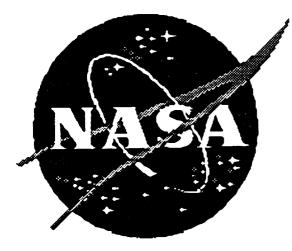
3(=	-1[NACA-CR-190990	
~		
~	(NASA-CR-190990) SPACE BIOLOGY INITIATIVE, TRADE STUDIES, VOLUME 2 (Horizon Aerospace) 366 p	N93-23079 THRU N93-23082 Unclas
~	63/51	0141387
~	TRADE STUDIES JOHNSON SPACE CENTER	
~	HOUSTON, TEXAS 77058	
~	SPACE BIOLOGY	
	INITIATIVE	
2	VOLUME Π	
~		
, ,		
l		

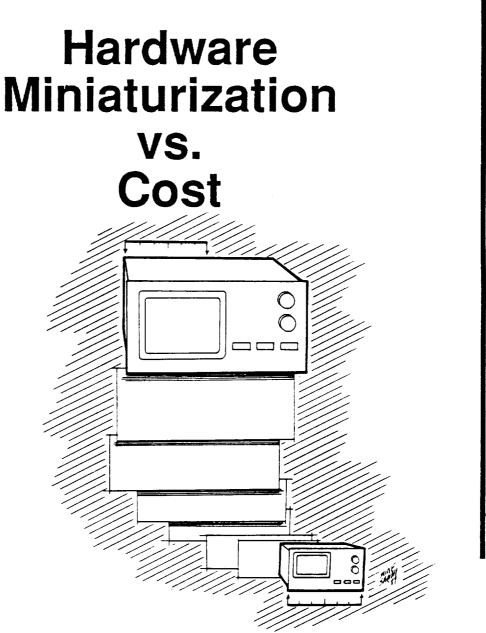
.


HARDWARE MINIATURIZATION VS COST

TRADE STUDIES

JOHNSON SPACE CENTER HOUSTON, TEXAS 77058

SPACE BIOLOGY


INITIATIVE

Space Biology Initiative Program Definition Review

Lyndon B. Johnson Space Center Houston, Texas 77058

FINAL REPORT

June 1, 1989

HORIZON AEROSPACE

• 18333 EGRET BAY BOULEVARD, SUITE 300 • HOUSTON, TEXAS, USA 77058 • (713) 333-5944 • TELEFAX (713) 333-3743 N93-23/0-80³

13 3 3

SPACE BIOLOGY INITIATIVE **PROGRAM DEFINITION REVIEW**

TRADE STUDY 3

HARDWARE MINIATURIZATION VS. COST

FINAL REPORT

Prepared by:

HORIZON AEROSPACE

L. Neal Jackson, President John Crenshaw, Sr. Engineer

and

EAGLE ENGINEERING, INC.

W.L. Davidson F.J. Herbert J.W. Bilodeau J.M. Stoval

EAGLE TECHNICAL SERVICES

T. Sutton

Prepared for:

GE GOVERNMENT SERVICES Houston, Texas Contract No. G966016-J45

June 1, 1989

Foreword

The "Hardware Miniaturization Versus Cost Trade Study" was performed as part of the Space Biology Initiative (SBI) Definition Trade Studies Contract which is a NASA activity intended to develop supporting data for JSC use in the Space Biology Initiative Definition (Non-Advocate) Review to NASA Headquarters, Code B, scheduled for the June-July, 1989 time period. The task personnel researched, acquired, recorded, and analyzed information relating to miniaturization of space biology equipment. The study data provides parametric information indicating the factors which influence the cost and design for categories and functions of SBI hardware.

This effort is one of four separate trade studies performed by Eagle Engineering, Inc. (EEI). Although the four trade studies address separate issues, the subject of SBI Hardware, the objectives to document the relative cost impacts for the four separate issues, and the intended audience are common for all four studies. Due to factor beyond control of the study management organizations, the trade studies were required to be completed in approximately one half of the originally planned time and with significantly reduced resources. Therefore, EEI immediately decided to use two proven time-and-resource-saving principles in studying these related SBI issues. The first principle employed was commonality. The study methodology was standardized where appropriate, the report formats were made the same where possible, a common database was developed, and the cost analysis techniques development and consultation was provided by a common team member. An additional benefit of this application of commonality with standardized material is to facilitate the assimilation of the study data more easily since the methods and formats will become familiar to the reader. The second principle employed was the phenomenon of the "vital few and trivial many" or sometimes known as the These are terms which describe the often observed "Pareto principle" (see SBI #96). phenomenon that in any population which contributes to a common effect, a relative few of the contributors account for the bulk of the effect. In this case, the effect under analysis was the relative cost impact of the particular SBI issue. If the phenomenon was applicable for the SBI hardware, EEI planned to study the "vital few" as a method of saving time and resources to meet the limitations of the study deadlines. It appears the "vital few and trivial many" principle does apply and EEI adopted the Principle to limit the number of hardware items that were reviewed.

The study was performed under the contract direction of Mr. Neal Jackson, Horizon Aerospace Project Manager. Mr. Mark Singletary, GE Government Services, Advanced Planning and Program Development Office, provided the objectives and policy guidance for the performance of the trade study. The direct study task personnel include:

EEI Project Manager: Trade Study Manager: Cost Analysis Techniques Leader: Visual Materials Support: Information Management Leader: Mr. W.L. Davidson (Bill) Mr. Frank J. Herbert Mr. James W. Bilodeau (Jim) Mr. J.M. Stovall (Mike) Mr. Terry Sutton (Eagle Technical Services)

Table of Contents

-

-

Foreword i
Table of Contents
List of Figures
List of Tables
List of Abbreviations and Acronyms vii
Glossary and Definitions ix
1.0 Introduction 1 1.1 Background 1 1.2 Task Statement 1 1.3 Application of Trade Study Results 1 1.4 Scope 1 1.5 Methodology 2 1.5.1 Data And Documentation Survey 2 1.5.2 Database Development 2 1.5.3 Costing Techniques Summary 2 1.5.4 Survey Data Integration 2 1.5.5 Cost Analysis 3 1.6 Definition of Miniaturization 3 1.6.1 Size Reduction 3 1.6.2 Performance 3
2.0 Executive Summary 6 2.1 Assumptions And Groundrules 6 2.2 SBI Candidate Hardware Items For Miniaturization 6 2.3 Miniaturization Cost Impacts 6 2.4 Performance Assessment 7 2.5 Future Work 7 2.6 Conclusion Summary 7 3.0 Trade Study Database 14 3.1 Database Files 14
3.2 Database Management 14 3.3 Database Use 14
4.0 Documentation Survey 15 4.1 Documentation Sources 15 4.1.1 Complete SBI Trade Study Bibliography 15 4.1.2 Trade Study Bibliography For Miniaturization 15

4.2 Documentation Data 15
5.0 Trade Study
5.1 Relative Cost Analysis of Previous Hardware
5.2 SBI Hardware Sample Selection
5.3 SBI Miniaturization Candidate Selection
5.4 Miniaturized SBI Hardware Performance Impact Analysis
5.4.1 On Orbit Crew Utilization 23
5.4.2 Hardware Diagnostics/Repair 23
5.4.3 Equipment Accuracy 24
5.5 Relative SBI Miniaturization Cost Impact Analysis
5.5.1 Empirical Cost Relationships
5.5.2 GGS Miniaturization Cost Analysis
6.0 Conclusion
6.1 Discussion
6.2 Important Guidelines
6.3 Other Considerations
Appendix A - Space Biology Hardware Baseline A-1
Appendix B - Complete SBI Trade Study Bibliography B-1
Appendix C - Cost Assessment Techniques Summary C-1
Appendix D - Data Base Definition D-1
Appendix E - Detailed Hardware Description E-1

List of Figures

Figure 1.5	Space Biology Initiative Definition Review Trade Study Logic Flow	5
Figure 5.3	Gas-Grain Simulation Facility	30

V

.

List of Tables

Table 1.4 SBI Hardware Categories and Functions	4
Table 2.1-1 Common SBI Trade Study Assumptions and Groundrules	8
Table 2.1-2 Miniaturization Trade Study Assumptions and Groundrules	9
Table 2.2-1 93 / 34 Analysis for SBI Hardware 1	0
Table 2.2-2 Possible Candidate List for Miniaturization 1	1
Table 2.2-3 Best Possible Candidate List for Miniaturization 1	2
Table 2.5 Miniaturization Analysis 1	3
Table 4.1.2 Bibliography for Miniaturization Trade Study 1	6
Table 5.2-1 Database Listing of SBI Hardware Vital to Program Cost Impact Analysis 2	6
Table 5.2-2 Database Listing for Miniaturization Sample Selection Assessment 2	7
Table 5.2-3 Database Listing of Miniaturization Candidate Sample Set 2	8
Table 5.3 Exobiology Facility/GGS - Miniaturization Analysis 2	9

List of Abbreviations and Acronyms

A T	Artificial Intelligence
AI	Ames Research Center
ARC	Biomedical Research Project (Human/Crew Members)
BmRP	Biological Research Project (Non Human/Rodents, primates or plants)
BRP	Bioinstrumentation & Physiological Monitoring Facility
BPMF	Biological Specimen Holding Facility
BSHF	• •
CAD	Computer Aided Design
CDR	Critical Design Review
CELSS	Closed Ecological Life Support System Crew Health Care
CHeC	Commercial Off-The-Shelf
COTS	
CR	Change Request
DDT&E	Design, Development, Test and Evaluation
DMS	Data Management System Denver Research Institute
DRI	
ECF	Exercise Countermeasure Facility
ECLSS	Environmental Control and Life Support System
EDCO	Extended Duration Crew Operations
EHS	Environmental Health System
EPDS	Electrical Power Distribution System
FEAST	Flight Early Acquisition Systems Test
FSU	Functional Support Unit
GGS	Gas Grain Simulator
HMF	Health Maintenance Facility
HPLC	High Performance Liquid Chromatography
HQUL	Hardware Quantity and Usage List
HRF	Human Research Facility
JSC	Johnson Space Center
KSC	Kennedy Space Center
LAN	Local Area Network
LSE	Laboratory Support Equipment
LSLE	Life Sciences Laboratory Equipment
LSRF	Life Science Research Facility
MDE	Mission Dependent Equipment
MDU	Medical Development Unit
MLI	Multi-Layer Insulation
MRDB	Mission Requirements Data Base
MSK	Major Subcontractor
NASA	National Aeronautics and Space Administration
NSTS	NASA Space Transportation System
OTS	Off-The-Shelf
PI	Principal Investigator
PMC	Permanent Manned Capability
PMS	Pulmonary Monitoring System
POCC	Payload Operations Control Center

vii

RMOAD	Reference Mission Operational Analysis Document
SAIS	Science & Applications Information System
SBHB	Space Biology Hardware Baseline
SBI	Space Biology Initiative
SSF	Space Station Freedom
SSFP	Space Station Freedom Program
SSIS	Space Station Information Systems
TDRSS	Tracking and Data Relay Satellite System
TFU	Theoretical First Unit
WAN	Wide Area Network

.

Glossary and Definitions

Assembly

An accumulation of subassemblies and/or components that perform specific functions within a system. Assemblies can consist of subassemblies, components, or both.

Certification

The process of assuring that experiment hardware can operate under adverse Space Station Freedom environmental conditions. Certification can be performed by analysis and/or test. The complete SSFP definition follows. Tests and analysis that demonstrate and formally document that all applicable standards and procedures were adhered to in the production of the product to be certified. Certification also includes demonstration of product acceptability for its operational use. Certification usually takes place in an environment similar to actual operating conditions.

Certification Test Plan

The organized approach to the certification test program which defines the testing required to demonstrate the capability of a flight item to meet established design and performance criteria. This plan is reviewed and approved by cognizant reliability engineering personnel. A quality engineering review is required and comments are furnished to Reliability.

Component

An assembly of parts, devices, and structures usually self-contained, which perform a distinctive function in the operation of the overall equipment.

Experiment

An investigation conducted on the Space Station Freedom using experiment unique equipment, common operational equipment of facility.

Experiment Developer

Government agency, company, university, or individual responsible for the development of an experiment/payload.

Experiment unique hardware

Hardware that is developed and utilized to support the unique requirements of an experiment/payload.

Facility

Hardware/software on Space Station Freedom used to conduct multiple experiments by various investigators.

Flight Increment

The interval of time between shuttle visits to the Space Station Freedom. Station operations are planned in units of flight increments.

Flight increment planning

The last step in the planning process. Includes development of detailed resource schedules, activity templates, procedures and operations supporting data in advance of the final processing, launch and integration of payloads and transfer of crew.

Ground operations

Includes all components of the Program which provide the planning, engineering, and operational management for the conduct of integrated logistics support, up to and including the interfaces with users. Logistics, sustaining engineering, pre/post-flight processing, and transportation services operations are included here.

Increment

The period of time between two nominal NSTS visits.

Interface simulator

Simulator developed to support a particular Space Station Freedom or NSTS system/subsystem interface to be used for interface verification and testing in the S&TC and/or SSPF.

Integrated logistics support

Includes an information system for user coordination, planning, reviews, and analysis. Provides fluid management, maintenance planning, supply support, equipment, training, facilities, technical data, packaging, handling, storage and transportation. Supports the ground and flight user requirements. The user is responsible for defining specific logistics requirements. This may include, but not be limited to resupply return in term of frequency, weight, volume, maintenance, servicing, storage, transportation, packaging, handling, crew requirements, and late and early access for launch site, on-orbit, and postmission activities.

Integrated rack

A completely assembled rack which includes the individual rack unique subsystem components. Verification at this level ensures as installed component integrity, intrarack mechanical and electrical hookup interface compatibility and mechanisms operability (drawer slides, rack latches, etc.).

Integration

All the necessary functions and activities required to combine, verify, and certify all elements of a payload to ensure that it can be launched, implemented, operated, and returned to earth successfully.

Orbit replaceable unit (ORU)

The lowest replaceable unit of the design that is fault detectable by automatic means, is accessible and removable (preferably without special tools and test equipment or highly skilled/trained personnel), and can have failures fault-isolated and repairs verified. The ORU is sized to permit movement through the Space Station Freedom Ports.

Payload integration activities

Space Station Freedom payload integration activities will include the following:

Pre-integration activities shall include receiving inspection, kitting, GSE preps and installation, servicing preps and servicing, post deliver verification, assembly and staging (off-line labs), rack and APAE assembly and staging, alignment and post assembly verification.

Experiment integration activities shall include experiment package installation into racks, deck carriers, platforms, etc., and payload to Space station interface verification testing. When the Freedom element is available on the ground, Space Station Freedom integration activities (final interface testing) shall include rack or attached payload installation into Freedom element (e.g., pressurized element, truss structure, platform) and shall include payload-to-element, interface verification, followed by module, truss, or platform off-loading of experiments, as required, for launch mass for follow-on increments, Space Station Freedom integration activities shall include rack or attached payload installation into the logistics element and verification of the payload-to-logistics element interface.

Integration activities (final interface testing) shall include: rack or attached payload installation into Space Station Freedom element (e.g., lab module, truss structure, platform) on the ground, when available, and shall include payload to element interface verification, configure and test for station to station interface verification, followed by module, truss or platform off-loading of experiments, as required, for launch mass.

Launch package configuration activities shall include configuring for launch and testing station to NSTS interfaces, (if required), stowage and closeout, hazardous servicing, (if required), and transport to the NSTS Orbiter.

NSTS Orbiter integrated operations activities shall include insertion of the launch package into the orbiter, interface verification (if required), pad operations, servicing, closeout, launch operations, and flight to Space Station Freedom.

On-orbit integration activities shall include payload installation and interface verification with Space Station Freedom.

Hardware removal that includes rack-from-module and experiment-from-rack removal activities.

Payload life cycle

The time which encompasses all payload activities from definition, to development through operation and disbursement.

Permanent manned capability (PMC)

The period of time where a minimum of capabilities are provided, including required margins, at the Space Station Freedom to allow crews of up to eight on various tour durations to comfortably and safely work in pressurized volumes indefinitely. Also includes provisions for crew escape and EVA.

Physical integration

The process of hands-on assembly of the experiment complement; that is, building the integrated payload and installing it into a standard rack, and testing and checkout of the staged payload racks.

Principal Investigator

The individual scientist/engineer responsible for the definition, development and operation of an experiment/payload.

Rack staging

The process of preparing a rack for experiment/payload hardware physical integration: encompasses all pre-integration activities.

Space Station Freedom

The name for the first Unites States permanently manned space station. It should always be interpreted as global in nature, encompassing all of the component parts of the Program, manned and unmanned, both in space and on the ground.

Subassembly

Two or more components joined together as a unit package which is capable of disassembly and component replacement.

Subsystem

A group of hardware assemblies and/or software components combined to perform a single function and normally comprised of two or more components, including the supporting structure to which they are mounted and any interconnecting cables or tubing. A subsystem is composed of functionally related components that perform one or more prescribed functions.

Verification

The process of confirming the physical integration and interfaces of an experiment/payload with systems/subsystems and structures of the Space Station Freedom. The complete SSFP definition follows. A process that determines that products conform to the design specification and are free from manufacturing and workmanship defects. Design consideration includes performance, safety, reaction to design limits, fault tolerance, and error recovery. Verification includes analysis, testing, inspection, demonstration, or a combination thereof.

1.0 Introduction

1.1 Background

The JSC Life Sciences Project Division has been directly supporting NASA Headquarters, Life Sciences Division, in the preparation of data from JSC and ARC to assist in defining the Space Biology Initiative (SBI). GE Government Services and Horizon Aerospace have provided contract support for the development and integration of review data, reports, presentations, and detailed supporting data. An SBI Definition (Non-Advocate) Review at NASA Headquarters, Code B, has been scheduled for the June-July 1989 time period. In a previous NASA Headquarters review, NASA determined that additional supporting data would be beneficial in clarifying the cost factors and impact in the SBI of miniaturizing appropriate SBI hardware items. In order to meet the demands of program implementation planning with the definition review in late spring of 1989, the definition trade study analysis must be adjusted in scope and schedule to be complete for the SBI Definition (Non-Advocate) Review.

1.2 Task Statement

The objective of this study is to determine the optimum hardware miniaturization level with the lowest cost impact for space biology hardware. Space biology hardware and/or components/subassemblies/assemblies which are the most likely candidates for application of miniaturization are to be defined and relative cost impacts of such miniaturization are to be analyzed. The study will provide a mathematical or statistical analysis method with the capability to support development of parametric cost analysis impacts for levels of production design miniaturization.

1.3 Application of Trade Study Results

The SBI cost definition is a critical element of the JSC submission to the SBI Definition (Non-Advocate) Review and the results of this study are intended to benefit the development of the SBI costs. It is anticipated that the GE PRICE cost estimating model will be used to assist in the formulation of the SBI cost definition. The trade study results are planned to be produced in the form of factors, guidelines, rules of thumb, and technical discussion which provide insight on the effect of miniaturization on the relative cost of the SBI hardware. The SBI cost estimators are required to define input parameters to the PRICE model which control the cost estimating algorithms. These trade study results can be used as a handbook of miniaturization cost effects by the SBI cost estimators in developing and defining the required PRICE input parameters.

1.4 Scope

The space biology hardware to be investigated has been defined and baselined in Appendix A which is titled Space Biology Hardware Baseline (SBHB). By study contract direction, no other space biology hardware has been considered. The complexity and importance of the subject could warrant an extensive study if unlimited time and resources were available. However, due to the practical needs of the real program schedule and budget, the depth of study has been adjusted to satisfy the available resources and time. In particular, cost analyses have emphasized the determination of influential factors and parametric relationships rather than developing

detailed, numerical cost figures. While program objectives and mission requirements may be stable in the early program phases, hardware end item specifications are evolving and may change many times during the design process. For this reason, the trade study analyses have focused on the category and function of each hardware item (Table 1.4) rather than the particular, current definition of the item. In the process of acquiring trade study data, certain information could be considered a snapshot of the data at the time it was recorded for this study. The data have been analyzed as defined at the time of recording; no attempt has been made to maintain the currency of acquired trade study data.

1.5 Methodology

The methodology used in performing the Miniaturization Trade Study, shown in Figure 1.5, consists of the initial, important phase of search and acquisition of related data; followed by a period of data integration and analysis; and, finally, the payoff phase where candidate items and implementation factors are identified.

1.5.1 Data And Documentation Survey

A literature review and database search were conducted immediately upon study initiation. Information pertaining to the miniaturization of commercial and space flight research hardware was considered for applicability to the study task.

1.5.2 Database Development

An analysis of the trade study data needs was performed to provide an understanding of the logical database design requirements. Based on the knowledge gained in the database analysis, the trade study data structures were developed and implemented on a computer system. The pertinent information collected from the data and documentation survey was input to the trade study database.

1.5.3 Costing Techniques Summary

Costing techniques used in previous projects were surveyed and historical cost factors were collected for review of applicability to this trade study. The applicable data were identified for use in cost analysis to demonstrate relative cost impacts of miniaturization for space biology technology hardware.

1.5.4 Survey Data Integration

The Space Biology Hardware Baseline was reviewed and the hardware that had potential for miniaturization was identified as candidates for miniaturization. The technical data collected from the survey was integrated with the Space Biology Hardware Baseline and an analysis of candidates, specifications, cost, and miniaturization applications was performed.

The initial survey data analysis was performed to select a sample of the SBHB items which could be potential candidates for miniaturization. With limited study time and a SBHB of 93 items, a method was needed to separate the items which could have the most cost impact and

were worthy of study resource application. The "vital few and trivial many" method (SBI #96) was used. This method applies the principle that in any population which contributes to a common effect (cost), a relative few of the contributors account for the bulk of the effect (cost). All SBHB items were listed in descending order of probable acquisition cost. Weight was used as an indication of probable acquisition cost based on historical experience in previous space programs. It was found that 34 percent of the items (32 items) accounted for 93 percent of the mass or probable cost (Table 5.2). Therefore, consideration was immediately limited to these 32 items. The miniaturization candidate sample set was chosen from Table 5.2 based on amenability to miniaturization.

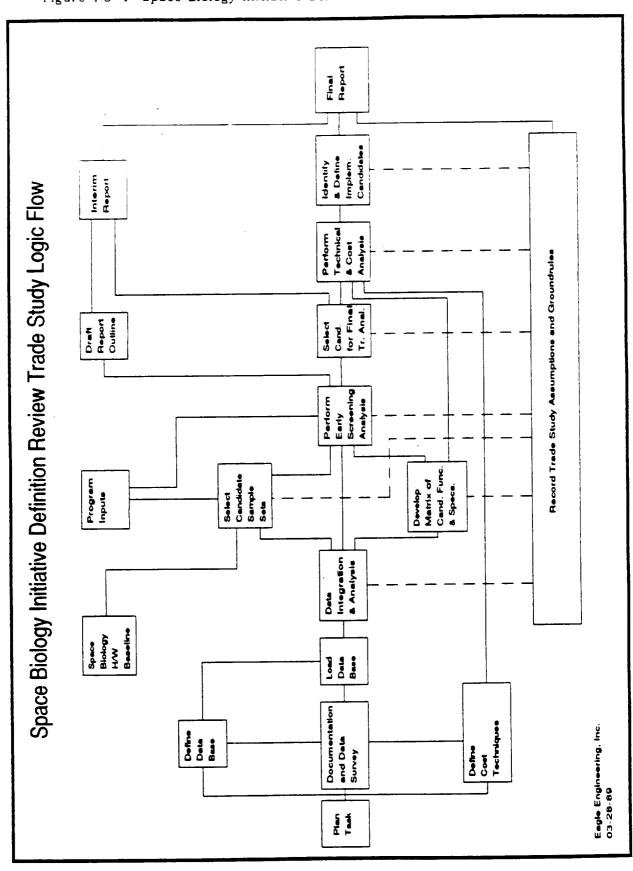
The sample set was then subjected to a more detailed analysis to determine important factors relative to miniaturization and to select the most representative candidate for final analysis. By this process, a reasonable effort could be devoted to analyze one example case more thoroughly.

