmission
Clarkson	INCOMENT OF THE ISTINGSION
Zeolite Crystal Growth	University of Alabama–Birmingham
Low-Temp Solidification	Protein Crystal Growth
Liquid Encapsulated Melt Zone	
Directional Solidification - CdTe	University of Alabama–Huntsville
Chemical Vapor Transport - CdTe	Polymer Foam
Commercial Solution Growth Facility	Atomic Oxygen
•	Electrodeposition
CSTAR	3-D Accelerometer
Cryogenic Fluid Management	Immiscible Polymers
Electric, Chemical Propulsion	Nuclear Track Detectors
Industrial Laser System Applications	
• •	Space Experiment Facility
Florida Atlantic	Non-Linear Optical Materials
Transmission Techniques	Sintered & Alloyed Materials
· ·	High-Temp Superconductors
Ohio Siste	Materials Dispersion Apparatus
Remote Sensing & Mapping	
	University of Maryland
	Hybrid Networks
	WORKE
	WCSAR
	Astroculture TM
	Bioregenerative Water System

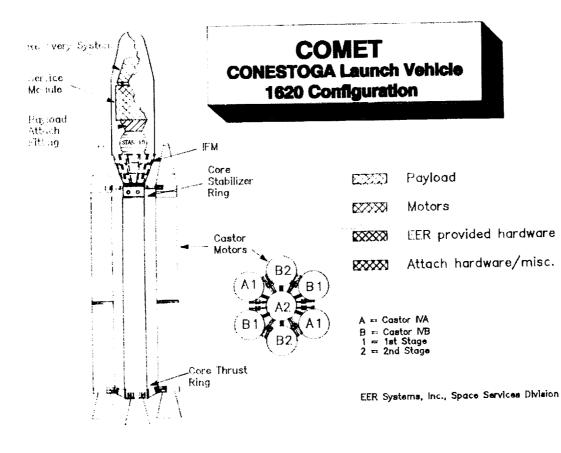


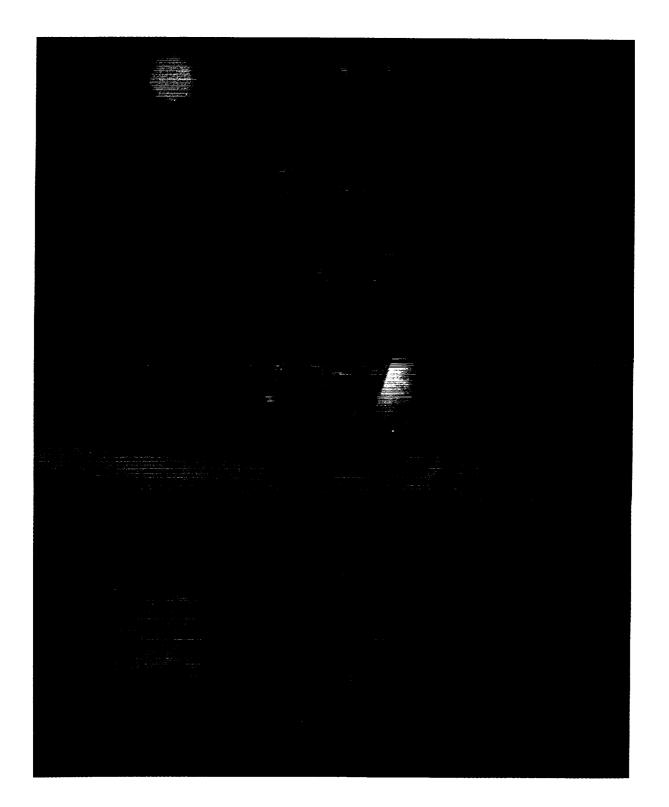
OFFICE OF COMMERCIAL PROGRAMS		SPACE STATION FREEDOM
COMPARISO	ON OF COMMERC	IAL OPTIONS
	A Private Entity May As	k:
	have to participate in a at are the relative comp	
<i>2.</i>	Risk to my investment Cost of participating? Retention of Intellectua	
Join a CCDS 1. Riskiower 2. Costiower 3. Intel. Prop keep some	Negotiate a Joint Endeavor Agreement	Negotiate A Commercial Reimbursable Agreement higher higher keep all



Commercial Payload Evolution to Space Station




 d^{NT} .