1.5.5 Cost Analysis

Analyses were performed to demonstrate the relative cost impact to miniaturize the candidate items. Additional study was dedicated to the final selected item. Based on this analysis, the relative relationship of miniaturizing space biology hardware to cost was assessed.

1.6 Definition of Miniaturization

1.6.1 Size Reduction


The miniaturization of a hardware item will be designated in terms of percentage. The range of percentage miniaturization will normally vary between 10% and 90% in increments of 10%. The miniaturization in this trade study will deal with weight reduction as the size of a hardware item is reduced. That is a 10% miniaturization means a 100 kg item will be reduced to 90 kg. We will also assume that volume will be reduced 10% (i.e. 100 M³ would be reduced to 90 M³).

1.6.2 Performance

The SBI hardware item, after miniaturization, (10% or 90%) must meet or exceed the original performance requirements as set by the Principle Investigator (PI). There may be a new technological development that reduces the size of the various parts within a hardware item. However, if the hardware fails to be compatible with other units or in providing accurate results then the miniaturization is of no benefit.

Table 1.4 SBI Hardware Categories and Functions

SBI HARDWARE CATEGORIES	FUNCTIONS (Applicable to each Category)
Cardiovascular	Analysis
Cytology	Calibration
Environmental Monitoring	ELSS
Exobiology	Collection
Hematology	Health Maintenance
Histology	Measurement
Logistics	Preparation
Miscellaneous	Stowage
Neurophysiology	
Plant Sciences	
Pulmonary	
Surgical Science	
Urology	

2.0 Executive Summary

2.1 Assumptions And Groundrules

In the process of performing the subject trade study, certain data or study definition was not available or specified. Assumptions and groundrules have been established to document, for the purposes of this trade study, the definition of important information which is not a definite fact or is not available in the study time period. Major assumptions and groundrules which affect the four EEI trade studies are provided in a list common to all of the studies (Table 2.1-1). The assumptions which primarily affect the miniaturization study are documented in a separate list (Table 2.1-2).

2.2 SBI Candidate Hardware Items For Miniaturization

The baseline candidate list of 93 SBI hardware items is shown in Appendix A with an "S" by each item. Space flight history has established that project costs are most significantly affected by space equipment weight. To determine which SBI hardware warranted the most study resources, the SBI hardware list was prioritized by mass (Table 2.2-1 repeated from Table 5.2-1) showing the top 32 items which represent 93% by mass, 87% by volume and 85% by power (watts) of the total 93 items. The 32 hardware items in Table 2.2-1 were reviewed and selective judgments were recorded on the potential for miniaturization (Table 2.2-2 repeated from Table 5.2-2). The list in Table 2.2-2 was then reviewed and reduced by dropping those items with insufficient definition and those items which may only have a potential for being reduced in size by 0 - 10%. The miniaturization candidate sample set listing the best possible 20 candidates for miniaturization is provided in Table 2.2-3 (repeated from Table 5.2-3).

2.3 Miniaturization Cost Impacts

The gas grain simulator (hardware item 169) was selected from the candidate sample set for an indepth analysis. Using Appendix E and the gas grain simulator (GGS) information as shown in Section 5, a relative cost impact factor was developed for each of the 8 assemblies of this GGS (Table 5.3). The relative cost factors (design factor and complexity are discussed in Appendix C) shown in Table 5.3 are subjective and a small change in these factors has a profound change on the relative cost factor for miniaturization. For example, the GGS assembly III, Aerosol, and assembly V, Spectrometry, have the same mass and the same amount of miniaturization. However, due to a difference in factors (n and df) the relative cost for miniaturization is totally different. Assembly III, is a 13% increase while assembly V is a decrease of .03% in relative cost for miniaturization.

Table 2.3 shows the final analysis of the GGS along with the other 3 top SBI hardware items. The GGS was chosen for detailed analysis due to the total mass and the availability of data. The mass percent column was added to this Table 2.3 to show the method of calculating the prorated cost percent. (Mass Percent times the cost factor % equals the cost prorata %.) Those subsystems with less than 10% miniaturization were not considered in this calculation and, therefore, do not show up in the cost prorata. The overall cost increase as shown in Table 2.3 and 5.3 indicates that the GGS would have a 5.16% increase in cost for miniaturizing some of the individual subsystems.

The results of this trade study, though somewhat limited in scope, indicate that miniaturization will almost invariably increase cost. The greater the degree of change required to achieve miniaturization, the greater will be the cost. However, a large degree of the redesign cost increase for miniaturization can be offset by virtue of weight reduction.

2.4 Performance Assessment

The groundrule has been established that the equipment performance specifications must be satisfied with any method chosen for hardware implementation. Therefore, the performance and accuracy of the equipment should not be an issue. The various components within the subsystems of the GGS may not be compatible with being miniaturized without affecting performance. There is always a risk with new technology and new equipment that the final performance would be degraded with miniaturization. The components of the subsystem as well as the performance of the entire hardware unit must be compatible.

2.5 Future Work

The analysis shown in Table 2.3 for the GGS can be done for all the hardware items to estimate the cost impact for miniaturization.

The life cycle cost relationship was not addressed in this trade study; however, future trade studies should address the effects.

The hardware items that have common components and the feasibility of miniaturizing a common component would be a tremendous cost savings.

Future trade studies should look at all related medical/science programs (i.e. CHeC, etc.) for miniaturization.

2.6 Conclusion Summary

Miniaturization of SBI hardware that is complex will generally add to the cost of development. The heavier items (Mass) will give the greatest potential return for miniaturizing. Miniaturizing may allow more experiments to be placed on-board SSF than had previously been planned. Life cycle cost impacts were not added in this trade study, but should be for future studies. Weight restrictions for the total SSF payload may require miniaturization to reduce the weight and volume of a specific hardware item or it will not be flown.

Table 2.1-1 Common SBI Trade Study Assumptions and Groundrules

- 1) Where project, hardware, and operations definition has been insufficient, detailed quantitative analysis has been supplemented with assessments based on experienced judgement of analysts with space flight experience from the Mercury Project through the current time.
- 2) Space flight hardware cost is primarily a function of weight based on historical evidence.
- 3) The effects of interrelationships with space biology and life science hardware and functions other than the SBI baseline hardware are not considered in the trade study analyses.
- 4) Trade study information, once defined during the analysis for the purpose of establishing a known and stable baseline, shall not be changed for the duration of the trade study.
- 5) Hardware life cycle costs cannot be studied with quantitative analyses due to the unavailability of definition data on hardware use cycles, maintenance plans, logistics concepts, and other factors of importance to the subject.
- 6) The SBI hardware as identified is assumed to be designed currently without any special emphasis or application of miniaturization, modularity, commonality, or modified commercial off-the-shelf adaptations.
- 7) It is assumed that the required hardware performance is defined in the original equipment specifications and must be satisfied without regard to implementation of miniaturization, modularization, commonality, or modified commercial off-the-shelf adaptations.

Table 2.1-2 Miniaturization Trade Study Assumptions and Groundrules

- 1) Availability of data on hardware definition was a factor in selecting the best possible miniaturization candidates.
- 2) Absence of specific equipment historical data required using empirical data for cost analysis.

		_								
	1];	Hardware Item Name		Mass	Po	Power	2	Volume	
	1			Кg	Accumul.	(Watts)	Accumul.	ړ ۲	Accumul.	T
	-	168	CELSS		0001	1000				- T
	~	169	Gas Grain Simulator			1300	1300	1.92	1.92	
	e	84	Soft Tissue Imaning System	88	1800	00001	2800	1.92	3.84	
	4	4	Hard Tiesua Imagino Sustam	<u>S</u>	2100	800	3600	8. 8	4.80	
	· vr	126	Scintillation Control	921	2236	800	3900	-29	5.09	
	טל	11		8	2326	200	4400	24	5.33	
	7 0			70	2396	100	4500	40	5 73	
	~ 0	0 L T	Automated Microbic System	70	2466	110	4610	00	5 03	
	æ o	CC1	I otal Hydrocarbon Analyzer	70	2536	250	4860	i S	0.00 6 1 2	_
	ກ ເ	161	Inventory Control System	20	2606	200	5360	20	6.33	
	2;	701	Lab Materials Pack & Hand. Equip.	20	2676	500	5860	2	6.53	
	= \$	501		70	2746	200	5860	20	6.73 6.73	
-	<u>v</u> ;		Neck Baro-Cuff	45	2791	145	6205	15	6.86	
	2;	EII S	blood Gas Analyzer	45	2836	250	6455	: -	6 00 6 00	
	4 L	19	Mass Spectrometer	41	2897	200	6655	e e	80.7	
	5 2	211	Plant HPLC Ion Chromatograph	40	2917	200	6855	5 5	00.7	
1	16	147	Head Torso Phantom	32	2949	30	6855	15	7.7 200	
Λ	17	63	Pulmonary Gas Cylinder Assem.	8	2979) c	6855	2 8	20.1	
	18	110	Plant Gas Chromatograph/Mass Spectro-	25	3004	2	6055	6. C	- 4 1	
_			meter	2		3	CCEO	N7.	1.61	_
	19	115	Chemistry System	23	3027	Ş	TOEE	ġ	1	_
	50	138	Hematology	18	3050	8	7755	<u>9</u> 5	P0./	
	21	34	Sample Preparation Device	8	3070	32	3087	5	9/·/	
	ន	165	Experiment Control Computer System	18	3002	2	1403	- 5	- 50 - 50	
	ຊ	62	Pulmonary Function Equip Stor, Assem	20	3112	3	500/	<u>S</u>	86.7	
_	24	82	Motion Analysis System		2110		CU8/	S :	8.03	
	25	66	Animal Biotelemetry System		2152	3	202/	S S	8.08	
	26	100	Blood Pressure & Flow Instrumentation	3 6	3172	38	1000	<u>ę</u> s	8.13	
	27	109	Venous Pressure Transducer/Dischart		2/10		C028	8	8.19	_
	28	129	Call Handling Acrossoniae	N S	3192	8	8305	.05	8.24	
	18	5	Ban-in-Bay	07	3212	20	8355	. 95	8.29	
	9 8	5 =	Plant Gas Culindar Accom	61	3231	•	8355	.15	8.44	
	5 2	110	Gas Culindor Accompt.	- IG	3250	0	8355	60.	8.53	
	5 6			16	3269	20	8405	60.	8.62	
	3	202		19	3288	20	8455	<u>8</u>	8.68	_
	15 66	93 SRI HAV Items	80 Hame have 3536 La mood 40 And 24 miles							
_	;	>:: .: .: .: .: .: .: .: .: .: .: .: .: .	og manne indre 2000 kg mass 10.0M OF Volume	118W 9CE,01	10,359 watts of power 4 Items are TBD (all are small)	ems are TE	3D (all are sn	lla)		

Table 2.2-1 List of SBI Hardware Vital to Program Cost Impact Analysis

,

	Prioritized Item #	Hardware Itom Name	Data		Miniaturization Level		(rercent)	Confidence Level	• • • •
-			Available	0-10	10-20	20-50	50+	Low	High
	168	CELSS				×			×
2	169	Gas Grain Simulator Facility				×			×
3	84	Soft Tissue Imaging System	° N						
4	11	Hard Tissue Imaging System	°Z						
ъ	126	Scintiliation Counter			×			×	
6	74	Force Resistance System			×		_	×	
2	145	Automated Microbic System				×			×
60	155	Total Hydrocarbon Analyzer	N o						
0	161	Inventory Control System				×			×
10	162	Lab Materials Pack & Hand. Equip.		X				X	
11	163	Test/Ckout/Callbration Instrumentation				×		×	
12	106	Neck Baro-Cuff				X			X
13	113	Blood Gas Analyzer	۸o						
14	61	Mass Spectrometer			×			×	
15	112	Plant HPLC Ion Chromatograph	No						
16	147	Head Torso Phantom			×				×
17	63	Pulmonary Gas Cylinder Assem.		×				X	
18	110	Plant Gas Chromatograph/Mass Spec			×			×	
19	115	Chemistry System			×			×	
20	138	Hematology			×			×	
21	34	Sample Preparation Device		×					
22	165	Experiment Control Computer System				×			×
23	62	Pulmonary Function Equip Stor. Assem.		×					×
24	82	Motion Analysis System				×			×
25	66	Animai Biotelemetry System			×				×
26	100	Blood Pressure & Flow instrumentation	No						
27	1 ý 9	Venous Pressure Transducer/Display			×			×	
28	129	Cell Handling Accessories				×			×
29	57	Bag-In-Box			×			×	
30	111	Plant Gas Cylinder Assem.	٩N						
31	119	Gas Cylinder Assembly							×
32	130	Cell Harvester				×		×	

Table 2.2-2 Miniaturization Assessment Review for Sample Selection

by Mess E CELSS 1 168 CELSS 2 169 Cas Grain S 5 126 Scintillation 6 74 Force Resis 7 145 Automated I 9 161 Inventory C 1 163 Test/Ckout/ 1 163 Test/Ckout/ 12 106 Neck Baro-other 147 Head Torso 16 147 Head Torso 18 110 Plant Gas C 19 115 Chemistry S 20 138 Hematology	CELSS Gas Grain Simulator Facility Scintiliation Counter	10-20				
168 CELSS 169 Gas Grain 126 Scintillati 74 Force Res 145 Automate 163 Test/Ckou 164 Mass Spe 110 Plant Gas 115 Chemistry 155 From tool	SS Grain Simulator Facility Itiliation Counter		20-50	50+	Low	High
169 Gas Grain 126 Scintillati 126 Scintillati 145 Automated 161 Inventory 163 Test/Ckoutory 166 Neck Barc 61 Mass Spe 147 Head Tors 147 Head Tors 138 Hematologi 155 Chemistry 155 Fromatologi	Grain Simulator Facility Itiliation Counter		×			×
126Scintiliati74Force Res74Force Res145Automates161Inventory163Test/Ckou166Neck Barc106Neck Barc117Head Tors118Hematoloy155Frontine	itiliation Counter		×			×
74Force Res145Automates161Inventory163Test/Ckou166Neck Barc106Neck Barc147Head Tors147Head Tors110Plant Gas15Chemistry165Fxoeriment		×			×	
145 Automated 161 Inventory 163 Test/Ckou 166 Neck Barc 61 Mass Spe 147 Head Tors 110 Plant Gas 115 Chemistry 165 Frontime	se Resistance System	×			×	
161 Inventory 163 Test/Ckou 106 Neck Baro 61 Mass Spe 61 Mass Spe 110 Plant Gas 115 Chemistry 138 Hematolog 165 From atolog	omated Microbic System		×			×
163 Test/Ckou 106 Neck Barc 61 Mass Spe 61 Mass Spe 147 Head Tors 110 Plant Gas 115 Chemistry 165 Front date	ntery Centrel System		×			×
106 Neck Bard 61 Mass Spe 61 Mass Spe 147 Head Tors 110 Plant Gas 115 Chemistry 138 Hematolog 165 Froartmen	I/Ckout/Callbration Instrumentation		X		×	
61 Mass Spe 147 Head Tors 110 Plant Gas 115 Chemistry 138 Hematolog 165 Fxperiment	k Baro-Cuff		×			×
147 Head Tors 110 Plant Gas 115 Chemistry 138 Hematolog 165 Fxperiment	s Spectrometer	×			×	
110 Plant Gas 115 Chemistry 138 Hematolog 165 Experiment	Head Torso Phantom	×				×
115 Chemistry 138 Hematoloy 165 Experiment	nt Gas Chromatograph/Mass Spec	×			×	
138 Hematolo 165 Fxparlman	mistry System	×			×	
165 Exnerimen	iatology	×			×	
	eriment Control Computer System		×			X
24 82 Motion Anal	ion Analysis System		×			×
25 99 Animal Blot	Animal Biotelemetry System	×				×
27 109 Venous Pre	ous Pressure Transducer/Display	×			X	
28 129 Cell Handlir	Cell Handling Accessories		×			×
29 57 Bag-In-Box	-In-Box	×			×	
32 130 Cell Harves	Harvester		×		×	

Table 2.2-3 Miniaturization Candidate Sample Set

H.W Kem #	Priority # by Mass	H/W Nem Name	Lowest Assembly Component Lavel Possible	Mess (kg)	Mass Percent	Percent Miniaturization	Relative Cost Factor %	Cost Pro- rated %
168 8		CELSS.	Modified Plant Growth Gas & Liquid Handling Water Condensation Nutrient Delway Crop Research Chamber seed Germ.	22 23 7, 25 2, 25 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,				
		TOTAL		750.			-	
169	N	SOO	Chamber Erwironment Mont. Aerosol Gen. Optics/imaging Spectrometry Particle Computer Storage	ର୍ଷ <u>ହ</u> ିଛି ହୁ ହି ଛି କି	25. 10. 18.75 18.75 6.25 5.	1 3 2 3 4 7 3 3 4 7 9 9 7 9 9 7 9 9 7 9 9 9 7 9 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9	- +16 +13 - - +15 +15 +13	1.6 2.43 .93 .93 .93 .93 .93 .93 .93
		TOTAL		800.	100.			5.16
2	9	Soft Tissue Imaging TOTAL		300.				
7	4	Hard Tissue Imaging TOTAL		136.				
Ž	otes: * Revised	Notes: * Revised mass figures as of 5/5/89	f 5/5/89					

Table 2.3 Miniaturization Cost Impact Analysis

3.0 Trade Study Database

The trade study database has been implemented on the dBase IV program by Ashton-Tate. The database definition including a database dictionary is provided in Appendix D.

3.1 Database Files

Four types of dBASE IV files were created for the Space Biology Initiative (SBI) Trade Studies database. These files are database files, index files, report files and view files. Database files have the file name extension dbf. A database file is composed of records and records comprise fields which contain the data. Index files have the file name extension ndx. Index files are used to maintain sort orders and to expedite searches for specific data. Report files have the file name extension fm. Report files contain information used to generate formatted reports. View files contain information used to relate different database (dbf) files. View files link different database files into a single view file.

3.2 Database Management

The development of the SBI Trade Studies database consist of two major steps, logical database development and physical database development. Defining attributes and relationships of data was the major emphasis of the logical database development. The attributes and relationships of the data were determined after analysis of available data and consultation with other SBI team members. Based on the knowledge from the logical database development, the physical structure of the database was developed and implemented on a computer. Setting up the database on a computer was the second major development process. The first step of this process was to determine how to store the data. dBASE IV allows data to be stored as character, numeric, date or logical data types. The second step was to create the database files. After the database files were created, the actual data was entered. For a complete listing of the database structures see Appendix D.

3.3 Database Use

To the maximum extent possible, data generated in performance of this trade study was stored in the database. This approach not only facilitated analysis and comparison of trade data, but also enabled the efficient publication and editing of tables and figures in the study report. In addition, the data are available in the database for future evaluation using different screening logic and report organization.

4.0 Documentation Survey

An extensive survey was made to collect all the latest information pertaining to miniaturization and associated cost experience. Library searches were made using titles, authors, key words, acronyms, phrases, synonyms, time periods and any possible activities related to miniaturization. Interviews with personnel (both in-person and by telephone) having knowledge of the study subject were made throughout the initial portion of the study.

4.1 Documentation Sources

4.1.1 Complete SBI Trade Study Bibliography

The complete list of all references used in the four Eagle Engineering, Inc. trade studies is provided in Appendix B. A unique EEI SBI reference index number has been assigned to each information source.

4.1.2 Trade Study Bibliography For Miniaturization

Particular reference information from Appendix B that is of special importance to miniaturization is repeated in Table 4.1.2. All references were used to gain background information for the final analysis of the candidate selection and for the degree of miniaturization.

4.2 Documentation Data

The Physiological Monitoring System (PMS) used on Skylab had unique monitoring sensors. These sensors had built-in microminiaturized amplifiers that were developed by the Denver Research Institute (DRI). These amplifiers were developed under the management of NASA JSC and were microminiaturized specifically for the PMS. These same basic sensors with the microminiaturized amplifiers are to be used for the SBI Bioinstrumentation & Physiological Monitoring Facility (BPMF) (Group 3 in Appendix A). See reference SBI-69 & 70. However, no cost information was available to indicate the cost required to accomplish the PMS miniaturization. No documentation could be located that dealt directly with miniaturization and the related relative cost of miniaturizing. The literature did not reveal any reference to cost factors nor did any of the interviews reveal any reference to cost factors.

Page No. 1 05/25/89	Table 4.1-2 Biblogre	4.1-2 Biblography for Miniaturization Trade Study	de Study		
ID # AUTHOR	ТІТLE · VOL.	PUBL I SHER	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
50101 Kozarsky, D.	MUS Inputs	Lockheed Life Sciences Program Office	Lockheed Memo	Washington, DC	01/19/89
SB102 Kozarsky, D.	Latest Space Station Rack Studies	NASA MSFC		Huntsville, AL.	02/02/89
SBIO3 Holt, A.	PMWG-SS Freedom Assly. Seq. Trial Pyl. Manifest	Payload Manifest Working Group (PMWG)		Keston, VA.	12/09/88
SBI04 Shannon, J.	Business Practice Low Cost System Activity	NASA JSC		Houston, TX.	11/12/75
SP111 NASA	Reference Mission Operational Analysis Document (RMOAD) For The Life Sciences Research Facilities.	NASA JSC	NASA TM 89604	Hauston, TX.	02/01/87
SB112 Breiling, R.	Cost Risk Analysis Using Price Models	RCA Price Systems		Mooreston, NJ.	09/01/87
SB113 Fogleman, G.Schwart, D.Fonda, M.	Gas Grain Simulation 1 Facility: Fundamental Studies of Particle Formation And Interactions	NASA Ames Research Center	NASA ARC/SSS 88-01	Moffet Field, CA.	08/31/87
SB114 JPL	Flight Projects Office Payload Classification Product Assurance Provisions	JPL	JPL D-1489 Rev. A	Pasadena, CA.	04/30/87
SB115 PRC Systems	Cost Estimate For The Search for Extraterrestrial Intelligence (SETI) Revised	PRC Systems Services		Huntsville, AL.	06/15/87
SB116 NASA SSPO	Space Station Commonality Process Kequirements Rev.B	NASA SSPO	SSP 30285 Rev. B	Keston, Virgina	09/15/88

Page No. 2 05/25/89	Table 4.1-2 Biblogra	4.1-2 Biblography for Miniaturization Trade Study	ade Study		
1D # AUTHOR	TITLE VOL. NO.	PUBL I SHER	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
SB117 Webb, D.	Technalogy Forecasting Using Price - H	Rockwell International		Anaheim, CA.	04/17/86
SB118 NASA	Classification Df NASA Dffice Of Space Science And Applications (OSSA) Space Station Payloads	NASA JSC		Houstan, TX.	•
SBI19 NASA	Life Science Research Objectives And Representative Experiments For The Space Station (Green Book)	NASA Ames Life Science Division		Moffet Field, CA.	98/10/10
SBI20 NASA	Medical Requirements Df An In-Flight Medical System For Space Station	NASA JSC	JSC 31013	Hauston, TX. 11/30/87	11/30/87
SB121 TRW	A Study Of Low Cost Approaches To Scientific Experiment Implementa- tion For Shuttle Launched And Serviced Automated Spacecraft	TRW Systems Group	Contract NASW - 2717	Redondo Beach, CA.	03/19/89
SBI22 LMSC	Low-Cost Program Practices For Future NASA Space Programs	LMSC	LMSC-D387518	Sunnyv ale, CA.	05/30/74
SBI23 Steward, GMiller, L	Biomedical Equipment Technology Assesment For The Science Laboratory Module	Management and Technical Services Company		Hauston, TX.	08/01/89
SB124 General Electric	WP-3 Communality Plan	General Electric	NAS5-32000	Philadelphia 04/22/88 , PA	04/22/88
SB125 NASA	Microbiology Support Plan For Space Station	NASA JSC	JSC- 32015	Hauston, TX. 09/01/86	09/01/86