. .

=

520

M. Left. and the state matter and the formation (1 - 2) (16 - 2)

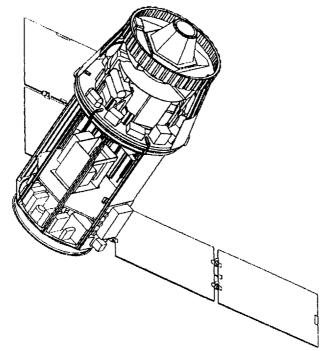
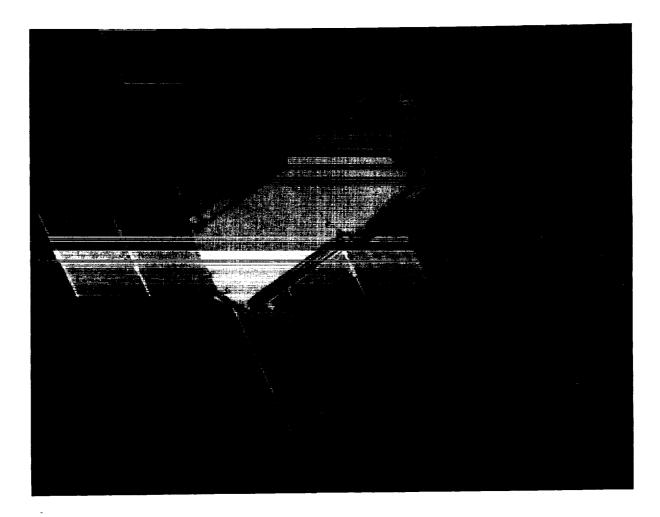
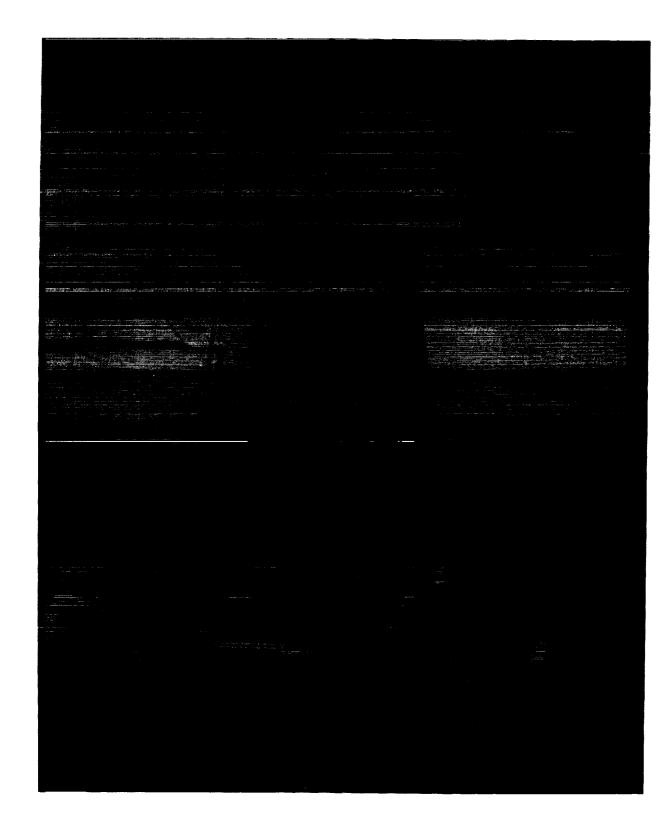
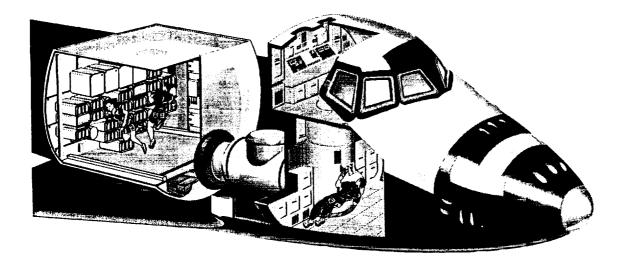