18	Fage No. 05/25/89 10 # AUTH 58126 NASA 58127 NASA 58128 Gener 58129 Gener 58130 NASA 58131 Rock 58131 Rock	55/25/89 55/25/89 BB126 NASA BB126 NASA BB127 NASA BB127 NASA BB128 General Dynamics BB129 General Dynamics BB130 NASA SB131 Rockwell Intl.	Title Title Title Concepts And Requirements For Space Station Life Sciences Ground Support And Operations Spacelab Mission 4 Integrated Payload Requirements Document Life Sciences Payload Definition And Integration Study - Executive Summary Executive Summary Clife Sciences Payload Definition and Integration Study - Executive Summary SL-3 Ames Research Center Life Sciences Payload Familiarization Manual EMS Data Data Package 2:34 S4200.2 Methodology Definition - Commonality		4.1-2 Biblography for Miniaturization Trade Study VOL. PUBLISHER REPORT/D NO. NASA JSC LS-70034 NIMBER NASA JSC LS-70034 ations NASA JSC LS-70034 ations NASA JSC SM-SE-03 ations NASA JSC CASD-NAS vitoad IV General Dynamics CASD-NAS Vitoad IV General Dynamics CASD-NAS Vitoad IV General Dynamics CASD-NAS Vitoad I General Dynamics CASD-NAS Vitoad I General Dynamics CASD-NAS Vitoad I General Dynamics CASD-NAS	ade Study REPORT/DOCUMENT NUMBER LS-70034 LS-70034 CASD-NAS-74-046 CASD-NAS-74-046 CASD-NAS-74-046 CASD-NAS-74-046 SSS B5-0168 SSS B5-0168	FUBLISHER LOCATION Houston, TX. Houston, TX. San Diego, CA. San Diego, CA. Field, CA. Downey, Ca.	DATE 04/11/88 06/01/83 08/01/83 08/01/74 02/01/81
	5B132	Rockwell Intl.		-	Rockwell International	SSS 85-0137	Downey, CA	09/06/85
	58133	General Electric	Space Station Work Package 3 Definition And Preliminary Demign Commonality Candidates		General Electric Space Systems Division	DRD - 19	Philadelphia 05/10/85 , PA	05/10/85
	5B134	Rockwell Intl.	EMS Data Data Package 2.3A S4203.2, Module Dutfitting/System Commonality Analysis	_	Kockwell International	SSS 85-0158	Downey, CA	10/28/85

Page No. 4 05/25/89	Table 4.1-2 Biblog	4.1-2 Biblography for Ministurization Trade Study	ade Study		
ID # AUTHOR	TITLE VOL.	VOL. PUBLISHER No.	REPORT/DOCUNENT NUMBER	PUBLISHER LOCATION	DATE
SB135 NASA JSC	Space Station Freedom Human-Oriented Life Sciences Research Baseline Keference Experiment Scenario	JSC- Medical Sciences Space Station Office	Blue Book	Houston, TX. 10/01/88	10/01/88
SB139 NASA JSC	July 1988 Pogress Report On Experiment Standard User Interfaces Study	JSC - Life Sciences Project Division		Haustan, TX. 07/01/88	07/01/88
58140 Rockwell Intl.	EMS Data Data Package 2.3A 54207.2, 555 Commonality Analysis	Rockwell International	SSS 85-0079	Dawney, CA	10/04/85
SBIAI NASA DSSA	Life Sciences Space Station Planning Document: A Reference Payload For The Life Sciences Research Facility	Office of Space Science and Applications	NASA TM 89188	Wa≤hington, D.C.	01/01/86
SB144 Huffstætler, W.	Skylab Bicmedical Hardware Development	AIAA 20th Annual Meeting		L <mark>as Angeles,</mark> 08/22/74 CA	08/22/74
58146 Anderson, A.	Progressive Autonomy - For Space Station Systems Operation	AIAA		New Yark, NY 06/05/84	06/05/84
SB147 NASA JSC	Life Sciences Research Laboratory (LSRL) Human Research Facility forSpace Station Initial Operating Configuration (100) Science Reqts.	NASA JSC	JSC 20799	Houston, TX	10/01/85
SB148 MDAC	Crew Health Care System (CHec) Development Plan	Mcdonnell Duuglas Space Station Co.		Hauston, TX.	01/28/89
SB149 Minsky, M.	Engines of Creation	Anchor Press		New York, NY 01/10/86	01/10/86
SBI50 MDAC	Crew Health Care	MDAC	NDC H3724	Houston, Texas	11/01/88

05/25/89	Table 4.1-2 Bible	4.1-2 Biblography for Miniaturization Trade Study	rade Study		
ID N AUTHOR	711LE V	VDL. PUBLIGHER ND.	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
SBI54 NASA JSC	Mission Integration Plan	NASA JSC	SSP 30000 Appendix D	Haustan, TX.	04/30/86
58155 Pacheo	Analyzing Commonality in a System	Baeing	NASA STI Facility	Baltimore, MD.	03/01/88
SB156 NASA MSFC	Spacelab Configurations				
SbióB Hamaker, Joe	Telephone interview relating to MSFC history and techniques for cost estimating.	Cost Analysis Branch Chief MSFC		Huntsville, Al.	04/27/89
SB169 Booker, Clef	Clef Personal Interview	Man-Systems Division JSC		Houston, TX.	04/04/89
SBI70 Evans, Jim	Personal Interview	Life Science Project Division JSC		Houston, TX.	04/19/89
SBI76 Trawbridge, John	Personal interview relating CHeC experience to miniaturization, make-or-buy	McDonnell Douglas		Houston, TX.	03/29/89
SB178 McFadyen, Gary	Personal Interview relating to life science hardware background at JSC	Southwest Research Institute		Hauston, TX. 04/10/89	04/10/89
SB180 McFadyen	Bioengineering on SBI hardware	Southwest Research Institute		San Antonio, TX.	04/06/89
SBIB1 Allen, Joe	Personal interview - S.S. Life Science AIAA Meeting	Space Industries		Houston, TX.	04/07/89
SB182 Averner, Maurice	Personal interview on CELSS	NASA HQ. CELSS Coordinator		Washington, DC.	04/07/89
5B183 Fogl eman, G. PhD	Personal interview relating to Gas Grain Simulation Facility	NASA AMES		Moffet Field, CA.	04/06/89

Page No. 05/25/89

Ð

	DATE	04710789	04/11/89		05/05/89
	PUBLISHER LOCATION	Pasadena, CA.	Pasadena, CA.	-	Moffet Field, CA
ization Trade Study	KEPORT/DOCUMENT PUBLISHER NUMBER LOCATION				
4.1-2 Biblography for Ministurization Trade Study	VOL. PUBLISHER NG.	NASA JPL	NASA JPL		NASA AMES
Table 4.1-2 Bib	TITLE	Personal Interview relating to modularity and commonality	Personal interview relating to SBI hardware	U.S. Lab Review Workshop	SBI87 McGillroy, B. Personal Interview on CELSS
4			σ		lroy, B. Per CEL
Page No. 05/25/89	ID # AUTHOR	SBI84 White. Bob	SBIB5 Grumm, Richard	SB186 Bo c ing	58187 McG11

5.0 Trade Study

5.1 Relative Cost Analysis of Previous Hardware

The microminiaturized amplifier that was used in the Skylab PMS and will also be used in the SBI BPMF was developed and miniaturized by the Denver Research Institute (DRI). This organization no longer exists and no cost data can be found related to this development. NASA JSC who contracted DRI to do the work does not have the cost data (Ref. SBI#70, personal interview with Jim Evans NASA JSC SE).

There may be other historical data concerning miniaturization and related cost information, but this data was not found in the time frame of this study.

5.2 SBI Hardware Sample Selection

The Space Biology Hardware Baseline list is shown in Appendix A. This list has 169 hardware items, however, only 93 of these items are categorized for SBI functions. This list was based-lined December 1988 and then updated 23 March 1989. Many of these items are in the conceptional phase; however, some are existing hardware items that are in existence today. There will more than likely be future additions and deletions to this baseline list.

The initial survey data analysis was performed to select a sample of the SBHB items which could be potential candidates for miniaturization. With limited study time and a SBHB of 93 items, a method was needed to separate items which could have large cost impact and were worthy of study resource application. The following methods was used. All SBHB items were listed in descending order of probable acquisition cost. Weight was used as an indication of probable acquisition cost based on historical experience in previous space programs. It was found that 34 percent of the items (32 items) accounted for 93 percent of the mass or probable cost (Table 5.2-1). The accumulated volume (8.68M³) of the 32 items represents 87% of the total volume. The accumulated power (8455 watts) represents 82% of total power requirements

The prioritized list of "vital" hardware items was considered for miniaturization. This list was further examined for those items that can be considered as a sample set of candidates for possible miniaturization (Table 5.2-2). This list showing the possible level of miniaturization was developed using all available resources within the constraints of this trade study. This assessment of possible candidates for miniaturization is based upon the best knowledge of the SBI hardware items at the time of this study. There will be additions and deletions from this list as new developments and techniques become known. The items for which miniaturization estimates were left blank in this table ("No" under Sufficient Data) indicates they are new developments still in the conception phase. Selected items from Table 5.2-2 are listed in Table 5.2-3 as the set of best possible candidates for some degree of miniaturization. The candidate sample set in Table 5.2-3 does not include those items where the degree of miniaturization was considered to have low potential at this time (0-10%) or items for which sufficient data was not available for assessment.

5.3 SBI Miniaturization Candidate Selection

Within the candidate sample set (Table 5.2-3) there is one item which was selected as the best candidate to be analyzed in greater detail. The Gas Grain Simulator (GGS) was selected for detailed analysis due to the availability of data (Ref. Appendix E), cooperation of the personnel at ARC (Ref. SBI #83), and the fact that the GGS is the heaviest of all the SBI hardware items (Ref. SBI #87 info on CELSS updated Mass).

The GGS is the only item in the baseline list (Appendix A) for Exobiology. The GGS consists of eight assemblies/subsystems as shown in Table 5.3. There are 21 major hardware subassemblies for the GGS shown in Table 5.3 and Figure 5.3. The percentage (%) of possible miniaturization for each of these 21 hardware subassemblies is shown in Table 5.3 (Ref. SBI#83, telephone interview with Guy Fogleman - Ames). The amount of miniaturization (percentages) selected for the eight subsystems was estimated by projecting the operational use and future development of the hardware. Complexity, hybrid systems, function of each unit, interrelated functions, and overall compatibility, were some of the factors considered in making the final decision of the amount of miniaturization. The GGS hardware has not been built nor have (RFP) gone out at the time of this study. The estimates made for miniaturization are highly subjective and may or not be feasible when more is understood concerning the overall GGS.

5.4 Miniaturized SBI Hardware Performance Impact Analysis

5.4.1 On Orbit Crew Utilization

Most of the experiments using SBI hardware are being conceived to have minimum crew interface. There will be some time required for initial setup and calibration for the individual experiments. These programs and time lines have not been worked out at the time of this report. Miniaturization which violated any operational human factor parameters or ergonomics would not be allowed. Therefore, The possible miniaturization of various hardware items should not effect the utilization of crew time.

5.4.2 Hardware Diagnostics/Repair

Miniaturization of the SBI hardware will not effect the reliability of the components/assemblies. Any design or redesign that includes miniaturization must maintain the original hardware integrity for accurate experiment results. However, the methods of implementing miniaturization and modularity may often be in conflict. Miniaturization uses maximum component integration and packaging efficiency. Modularity may comprise these aspects to allow modular construction. A modular concept would allow a faulty unit to be replaced with a spare unit aiding in hardware diagnostics and repair. Extensive repairs such as replacing individual components within a unit are not in the present design concept. Since miniaturization objectives could deter the implementation of modularity, hardware diagnostics and repair performance could be reduced.

5.4.3 Equipment Accuracy

By groundrule direction, all SBI hardware must be implemented to satisfy the required performance specifications whether constructed using miniaturization or not. Therefore, any miniaturization of assemblies/components can not jeopardize the accuracy of the hardware.

5.5 Relative SBI Miniaturization Cost Impact Analysis

5.5.1 Empirical Cost Relationships

Cost estimating relationships (CERV's) use systems weight and a complexity, n, as the principle factors in deriving design and development (DD) and theoretical first unit (TFU) costs. The exponent, n, increases as complexity increases being on the order of .2 for simple packaged systems, on the order of .4 for mechanisms or simple packaged electronics, and on the order of .6 for distributed complex systems. See Appendix C for a detailed treatment of cost estimating methods including cost estimating relationships.

In the process of analyzing the cost impact of miniaturizing an SBI hardware element, both weight and complexity come into play. Also, one must consider the design factor, df, in cases where more design effort is required or where a redesign is required in order to miniaturize a piece of hardware. As explained in Appendix C, the reduction in weight due to miniaturizing an element and the cost of the redesign effort needed to do so tend to offset each other. The relationship below is used in Appendix C to perform a parametric analysis of cost impact due to miniaturization (weight change and cost change due to redesign necessary to make an item smaller):

 $Cost = df^* (C, * (Wt)^n)$

Where:

w = weight of a module or assembly or part

n = a complexity exponent

df= a design factor reflecting the amount of new design required

 C_1 = constant, taken as unity for comparative purposes.

To understand the relative impact of these factors, several items that can be miniaturized have been identified and the cost impact of miniaturization calculated using the foregoing factors. No actual cost data will be presented in this trade study.

5.5.2 GGS Miniaturization Cost Analysis

Table 5.3 gives the assumptions (design factors and system complexity factors) that were used with the empirical equation from Section 5.5.1. To read Table 5.3 left to right:

Roman numbers are the subsystems mass/weight in kilo grams.

Amount of miniaturization has three columns showing percentages. The components listed under the subsystems were analyzed for miniaturization and then the entire subsystem was given a percentage figure.

The design factor (df) without miniaturization was not considered and therefore a 1.0 was used for this column.

The complexity factor (n) was varied according to the proposed design of that subsystem.

The new design factor(df) is the factor for the anticipated new design or redesign of that subsystem.

The mass percent column is the percent of the subsystem mass to the total mass.

The relative cost factor percent is the percent increase in cost for that subsystem using the factors and analysis described in section 5.5.1.

The last column is the percent of each subsystem prorated. The mass percent times the relative cost factor percent equals the prorate percent.

The appropriate totals are shown at the bottom.

The results from this analysis indicates that there would be a increase in cost of 5 percent for the overall GGS.

The amount of miniaturization shown and the amount of cost increase for each assembly is shown in the last two columns of Table 5.3. These figures are dependant upon the subjective assumptions that were made for df and n factors. The number III and V assemblies have identical weight and miniaturization, but because the df and n factors are different, assembly III shows an increase in cost while V shows a decrease. The total cost increase for miniaturization of this particular hardware item was 5.16%. Most of the SBI hardware items are complex hybrid systems that will require a new or redesign for miniaturization. A large redesign or new design would increase the design factors which would in turn increase the cost. This would also have an effect on the overall design. The miniaturization cost increase percentages are shown in the last column of Table 5.3. The sum of the assembly percentages can be used to estimate a relative cost increase or decrease for the total SBI hardware item based on the amount of miniaturization of each assembly. Miniaturization will generally increase the cost as shown in this analysis. Qualified life cycle cost reduction has not been addressed in the miniaturization life cycle costs.

ITEM \$ PRIGRITIZED BY MASS	HW 1728 4	HARDWARE ITEM NAME	ACCUM % OF ITEMS	MAGG (kg)	ACCUM MASS	ACCUM MASS PERCENT	ACCUM PGWER Percent	ACCUM VOLUME Percent
		-						
1	168	CELSS Test Facility	1	1000.0	1000	28	13	13
2	163	Gas Grain Simulator	2	800.0	1800	51	27	33
3	84	Soft Tissue Imaging System	3	300.0	2100	59	35	46
4	77	Hard Tissue Imaging System	4	136.0	2236	63	38	5:
5	126	Scintillation Counter	5	90.0	2326		42	53
6	74	Force Resistance System	6	70.0	2396		45	57
7	145	Automated Microbal System	8	70.0	2466		45	59
8	155	Total Hyrdocarbon Analyzer	9	70.0	2536		48	61
9	161	Inventory Control System	10	70.0	2606	74	53	63
10	162	Lab Materials Packaging & Handling Equipment	11	70.0	2676	76	58	65
11	163	Test/Checkout/Calibration Instrumentation	12	70.0	2746	78	60	.67
12	106	Neck Baro-Cuff	13	45.2	2791	73	61	63
13	113	Blood Gas Analyzer	14	45.0	2835	BÒ	63	70
14	61	Hass Spectropeter	15	40.7	2877	9:	65	71
15	112	Plant HLPC Ion Chromatograph	16	40.0	2917	83	67	72
16	147	Head/Torso Phantom	17	32.0	2943	83	67	73
17	63	Pulmonary Gas Cylinder Assembly	18	30.0	2973	84	67	7:
18	110	Plant Gas Chromatograph/Mass Spectrometer	19	25.0	3004	85	63	76
19	115	Chemistry System	20	23.0	3027	85	69	77
20	138	Hematology System	22	23.0	3050	36	71	78
21	34	Sample Preparation Device	23	22.0	3072	87	73	73
22	165	Experiment Control Computer System	24	20.1	3092	87	77	60
23	62	Pulmonary Function Equipment Stowage Assembly	/ 25	20.0	3112	88	77	80
24	82	Notion Analysis System	26	20.0	3132	89	77	81
25	99	Anigal Biotelemetry System	27	20.0	3152	89	78	81
26	100	Blood Pressure and Flow Instrumentation	28	20.0	3172	90	60	62
27	109	Venous Pressure Transducer/Display	29	20.0	3192	90	S 1	81
28	129	Cell Handling Accessories	30	20.0	3212	91	82	83
29	57	Bag-in-Box	31	19.0	3231	S 1	82	84
30	111	Plant Gas Cylinder Assembly	32	19.0	3250	92	82	85
31	119	Gas Cylinder Assembly	33	19.0	3263	92	82	86
32	130	Cell Harvestor	34	19.0	3288	93	82	87

NOTES:

1. Total number of SBI hardware items = 93.

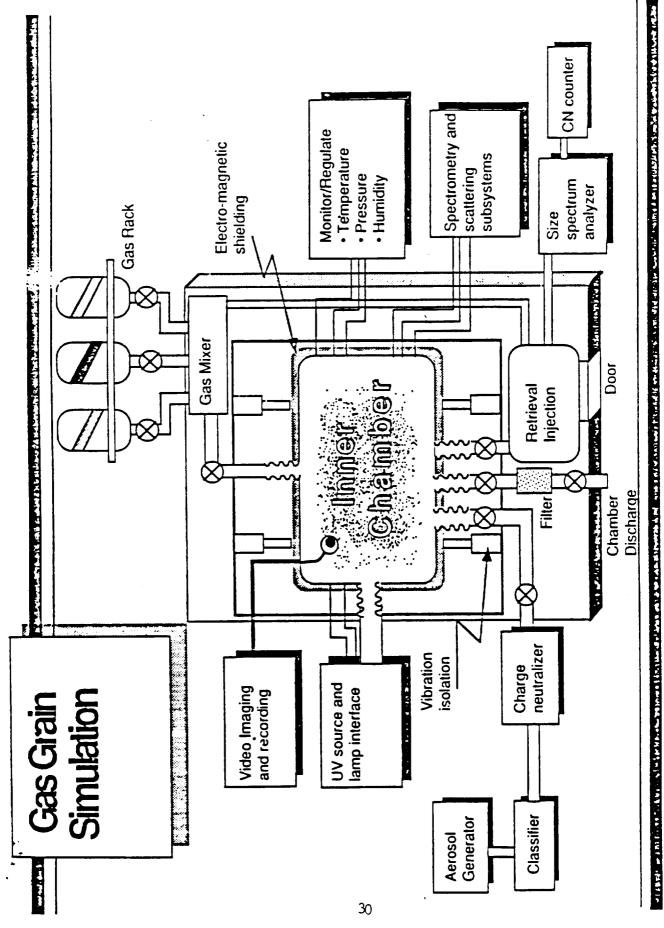
2. 89 items have 3535 kg mass, 10,359 Watts power, and 10 cubic meters volume.

3. 4 items are not currently defined, but all are small.

ORIGINAL PAGE IS OF POOR QUALITY Table 5.2-2 Database Listing for Miniaturization Sample Selection Assessment MINIATURIZATION CONFIDENCE LEVEL (Percent) LEVEL High High High High High High Low Low High High High High High Low MON LOW MO Low MO MOJ Low MOJ 10-20 10-20 0-10 20-50 20-50 10-20 20-50 20-50 20-50 20-50 10-20 10-20 10-20 20-50 10-20 0-10 20-50 20-50 10-20 20-50 20-50 0-10 0-10 0-10 SUFFICIENT DATA Yes No Yes 5 5 5 5 5 5 5 5 7 7 7 7 7 7 7 Yes Yes Yes Yes Yes Yes Yes Yes Yea Yes Ñ ł ₽ ₽ 2 Z ĝ Plant HLPC Ion Chromatograph Head/Torso Phantom Plant Gas Chromatograph/Mass Pulmonary Function Equipment Plant Gas Cylinder Assembly Experiment Control Computer Animal Biotelemetry System Blood Fressure and Flow Soft Tissue Imaging System Hard Tissue Imaging System fotal Hyrdocarbon Analyzer Cell Handling Accessories Automated Microbal System Lab Materials Packaging & Test/Checkout/Calibration Device Inventory Control System Force Resistance System Motion Analysis System Pulmonary Gas Cylinder Gas Cylinder Assembly Scintillation Counter CELSS Test Facility Gas Grain Simulator Hematology System Sample Preparation Fransducer/Display Handling Equipment Blood Gas Analyzer Mass Spectrometer Chemistry System Stowage Assembly Instrumentation Venous Pressure Instrumentation Neck Baro-Cuff Cell Harvestor HARDWARE NAME Spectrometer Bag-in-Box Assembly System HW Item Priority # HW Ite of Items by Number 106 112 61 112 112 147 63 110 82 69 60 00 60 163 62 Mass 33.023 40.91 2220 23 - N M 4 10 4 N B 6 0 8 23 NM 2 1

OLICIANE DANE IS OF MOUN QUALITY 27

Table 5.2-3 Database Listing of Miniaturization Candidate Sample Set


Friority # of Items by	HW Item Number	HARDWARE NAME	MINIATURIZATION CONFIDENCE LEVEL (Percent) LEVEL	CONF I DENCE LEVEL
5050				
1	168	CELSS Test Facility	20-50 Hi	High
64	169	Gas Grain Simulator	-	ցի
വ	126	Scintillation Counter	20-50 Low	14
b	74	Force Resistance System		141
7	145	Automated Microbal System		High
6	161	Inventory Control System	20-50 Hi	High
11	163	Test/Checkout/Calibration	20-50 Low	M
		Instrumentation		
12	106	Neck Baro-Cuff	20-50 Hi	Hi gh
14	61	Mass Spectrometer	10-20 Lc	Гом
16	147	Head/Torso Fhantom	10-20 Hi	High
16	110	Plant Gas Chromatograph/Mass	10-20 Lc	Low
		Spectrometer		
19	115	Chemistry System	10-20 Lc	LOW
20	138	Hematology System	10-20 Lc	Low
22	165	Experiment Control Computer System	20-50 Hi	High
24	82	Motion Analysis System	20-50 Hi	Hi gh
25	66	Animal Biotelemetry System	10-20 Hi	High
27	1.07		10–20 L.c	г.ом
20	129	Cell Handling Accessories	20-50 Hi	Hi gh
29	57	Bag-in-Rox	10+20 Lc	LOW
32	130	Cell Harvestor	20-50 Lo	-aw

28

.

_		MhMute M	Mahadan Possibo Potentia	• Potential		_					
	9	Parcen	Percentage Reduce		10 Miles	Complexity Exponent		Masa Percent	Cent	Ceel	
erre entretor Hardware	004	6-10K	10%	30%	Minim.		5		Percent	٩	
	000							25		- - -	
1. General Purpose Experiment Chamber/Comantinetic Subsystem 1. Chamber	3	×									
		×									Γ-
	80			30%	1.0	Ņ	1.25	2	+16%	+1.6	_
1. Chamber Environment neguency working construction				×							
		×		>							
pressure diaphram			×	<							
											٢
				30.5	0	-	1.30	18.75	+13%	+2.43	
III Aarosol Generation/Measurement Subsystem	150			2 22		:					Ì
5. Aerosol generator, dryer, charge neutralizer				×							
				< ×							
				×							ſ
8. Electrostatic classifier								10			
IV Chamber Illumination. Optica, and Imagining Subsystem	8										ì
9. Fiber optics system		×									
10. Continuous spectrum light source (UV source)		×									
11. Camera, lenses		×						10 75	.03%	5	[
· · · · · · · · · · · · · · · · · · ·	150			30%	-		1.20	c/ 01			٦
V. Speciformenty optiment overteening over 1 Monochromater				×							
13. Photodelectors				× >							
14. Spectrometer		×		×							[
15. Required Lamps							1 20	6 25	+15%	+ 93	
Vi Dedicte Maniculation and Positioning Subsystem	50		10%		0.1	•	2]
16. Acoustic levitator		×	>								
			< ×	<u>. </u>						+	ſ
18. Paricio feineval mechanismo				306	1.0	•	1.30	6.25	+13%	+ 81	
VII. Computer Control and Data Acquisition Subsystem	50	-+-		<u></u>							
19. Computer				< 							
20. User interface		×									
CRT											
Joy alick									-		ſ
Mouse			10%		0.1	-	1.0	5	×10	8	
VIII. Storage Locker	Q										
of Storent Arthan			×				-+-				
	800							001		al.ct	ן
10tal 10r Gub											

Table 5.3 Exobiology Facility/GGS - Miniaturization Analysis

.: .: .)

Figure 5.3

6.0 Conclusion

6.1 Discussion

The items selected for miniaturization (Table 5.2-3) are the best possible candidates based upon their mass, complexity, anticipated use, and information known at the time of this trade study. The results of the cost analysis indicates that miniaturization will generally increase cost. Each assembly/component must be considered separately. It can generally be said that the more complex a system, the greater the cost for miniaturization. This would indicate that some of these items may not be adaptable to miniaturization due to the high increase in cost even when life cycle costs are factored into the analysis.

Life cycle costs were not considered in this trade study; however, miniaturization of payload items could be expected to reduce life cycle costs.

If there were a fixed payload allowable mass assigned to SBI, the use of miniaturization would allow more experiment items per unit of mass. The net result would be that miniaturization would enable the accomplishment of more science within the fixed assigned SBI mass. This benefit could be equated to a cost benefit which might compensate for the additional development expense required for miniaturized hardware. This cost benefit analysis could not be performed in this trade study because of a lack of information.

It would appear that miniaturizing the heaviest items would provide the greatest return on the investment since any cost reduction is a function of the absolute amount of mass eliminated. That is, a 100 kilogram item reduced 20 percent would save 20 kilogram, whereas a 20 percent reduction of a 5 kilogram items would only save 1 kilogram.

A final consideration is that, in the future, some significant SBI hardware item could be excluded from consideration due to a very large mass normally associated with the item. In a case of this nature, it would have to be reduced through miniaturization or not included at all.

6.2 Important Guidelines

- Miniaturization will generally add development cost to the SBI hardware.
- The more complex hybrid systems will add the greatest cost for miniaturization.
- The miniaturization of larger (heavier) items will give a greater return in weight savings than the smaller items.
- Miniaturization is more likely to be cost beneficial when life cycle cost are factored into the overall analysis.
- There may be additional benefits to the science program by increasing the science hardware item (more Experiments) when reducing individual items through miniaturization.

• Not all items can be miniaturized.

6.3 Other Considerations

The interrelationship of these trade studies has not been considered. There could be considerable cost savings with an overall trade study of miniaturization, modularity, commonality, modified COTS versus new build items and other hardware items (Not SBI). See Section 2.6 for other recommendations for future work.

Appendix A - Space Biology Hardware Baseline

.

		THE REPORT OF DARAGE DARAMETERS	WADE DAG	DARAMETERS
H/W ITEM HARDWARE ITEM NAME #	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
1.8 METER CENTRIFUGE FACILITY (1)				
SPECIMEN SUPPORT GROUP (1A)	c		1100	1500
	≲ د	0.96	320	2500
	: 3	0.96	350	800
Life Sciences Glove Box (Cupy 1 or	: ပ	0.48	200	500
Modular Habitat Holding	0	0.10	50	550
	0	0.10	50	220
6 Primate module 7 Rodent Module	C	0.07	40	230
BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2)				
	Ц	0.12	.25	50
8 Fecal Monitoring System (24 Hr) 9 Urine Monitoring System (24 Hr)	ч	0.20	60	50
BIOLOGICAL SAMPLE STORAGE GROUP (2B)	2		0	140
10 Freeze Dryer	3	0.07		
11 Freezer (-20 deg. C)	3	4.48	071	
	3	8.4.5	071	
Freezer Cryogenic (-196 deg. C)	33	60.0		
14 Radiation Shielded Locker (Copy 1 of 2)	\$ 3	0.20	120	300

m 83

Page 1 of 10

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

			UNIT HARD'	HARDWARE PAF	PARAMETERS
H/W	H/W Tew Hardwarf Item Name	SOURCE	VOLUME	MASS	POWER
5 ⊔ ≭		CODE	(cu. m)	(kg)	(watts)
BIOLO	BIOLOGICAL SAMPLE MANAGEMENT FOULT (-) (-)				
	CONTRACTION AND BROCESSING GROUP (2C)				
SAL	APLE COLLECTION AND PROCESSING CITED	ഗ	0.03	80	о _.
16	Animal lissue blopsy Equipment	S	0.02		0
17		3	0.15	40	450
18	Centrifuge Hetrigerated	: 111	0.09	26	200
19	Centrifuge Standard Lab	3	0.01	2	34
20		Ľ	0.01	-	0
21	Drug Administration Equipment	1 0	0.06	TBD	180
22	Electrofusion Device	о <i>С</i> .	0.02	4	0
23	Fixation Unit	> 3	0 48	80	100
24	Fluid Handling Tools/System	: 3	0.96	300	700
25	Laboratory Sciences Workbench	: 3	0.96	350	800
26	/ 2 01 2)	: ۲ د	0.25	80	200
27	o Macroscope Suusel, CUP		0.01		0
28	Muscle Biopsy Equipment	ი ი	0.01	2	0
29	Perfusion & Fixation Unit) (J.	0.05	10	50
30	Plant Care Unit	ი <i>თ</i>	0.01	4	20
31	Plant Harvest/Dissection Unit) Ц	0.01	2	0
32	Radioimmunoassay Prep Device	l v	-0-01-00	1 + 2	0
33	Saliva Collection Unit	о <i>с</i> .	0.17	22	150
34	Sample Preparation Device	, ц	0.02	22	0
35	Shielded Isotope Container	3	0.01	4	20
36	Specimen Labeling Tools/Device	: 3	0.06	20	0
37	Surgery/Dissection 100Is	: 0	A-01.005	5 100 S.02	51-0- 20
38	Sweat Collection Device	ว			

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA	FREEDON		De HARDWARE PA	December 1988 PARAMETERS
H/W ITEM HARDWARE ITEM NAME #	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2), (con't)			• .	
RODENT SUPPORT GROUP (2D)	(ç	c
39 CO2 Administration Device	ທ (10.0	υ,	- °
4.0 Rodent Blood Collection System	S	0.03	01	00
	ა	0.01	2	50
a Dadact Guillating	S	0.01	4	0
rudent 2	S	0.01	e	0
	S	0.01	e	0
	S	0.01	က	0
Podelit Surgery/Dissection	S	0.03	10	50
4.6 Housell Utilite Collection Of Storie 4.7 Rodent Veterinary Unit	S	0.03	10	0
	S	0.05	. 2	140
4.8 Primate Blood Collection System	s S	0.01	-	0
	S	0.05	e	140
	S	0.04	2	0
Primate	S	0.02	S	0
Primate Surgery/Dissection	S	0.01	10	14
Primate Unite Consciou	S	0.03	10	0
	S	0.05	2	0
55 Small Primate Hestralin	1			

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

Page 3 of 10

11 / M/		UNIT HARDWARE	VARE PAR	PARAMETERS
ITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER
74	CODE	(cu. m)	(kg)	(watts)
		(6)		
BIOINSTRUMENTATION & PHYSIOLOGICAL MUNITURING FACILITY		(c)		
PULMONARY ANALYSIS GROUP (3A)				¢
5.6 Ban Assembly	S	0.01	-	0
	S	0.15	19	0
	ш	0.01		0
	S	0.08	13	100
	S	0.01	с С	30
	S	-0:02.087	4040.7	100200
6.1 Mass operation Equipment Stoward Assembly	S	10-38 051	20	0
Dulmonary Gae Gulinder Assembly	S	0.09	30	0
	S	0.02	-	0
	လ	0.01		0
	လ	0.01	2	0
PHYSICAL MONITORING GROUP (3B)	1			L C
67 Accelerometer And Recorder	S	0.04	91	сr u
	S	0.02	/ 001	0
Cameras	3	0.15	50	150
	S	0-06 015	180-16	180 /30
	ა	0.06	180 Z	180
o Electromyonranh (EMG)	ш	0.01	2	20
	ш	0.01		10
-	S	0.40	70	100-220
	S	0.03 .063	1 TBD-2	780 Bat. rf
	ш	0.01	2	25
				Page 4 of 10

H/W ITEM	H/W ITEM HARDWARE ITEM NAME	SOURCE		MASS	POWER
#		CODE	(cu. m)	(kg)	(watts)
BIOIN	BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING	FACILITY	(con't)		
Hd	PHYSICAL MONITORING GROUP (3B) (con't)				
77	Hard Tissue Imaging System	ഗ	0.29	136	300
78	Mass Calibration Unit	S	0.01	N	0
67	Mass Measurement Device-Body	ш	0.65	35	15
80	Mass Measurement Device-Micro	3	0.08	17	15
81	Mass Measurement Device-Small	3	0.08	17	15
82	Motion Analysis System	S	0.05	20	100
83	Plethysmooraph Measuring System	S	0.01	e	30
84	Soft Tissue Imaging System	S	0.96	300	800
85	Tonometer ·	S	0:04.0002	1008F	O Bat OP
86	Video System	ш	0.10	30	300
NE	NEUROPHYSIOLOGICAL ANALYSIS GROUP (3C)				
87	EEG Cap	S	0.01	. 2	0
88	EEG Signal Conditioner	S	0.01	2	20
89	Electrode Impedance Meter	ш	0.01	-	0
06	Electro-oculoaraph (EOG)	ш	0.01	5	20
91	Neurovestibular ECDI	ш	0.09	11	120
92	Neurovestibular Helmet Interface Box	Ш	0.01	5	20
63	Neurovestibular Helmet Assembly	ш	0.04	13	110
94		ш	0.01	2	20
92		ш	0.01	2	20
96		ш	0.12	38	220
26	Subject Restraint System	ш	0.05	18	0
86	Visual Tracking System	S	0.01	2	20
source	source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01			-	Page 5 of 10

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

Page 6 of 10

Source code source source source	VOLUME (cu. m) 0.13 0.08 0.06 0.020	ME MASS m) (kg) 3 45 0 30 8 23 06 TBD 02 6	POWER (watts) 250 200 100 100
4	0.13 0.13 0.08 0.06 0.02 0.20	45 30 23 1BD 6	250 200 100 100
v m v v m ≥ v	0.13 0.10 0.08 0.06 0.02	45 30 23 6	250 200 100 18D
ഗ ല ഗ ഗ ല ≳ ഗ	0.13 0.10 0.08 0.06 0.20	45 30 23 1BD 6	250 200 100 100
m s s m w w	0.10 0.08 0.06 0.02 0.20	30 23 1BD 6	200 100 TBD
ى ≷ ₪ ى ى	0.08 0.06 0.02 0.20	23 TBD 6	100 TBD 100
o ≝ S o	0.06 0.02 0.20	6	18D 100
ш Х №	0.02 0.20	9	100
≥ ∾	0.20))
S		25	100
	0.09	19	0
3	0.12	40	100
8	0.16	50	400
ш	0.02	5	20
N	0.02	7	5
S	0.03	•10	100
ш	0.05	20	0
S	0.24	06	500
8	0.11	40	300
ш	0.16	55	400
ł		(C L
S	0.05	2.0	0.5
S	0.06	19	50
S	0.06	180	180
ш	0.16	40	300
ů	0.16	40	300
	しょうろう 目へら目のかる		0.20 0.12 0.12 0.12 0.03 0.02 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16

		UNIT HARD	UNIT HARDWARE PARAMETERS	IAMETERS
H/W ITEM HARDWARE ITEM NAME	SOURCE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
# ANALYTICAL INSTRUMENTS FACILITY (4) (con't)			•	
CELL ANALYSIS GROUP (4B) (con't)	c	10 0	0	
	n u	0.01	1 0	20
135 Chromosomal Slide Preparation Device	y u	0.05	TBD	
_	уШ	0.24	36	
	ט נ	0.07	23	
138 Hematology System	ິ	0.25.03	70-11-4	
139 Image Digitizing System 140 Microscope System (Optical & Stereo	> 3	0.40	100	
	t		c	
141 Mitogen Culture Device	، لا	0.01	u c	2 7 7
	S	0.01	V (> c
	ш	0.01	2	20

)

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

Page 8 of 10

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA	I FREEDON	A ERA	Dесе	December 1988
		UNIT HARDWARE PARAMETERS	ARE PARA	AMETERS
ITEM HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
LAB SUPPORT EQUIPMENT FACILITY (5)				
ENVIRONMENTAL MONITORING & CONTROL GROUP (5A)	:		ĊĊ	
144 Accelerometer Subsystem	≥ 0	01.0	, , , ,	500 LIO
145 Automated Microbic System	n 3	0.20) L - C	
146 Dosimeter, Passive	≥ 0	0.03	THP 32	
Head/Torso Phantom	n 3	0.16	50	400
	: v:	0.01	2	01103
Microbial Preparation System	3	0 2 0	80	0
_	: v.	01-00S	4-1.45	0
) <i>(</i> ,	0.01	5	0
Solid Sorbent Air Sampler	ი თ.	0.03	10	20
	ۍ د	0-01.00/	7802	0
Tissue Equivalent Proportion	o S	0.20	70	250
155 LOTAL HYDROCALDULE ANIALY CE	I			
HARDWARF MAINTENANCE GROUP (5B)				
	3	0.03	10	100
	3	0.30	100	0
15/ Valinera Lucker	3	0.20	70	500
_	3	0.06	20	50
159 Digital Multimeter 160 General Purpose Hand Tools	8	0.10	30	0
LOGISTICS CONTROL GROUP (5C)	Ċ		Ċ	500
161 Inventory Control System	ົ້	0.20	07	500
162 Lab Materials Packaging & Handling Equipment 163 Test/Checkout/Calibration Instrumentation	ით	0.20	2.0	200
rodes: C=18.CEP S=SBLE=E				Page 9 of 10

ITEM HARDWARE ITEM NAME SOURCE VOL # CODE (cu	VOI IIME	MASS	POWER
		(kg)	(watts)
CENTRALIZED LIFE SCIENCES COMPUTER FACILITY (6)		•	
LIFE SCIENCES DATA GROUP (6A)164 Digital Recording Oscilloscope165 Experiment Control Computer System166 Multichannel Data Recorder167 Voice Recorder	0.03 0.05 0.09 0.01 .003	10 20 30 4- <i>26</i>	100 400 150 0 Bat nP
CLOSED ECOLOGICAL LIFE SUPPORT FACILITY (7)			
FEAST GROUP (7A) 168 CELSS Test Facility	1.92	1000	1300
EXOBIOLOGY FACILITY (8)			
GAS/GRAIN GROUP (8A) 169 Gas Grain Simulator	1.92	800	1500