Figure 1.4-2 Cutaway View of COMET FreeFlyer

522

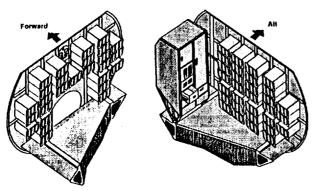

the second second

-

-

. . .

SPACEHAB Module

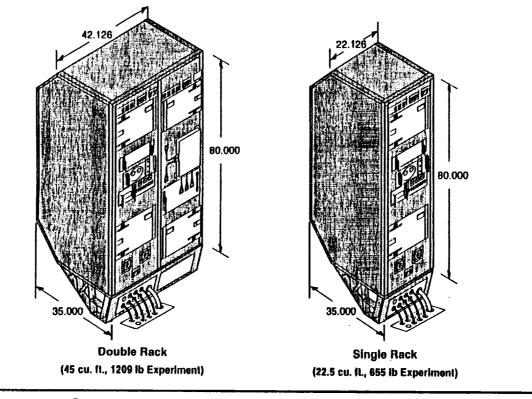

Payload Resources

CONFIGURATIONS

All Locker Configuration 71 lockers (max)

Rack & Locker Configurations

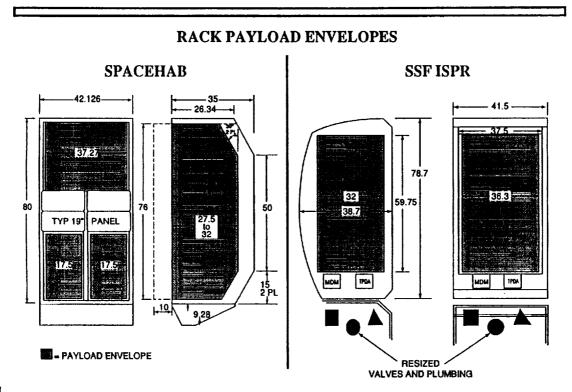
1 rack / 61 lockers (max) 2 racks / 51 lockers (max)


Mission planning will assess the compatibility of payloads in order to maximize the resources provided to each.

TOTAL PAYLOAD RESOURCES

Mass:	English 3000 lb	Metric 1360 kg
Volume:	1100 (13	31.1 m3
Power*: DC: Asc/Des AC:	1750 - 350 300 - 625 \ 690 VA	
Cooling: Air: Water**:	2000 W 4000 W	
Crew:	2	
Other: • Command/ • Fire detect • Vacuum ve	lon/suppress	
• With 2 Orbiter Fee	ders, DC = 3150 \	N

 Maximum water cooling level includes 2 kW plus whatever air capability is not used. (The orbiter can provide up to 6 kW cooling total on a special case basis.)


Spacehab Racks

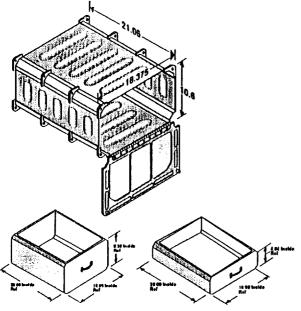
SPACEH AB'

MODONNELL DOUGLAS

TRANSITION OF SPACEHAB PAYLOADS TO SSF

SPACEHAB	S	PACE STATION FREEDOM
80 in. (2032 mm) High 42.126 in. (1070 mm) Wide 35 in. (889 mm) Deep 9.28 in. (235.71 mm) Base	EXTERNAL RACK ENVELOPE	78.7 in. (1999 mm) High 41.5 in. (1054.1 mm) Wide 38.7 in. (983 mm) Deep No Base
57 cu. ft (1.61 cu. m) Inside Envelope 45 cu. ft. (1.27 cu. m) Design Volume	RACK PAYLOAD VOLUME	55 cu. ft. (1.55 cu, m) Inside Envelope 40 cu. ft. (1.13 cu. m) Max Rectangular Volume
19.9 sq. ft. (1.85sq. m) Single Bay 18.7 sq. ft. (1.74 sq. m) Double Bay	FRONT OPENING FOR PAYLOADS	15.8 sq. ft. (1.47 sq. m) Single Bay 15.0 sq. ft. (1.39 sq. m) Double Bay
EIA-RS-310-C	FRONT PANEL MOUNTING STANDARD	EIA-RS-310-C
17.73 in. (450.34 mm) Single Bay 37.73 in. (958.34 mm) Double Bay	FRONT FLANGE OPENING	17.75 in. (450.85 mm) Single Bay 37.5 in. (952.5 mm) Double Bay
1250 lbs. (567 kg)	LOAD CARRYING CAPABILITY	8821bs. (400 kg) Standard 1534 lbs. (700 kg) Optional

RACK COMPARISON SUMMARY


TRANSITION OF SPACEHAB PAYLOADS TO SSF

T

SPACEHAB		SPACE STATION FREEDOM
Rack Base, Front	UTILITY INTERFACE PANEL	Pass Through Panel inside Rack, Interface Panel on Rack Standoff
1 kw (average) 2 kw (peak) 28 Volts DC	DC POWER	3, 6, or 12 kw 120 Volts DC User provides power conversion
690 VA, 400 hz	AC POWER	None
2, 4, 8, 16 kbps (48 mbps optional) User provides Dedicated Experiment Processor	COMMAND AND DATA	16 mbps (48 mbps total) 1553 Data Bus Standard 802.4 FDDI Optional User purchases MDM User Provides Dedicated Experiment Processor if required
1 kw average per rack 2 kw total module	RACK AIR COOLING	1.2 kw max per rack 3.6 kw total module
1 kw	PAYLOAD WATER LOOP CAPACITY	8 kw
1.4 Е-5 Тогг to 1.0 Е-б Тогг	VACUUM	10 E-3 Torr

RACK COMPARISON SUMMARY

Locker Capacity

SPACEHAB had the capability of accommodating Middeck locker payloads without modification

SPACEH/AB*

Mass: Standard Accom Design Limit	<u>English</u> 42 lbs 60 lbs	<u>Metric</u> 20.9 kg 27.2 kg
C.G.:	14 in*	35.6 cm
Volume: Entire Locker Small Tray Large Tray	2.0 f13 09 f13 1.9 f13	0.057 m3 0.025 m3 0.054 m3

Data: Accommodated through manifesting of compatible payloads.

D.C. Power	
On Orbit:	115 W (Continuous)
	180 W (Peak) for TBD Min
	@ 28 +/-4 VDC

Ascent/Descent**

Cooling: Payload heat generation above 60W requires forced air cooling.

MCDONNELL DOUGLAS


Flight Schedule

- Flight 1 April 1993
- Flight 2 October 1993
- Flight 3 April 1994
- Flight 4 October 1994
- Flight 5 March 1995
- Flight 6 August 1995

Subsequent Flights will be Scheduled to Satisfy Market Demands.