From Neal Jer' on Sigg

LIFE SCIENCES MARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

4

Baselined: December 1988

S POWER S POWER (waits) S 15 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					- 1		UNIT HARDWARE	NARE P	PARAMETERS	œ
Indminute Indmit Text Source for with the mass Power for mas Power	MIN			UNIT HAR		RAMETERS	UPDATED:	M - C	ву:DRP	u
Thread Transmission CODE (cu m)		WADDWADE ITEM NAME	OURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	s
Armal Trave Blopy Equipment 0.03 10 0 Bood Collection System 5 0.02 1 0 Faction Unit 5 0.02 1 0 1 Faction Unit 5 0.02 1 0 1 1 Faction Unit 5 0.03 10 2 0 1			CODE	(cu. m)	(kg)	(walls)		(kg)	(walls)	•
Biod Calincipan 5 0.02 1 0 1	- -	Animal Tissue Bloosy Equipment	s	0.03	8	0				<
Electrolution Device Cole TBD TBD TBD TBD TBD Relation Unit Service Service<		Blood Collection System	S	0.02	-	0				-
Finalion Unit Endition Unit Endit Unit Endition Unit Endition Un			S	0.06	081	180				-
Musick Blopy Equipment 5 0.01 2 0 Part Harvar0Plasection Unit 5 0.01 2 0 Satista Calection Devices 5 0.01 2 0 Rodent Buod Callection System 5 0.01 3 0 Rodent Sugery Platform 5 0.01 3 0 Rodent Sugery Platform 5 0.01 3 0 Rodent Sugery Platform 5 0.03 10 2 Rodent Sugery Platform 5	4 C		Ø	0.02	4	0				
Participant Fraining S 0.01 2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 0.2 0 0.01 2 0 <th0< td=""><td></td><td></td><td>S</td><td>0.01</td><td>-</td><td>0</td><td></td><td></td><td></td><td><</td></th0<>			S	0.01	-	0				<
Parton Color Color <t< td=""><td></td><td></td><td>ŝ</td><td>0.01</td><td>N</td><td>0</td><td></td><td></td><td></td><td><</td></t<>			ŝ	0.01	N	0				<
Plant Hurser/Officient (Mit Salita Collection Unit Salita Collection Davids Salita Collection System Davids Finandi Davids (CVTD) S 0.01 3 0.01 2 Solid Sugary/Dissection Unit Solid Sugary/Dissection Unit Solid Sugary/Dissection Unit Solid Sugary/Dissection Unit Solid Salita Sugary Plattern Solid Salita Solid Salita Sugary Plattern Solid Salita Sugary Plattern Solid Salita Solid Salita Sugary Plattern Solid Salita Solid Salita Sugary Plattern Solid Salita			5	0.05	10	50				<
Sample Preparation Device 0.001 0.2 0 1 Sample Preparation Device Sample Preparation Device 0.001 0.2 0 1 Sample Preparation Device Cost Collection Device 0.01 2 0.01 2 0 1 Cost Administration Device Cost Administration Device 0.01 2 0.01 2 0 1 2 1 0	5		. 0.	0.01	-	20				<
Sample Presenton Unit Sample State collection Device Sample Presenton Unit Sample Presenton Unit Rodent Guoda Varientea Thermal Device (CVTD) Rodent Guoda Varientea Thermal Device (CVTD) Rodent Guoda Varientea Thermal Device (CVTD) Rodent Guoda Varientea Rodent Guoda Varientea Rodent Guoda Varientea Rodent Hastalin Rodent Varientea Rodent Varientea Rodentea Rodent Varientea Rodent Varientea Rod	5	Plant HarvesvDissection Unit	<i>.</i>	10.0	•	0	0.001		0	~
Sample Preparation Device Sample Preparation Device Search of Neural Collection System Collection Device Collection System Collection System Collection System Fielder Restanting Roden (Surgital Variabae) Text Table 5 0.01 3 0.005 5.05 15 10 1005 5.05 15 10 1005 5.05 15 10 1005 1005	33	Saliva Collection Unit	, ,	0.0		150				<.,
Sweat Collection Device 5 0.01 3 0.01 3 0.01 4 6 Rodent Bood Collection Device Rodent Bood Collection Device 5 0.01 2 5 6<	46		n 6				0 005	5.05		-
CO2 Administration Device CO2 Administration Device Ridden I Bood Collection System S 0.01 2 S 0.01 2 S	38		n (3 -	, c				<
Rodent Bood Callection System A Rodent Guddal Variabure Thermal Device (CVTD) 5 0.01 2 5 0 Rodent Surgery Platform 5 0.01 3 0 A A Rodent Surgery Platform 5 0.01 3 0 A A Rodent Surgery Platform 5 0.01 3 0 A A Rodent Universer/Instruction Unit 5 0.01 3 0 A A Rodent Universer/Instruction Unit 5 0.01 3 0 A B A A A <t< td=""><td>6E</td><td>-</td><td>n (</td><td></td><td>, ,</td><td>, ,</td><td></td><td></td><td></td><td><</td></t<>	6 E	-	n (, ,	, ,				<
Rodent Gutal Vartebras Thermal Davids (CVID) 5 0.01 4 6 Rodent Surgery Platform 5 0.01 3 0 6 6 Rodent Surgery Platform 5 0.01 3 0 6 6 Rodent Surgery Platform 5 0.01 3 0 6 6 6 Rodent Surgery Platform 5 0.01 3 0 10 6	4	Rodent Blood Collection System	ימ	0.03	2.					<
Roden Guildine 5 0.01 3 0	4	Rodent Caudal Vertebrae Thermal Device (CVTD)	in a	0.01	. .	2				<
Rodent Kastralit 5 0.01 3 0 Rodent Surgery Platform Rodent Surgery Platform 5 0.01 3 0 Rodent Surgery Platform Rodent Surgery Platform 5 0.01 3 0 Rodent Surgery Platform Rodent Surgery Platform 5 0.01 3 0 Rodent Surgery Platform 5 0.03 10 5 Rodent Valenhary Unit 5 0.03 10 0 Pinale Blood Collection System 5 0.01 1 0 Pinale Blood Collection System 5 0.03 10 0 Pinale Suggry/Disaction Unit 5 0.03 10 0 Pinale Suggry/Disaction Unit 5 0.03 10 0 Pinale Suggry/Disaction Unit 5 0.03 10 0 Pinale Valenary Unit 5 0.03 10 0 Pinale Valenary Unit 5 0.01 10 0 Pinale Valenary Valenary 5 0.01 10 Pinale Valenary 5 0.01 10 0 Pinale Suggry/Disaction Unit 5 0.03 10 0 Pinale Valenary Valenary 5	42		S	0.01	•	5 (
Rodeni Surgery Platform 5 0.01 3 0 1 1 0 1	64		S	0.01	m (•				{ ■
Roderi Surgery/Dissection Unit 5 0.01 3 0 10 0 Roden Urine Collection System 5 0.03 10 0 0 0 Roden Urine Collection System 5 0.03 10 0 0 0 Finale BNP Device 5 0.01 1 0 0 0 0 0 Primate BNP Device 5 0.01 1 0 0 1 0	4		S	0.01	n (• •				{ < <
Rodent Uhine Collection System 5 0.03 10 50 Rodent Vaterinary Unit 5 0.03 10 50 Primate Blood Collection System 5 0.03 10 50 Primate Blood Collection System 5 0.03 10 50 Primate Blood Collection System 5 0.01 1 0 Primate LBNP Device 5 0.03 10 10 0 Primate Units Sugery/Disaction Unit 5 0.03 10 10 14 Primate Vinite Collection System 5 0.03 10 10 10 10 Primate Vinite Collection System 5 0.03 10 11 10 14 Primate Vinite Collection System 5 0.03 10 11 10 14 Bag Arsembly 5 0.01 1 0 11 10 14 Bag Arsembly 5 0.01 1 0 10 10 10 Bag Arsembly 5 0.01 1 0 0 1 10 10 </td <td>45</td> <td></td> <td>S</td> <td>0.01</td> <td>m (</td> <td>- ;</td> <td></td> <td></td> <td></td> <td>{ <</td>	45		S	0.01	m (- ;				{ <
Rodent Veterinary Unit 5 0.03 10 0 0 Primate Blood Collection System 5 0.01 1 0 0 Primate Blood Collection System 5 0.01 1 0 0 Primate Blood Collection System 5 0.03 3 140 0 Primate LBNP Device 5 0.01 10 0 1 0 Primate Surgery Platform 5 0.01 10 14 0 0 1 Primate Surgery Platform 5 0.01 10 14 0 0 1 0 <	46		S	0.03	0	09				ا ا
Primate Blood Collection System50.052140Primate Blood Collection System50.0110Primate LBNP Device50.033140Primate LBNP Device50.0350Primate Surgery Platform50.0350Primate Surgery Platform50.031014Primate Surgery/Dissection Unit50.011014Primate Unite Collection System50.031010Primate Unite Collection System50.011110Ranall Primate Naterialit50.011110Bag Asombly50.011100Bag Asombly50.011100Bag Asombly50.011100Bag Asombly50.02100Bag Asombly50.013100Bag Asombly50.02100Bag Asombly50.02100Bag Asombly50.013100Bag Asombly50.02100Bag Asombly50.02100Bag Asombly50.031000Bag Asombly50.03100Bag Asombly50.03100Bag Asombly50.03000 <td>4</td> <td></td> <td>S</td> <td></td> <td>10</td> <td>0</td> <td></td> <td></td> <td></td> <td>د</td>	4		S		10	0				د
Primate Handling Equipment 5 0.01 1 Primate LBNP Device 5 0.03 5 0 Primate LBNP Device 5 0.03 5 0 Primate Surgery Platform 5 0.03 5 0 Primate Surgery Platform 5 0.02 5 0 Primate Surgery Platform 5 0.01 10 14 Primate Surgery Distanction Unit 5 0.01 10 14 Primate Unine Collection System 5 0.01 10 14 Primate Veterinary Unit 5 0.01 11 0 Randl Primate Restraint 5 0.01 11 0 Bag Asambly 5 0.01 1 0 Bag Instandly 5 0.01 1 0 Bag Instandly 5 0.01 1 0 Bag Instandly 5 0.01 1 100 Bag Asambly 5 0.01 1 20 Bag Instandly 5 0.02 1 0 Bag Instandly 5 0.01 1 0 Bag Instandly 5 0.02 1 0 Bag Instandly 5 <td>48</td> <td></td> <td>٠</td> <td></td> <td>N</td> <td></td> <td></td> <td></td> <td></td> <td><</td>	48		٠		N					<
Primate LBNP Device 5 0.05 3 140 Primate LBNP Device Finate Surgery Platform 5 0.04 5 0 Primate Surgery Platform 5 0.01 10 10 14 10 Primate Surgery Platform 5 0.01 10 10 10 14 Primate Surgery/Dissection Unit 5 0.03 10 10 10 14 Primate Unite Collection System 5 0.03 10 0 14 10 14 Primate Venetinary Unit 5 0.03 10 0 11 0 10	49		S	0.01	-					
Primate Surgery Platform S 0.04 5 0 Primate Surgery/Dissection Unit S 0.02 5 0 Primate Surgery/Dissection Unit S 0.01 10 14 Primate Unine Collection System S 0.03 10 0 Primate Veterinary Unit S 0.03 10 0 Rault Primate Nestraint S 0.03 10 0 Bag Assembly S 0.01 1 0 Bag-in-Box S 0.01 1 0 Mask/Regulator Systembly S 0.01 1 Mask/Regulator Systembly S 0.02 1 <td< td=""><td>50</td><td></td><td>S</td><td>0.05</td><td>ה י</td><td>041</td><td></td><td></td><td></td><td>: < -</td></td<>	50		S	0.05	ה י	041				: < -
Primate Sugery/Dissection Unit 5 0.02 5 0 Primate Unine Collection System 5 0.01 10 14 Primate Unine Collection System 5 0.03 10 0 Primate Unine Collection System 5 0.03 10 0 Ranal Primate Netrelinary Unit 5 0.01 1 0 Bag Assembly 5 0.01 1 0 Bag-in-Box 5 0.01 1 0 Bag-in-Box 5 0.01 3 30 Mask/Regulator System 5 0.01 3 30 Mask/Regulator System 5 0.02 10 0 Mask/Regulator System 5 0.02 10 0 Mask/Regulator System 5 0.02 10 0 0 Mask/Regulator System 5 0.02 10 0 0 Mask/Regulator System 5 0.02 10 0 0 Mask/Regulator Syste	5		ა	0.04	ים	- (<
Primate Utiline Gollection SystemS0.011010Primate Utiline Gollection SystemS0.031000Primate Veterinary UnitS0.031000Small Primate RestraintS0.0110Bag AssemblyS0.0110Bag in-BoxBag-in-BoxS0.0110Bag-in-BoxElectronics Control AssemblyS0.01330Bag-in-BoxMaskRegutator SystemS0.01330MaskRegutator SystemS0.013300Mass SpectrometerMass SpectrometerS0.0210Mass SpectrometerS0.02101000.061Rest AssemblyS0.02100Spirometry AssemblyS0.0210Spirometry AssemblyS0.0110Spirometry AssemblyS0.0120Spirometry AssemblyS0.0120Spirometry AssemblyS0.0120Spirometry AssemblyS0.0120Spirometry AssemblyS0.0110Spirometry AssemblyS0.0120Spirometry AssemblyS0.0120Spirometry AssemblyS0.0120Spirometry AssemblyS0.0120Spirometry AssemblyS00	5		S	0.02	ιn (- :				<
Primate Veterinary Unit S 0.03 10 0 Small Primate Restraint S 0.03 10 0 Bag Assembly S 0.01 1 0 Bag Assembly S 0.01 1 0 Bag In-Box Electronics Control Assembly S 0.01 1 0 Bag-In-Box S 0.01 1 1 0 0 1 Bag-In-Box S 0.01 1 1 0 0 1 1 0 Bag-In-Box S 0.01 1 1 0	5		S	0.01	01			+		<
Small Primate Restraint 5 0.05 2 0 Bag Assembly 5 0.01 1 0 0 Bag In-Box 5 0.01 1 0 0 Bag-In-Box 5 0.01 1 0 0 Bag-In-Box 5 0.01 1 1 0 Bag-In-Box 5 0.01 1 1 0 Bag-In-Box 5 0.01 1 1 0 Mask/Regulator System 5 0.02 10 0 0 Mass Spectrometer 5 0.02 10 100 0 0 Pulmonary Function Equipment Stowege Assembly 5 0.02 10 0 0 0 Pulmonary Gas Cylinder Assembly 5 0.03 0 0 0 0 0 Pulmonary Function Equipment Stowege Assembly 5 0.03 0 0 0 0 0 0 Pulmonary Gas Cylinder Assembly 5 0.03 0 0 0 0 0 0 0<	10		S	0.03	2 (5 0				<
Bag Asembly Bag Asembly 5 0.01 1 0 Bag-In-Box Electronics Control Assembly 5 0.08 13 100 Bag-In-Box Electronics Control Assembly 5 0.01 3 30 0 Mesk/Regulator System 5 0.01 3 30 0.087 40.7 200 Mess Spectrometer 5 0.02 10 100 0.087 40.7 200 Pulmonary Function Equipment Stowage Assembly 5 0.09 30 0 0 0.51 20 0 Pulmonary Gas Cylinder Assembly 5 0.09 30 <	ŝ		S S	0.05						
Bag-In-Box Bag-In-Box Electronics Control Assembly 5 0.08 13 100 Mask/Regulator System 5 0.01 3 30 0.087 40.7 200 Mass Spectrometer 5 0.02 10 100 0.087 40.7 200 Mass Spectrometer 5 0.02 10 100 0.051 20 0 Pulmonary Function Equipment Stowege Assembly 5 0.09 30 0 0 0.051 20 0 Pulmonary Gas Cylinder Assembly 5 0.09 30 0	S		s i	0.01	- ;					~
Electronics Control Assembly S 0.08 40.7 200 Mask/Regulator System 3 0.01 3 30 0.087 40.7 200 Mask/Regulator System S 0.02 10 100 0.087 40.7 200 Mass Spectrometer Namonary Function Equipment Stowage Assembly S 0.39 20 0	ŝ		s	0.15	, c 	001		 -		
Mask/Regulator System Solution	ŝ		ທ່	0.08	<u> </u>					
Mass SpectrometerSectrometerSectrometerSectrometerSectrometerSectrometerPulmonary Function Equipment Stowage AssemblySectrometer0.0392000Pulmonary Function Equipment Stowage AssemblySectrometer0.093000Pulmonary Gas Cylinder AssemblySectrometer0.02100Rebreathing AssemblySectrometer0.02100Spirometer AssemblySectrometer0.0110Acritocoder And RecorderSectrometer0.0120Acritocoder And RecorderSectrometer0.04160	ē		<i>i</i> n (0.01			5	40.7	200	
Pulmonary Function Equipment Stowage Assembly S 0.39 20 0 Pulmonary Gas Cylinder Assembly S 0.09 30 0 0 Pulmonary Gas Cylinder Assembly S 0.09 30 0 0 Rebreathing Assembly S 0.02 1 0 0 Spirometry Assembly S 0.01 1 0 Sylinge (3 Liter Calibration) S 0.01 2 0 Anothereder Anothereder S 0.04 16 0	9	Mass Spectrometer	s S	0.02	- 0	2		00	0	
Pulmonary Gas Cylinder AssemblyS0.09JUORebreathing AssemblyS0.0210Spirometry AssemblyS0.0110Sylinge (3 Liter Calibration)S0.0120Solormetry Actionation And RecorderS0.041606	ġ	Pulmonary Function Equipment	ŝ	95.0			50.0		,	
Rebreathing Assembly S 0.02 1 0 Spirometry Assembly S 0.01 1 0 Sylinge (3 Liter Calibration) S 0.01 2 0 Sylinge (3 Liter Calibration) S 0.01 16 06	ف	-	S	0.09	00	.				
Spirometry Assembly S 0.01 1 0 0 0.01 1 0 Sylinge (3 Liter Calibration) S 0.01 2 0 0.01 2 0 0.01 16.06 0.01 16	9		S	0.02	-					
Syringe (3 Liter Calibration) S 0.01 2 0 Accommondar And Recorder S 0.04 15 35 16.06	9		s	0.01	-	0				<u>' </u>
Accident and Particle S 0.04 16 35 [10.09]	<u>ب</u>		S	0.01	2	> [<u>' </u> _
) (S	0.04	16	35		10.01		7

Updated: 3/22/89

A=ARC, J=JSC, '=Prime

Page 1

Baselined: December 1988

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

1

-

-

International constraints Matrix matrix field Unit Matrix matrix field Unit Anitowatis TEM MAME Source Unit Matrix matrix Unit Anitomatic Anitomatic Source Electionational Electionational Unit Anitomatic Source Council Mass Fourtier Unit Anitomatic Source Source Electionational Electionational Electionational Electionational Source Source Electionational Source Electionational Funds Statilityanografic Source Source Source Electionational Funds Statilityanografic Source Source Source Source Source Funds Statilityanografic Source Source Source Source Source Funds Statilityanografic Source Source </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>UNIT HANUWARE</th> <th></th> <th></th> <th>:</th>						UNIT HANUWARE			:
MAIDWARE ITEM MAKE SOURCE VOLUME MASS POWER VOLUME Anthropomettic Measurement System 5 0.05 TBO	M/M		UNIT HARD		RAMETERS	UPDATED:	J-Mar	BY:DRP	ш
Anthropometic Masurement System CODE (eu. m) (eg) (waits) (eu. m) Anthropometic Masurement System 5 0.02 180 0 00152 Compliance System 5 0.03 180 100 00152 Ferce Mastinence System 5 0.03 180 100 00152 Fandus Camera 5 0.03 180 180 0 00152 Haid Tissue Imaging System 5 0.03 120 180 0 000326 Pithytamograph Masurking System 5 0.01 2 0 0.00326 Pithytamograph 5 0.01 2 0 0.0	ITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	s
Anthropometic Masurement System 5 0.02 180 0 0.0152 Compliance Noturnments S 0.06 180 180 180 100 Electomephalementer S 0.03 180 180 180 100 Fundus Cabbalton Unit S 0.03 180 180 180 100 Hard Tissue imaging System S 0.01 2 0 0 000326 Hard Tissue imaging System S 0.01 2 0 0 000226 Pathyrmograph Masurending System S 0.01 2 0 0 000226 FEIG Signal Conditionet S 0.01 2 2 0 0 000226 FEIG Signal Conditionet S 0.01 2 2 0<		CODE	(cu. m)	(kg)	(walls)	(a. m)	(kg)	(walls)	•
Compliance Volumometer S 0.06 TBD TBD 0.0152 Fercervenergendemegnesingerm (EMG) 5 0.00 700 TBD TBD 0.0153 Fercervenergenergerm (EMG) 5 0.01 TBD TBD TBD 0.0153 Ferce Metaliners System 5 0.01 3 0.01 0.013 Kundus Cannes Maas Cabbradion Unit 5 0.01 3 0.01 0.013 Katas Cabbradion Unit Solit Tissue Insigning System 5 0.01 2 0 0.00226 Solit Tissue Insigning System 5 0.01 2 0 0.010226 Solit Tissue Insigning System 5 0.01 2 0 0.010226 Conometer 5 0.01 2 0 0 0.0132 Conometer 5 0.01 2 0 0 0.0132 Conometer 5 0.01 2 0 0 0 0 0 0 0 0<	Anthropometric Measurement	S	0.02	180 081	0		1		-
Electroncopriadomagonalognen (EMG) 5 0.06 TBD TBD Fundus Cambonagonalognen (EMG) 5 0.03 TD 100 0.003 Fundus Cambonagonalognen (EMG) 5 0.03 TD 100 0.003 Hard Tissue imaging System 5 0.01 2 0 0.00226 Pentytamograph Maasuring System 5 0.01 2 0 0.000256 Soit Tissue imaging System 5 0.01 2 0 0.000256 FEG Signal Conditioner 5 0.01 2 0 0 0.002256 EEG Cap Antual Tactoring System 5 0.01 2 0 0 0.002256 EEG Signal Conditioner 5 0.01 2 0 0 0.000226 EEG Signal Conditioner 5 0.01 2 0 0 0.000226 EEG Signal Conditioner 5 0.01 2 0 0 0.000256 EEG Signal Conditioner 5 0.01	Compliance Volumometer	S	0.06	1BO	081	0.0152	16	130	-
Force Relationer System 5 0.40 70 100 0.003 Had Tissue Imaging System 5 0.01 2 0 0.003 Had Tissue Imaging System 5 0.01 2 0 0 0.003 Mass Calibration Unit 5 0.01 2 0 0 0.003 Path Tissue Imaging System 5 0.01 70 0 0 0.003 Soit Tissue Imaging System 5 0.01 70 0 0 0.00226 Soit Tissue Imaging System 5 0.01 7 2 0 Soit Tissue Imaging System 5 0.01 7 2 0 Connenter 5 0.01 2 2 0 0 0.00226 FEG Signal Conditioner 5 0.01 2		S	0.06	TBO	081		2		-
Fundua Canvaa 5 0.03 TB0 TB0 0.03 Had Tisuva Imaging System 5 0.01 3 30 0003 Mast Calibration Unit 5 0.01 3 30 0003 Pellity imaging System 5 0.01 136 30 000 Pellity imaging System 5 0.01 120 3 30 Pellity imaging System 5 0.01 120 0 0 FEGS Cap 5 0.01 2 0 0 0 FEGS Cap 5 0.01 2 0 <t< th=""><th>74 Force Resistance System</th><td>S</td><td>0.40</td><td>70</td><td>100</td><td></td><td></td><td>220</td><td>-</td></t<>	74 Force Resistance System	S	0.40	70	100			220	-
Haid Tissue Imaging System 5 0.20 136 300 Maiss Calibration Uhiti 5 0.01 2 0 Maiss Calibration Uhiti 5 0.01 2 0 Pehtyamograph Masuuring System 5 0.01 2 0 Soit Tissue Imaging System 5 0.01 2 0 Stat Tissue Imaging System 5 0.01 2 0 Soit Tissue Imaging System 5 0.01 2 0 Soit Tissue Imaging System 5 0.01 2 2 Atimal Biolatemetry System 5 0.01 2 2 Maiss Biolatemetry System 5 0.01 2 2 Moral Disolatemetry System 5 0.01 2 2 Moral Biolatemetry System 5 0.01 2 2 Moral Disolatemetry System 5 0.01 2 2 Moral Disolatemetry System 5 0.01 2 2 Moral Disolatemetry System		S	0.03	081	Oat	0.003	2	Battery Op	-
Mass Calibration Unit 5 0.01 2 0 Molion Anaylal System 5 0.01 30 90 Pitityamograph Masuring System 5 0.01 30 90 Pitityamograph Masuring System 5 0.01 2 0 Soft Tissue Imaging System 5 0.01 2 0 Soft Tissue Imaging System 5 0.01 2 0 Soft Tissue Imaging System 5 0.01 2 0 EEG Gap 5 0.01 2 2 0 Mixual Tracking System 5 0.05 20 100 Biod Endoynamic Monton 5 0.05 20 100 Cardiodynamic Monton 5 0.01 2 2 Mixual Tracking System 5 0.01 2 2 Cardiodynamic Monton 5 0.01 2 2 Cardiodynamic Monton 5 0.01 2 2 Muta Brocura 5 0.01 <th></th> <td>S</td> <td>0.29</td> <td>136</td> <td>300</td> <td></td> <td></td> <td></td> <td>7</td>		S	0.29	136	300				7
Motion Analysis System S 0.05 20 100 Pertysmograph Massuring System 5 0.01 3 30 Solt Tisue imaging System 5 0.01 100 0 0.00226 EEG Stap EEG Stap 5 0.01 2 0 0 Tonometer 5 0.01 2 0 0 0.00226 EEG Stap 5 0.01 2 0 2 0 Minal Blotelemetry System 5 0.01 2 0 0 0.00226 Blood Pressue And Flow Instrumentation 5 0.01 2 2 0 0 0 0.00256 Blood Pressue And Flow Instrumentation 5 0.01 2 0 <t< th=""><th></th><td>S</td><td>0.01</td><td>2</td><td>0</td><td></td><td></td><td></td><td>-</td></t<>		S	0.01	2	0				-
Pleitysmograph Maseuring System 5 0.01 3 30 90 Tonomater 5 0.01 2 0 0.00226 EEG Cap 5 0.01 2 0 0 0.00226 EEG Cap 5 0.01 2 20 0 0 0.00226 EEG Signal Conditioner 5 0.01 2 20 0 0 0.00226 EEG Signal Conditioner 5 0.01 2 20 0 2 20 0 0 0.00226 0 0 0.00226 0 0 0.00226 0 0 0.00226 0 0 0.00226 0 0 0.00226 0 0 0 0.00226 0 0 0 0.00226 0		S	0.05	20	100			-	- -
Soit Tissue Imaging System S 0.06 300 600 0 0.00235 EGG cp 5 0.01 2 0 0 0.00235 EGG cp 5 0.01 2 0 0 0.00235 EGG cp 5 0.01 2 2 0 Visual Tracking System 5 0.01 2 2 0 Animal Bioleienmetry System 5 0.01 2 2 0 Cardiodynamic Montor 5 0.01 2 2 0 0 Animal Bioleienmetry System 5 0.01 2 2 2 0 Holier Faceder 5 0.01 2 2 2 0 0 0 0		S	0.01	e	000				-
Tonometer 5 0.01 TB0 0 0.00226 EEGCap 5 0.01 2 2 0 EEGCap 5 0.01 2 2 0 FEGCap 5 0.01 2 20 0 Atimal Blotelemetry System 5 0.01 2 20 0 Atimal Blotelemetry System 5 0.01 2 20 0 0 Atimal Blotelemetry System 5 0.01 2 20 0		S	0.96	300	800				-
EEGCep S 0.01 2 0 0 EEG Signal Conditioner S 0.01 2 20 10 Vinal Bioleiemery System S 0.01 2 20 100 Animal Bioleiemery System S 0.01 2 20 100 Blood Pressue And Flow instrumentation S 0.01 2 20 100 Blood Pressue And Flow instrumentation S 0.01 2 20 100 Cardiodynamic Monitor S 0.01 2 0 12 20 Cardiodynamic Monitor S 0.01 2 0 132 45 Didite Recorder S 0.01 2 0 0 132 45 Nencus Pressue Transducer/Display S 0.01 2 0 0 132 45 Plant Gas ChromolographMass Spectrometer S 0.02 25 0 0 1332 45 Plant Gas Analyter S 0.03	•	S	0.01	0 81	•	0.000226	0.06	Battery Op	-
EEG Signal Conditioner S 0.01 2 20 Visual Tracking System S 0.01 2 20 Visual Tracking System S 0.05 20 20 Visual Tracking System S 0.05 20 20 Biod Presure And Fow Instrumentation S 0.05 20 20 Biod Presure And Fow Instrumentation S 0.01 2 20 Biod Presure Motion S 0.01 2 20 20 Cardiodynamic Motion S 0.01 2 20 20 Holier Recorder S 0.01 2 20 20 Neck Baro-Cuff S 0.01 2 0 0 132 45 Plant Gas Cylinder Assembly S 0.03 19 0 0 0.132 45 Plant Gas Cylinder Assembly S 0.03 19 0 0 100 100 100 100 100 100 100 100 <th></th> <td>S</td> <td>0.01</td> <td>~</td> <td>0</td> <td></td> <td></td> <td></td> <td>٦</td>		S	0.01	~	0				٦
Visual Tracking System S 0.01 2 20 Animal Blotelementy System 5 0.05 20 00 Animal Blotelementy System 5 0.05 20 00 Cardiodynamic Monitor 5 0.05 20 00 Electrocaridograph (ECG) 5 0.01 2 20 Holier Recorder 5 0.01 2 20 Holier Recorder 5 0.01 2 0 Holier Recorder 5 0.01 2 0 Holier Recorder 5 0.01 2 0 Venous Presume Transducer/Display 5 0.02 25 0 Plant BLC Konmatograph/Mass Spectrometer 5 0.03 190 0 Plant HPLC Kon Chromatograph 5 0.12 45 250 0 Blood Cas Analyzer 5 0.13 45 255 0 0 Blood Cas Analyzer 5 0.12 45 250 0 0 <th></th> <td>S</td> <td>0.01</td> <td>2</td> <td>20</td> <td></td> <td></td> <td></td> <td>-</td>		S	0.01	2	20				-
Animal Blotelementy System 5 0.05 20 100 100 Blood Pressure And Flow Instrumentation 5 0.06 20 200 100 Blood Pressure And Flow Instrumentation 5 0.01 2 20 100 Blood Pressure And Flow Instrumentation 5 0.01 2 20 100 Holier Recoder 5 0.01 2 0 1132 45. Holier Recoder 5 0.01 2 0 1132 45. Venous Pressue Transducer/Display 5 0.01 2 0 100 132 45. Plant Gas Chromatograph Mass Spectrometer 5 0.02 25 100 132 45. Plant Block Assembly 5 0.02 25 100 132 45. Plant Block Chromatograph Mass Spectrometer 5 0.12 46 250 100 132 45. Plant Gas Chromatograph 5 0.13 45 250 100 145.	-	თ		2	20				٦
Biood Pressure And Flow Instrumentation S 0.06 20 200 Cardiodynamic Monitor S 0.01 2 2 2 Electrocardiograph (ECG) S 0.01 2 2 2 Holler Racorder S 0.01 2 2 2 Net Bacorder S 0.01 2 2 0 Nerous Pressue Transducer/Display S 0.05 20 100 0.132 45 Plant Gas Chromatograph/Mass Spectrometer S 0.03 19 0 0 132 45 Plant HPLC Ion Chromatograph S 0.12 46 20 20 20 Plant HPLC Ion Chromatograph S 0.13 46 250 20 <th></th> <td>S.</td> <td>0.05</td> <td>20</td> <td>100</td> <td></td> <td></td> <td></td> <td><</td>		S.	0.05	20	100				<
Cardlodynamic Monitor S 0.02 4 150 1 Filectrocardlograph (ECG) S 0.01 2 20 1	_	S	0.06	20	200				.۲۷
Electrocard/ograph (ECG) S 0.01 2 20 0 Holler Recorder Neck Baro-Cuff S 0.01 2 0 0 132 45 Neck Baro-Cuff S 0.01 2 0 0 132 45 Venous Pressue Transducer/Display S 0.05 25 100 0 132 45 Plant Gas Cylinder Assembly S 0.13 45 250 0 0 0 132 45 250 100 </th <th></th> <td>S</td> <td>0.02</td> <td>-</td> <td>150</td> <td></td> <td></td> <td></td> <td>-</td>		S	0.02	-	150				-
Holler Recorder S 0.01 2 0 0 132 45 Neck Baro-Cuff S 0.10 TBD TBD TBD 100 0.132 45 Vencus Pressure Transducer/Display S 0.05 20 100 0.132 45 Plant Gas Chromatograph/Mass Spectrometer S 0.03 19 0 0 132 45 Plant Gas Cylinder Assembly S 0.03 19 0		S	0.01	2	20				٦
Neck Baro-Cuff S 0.10 TB0 TB0 0.132 45. Venous Pressue Transducer/Display S 0.05 20 100 0.132 45. Plant Gas Cylinder Assembly S 0.05 20 100 0.132 45. Plant Gas Cylinder Assembly S 0.09 19 0 0 100 Plant HDLC bon Chromatograph Mass Spectrometer S 0.09 19 0 0 100 100 Plant HDLC bon Chromatograph S 0.12 45 250 100 <td< th=""><th></th><td>S</td><td>0.01</td><td>~</td><td>0</td><td></td><td></td><td></td><td>J</td></td<>		S	0.01	~	0				J
Venous Pressue Transducer/Display S 0.05 2.0 100 Plant Gas Cylinder Assembly S 0.09 19 0 Plant Gas Cylinder Assembly S 0.12 40 200 Plant Gas Cylinder Assembly S 0.12 40 200 Plant HPLC Ion Chromatograph S 0.13 45 250 Plood Cas Analyzer S 0.13 45 250 Plood Cas Analyzer S 0.13 45 250 Plood Cas Analyzer S 0.13 45 250 Continuous Flow Electrophoresis Device S 0.06 190 0 Gas Cylinder Assembly S 0.03 100 100 100 Gas Cylinder Assembly S 0.03 10 100 100 100 Gas Cylinder Assembly S 0.03 190 190 100 100 Gas Cylinder Assembly Coll Harvestor S 0.03 100 100 100 100 <		S	0.10	OBT	180	-	45.2	145	7
Plant Gas Chromatograph/Mass Spectrometer S 0.20 25 100 Plant Gas Cylinder Assembly S 0.09 19 0 Plant HPLC Ion Chromatograph S 0.12 40 200 Blood Cas Analyzer S 0.13 45 250 Blood Cas Analyzer S 0.13 45 250 Blood Cas Analyzer S 0.06 TBO TBO Blood Cas Analyzer S 0.013 45 250 Blood Cas Analyzer S 0.06 TBO TBO Continuous Flow Electrophoretis Device S 0.06 TBO TBO Continuous Flow Electrophoretis Device S 0.03 10 0 Gas Cylinder Assembly S 0.03 10 100 0 Gas Cylinder Assembly Continuous Flow Electrophoretis Device S 0.03 10 0 Gas Cylinder Assembly Cualitative Respent Strip And Reader S 0.03 10 0 Sclatillation Counter		S	0.05	20	100				-
Plant Gas Cylinder Assembly S 0.09 19 0 Plant HPLC Ion Chromatograph S 0.12 40 200 Blood Cas Analyzer S 0.13 45 250 Blood Cas Analyzer S 0.13 45 250 Chemistry System S 0.06 TBD TBD TBD Continuous Flow Electrophoresite Device S 0.06 TBD TBD TBD Continuous Flow Electrophoresite Device S 0.03 110 100 0 Gas Cylinder Assembly S 0.03 110 100 0 0 Continuous Flow Electrophoresite Device S 0.03 110 100 0 0 Gas Cylinder Assembly S 0.03 110 100 0 0 Coll Handting Accessories S 0.05 190 50 0 0 Cell Handting Accessories S 0.06 TBO TBO TBO TDO Cell Hanotiluge Nem		S	0.20	25	100				<
Plant HPLC fon Chromatograph S 0.12 4.0 200 Blood Cas Analyzer S 0.13 4.5 2.50 Blood Cas Analyzer S 0.13 4.5 2.50 Blood Cas Analyzer S 0.08 2.3 100 Continuous Flow Electrophoresis Device S 0.08 180 180 Continuous Flow Electrophoresis Device S 0.03 10 100 Ges Cylinder Assembly S 0.03 10 100 100 Ges Cylinder Assembly S 0.03 10 100 100 Scintillation Counter S 0.05 20 500 500 Scintillation Counter S 0.05 20 500		s,	0.09	19	0			•	<
Biood Cas Analyzer S 0.13 45 250 Chemistry System S 0.08 23 100 Continuous Flow Electrophorests Device S 0.08 7B0 7B0 Gas Cylinder Assembly Gas Cylinder Assembly S 0.09 19 0 Gas Cylinder Assembly S 0.03 10 100 100 Gas Cylinder Assembly S 0.03 10 100 100 Gas Cylinder Assembly Continuous Flow Electrophorests Device S 0.03 10 100 Gas Cylinder Assembly S 0.03 10 100 100 Scinitiation Counter S 0.05 20 500 500 Cell Harvestor S 0.06 19 50 50 50 Cell Harvestor S 0.06 190 50 50 50 Cell Harvestor S 0.06 190 50 50 50 Cell Harvestor S 0.06 <th></th> <td>S</td> <td>0.12</td> <td>40</td> <td>200</td> <td></td> <td></td> <td></td> <td><</td>		S	0.12	40	200				<
Chemistry System S 0.06 23 100 Continuous Flow Electrophoresis Device S 0.06 TBO TBO TBO Gas Cylinder Assembly S 0.03 10 0 0 Gas Cylinder Assembly S 0.03 10 100 0 Gas Cylinder Assembly S 0.03 10 100 0 Gas Cylinder Assembly S 0.03 10 100 0 Cualitative Reagent Strip And Reader S 0.03 10 100 0 Scintilation Counter S 0.03 10 100 0 0 Cell Handling Accessories S 0.05 190 50 0 0 Cell Harvestor S 0.06 TBO TBO TBO TBO 100 Cell Perfusion Apparatus S 0.01 2 20 20 10 Cell Perfusion Apparatus S 0.01 2 20 10 10		S	0.13	45	250				-
Continuous Flow Electrophoresis Device S 0.06 TB0		S	0.08	23	100				-
Gas Cylinder Assembly S 0.09 19 0 Qualitative Reagent Strip And Reader S 0.03 10 100 Cualitative Reagent Strip And Reader S 0.03 10 100 Scintiliation Counter S 0.24 90 500 Cell Harvestor S 0.06 19 50 Centriluge Hematocrit S 0.01 2 2 Centriluge Hematocrit S 0.01 2 2 Huoromeasure Probe S 0.01 2 2 2 Hematology System S 0.01 2	_	S	0.06	Dat	180				-
Qualitative Reagent Strip And Reader S 0.03 10 100 100 Schrillation Counter S 0.24 90 500 50	-	S	0.09	19	0				-
Scintiliation Counter S 0.24 90 500	Qualitative Reagent Strip And	S	0.03	10	100				-
Cell Handling Accessories S 0.05 20 50 60 Cell Harvestor S 0.06 19 50 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 780 780 780 70 50 60 60 780 70 50 70 50 70 50 70 50 70 50 70 500 <		S	0.24	06	500				-
Cell Harvestor S 0.06 19 50 Cell Pertusion Apparatus S 0.06 TBO TBO TBO Cell Pertusion Apparatus S 0.01 2 20 10 Centriluge Hematocrit S 0.01 2 20 100 Chromosomal Slide Preparation Device S 0.01 2 20 110 Fluoromeasure Probe S 0.07 23 200 10.03 11 Image Digitizing System S 0.01 2 0 0.03 11 Skin Window Device S 0.01 2 0 0.03 11		S	0.05	20	50				
Cell Perfusion Apparatus S 0.06 TB0		S	0.06	19	50				
Centriluge HematocritS0.01220Chromosomal Silde Preparation DeviceS0.01220Fluoromeasure ProbeS0.05TBOTBOTBOHematology SystemS0.07232000.03Image Digitizing SystemS0.01230.1Skin Window DeviceS0.0120.0311		s	0.06	0 81	180				Ż
Chromosomal Slide Preparation DeviceS0.01220Fluoromeasure ProbeS0.05TBOTBOHemalology SystemS0.0723200Image Digitizing SystemS0.2570500Skin Window DeviceS0.0120		s	0.01	2	20				<u>-</u>
Fluoromeasure Probe S 0.05 TBO		S	0.01	~	20				-
Hematology System S 0.07 23 200 Image DigitIzIng System S 0.25 70 500 0.03 11. Skin Window Device S 0.01 2 0 0.03 11.		S	0.05	180	180				~
Image Digitizing System S 0.25 70 500 0.03 11. Skin Window Device S 0.01 2 0		S	0.07	23	200		_		-
Skin Window Device S 0.01 2		S	0.25	70	500	0.03	4		-
	142 Skin Window Device	S	0.01	2	0				