ORIGINAL PAGE BLACK AND WHITE PHOTOGRAPH

SPACEHAB Payload Processing Facility (SPPF)

			чтэ: счорон (1999) 	e se condition de	roegen ooste ek
······································	<u>ال</u>				
1. 11,	isan tu		i i i i i i i i i i i i i i i i i i i	ninger Billitan Anthore to Today	
自己的 (1997年) 《内国的代码 即	uentradin		SPA	CEHAB	
PARA AND			að þíðið töðið hou sæsaf í Ríkingsson af af senara senara		
setter and a set					
	Ē	2261)			
					The second second second

- 35,000 square feet of payload integration, test, training & support facilities
- 6,000 square leet of Customer Work Area (CWA), subdivided into industrial secure rooms
- Shipping / Receiving provided for receipt of hardware.
- Clean Room 100K class conditions in shipping / receiving, CWAs, & integration hall
- General classrooms, conference rooms, copiers, and fax machine available for use on shared basis.
- Availability date: 3/1/91
- Located on commercial site near KSC.

SPACEHAB

MCDONNELL DOUGLAS

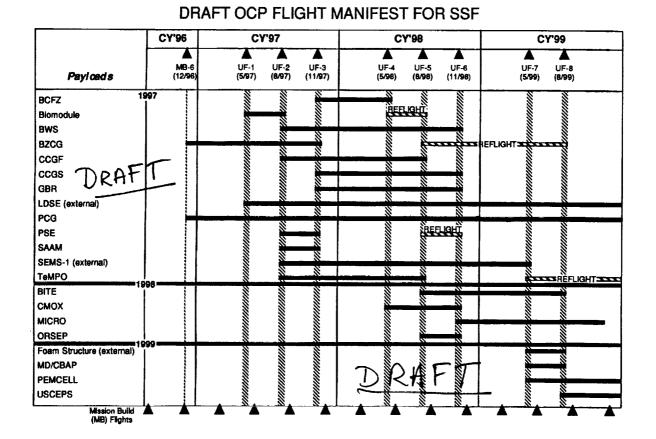
FLIGHTS OF U.S. COMMERCIAL PAYLOADS

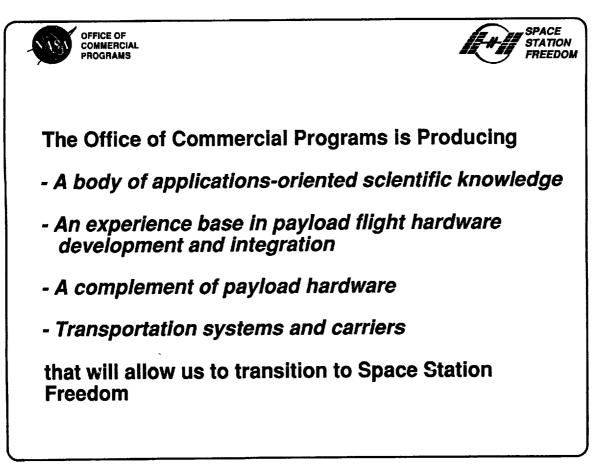
PAYLOAD NAME	No. Of FLIGHTS	MISSION(S)
1 ASTROCULTURE	the second se	<u>STS 50</u>
2 AUTOMATED GENERIC BIOPROCESSING APPARATUS	2	Consort 3, 4
3 BIOMODULE	2	Consort 3, 4
4 BIOSERVE INSTRUMENTATION MATERIALS DISPERSION APP.	2	STS 37, 43
S CONTINUOUS FLOW ELECTROPHORESIS (1, 11, & 111)	7	STS 4, 6, 7, 8, 12, 16, 23
6 DEMIXING OF IMMISCIBLE POLYMERS MIXER	2	Consort 1, 3
7 DIFFUSIVE MIXING OF ORGANIC SOLUTIONS		STS 14, 23
8 DIRECTED POLYMERIZATION APPARATUS (USML-1 GBX exper.)	1	STS 50
9 ELASTOMER-MODIFIED EPOXY RESINS HEATERS	2	Consort 1, 3
10 ELECTRODEPOSITION CELLS	4	Consort 1, 3, 4, STS 40 (GAS 105)
11 EQUIPMENT FOR CONTROLLED LIQUID PHASE SINTERING	1	Consort 4
12 FLUID EXPERIMENT APPARATUS	2	STS 30, 32
13 FOAM-FORMATION DEVICE	2	Consort 1, 3
14 GELATION OF SOLS: APPLIED MICROGRAVITY RESEARCH	1	STS 42
15 GENERIC BIOPROCESSING APPARATUS		STS 50
16 PROTEIN CRYSTAL GROWTH (Hand-Held, VDA, PCF, CRIM, GBX)	14*	STS 16, 19, 23, 24, 26, 29, 32, 31, 37, 43, 48, 42, 50
17 INVESTIGATIONS INTO POLYMER MEMBRANE PROCESSES	2	Consort 3, 4
18 INVESTIGATIONS INTO POLYMER MEMBRANE PROCESSING	7	STS 31, 41, 43, 48, 42, 45, 50
19 MATERIALS DISPERSION APPARATUS	3	Consort 1, 3, 4
20 METAL SINTERING FURNACE	1	Consort 1
21 NON-LINEAR OPTICAL CRYSTAL GROWTH (DAN) - UAH/IBM	1	STS 40 (GAS 105)
22 NON-LINEAR OPTICAL CRYSTAL GROWTH (NCA) - UAH/TBE	1	STS 40 (GAS 105)
23 PHYSICAL VAPOR TRANSPORT OF ORGANIC SOLIDS	2	STS 20, 26
24 PHYSIOLOGICAL SYSTEMS EXPERIMENTS	1	STS 41
25 PLASMA PARTICLE GENERATION	1	Consort 3
26 POLYMER CURING EXPERIMENT	1	Consort 4
27 POLYMER MORPHOLOGY	1	STS 34
28 POLYMER THIN FILMS	2	Consort 3, STS 40 (GAS 105)
29 SEPARATION OF AQUEOUS PHASES	1	STS 40 (GAS 105)
30 SPACE FORMED STRUCTURAL BEAM (Foam Formation Device)	1	Consort 4
31 YEAST EXPERIMENT	1	STS 40 (GAS-105)
32 ZEOLITE CRYSTAL GROWTH		STS 50
32 TOTAL PAYLOAD HARDWARE ITEMS	73 TO	TAL NUMBER OF PAYLOAD FLIGHTS"

* The Protein Crystal Growth experiments were shared between the OCP and OSSA

OFFICE OF COMMERCIAL PROGRAMS

16-Jul-92


** A payload-flight = one flight of one payload. Therefore, one flight with 3 payloads = 3 payload-flights


Shuttle - 48 Count - 25

	NASA U.S.A.	MOSST Canada	ESA Europe	STA Japan
Utilization Resources	71.4%	3%	12.8%	12.8%
		1	1997 OCP SSF Resour	Ces
		Pre	ssurized Up Mass: 4,3	152 kg
OSSA - Science: 65%*			ssurized Down Mass: ressurized Up Mass:	
OCP - Commercial: 35%*			ressurized Down Mas	
OAST - Technology: 15%*	۵۵٬۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰		ume Up: 9.5 DRE ume Down: 7.1 DRE	
OSF/OSSD - Other: 10%*	2 Q.(.) 2 Q.(.) 2 Q.(.)		ver: 3 kW	
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Dov	vnlink: 10,472 kb/s	
Utilization planning guidelines allow	States States Collector The Mark	Cre	w Time: 436 hours	
the total resources used by NASA's User Sponsors to equal 125%, for the		Dat	a Storage: 92 Mbytes	
launch minus 5 year timeframe.		Rac	ks Occupied On-Orbit	: 5 DRE
			ss Atlach Points: 0.7	· · ·

SSF RESOURCE ALLOCATIONS