A-ARC, J-JSC, '-Prime

Updated: 3/22/89

Baselined: December 1988

LIFE SCIENCES HANDWARE LIST FOR THE SPACE STATION FREEDOM ERA

1

•

						UNIT HARD	WARE P	UNIT HARDWARE PARAMETERS	æ
M/H			UNIT HARD	UNIT HARDWARE PARAMETERS	RAMETERS	UPDATED: 3-Mar	3-Mar	BY:DRP	ш —
ITEM	ITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	<i>s</i>
		CODE	(cu. m)	(kg)	(walls)	(cu. m)	(kg)	(walls)	•
145	Automated Microbic System	s	0.20	10	500	0.2	70	110	~
147		Ø	0.12	OBT	0		32		2
140		S	0.01	8	20	0.01	2	110	ſ
151		ø	0.01	-	0	0.005	1.45		٩
152		ß	0.01	ŝ	0				-
153		S	0.03	10	20				-
154	Tissue Equivalent Proportional	Ø	0.01	081	0	0.001	2	0	-
155	Total Hydrocarbon Analyzer	s S	0.20	70	250				- -
161	_	ທ	0.20	70	500				~
162	_	s	0.20	70	500				<u>-</u>
163		S	0.20	70	200				2
165	Experiment Control Computer System	S	0.05	20	400		_		₹ -
167		S	0.01	-	0	C00.0	0.26	Banery Op	7
168	-	S	1.92	1000	1300				<
169		S	1.92	800	1500				<

Updated: 3/22/89

A=ARC, J=JSC, '=Prime

Page 3

Appendix B - Complete SBI Trade Study Bibliography

•

Page No. 1 05/30/89	Appendix B - Compl	Complete SEI Trade Studies Fibliography	ography		
1D # AUTHOR	TITLE VOL.	PUBLISHER	REPORT/I)OCUMENT NUMBER	FUEL ISHER LOCATION	DATE
Still Kozarsky, D.	MUS Inputs	Lockheed Life Sciences Program Office	Lockh e ed Nemo	Washington, DC	61/19/89
50102 Kozarsky, D.	Latest Space Station Rack Studies	NASA MSFC		Huntsville, AL.	02/02/89
SBI03 Halt, A.	PNWG-SS Freedom Assly. Seq. Trial Fyl. Manifest	Fayload Manifest Working Group (PMWG)		Keston, 'VA.'	12/09/88
SB104 Shannon, J.	Business Fractice Low Cost System Activity	NASA JSC		Haustan, TX.	11/12/75
SB105 NASA	0ff-the-Shelf Hardware Procurement	NASA JSC	NASA MEMO HB/73-M286	Hauston, TX.	05/16/73
SBIO6 NASA	OTS Technology Use For Space Shuttle Frogram	NASA JSC	NASA MEMO	Hauston, TX.	
SBIU7 NASA	Proposed Space Shuttle Directive On 015 HW.	NASA JSC	NASA MEMO NB/74-L149	Hauston, TX.	06/20/74
SB108 NASA	Cancellation Of Space Shuttle Directive On OTS	NASA JSC		Houston, TX.	10/01/74
SELU9 NASA	.Agency Balloon Pyl. Util. of Avail. Equip. & Exper	NASA JSC	NASA PLAN 323-50-XX-71	Houston, TX.	05/25/76
SBI10 NASA	Space Shuttle Program DTO/DSO Noncritical Requirements Document	Flight Support Equipment Office - JSC	NSTS 21096	Houston, TX.	08/01/88
SB111 NASA	Reference Mission Operational Analysis Document (RMOAD) For The Life Sciences Research Facilities.	NASA JSC	NASA TM 89604	Houston, TX.	. 02/01/87
SB112 Breiling, R.	. Cost Risk Analysis Using Frice Models	RCA Price Systems		Mooreston, NJ.	09/01/B7
SB113 Fogleman, G.Schwart, D.Fonda, M.	Gas Grain Simulation 1 Facility: Fundamental Studies of Farticle Formation And Interactions	NASA Ames Kesearch Center	- NASA AKC/SSS B8-01	Maffet Field, CA.	08/31/87

Page No.

U5/30/89 ID M AUTHOR SRI14 JFL SRI15 PRC Systems SB116 NASA SSPO SR116 NASA SSPO SR118 NASA SB119 NASA	Appendix B - Completinght Projects Office VOL. NO. Flight Projects Office Payload Classification Product Assurance Provisions Cost Estimate For The Gearch for Extraterrestrial Intelligence (SETI) Revised (SETI)	Complete SBI Trade Studies Bibliography VOL. FUBLISHER REPORT/ NO. JPL JPL JPL JPL D-1 JPL B-1 JPL B-1 JPL B-1 JPL D-1 B JPL D-1 B 302 B 3	AB9 Kev.	PURLISHER LOCATION Pasadena, CA. Huntsville, AL. ville, AL. CA. Anaheim, CA. Houston, TX. Moffet	DATE 04/30/87 06/15/87 09/15/88 04/17/86 / /
SB120 NASA	Experiments For The Space Station (Green Book) Medical Requirements Of An In-Flight Medical Scotton For Spare	NASA JSC	JSC 31013	Houston, TX.	11/30/87
SB121 TRW	System For Space Station A Study Of Low Cost Approaches To Scientific Experiment Implementar- tion For Shuttle Launched And Serviced Automated	TRW Systems Group	Contract NASW - 2717	. Redondo Feach, CA.	03/19/89

•

.

~

Page No. 3 05/30/89	Appendix B - Comp	Complete SBI Trade Studies Bibli	Bibliography		
LD # AUTHOR	TITLE VOL. NO.	. PUBLISHER	REPORT/DOCUMENT NUMBER	PUBLISHER LOCATION	DATE
SA122 LMSC	Low-Cost Program Fractices For Future NASA Space Programs	LMSC	LMSC-D387518	Sunnyvale, CA.	05/30/74
SB123 Steward, GMiller, L	Biomedical Equipment Technology Assesment For The Science Laboratory Module	Management and Technical Services Company		Hauston, TX.	08/01/86
SB124 General Electric	WP-3 Commonality Plan	General Electric	NAS5-32000	Philadelphia 04/22/88 , PA	04/22/88
58125 NASA	Microbiology Support Plan For Space Station	NASA JSC	JSC-32015	Haustan, TX.	09701786
5BI26 NASA	Concepts And Requirements For Space Station Life Sciences Ground Support And Operations	NASA JSC	LS-70034	Houston, TX.	04/11/88
SBI27 NASA	Spacelab Mission 4 Integrated Payload Requirements Document	NASA JSC	SM-SE-03	Houston, TX.	06/01/83
SBIZB General Dynamics	Life Sciences Payload IV Definition And Integration Study	General Dynamícs	CASD-NAS-74-046	San Diego, CA.	08/01/74
SB129 General Dynamics	Life Sciences Payload 1 Definition and Integration Study - Executive Summary	General Dynamics	CASD-NAS-74-046	San Diego, CA.	08/01/74
SBI30 NASA	SL-3 Ames Research Center Life Sciences Payload Familiarization Manual	Ames Research Center	ADP-81-50-001	Moffet Field, CA.	02/01/B1
SBI31 Kockwell Intl.	EMS Data Data Package 2.3A 54200.2 Methodology Definition - Commonality Analysis Trade Study	Rockwell Internation	SSS 85-0168	Downey, Ca.	10/04/85

05/30/89	Appendix B - Co	Complete SBI Trade Studies Fibliography	liography		
ID # AUTHOR	TITLE VI	VOL. PUBLISHER NO.	KEPORT/DOCUMENT NUMEIER	r FUBLISHER LOCATION	DATE
SBI32 Rockwell Intl.	ENS Data Data Fackage 2.2B 54201.2, Module Commonality Analysis	Kockwell International	555 85-0137	Dawney, CA	09706/85
SBIJJ General Electric	Space Station Work Package 3 Definition And Preliminary Design Commonality Candidates	General Electric Space Systems Division	DRD - 19	Fhiladelphia 05/10/85 , PA	05/10/85
SBI34 Rockwell Intl.	EMS Data Data Package 2.3A S4203.2, Module Outfitting/System Commonality Analysis	Rockwell International	82 82-0128 SSS	Downey, CA	10/28/85
SBI35 NASA JSC	Space Station Freedom Human-Oriented Life Sciences Research Baseline Reference Experiment Scenario	JSC- Medical Sciences Space Station Office	Blue Book	Houston, TX.	TX. 10/01/88
SBIJ6 NASA SSPO	Space Station Approved Electrical Electronic, And Electromechanical Parts List	Space Station Program Office	SSP 30423 Rev. A	Reston, Virgina	11/15/88
SB137 NASA BSPD	Space Station Program Design Criteria and Practices	Space Station Frogram Office	55P 30213 Rev. B	Keston, Virgina	07/30/8B
SBI38 MDAC	Manufacturing Management Plan	McDannel Dauglas	DR MU-01	Houston, TX	
SBI39 NASA JSC	July 1988 Fogress Report On Experiment Standard User Interfaces Study	JSC - Life Sciences Project Division		Houston, TX.	07701788
SB140 Rockwell Intl.	EMS Data Data Package 2.3A 54207.2, GSE Commonality Analysis	Rockwell International	6600-SB SSS	Dawney, CA	10/04/85
SB141 NASA OSSA	Life Sciences Space Station Flanning Document: A Reference Payload For The Life Sciences Research Facility	Office of Space Science and Applications	NASA TM 87188	Washington, D.C.	01701786

Fage No. 05/30/89

đ

Page Nov 5 05/30/89	Appendix B - Com	Complete SBI Trade Studies Bibliography	lography		
ID # AUTHOR		VOL. PUBLISHER NO.	REPORT/DOCUMENT NUMBER	PURLISHER LOCATION	DATE
SB142 Ruruni, A.Pascucci, B	The OADH test equipment and its goals	ESA		Milan, Italy	Italy 10/01/78
5B143 Shiokari, A.	Standarization and 111 Program Effect Analysis - Final Report	1 Aerospace Corporation		El Segundo, CA	61/01/75
SB144 Huffstætlær, W.	Skylab Piomedical Hardware Development	AIAA ZOth Annual Meeting		Los Angeles, CA	08/22/74
SR145 Fowell, A.	Commonality Analysis For The NASA Space Station Common Module - 36 IAF Meeting, October 7-12 1985	Fergamon Fress		New York, NY	10/07/85
58146 Anderson, A.	Progressive Autonomy - For Space Station Systems Operation	АІАА		New York, NY 06/05/84	68/02/84
SB147 NASA JSC	Life Sciences Research Laboratory (LSRL) Human Research Facility forSpace Station Initial Operating Configuration (10C) Science Reqts.	NASA JSC	JSC 20799	Houstan, TX	10/01/85
SB148 MDAC	Crew Health Care System (CHec) Development Plan	Mcdonnell Douglas Space Station Co.		Hauston, TX.	01/28/89
SA149 Minsky, M.	Engines of Creation	Anchor Press		New York, NY	01/10/86
SBISO MDAC	Crew Health Care 1	MDAC	MDC H3924	Houston, Texas	11/01/88
SBI51 NASA JSC	Columbus Reference Configuration Report	NASA JSC	RP 1213800000	Hauston, TX.	05/31/88
SRI52 NASA HQ	Shuttle/Payload 1/F Definition Ducument for Middeck Accomodations	NASA HO	NSTS 21000	Washington, DC	03/01/88

05/30/89	Appendix B = (Comple	- Complete SBI Trade Studies Bibliography	i ogr aphy		
ID # AUTHOR	TITLE	VOL.	PUBL I SHER	REPORT/DOCUMENT NUMBER	PURL I SHER LOCAT I ON	DATE
5B153	Rack Accomodations Users Manual					```
SBI54 NASA JSC	Mission Integration Plan		NASA JSC	SSP 30000 Appendix D	Hauston, TX. 04/30/86	04/30/86
SBISS Pacheo	Analyzing Commonality in a System		Bael ng	NASA STI Facility	Baltimore, MD.	03/01/BB
SBI56 NASA MSFC	Spacelab Configurations					
SBI57 Rockwell Intl.	Space Shuttle Management Proposal	11	Rockwell Intl.	SD 72-SH-50-2		05/12/72
SBI58 LMSC	Space Shuttle Management Proposal	11	LMSC	LMSC-D157364		05/12/72
SB159 MDAC	Space Shuttle Program Management Froposal		MDAC	ΕΟ600		05/12/72
SB160 MSFC	MSFC Space Station CER's Report		MSFC	PRC D-2185-H		12/01/82
SBI&I NASA JSC	CERV larget Costs for Benchmark and Reference Configurations		JSC CERV Office		Haustan, TX.	TX. 06/15/88
SB162 CB0	Cost Estimating For Air Missles		Congressional Budget Office		Washington, D.C.	01/01/83
SPI63 Evans, Jim	Meeting with Jim Evans Technical Assistant, NASA Space and Life Sciences		Eagle Engr.		Houston, TX.	04/19/89
SB164 Whitlock, R.	JSC Cost Analysis Office		Eagle Engr.		Houston, TX.	04/11/89
SB165 PRICE	PRICE Users Newsletter	12				10/01/88
SBI66 General Electric	PRICE H Reference Manual					01/01/88
SB167 NASA JSC	Satellite Services Workshop	18.2	NASA JSC	JSC 20677	Houston, TX. 11/06/85	11/06/85

Page No.

4

Page No. 7 05/30/89	Appendix B - Com	Complete SBI Trade Studies Bibliography	i ogr aphy		
ID # AUTHOR	TITLE VOL. NO.	L. FUBLISHER	REPORT/DOCUMENT NUMBER	PUBLISHER LOCATION	DATE
56168 Hamaker, Joe	Joe Telephone interview relating to MSFC history and techniques for cost estimating.	Cost Analysis Branch Chief NSFC		Huntsville, Al.	04/27/89
SB169 Booker, Clef	SB169 Booker, Clef Personal Interview	Man-Systems Division JSC		Houston, TX.	04/04/89
SBI70 Evans, Jim	Personal Interview	Life Science Project Division JSC		Hauston, TX.	04/19/89
SBI71 Heberlig,Jac k	Telephone interview relating to make-or-buy lessons learned from Apollo	International Business Machines (IEM)		Houston, TX.	03/10/89
SB172 Loftus, Joe	Telephone interview relating to make-or-buy history	Assistant Director (Plans) JSC		Hauston, TX.	03/14/89
SBI73 Christy, Neil	Telephone interview relating to hardware development student experiments, and make-or-buy			Houston, TX.	03/15/89
5BI74 McAllister,F red	Telephone Interview	Man-System Division, JSC		Houston, TX	03/14/89
SB175 Trawbrid ge, Jahn	Interview relating to CHeC make-or-buy	McDonnell Douglas		Hauston, TX.	03/17/89
58176 Trawbrid ge, Jahn	Personal interview relating CHeC experience to miniaturization, modularity and make-or-buy	McDonnell Douglas		Houston, TX.	03/29/89
SB177 Nøgæl, John	Personal Intervi ew relating to LSLE make-or-buy experience	Eagle Technical Services		Hauston, TX	03/27/89
SB178 McFadyen, Gary	Fersonal Interview relating to life science hardware background at JSC	Southwest Research Institute		Hauston, TX	TX, 04/10/B9

Page No. 7

Page No. 8 05/30/89	Appendix B - Compl.	Complete SBI Trade Studies Bibliography	agr aphy		
ID # AUTHOR	TITLE VOL. NO.	PUHL I SHER	REPORT/DOCUMENT NUMBER	PUBL ISHER LOCATION	DATE
SAI79 Booker, Clef	Personal Interview - Minaturization on amplifiers, computers and modularity	NASA JSC/SP 341 Man-System Division		Houstan, TX. 04/04/89	04/04/89
SBIB0 McFadyen	Bioengineering on SBI hardware	Southwest Research Institute		San Antonio, TX.	04/06/89
SBIBI Allen, Joe	Personal interview - S.S. Life Science AIAA Meeting	Space Industries		Houstan, TX.	04/07/89
SBI82 Averner, Maurice	Personal interview on CELGS	NASA HQ. CELSS Coordinator		Washington, DC.	04/07/89
SR183 Fogleman, G. FhD	Personal interview relating to Gas Brain Simulation Facility	NASA AMES		Moffet Field, CA.	04706789
SRI84 White. Bob	Personal Interview relating to modularity and commonality	NASA JPL		Pasadena, CA.	04/10/89
SB185 Grumm, Richard	Personal interview relating to 501 hardware	NASA JPL		Pasadena, CA.	04/11/89
SBIB6 Boeing	U.S. Lab Review Workshop				
SBI87 McGillroy,B.	Personal Interview on CELSS	NASA AMES		Moffet Field, CA	05/05/89
SRIBB NASA JSC	Life Science Flight Experiments Program Life Sciences Laboratory Equipment (LSLE) Descriptions	NASA JSC	JSC-16254-I	Houston, TX. 09/01/86	09701786
SBIB9 Roeing	Space Station Program Commonality Plan Draft 3	Boeing	D6B3-10112-1		10/31/88
SB190 GE Govt.Service S	Life Bciences Hardware List for the Space Station Freedom Era - Baselined December 1988 Updated 3/22/89	GE Government Services		Hauston, TX.	03/22/89

•

-		DATE	•	08/16/85	. 02/01/89	08/01/84	05/16/89	`` `.	10/17/73	12/01/88
-		PUBL I SHER LOCATION		Huntsville, Al.	-	Houston, TX.	Hauston, TX.		Haustan, TX.	New York, NY 12/01/88
-	ography	REPORT/DOCUMENT NUMBER		5LP/2104						No. 11
~	Complete SBI Trade Studies Bibliography					and Technical o.				1 4 -
~	ete SBI Trade	PUBL I SHER	NASDA	NASA MSFC	NASA	Management al Services Co.			NASA JSC	NASA Tech Briefs
~	Comp 1	VOL. NO.					7.0			12
	Appendix B -		l Rack / Status	oads Handbook	face for nd Attached	Study for tion	rview with - standarized ed on racks)	o Principle	e-Shelf	with flexes
-	A	111LE	NASDA Standard Rack Envelope Study Status	Spacelab Payloads Accomodations Handbook	Station Interface Accomodations for Pressurized and Attached Payloads	Life Sciences Study for the Space Station	Personal Interview with John Crenshaw - Discussion of standarized avoins (mounted on racks) in airlines.	The Non-Pareto Principle Mea Culpa	Beware Off-the-Shelf Hardware	Experimenting with Baroceptor Reflexes
-		F	ΖŴ	ά	NGŢŢ	┙┙			р. Н В	
-	Page No. 9 05/30/89	ID # AUTHOR	19191	SB192	58193	¥6185	58195 Crenshaw, John	SB196 Juran, J.M.	SB197 Arabian,	SB178NASA JSC

- ·

Appendix C - Cost Assessment Techniques Summary

.

•

.

1.0 Introduction

1.1 Relative Cost Impact Analysis Task

JSC and GE Government Services are developing the SBI hardware cost estimate to be presented to NASA Headquarters. The cost related task in these trade studies is to develop and present factors which assist the cost estimators in using tools to develop the effect of the trade study specialty area (miniaturization, modularity and commonality, and Modified COTS) on SBI cost estimates. The life cycle costs are most important in judging the long term benefits of a new project. However, consideration of life cycle costs requires knowledge of the probable project life, operational use time lines, maintenance concepts, and logistics relationships. These data are not available at the time of these initial trade studies. Therefore, the trade studies address primarily the relative cost impact analysis of the design and development phase of the SBI. Life cycle costs are dealt with on a comparative, subjective basis in order to illustrate the influence of life cycle cost factors on the various trade study subjects.

1.2 Documentation Approach

The application of cost methods as applied to SBI trade studies involves some methods common to all of the studies and others that apply uniquely to a specific trade subject. Therefore, the selected approach to the problem is to deal with cost methods and cost trends in this appendix that is to be a part of each study report. In the cost appendix, subsequent sections of Section 1.0 deal with various methods examined for the trade studies, Section 2.0 defines the cost estimating relationship (CER's) and their factors and sensitivities, and Section 3.0 deals with specific variations and parameters of interest with respect to each trade study. Sections 4, 5 and 6 provide brief discussions of testing, SE&I and project management costs, Section 7.0 life cycle effects, and Section 8.0 summarizes the conclusions.

1.3 Cost Method Overview

Cost methods considered and evaluated in the course of this effort include the basic types listed below:

- a. Detailed cost build-up method. The detailed cost estimate is compiled using estimates from specialists in the various design disciplines and is constructed from a spread of hours required in design, labor rates, overhead and other factors affecting the cost of DDT&E.
- b. General Electric PRICE. The PRICE H model is a sophisticated cost modeling program requiring a variety of inputs including weight, manufacturing complexities, and design complexity plus secondary factors.
- c. Cost estimating relationship (CER's). The simplest cost estimating tools are empirical relationships based primarily on system weight and derived to match past experience on previous programs.
- d. Cost impact analysis methods. Parametric studies to establish and/or to quantify cost drivers and cost trend effects.

The choice between the foregoing alternatives was narrowed to options c and d which are used in combination as described in the balance of this report. Initial SBI cost estimates will be developed in a separate effort using PRICE H. Therefore, the task in the trade studies is to provide data and/or factors which will be helpful in assisting cost estimators in the use of the tools from which the actual estimates will be formulated. A secondary purpose is to develop parametric trend data that will help the reader understand the potential impact of the various trade study subjects on cost, i.e. miniaturization, commonality, and the use of commercial products (COTS) in lieu of new design.

Empirical cost relationships use system weight as the primary factor in deriving development and theoretical first unit (TFU) costs. A series of such relationships can be used to reflect the inherent complexity of different types of space-borne systems, i.e., one relationship for structural or mechanical systems, a second for packaged electronics, and a third for complex distributed hybrid systems. This approach has its roots in past program experience in that the end results are usually compared with past program actual costs and the relationships adjusted to match what has happened on similar system development during their life cycle. References SBI No. 60 and SBI No. 61 were used as a data source for CER's. Also, a discussion was held with the cost analysis specialist at JSC and MSFC (ref. SBI No. 64 and No. 68) as part of the effort to determine whether or not other cost work has been accomplished on the SBI trade study subjects.

As will be seen in the ensuing sections and in the trade studies proper, the results and trends also employ second order effects such as the amount of new design required, the impact of sophisticated technology and alternate materials.

Regardless of how one approaches the subject of cost development or cost trends there are three fundamental principles are involved in evaluating costs, cost drivers and cost trends (ref. SBI No. 65). These are as follows:

- 1. Estimates require reasoned judgments made by people and cannot be automated.
- 2. Estimates require a reasonably detailed definition of the project hardware that must be acquired or developed before estimates can be made.
- 3. All estimates are based upon comparisons. When we estimate, we evaluate how something is like or how it is unlike things we have seen before.

The SBI Program estimates are particularly challenging because the definition of the hardware items and the data that will permit comparisons is not detailed and complete. We are dealing with some items in their earliest conceptual phase of definition.

A couple of study principles should also be mentioned because they may help us understand the validity of the results we obtain. These are:

1. The sensitivity that study results show to variations in assumption provides an indication as to the fundamental nature of the assumption. If results are highly sensitive to variations in assumption then the assumption should be used with caution. Extrapolations are particularly hazardous in such instances. On the other

hand if results are not highly sensitive, then scaling over a wide range may be feasible, although extrapolations of cost values can yield misleading results in any event and should always be applied carefully.

2. Parametric approaches may be necessary in order to understand trends due to the absence of specific data for use in the study. Parametric in the sense used here means the arbitrary variation of a given parameter over a range of expected values, while holding other values constant.

The costing relationships used in SBI trade studies are applicable to space systems and are founded on past programs as described in references SBI No. 60 and No. 61. The only questions, therefore, are whether or not they can be used on SBI hardware (which does use subsystems similar in nature to other manned space systems) and how accurately they can be scaled to fit the range of SBI sizes. Insofar as practical, these questions have been circumvented by means of reporting cost trends in lieu of cost values.

2.0 General Development Cost Methods

2.1 Empirical Methods

As stated in Section 1.3 CER's are empirical cost estimating relationships that express expected costs on the basis of past program experience. Empirical cost estimating requires some sort of systems definition plus good judgement in the selection of the constants, and exponents. The nature of a system element or assembly, and the size/weight of the item are primary cost drivers. The most predominant variable is the exponent of the weight term in the following generalized equation:

 $Cost = df * (C_1 (Wt)^n) + C_2 (Wt)^n$

Where

- wt = weight of the system, module or assembly
 - n = an exponent selected on the basis of system complexity
 - df = a factor reflecting the amount of new design required (design factor)
 - $C_1 = -$ constant selected to establish the cost trend origin
 - C₂ = a constant to reflect special requirements such as tooling can be zero

Adjustments to the weight exponent and the constants yields values which show dramatic cost increases as a function of weight but decreasing cost per pound as the weight is increased. Cost relationships always show these trends when applied to launch vehicles, spacecraft, or payloads. Therefore, it is assumed that they apply to biology equipment (for space) as well. Economies of scale are present in all such systems. The larger the system, assembly, or component, the lower its cost per pound. There is, however, a limitation to the applicability of CER's to SBI hardware

due to size limitations. All CER's have a range of applicability and produce consistent results in terms of cost per pound over that range. The limitation comes into play when extrapolating outside the range of applicability, particularly where the size is small. Unfortunately, this limitation may be a factor in SBI hardware elements and assemblies due to their size being relatively small compared to manned spacecraft systems. Therefore, when a CER yields costs in a very high range, on the order of \$100,000/lb. or \$220,000/Kg, or higher, caution and judgement are necessary to avoid the use of misleading results.

2.2 System Complexity Exponents (n)

Past experience in estimating costs with empirical methods suggests that the exponent, n, increases with increasing system complexity and as a function of the degree to which a system is distributed. For example, relatively simple, structure or packaged power modules may be represented by n = 0.2. The cost of more complex mechanical systems and structures which are comprised of a variety of components and assemblies can be represented by an exponent, n = 0.4 and the most complex distributed electronics call for an exponent on the order of 0.5 to 0.6. Inasmuch as the SBI systems involve all the foregoing elements plus sophisticated sensors, it may be necessary to use exponents that are as high as 0.8 or 1.0 to represent cost trends of parts of the SBI systems. Reference No. 60 uses an exponent, n, equal to .5 for development when historical data are not available. This value has been used in SBI Reference No. 60 for displays and controls, instrumentation and communications, all of which are comprised of distributed electronics and is consistent with the range recommended here (.5 to .6).

The dramatic effect of the system complexity exponent is illustrated by Figure 2-1. Figure 2-1 is a plot of cost per pound vs. complexity exponent, n, for a range of values of n between 0.1 and 1.0. As can be seen from the figure, 1000 units of weight costs 0.2% per unit weight as much at n = 0.1 compared to the cost at n = 1.0. The point is that care must be exercised in making a proper selection of exponent in order to achieve reasonable accuracy in estimating actual costs.

The historical use of lower exponents for simple, packaged systems, and the use of higher values for complex distributed systems matches common sense expectations. To express it another way, one can safely assume that the cost of a system will be influenced dramatically by the number of different groups involved in the design, by the number of interfaces in the system, and by the complexity of the design integration effort required. Distributed power and data systems invariably cost more (per pound) to develop than do packaged elements. However, the degree to which this applies to SBI is not clear due to the fact that biological systems tend to be more packaged and less distributed than do other space systems.

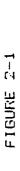
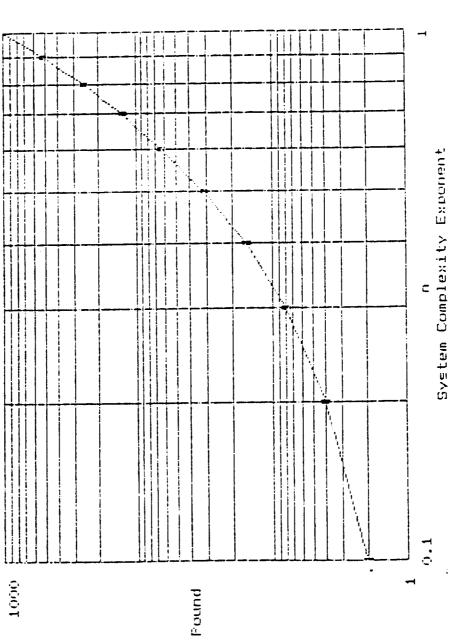

2.3 Design Factors (df)

Figure 2-2 defines the design factors that represent the degree of new design required in a development. On the low side is the factor representing the use of existing designs that require very little modification, integration or testing. For all new current state-of-the-art designs which involve no new technology, the design factor is 0.9 to 1.0. The factor for new design requiring advancement in technology is expressed as greater than unity and can be as high as 2 or 3 for efforts that dictate a multiple design path approach to achieve the desired goals. Price H refers to this type of factor as the engineering complexity factor and uses design values similar to those


in Figure 2-2. However, Price H varies the experience of the design team as well as the complexity and the difficulty of the design.

2.4 Method Summary

The SBI trade studies will all require a definition of system element size, complexity and degree of new design. These factors may have to be varied over a range of probable values to evaluate trends, but they will all come into play in costing comparisons.

Design Factor .1 to .2 .3 to .4 .5 to .6 .7 to .8 .9 to 1.0 1.0 to 3.0

-

Ŷ

~

3.0 Cost Methods Applicable to Specific Trade Studies

Three of the four studies are discussed separately in this section although there are common elements associated with them that were not covered in Section 2.0. The intent is to examine the prime cost drivers that come into play with the subjects of miniaturization, modularity and commonality, use of COTS, and compatibility between spacecraft. Rack compatibility is covered in Section 7.4 under life cycle costs.

3.1 Hardware Miniaturization Cost Drivers

Fundamentally the variables of system (or component) weight, system complexity, and difficulty of design all influence miniaturization cost trends. For the purposes of this section weight and design difficulty will be varied, while system complexity will be treated as a series of constants, each being evaluated separately. Materials changes will not be dealt with even though it is valid to assume that the use of titanium, graphite, steel or composites will adversely affect cost. In fact, the dense materials (titanium and steel) will adversely affect cost due to weight and cost due to manufacturing complexity as well.

Given the foregoing exclusions, the miniaturization cost trends have been dealt with by parametric variation of the system size, and the degree of new design needed to achieve a given degree of miniaturization. The selected values of miniaturization vary between 10% and 90% in increments of 10%. In other words, if an unminiaturized system size is treated as 100%, Tables 3-1 through 3-4 show the effect on cost of weight reduction between zero and 90% on the first line. In order to include the effect of system complexity, Tables 3-1 through 3-4 are provided for values of n = 0.2, 0.4, 0.6, and 0.8.

The columns in the tables vary the design difficulty between a minimum change (.1 to .2 on Figure 2-2) and an all new design (0.9 to 1.0 on Figure 2-2). However, Tables 3-2 through 3-4 show the minimum design change as unity for reasons of simplifying the numbers. Thus the minimum design change number becomes 1.0 in lieu of 0.15 and the all new design becomes 6.0 which represents a relative value, compared to the minimum change value, i.e. 0.90 /0.15 = 6.0.

The use of Tables 3-1 through 3-4 is simple. Numbers less than 1.0 indicate a cost reduction and the degree of same, while numbers above 1.0 represent cost increases and the relative size of the increase. For example, using a 50% size reduction, and miniaturization requiring an all new design (df = 6) for n = 0.4, table 3-2 shows that the cost will be on the order of 4 1/2 times the cost for an unmodified item that is not miniaturized. In like manner, one can deduce that the cost of an all new design that achieves a 90% reduction in size (was 20 lbs., is 2.0 lbs.) will cost approximately 2 1/2 (2.4 from Table 3-2) the amount of an unmodified design.

Figure 3-1 is included to illustrate the cost trends for various systems complexity factors between n = .2 and n = .8. The curves all use a design factor df = 1.0 and all have been normalized so that the unminiaturized weight is unity. The purpose of Figure 3-1 is to show the effect of complexity factors on cost as weight is reduced. No design modification effects are included in Figure 3-1 so the curves indicate complexity trends only. To generate an estimate of the relative cost of miniaturization including redesign effects, one must multiply the cost factor (Figure 3-1) by a design factor as is done in Tables 3-1 through 3-4.

.63 1.26 1.89 3.78 6 1.46 2.19 4.38 .73 80 4.74 .79 1.58 2.37 20 4.98 2.49 1.66 .83 60 2.61 1.74 5.22 Miniaturization Guide Chart n=.4 Miniaturization Guide Chart n=.2 .87 50 5.40 60. 1.80 2.70 40 Table 3-2 Table 3-1 1.86 2.79 5.58 .93 30 2.88 <u> 96</u> 1.92 5.76 20 1.96 2.94 5.88.98 10 1.00 2.00 3.00 6.00 0 Significant Modification Req'd (30%) % Minlat. Major Modification Req'd (50%) Design Integration Only All New Design 5

% Miniat.	0	10	20	30	40	50	60	70	80	06
Design Integration Only	1.00	96.	.92	.87	.82	.76	69.	.62	.53	.40
Significant Modification Req'd (30%)	2.00	1.92	1.84	1.74	1.64	1.52	1.38	1.24	1.06	.80
Major Modification Req'd (50%)	3.00	2.88	2.76	2.61	2.46	2.28	2.07	1.86	1.59	1.20
All New Design	6.00	5.76	5.52	5.22	4.92	4.56	4.14	3.72	3.18	2.40

			Miniat	Table 3-3 urization G≀ n=.6	Table 3-3 Miniaturization Guide Chart n=.6	Chart				
di % Minlat. di	0	10	20	30	40	50	60	70	80	06
Design Integration Only	1.00	.94	.86	.81	.74	.66	.58	.49	.38	.25
Significant Modification Req'd (30%)	2.00	1.88	1.72	1.62	1.48	1.32	1.16	86.	.76	.50
Major Modification Req'd (50%)	3.00	2.82	2.58	2.43	2.22	1.98	1.74	1.47	1.14	.75
Ali New Design	6.00	5.64	5.16	4.86	4.44	3.96	3.48	2.94	2.28	1.50
			Miniat	Table 3-4 turization G n=.8	Table 3-4 Miniaturization Guide Chart n=.8	Chart				
diniat.	0	10	20	30	40	50	60	20	80	06
Design Integration Only	1.00	.92	.84	.75	.67	.57	.48	.38	.28	.16
Significant Modification Req'd (30%)	2.00	1.84	1.68	1.50	1.34	1.14	96.	.76	.56	.32
Major Modification Req'd (50%)	3.00	2.76	2.52	2.25	2.01	1.71	1.44	1.14	.84	.48

96.

1.68

2.28

2.88

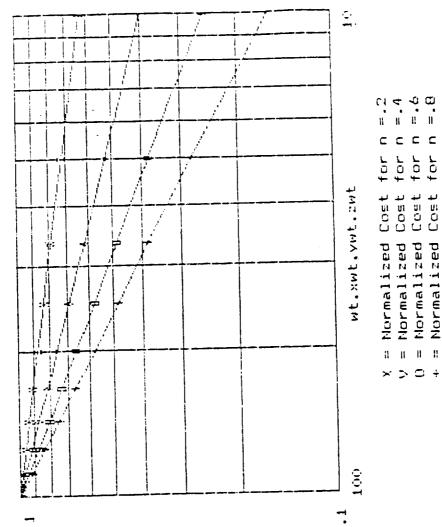
3.42

4.02

4.50

5.04

5.52


6.00

All New Design

Figure 3 -1

Variation of Cost as a Function of Weiuht

The examples are not meant to suggest that certain combinations of miniaturization and design difficulty are more rational than others, but were selected simply to demonstrate table usage. It is conceivable that a modest degree of miniaturization is achievable with modest design (df = 2).

Caution is advised! for several reasons:

- 1. Some items <u>cannot</u> be reduced in size.
- 2. Some items <u>should not</u> be reduced in size.
- 3. Significant size reductions may require technology breakthroughs in materials, electronics, displays, etc. that could complicate the SBI development task.
- 4. Substitute materials will often negate weight reductions and raise costs even higher than estimated by the tables.

Notwithstanding all the adverse possibilities, one could conceivably reduce size and cost by miniaturizing an item or an assembly.

3.2 Modularity and Commonality

Common system modules, assemblies or components can have a profound impact upon development cost because of the potential savings associated with the use of a common module in more than one SBI hardware item. The following examples serve to illustrate this fact.

Table 3-5 shows the impact of using learning to reduce costs. For example, consider the case where sixteen units are to be constructed for a given SBI application of a system rack or drawer, but the item in question can be used in four applications rather than in only a single place. If the system is to be produced in small quantities, exotic tools and automation are not cost effective and the item is normally assembled using piece parts. Such systems usually have learning factors of 80%, i.e., each time the number of units is doubled (SBI Ref. No. 68), the cost of the nth unit is 80% of the previous cycle's end product cost. To be specific, the 2nd unit costs .8 times the first unit, the 4th unit .8 times the second, etc. See Table 3-5. In the case of a built-up drawer or rack which is used in four places, 16 units for prototypes, test, flight hardware, etc., becomes 64. As can be seen from Table 3-5, the cost of the 64th unit is 26.2% of the 1st unit and 64% of the 16th unit. The average cost for 64 items is reduced to 37.4% of the first unit cost compared to 55.8% of the first unit cost for 16 items. The lower the learning, the less dramatic the unit cost reduction, but for any item that is fabricated by other than completely automated processes, there is a cost reduction to be realized by common use in more than one application.

If one considers the programmatic input of multiple applications, there also exists the opportunity to avoid duplicate design and development efforts. For the sake of simplicity, we will confine this discussion to D&D plus fabrication and assume that four separate developments each require a test program. This being the case, we can treat a single, dual, triple and quadruple application in terms of the D&D effort and include the effect of reduced costs due to learning as well.

D&D	=	Design and Development Cost	
TFU	=	Theoretical First Unit Cost	
	=	.80	
Numb	er of a	articles required per application = 16)

Then:

Let $CP_1 =$ Let 35% D&D=	Cost of a single program, TFU Cost
$C.P_i =$	1.0 D&D _{cost} + [.35 D&D * L.F.] 16
=	1.0 D&D + [.35 D&D * .558] 16
$C.P_1 =$	1.0 D&D + 3.1248 D&D = 4.1248 D&D

Normalized cost = C.P./4.1248 D&D

In a similar manner, the cost of 2, 3 and 4 applications can be calculated which yields the data in Table 3-6.

TABLE 3-5Learning Factor TableAll First Articles are 100%

Quant	ity	2	4	8	16	24	32	64
Leam	-							
Factor	-	95.0%	90.3%	85.7%	81.5%	79.0%	77.4%	73.5%
0. 95	Aver.	97.5%	94.4%	90.8%	87.0%	84.65	83.0%	79.1%
	N th	90.0%	81.0%	72.9%	65.6%	61.7%	59.0%	53.1%
0.90	Aver.	95.0%	88.9%	82.2%	75.2%	71.3%	68.5%	62.0%
	N th	85.0%	72.3%	61.4%	52.2%	47.5%	44.4%	37.7%
0.85	Aver.	92.5%	83.6%	74.2%	64.9%	59.7%	56.2%	48.3%
	N th	80.0%	64.0%	51.2%	41.0%	35.9%	32.8%	26.2%
0.80	Aver.	90.0%	78.6%	69.3%	55.8%	49.8%	45.9%	37.4%

iotes:

1. Nth refers to the 2nd, 4th etc article in the fabrication of identical articles by the same process

2."Aver.", refers to the average cost of the 1" through the Nth article under the same conditions

3. The External Tank learning factor has been estimated at 80% (0.80) due to the relatively large amount of manual labor that goes into the fabrication process. In general the more manual the process, the greater the learning and the smaller is the number from the table that applies.

4. As the learning factors approach unity the reduction in cost for each succeeding cycle is reduced and 1.0 represents a fully automated process wherein the first article and the N^{th} article cost is the same.

5. For the purposes of the SBI trade studies we can use the guidelines that the manual fabrication and assembly processes of sheet metal have learning factors of 80% to 90% while the more automated and repetitive processes range between 90% and 95% or even as high as 97%. There probably won't be any automated processes where the costs of a number of articles remains the same as the first article cost.

Table 3-6Cost of Multiple Applications

Applications	D&D Cost	Production Cost	Normalized Total Cost Per Application
1	1.0 (D&D)	3.1248 (D&D)	1.00
2	.50 (D&D)	5.1408 (D&D)	.744
3	.33 (D&D)	6.7704 (D&D)	.628
4	.25 (D&D)	8.3776 (D&D)	.568
5	.20 (D&D)	9.785 (D&D)	.523

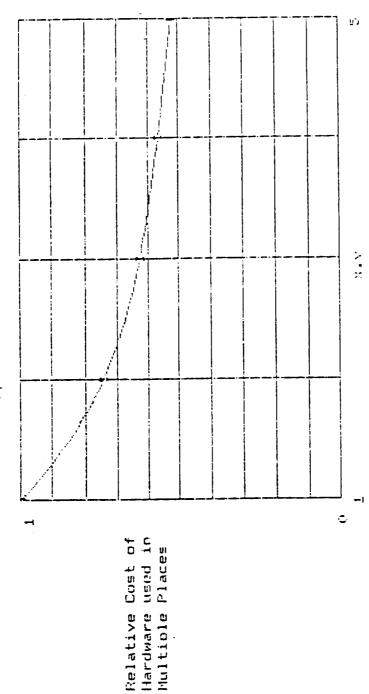
Figure 3-2 is a linear plot of the foregoing information based upon a theoretical first unit (TFU) cost of 35% * (DD), Figure 3-3 is based on a TFU of 15% * (DD). Figures 3-2 and 3-3 illustrate two facts. The first is that a significant cost reduction result from the use of hardware in more than a single application. The second is that the point of diminishing cost return occurs rapidly beyond the third application.

Modularity, although similar to commonality in some respects, offers other advantages as well. However, one must acknowledge that modular designs may cost more initially than non-modular designs due to the tendency for them to require added weight for packaging and more design integration due to an increase in the number of interfaces present in the system. Nevertheless, such systems have lower life cycle costs because of simplicity in assembly, repair, replacement, problem diagnosis and upkeep in general. Also there are the advantages of being able to upgrade individual modules with new technology and/or design improvements without impacting the rest of the system and without complicated disassembly and assembly to affect a module changeout.

Thus, if modules can be made common, the system possesses the attributes of modularization and offers potential cost savings from the multiple use of various system modules. The long and short of it is that the system cost can be reduced and the system flexibility and life cycle attributes improved. Common elements in modular designs should be a major, high priority goal in all SBI systems.

3.3 Modification of Existing Hardware (COTS) vs. New Hardware Build

Commercial off-the-shelf (COTS) hardware has been used for space applications sporadically since the early days of manned space flight and it poses the same cost-related challenges today as it did 25 years ago. The variables involved are the cost of the item, the cost of modification to meet space flight requirements, and the cost of demonstrating the hardware's reliability in qualification testing.

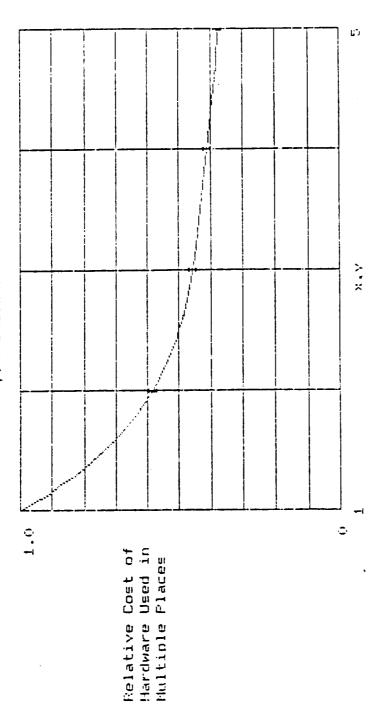

Past experience indicates that the cost of hardware modification is normally the primary cost factor of the cost elements listed. In an effort to assign an order of magnitude to modification costs, the weight of the COTS, the degree of modification (design factor, df), and the nature of the system (weight and system complexity, n) are used as prime cost drivers. Table 3-6 and 3-7 show the cost of modification against size (wt), and for systems with complexity factors (n) of .2 and .4. The higher order complexity factors are assumed to be not applicable on the basis that COTS is usually procured as modules or assemblies and then integrated into a larger system as necessary.

The costs shown in Tables 3-7 and 3-8 are based upon the assumption that COTS modifications are approximately the same cost as are redesigns to existing systems. The degree of modification (or redesign) is reflected in the design factor, df. The degree of system complexity is reflected by the system complexity factor, n. The range of weights over which these parameters are varied was selected on the basis that few items to be modified would be heavier than 50 Kg and that the small items less than 5 Kg would be procured as components or small assemblies which would be used in the design of a new system. The assumed size limit can be modified if necessary but were made to keep the number of weight variables in a reasonable size range with modest increments between each one. Here, again, caution is needed when applying CER type relationships to small items and to items where the portion of a hardware element being modified is small. See paragraph 2.1 for a discussion of scaling limitations.

Specific modifications to COTS may be simple enough to invalidate the assumption that modifications and redesign costs are similar. If so, alternate COTS modification cost methods will be required and will reflect greater savings. Thus, the foregoing assumption degrades gracefully because it is conservative from a cost point of view.

A popular viewpoint today is that modified COTS is always less costly than is a new design. This belief is reflected in the emphasis on "make or buy" in recent NASA RFP's and also in recent cost seminars held by major aerospace companies. Nonetheless, some cost specialists express the opinion that modifications to COTS greater than 30-35% probably makes a new design preferable. The COTS vs. new design trade study deals with these subjects so this part of the report will be confined to cost trends only. From the viewpoint of modification costs alone it appears straightforward that COTS has great cost reduction potential and should be seriously considered whenever a commercially available system element exists that can be utilized in SBI.

In order to illustrate the cost trends for modification costs and modification cost per pound, Figure 3-4 and 3-5 are included. Figure 3.4 represents minor modifications (df = .15) and n = .2, and, therefore, shows the lowest cost per pound of any of the cases in Tables 3-7 and 3-8. Figure 3-5 is for the case of substantial modifications and n = .4, df = .55 and thus represents a high side cost case. The figures both show the trends that are typical for the values presented in the tables. Figure 3-2 Effect on Cost of Multiple Applications of Mardware


Number of Hardware Uses First Unit Cost (TFU) = .35*(Dev. Cost)

Learning Factor = 80%

C-18

.

Figure 3-3 Effect on Cost of Nultiple Applications of Hardware

Number of Hardware Uses

First Unit Cost (TFU) = .15%(Dev.Cost)

Learning Factor = 80%

Table 3-7 Cost of Modifying Commercial Off-the Shelf Hardware

System Complexity Factor (n) =.2

Design Factor	Minor Mi		Modest d1=.35		Substantia df=.5		Major M df=.7	
Weight of Part Modified	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg
Weight =5 kgs	242.3	48.46	565.4	113.1	888.5	177.7	1212	242.3
Weight = 10 kgs.	278.3	27.83	649.5	64.95	1021	102.1	1392	139.2
Weight = 20 kgs.	319.7	15.99	746.0	37.3	1172	58.62	1599	79.9
Weight = 30kgs.	346.7	11.56	809.1	26.97	1271	42.38	1734	57.7
Weight = 40 kgs.	376.0	9.182	857.0	21.42	1347	33.67	1836	45.9 [.]
Weight = 50 kgs.	384.0	7.681	896.1	17.92	1408	28.16	1920	38.4

Notes: 1) All costs are in thousands of dollars

Table 3-8 Cost of Modifying Commercial Off-the Shelf Hardware

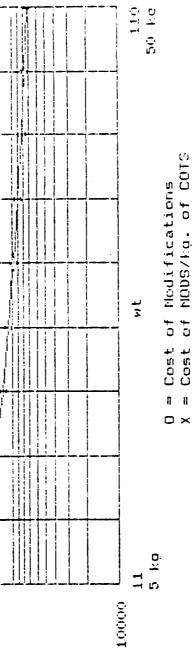
System Complexity Factor (n) =.4

Design Weight Factor	Minor Mi		Modest I df=.35		Substantia df=.5		Major M df=.7	
Weight Factor of Part Modified	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg
Weight =5 kgs.	391.4	78.28	913.3	182.7	1435	287.0	1957	391.4
Weight = 10 kgs.	516.5	51.65	1205	120.5	1894	189.4	2582	258.2
Weight = 20 kgs.	681.5	34.08	1590	79.51	2499	148.5	3408	170.4
Weight = 30 kgs.	801.5	26.72	1870	62.34	2939	97.96	4008	133.6
Weight = 40 kgs.	899.3	22.48	2098	52.46	3297	82.43	4496	112.4
Weight = 50 kgs.	983.2	19.66	2294	45.88	3605	72.10	4916	98.3

Notes: 1) All costs are in thousands of dollars

110 50 ka 11 Tigure 3 - 4 Variation of Cost & Cost/kg for COTS Node df≕15 n=.2 Į ----1 Cost of Modifications Cost of MUDS/ko. of COTS Πį ب: ج 1 H 11 111 -Ì Ę j -----l i 1 5 kạ 11 1000 1000000 14 (1 modcost(wt) ı÷ ع modecet(wt) C-22

Cost/kg for COTS Nods n= , 4 ហើរ I c);i 11 Figure Variation of Cost df=.55 li


1

1

Ì

1 1 ณ ณ ; modcost(wt) 11 2 modecet(wt)

of NOUS/kg. of COTS

4.0 Testing Costs

A cursory treatment of testing costs is presented so as to make the cost picture as complete as possible. However, the applicability of test costs to SBI has not been validated and the guide-lines presented should be applied with care only where a similarity exists between SBI elements and/or subsystems, and other manned spacecraft systems.

4.1 Test Hardware

Test hardware costs in past manned programs have included the cost of labor and materials for major test articles used to verify design concepts. However, test hardware cost relationships exclude element tests, component tests, qualification and certification tests. The cost of labor and material for the design, procurement; installation, checkout and operation of the instrumentation system on major test articles is included and as one might expect, these factors drive the cost of test hardware up to a value greater than the first unit cost.

The CER's examined put the cost of test hardware at 30% more than the theoretical first unit (TFU) cost, i.e. 1.3 * TFU. It should be noted that this cost is to demonstrate and to verify the operation of the designed hardware and should not be construed to include experimentation and testing to acquire biological information of an experimental or research character.

4.2 Integration Assembly and Checkout (IACO)

This factor is most commonly estimated as a function of TFU costs or test hardware costs. It will generally run on the order of 10 - 20% of test hardware costs for manned systems, but care must be exercised in applying such a rough rule of thumb to SBI. Therefore, a simple CER is suggested in cases where PRICE H estimates have not yet been formulated. The CER is as listed below:

 $LACO = .3 (1.3 \text{ TFU})^{0.7}$

The resulting estimate can only be generated when all other hardware costs are available.

4.3 Test Operations

Test operations CER's indicate that costs generally run on the order of 20% to 30% of the cost of test hardware plus integration, assembly and checkout costs. However, as is the case with other test related items of cost, the applicability to SBI hardware has not been validated. Nonetheless, the order of magnitude could be used for SBI estimates pending specific definition of test requirements for the various experiments.

Examination of the SBI hardware list (Ref.SBI No. 87) and the Life Science Laboratory Equipment description (Ref. SBI No.88) suggests that test operations could vary from little or nothing all the way up to the level indicated in CER's and approximated above.

5.0 SE&I Costs

SE&I cost for the design and development phase are generally expressed as a function of the DDT&E + Systems Test Hardware + IACO + Test Operations + GSE costs. However, the lower end of the validity range is almost \$1.0 billion of DDT&E costs and the applicability to SBI is extremely doubtful. For that reason, it is recommended that the preliminary SBI SE&I cost be taken as 10% to 15% of the SBI total system development cost until a detailed estimate or a PRICE H value is generated.

6.0 Program Management Costs

Program management costs usually run 5% of the total of all other costs, i.e., 5% of the sum of DDT&E + IACO + Test Hardware + Test Operations + GSE + SE&I (for DDT&E) costs. Inasmuch as there is no basis to assume that SBI program management cost is any more or any less than other types of programs, it seems reasonable to use a very preliminary value of this order of magnitude for budgetary estimating purposes.

7.0 Life Cycle Costs

As noted previously in this appendix, life cycle cost information is not available and therefore only a subjective treatment of the subject is possible. Nonetheless, Table 7-1 provides some worthwhile insights concerning all the SBI trade study subjects being addressed by Eagle. Taken singly, these subjects reveal the following probable life cycle impacts.

7.1 Study No. 3 - Miniaturization

The possible reduction of cost due to the impact of weight reduction is more theoretical than achievable. Indications are fairly clear that most attempts to miniaturize will cost rather than save money. Therefore, one must conclude that the reason for attempting size reductions is other than cost savings. It is beyond the scope of this write-up to postulate or to speculate further.

7.2 Study No. 4 - Modularity and Commonality

If the SBI program-wide support can be mobilized to support modular design and the development of hardware for common application to a number of SBI experiments and/or facilities, the cost benefit should be very significant. All the factors noted in Table 7-1 tend to substantiate this conclusion and only the programmatic direction and support has any identifiable cost or problem related to it.

Modular designs and common equipment should be a top priority requirement, goal and objective of SBI effort.

7.3 Study No. 5 - COTS vs. New Hardware

COTS should be regarded as a slightly trickier subject than commonality due to the potential pitfalls and cost penalties that can be incurred in its application to spaceflight. Nonetheless, the potential cost savings are large enough so that judicious use of COTS where it fits with the SBI program appears to be a cost-wise approach which could yield tremendous cost benefits for only nominal technical risk. Technical risk which can be offset by care in selecting, testing, and screening the procured items.

The use of modified COTS in lieu of a new design appears to pay off until the modification cost approaches the cost of an optimized new piece of hardware. The cut-off point has not been defined but would make an interesting and worthwhile follow-on study. Intuitively one would expect to find a series of cut-off points that are a function of the hardware complexity, and therefore, the cost and complexity of the modification program.

7.4 Study No. 6 - Rack Compatibility

To a greater degree than the other SBI trade studies, this subject seems to defy analysis that could give cost trend indications or life cycle cost indicators. Nevertheless, if one assumes that the inter-program coordination of rack compatibility can be accomplished with a reasonable effort, there exists the possibility to lower cost, to reduce the cost of data normalizing and comparison, and improved scientific data return might possibly be a companion benefit to lower experimentation costs.

The entire spectrum of life cycle costs beyond the design and program management phase that would accrue due to compatibility all appear to be very positive and beneficial. Logistics, ground processing, pre-flight checkout, operations, repair and replacement all would be impacted in a beneficial way by this approach. A comparable achievement that comes to mind is the establishment of standard equipment racks by the International Air Transport Association (IATA). The benefits apply to a large number of items (commercial transports) and of course the impact is greater, but the concept has been a true bonanza to all the world's commercial airlines. Rack compatibility is potentially a smaller sized cousin to IATA's achievement. Table 7 -1 Life Cycle Cost

Phase Study	Study No. 3 Hardware Miniaturization P	Study No. 4 Modularity and Commonality	Study No. 5 COTS vs. New Hardware	Study No. 6 Rack Compatibility
Design	Design change always required. Cost of redesign may be partially offset by size & weight reduction.	Requires programmatic support and some allowance for increased weight and cost in design phase.	Dependent upon availability and suitability of commercial modules and/or elements for SBI system application.	Requires inter-program coordination/communication and direction which is very difficult to achieve.
Development	Fabrication may be complicated due to size reduction.	Development, manufacture or procurement is facilitated by modularity. Commonality cost impacts all positive.	Modified COTS appears to have significant potential advantage. Requires sound make or buy anlysis & eval.	Common source would be highly desireable but will be hard to do due to specification differences & organiz. barriers
Test and Evaluation	Test costs may increase due to difficulty in set-up and trouble shooting.	Module testing, integrated testing and test trouble shooting are simplified and cost savings result.	Testing impact appears to be negative due to need for extra qualification tests and periodic retest (screening).	Should have only minor impact which stems from differences in test requirements.
Sustaining Engineering	No significant impact pro or con is apparent.	Individual engineering groups can operate with less sytems integration effort.	Should be automatically supported by vendor's program. Generally positive. Mods could pose problems.	Responsibility may be difficult to establish and to identity. Problem potential is small due to type of hardware.
Technology Upgrade	May be less likely due to absence of alternate hardware availability.	Facilitated and made easier by modular design.	Not predictable. Experience indicates that it can vary from easy and to very painful and awkward.	Should be possible within a rack or module. Compatibility will reduce the overall cost of inserting new tech. upgrades.
Maintenance and Operations	Possible adverse impact on maintenance due to small size. Operation should not be affected.	Common module impacts on maintenance, logistics and operations are all positive & highly significant.	Maintenance of unmodified portion could pose problem. Operation not affected if reliability is adequate.	Design for long life should mean small scale preventive maintenance is all that is required.
Replacement	May be less costly due to size and favorable impact on logistics.	Can be accomplished in planned phases and/or steps with minimum disruption to system operation.	COTS use suggests that low cost replacements are available. Advantage can erode with age.	Standard interfaces can only work to reduce the cost of replacement. Fewer spares, standard procedures etc.
Overall Life Cycle Cost Impact	Tends to look negative. The need to miniaturize must be based upon reasons other than cost.	Life cycle cost impacts are all highly favorable except for design phase coordination & possible weight penalties.	Very significant life cycle cost advantage inherent in COTS. However, initial selection and mod program must be prudent.	Whatever the cost of inter- program coordination, ICD's etc., the impact on overall NASA cost is very beneficial

8.0 Recommendations

- 1. Perform a follow-on effort to generate a designer's "John Commonsense" manual for cost avoidance and/or reduction. The manual should be a series of simple groundrules and guidelines to help reduce Space Biology Initiative Program costs. Where possible, a series of tables or curves to help assess the potential cost gain should be included.
- 2. Mount an effort to accumulate an SBI historical cost data base. The objective should be at least two-fold. First, identify the breakpoint for various cost trade-offs. Examples are presented in Figures 3-2 and 3-3 which show that commonality soon reaches a point of diminishing return insofar as it pertains to development and manufacturing. Given such breakpoints, explore the possibility of additional life cycle cost benefits which result from reduced sparing, simplified logistics, reduced maintenance, etc. Second, obtain enough historical cost information to permit the development of CER's that are properly scaled for the range of sizes in question. Existing CER's have limitations that may invalidate their use on SBI. Therefore, actual cost data from ongoing SBI efforts would provide a valuable asset to future work of a similar nature.
- 3. Consider a follow-on program to develop a rule-based or expert system that could be used for quick cost estimates and cost comparisons. Such an effort can only proceed in parallel with item 2, above, but the development time is such that it should begin as soon as practical.
- 4. Generate a comprehensive compendium of cost estimating relationships and apply them to SBI. Subsequently, make comparisons with other cost estimating methods in an attempt to remove the existing programmatic skepticism about the voodoo and black magic of cost predictions.

Bibliography

- A. MSFC Space Station CER's Report PRC D-2185-H, Contract NAS8-33789, December, 1982.
- B. CERV Target Costs for Benchmark and Reference Configurations JSC CERV Office Presentation, June 15, 1988.
- C. PRICE Users Newsletter, Volume 12, Number 3, October, 1988.
- D. Cost Estimating for Air to Air Missiles, Congressional Budget Office, January, 1983.
- E. PRICE H^{III} Reference Manual, General Electric Company, 1988.
- F. SBI Team Contact Report Joe Hamacke, April 27, 1989.
- G. SBI Contact Report Richard Whitlock, April 11, 1989.
- H. Report No. MSC-01248, ASSCAS Cost Handbook, Contract NAS 9-9018, January, 1970.

Appendix D - Database Definition

.

Appendix D - Database Definition

The database files for the SBI trade Studies were developed using dBASE IV. The database files consist of dbf, ndx, and frm files. The dbf files are dBASE IV database files. NDX files are the index files for the dbf (database) files. The frm files are report files for the trade study candidate and bibliography reports. The SBI trade study database consist of 4 database files with 78 fields of information. A complete listing of the database structure and dictionary is included in this database definition.

Database Structure For SBI Trade Studies

		•		
Structu	re for datab	ase: W:har	iware.doi	
Number	of data reco	ords:	13	
Date of	last update	e : 05/30/	· 89	Dec
Field	Field Name	Type	WIGEN	Dec
1	HW_ID .	Character	2	
2	THW NAME:	LINALACLEL	50	
3	HW_DESCRTN	Character	254	
4	HW_FACILIT INFO_SOURC HW MASS	Character	55 250	
5	INFO_SOURC	Character	250	2
			6	3 6
7	HW_VOLUME	Numeric	8	0
8	HW_POWER	Numeric	4	
9	HW_VOLTAGE	Numeric	6	
10	HW_VOLTAGE HW_HEIGHT	Numeric	6	
11	HW WIDTH	Numeric	6	
12	HW_DEPTH	Numeric	8	
13	REMARKS	Character	50	
٦.4	RECORD_DAT	Date	8	
14	HW_DEPTH REMARKS RECORD_DAT GROUP CATEGORY	Character	50	
16	CATEGORY	Character	50	
17	FUNCTION	Character	00	
18		Character	4	
18 19	GROUP_ID	Character	4	
20	MTN LEVEL	Character	5	
21	CONFIDENCE SUFFIC_DAT	Character	5	
22	SUFFIC DAT	Character	4	
22 23	PRIORITY	Character	2	
24	MIN LV POT	Character	6	
25	MIN EST CF	Character	6	
26	MIN_EST_CF MOD_LV_POT	Character	6	
27	MOD_EST_CF	Character	0	
28	COM_LV_POT	Character	6	
29	CON DOM OR	Character	6	
30	SYS_COMPLX	Character	6	
31	DON COMPLY	Character	Ð	
32	BUY_LV_POT BUY_MOD_LV BUY_EST_CF	Numeric	4	
33	BUY MOD LV	Numeric	4	
34	BUY EST CF	Character	4	
35	BUY_OTS_PT	Numeric	4	
36	BUY_DAT_AV	Character	4	
37	MOD_CAN	Logical	1	
** Tot		-	968	

D-3

Structure for datab Number of data reco Date of last update Field Field Name 1 BB_ID 2 AUTHOR_NO1 3 AUTHOR_NO2 4 AUTHOR_NO3 5 ART_TITLE 6 BOOK_TITLE 7 VOLUME_NO 8 PUBLISHER 9 PUBL_LOC 10 DATE 11 PAGE_NOS 12 ABSTRACT 13 ACQUIRED 14 COST 15 LOANED 16 REP_DOC_NO 17 MOD 18 MIN 19 COTS 20 RACK	ords: 05/26/ Type Character Character Character Character Character Character	98 789 Width 5 16 12 12 135 100	Dec
** Total ** Structure for data Number of data rec Date of last update Field Field Name 1 IF_ITEM	base: W:rac ords: 1 e : 05/26 Type Character Character Character Character Character Character	k_com.dbf 66 /89 Width 38 8	
Structure for data Number of data rec Date of last updat Field Field Name 1 HW_ID 2 COMM_MOD 3 COUNT 4 COST_DECSC 5 MASS ** Total **	ords: 1 e : 05/30 Type Character Character Numeric	.53	Dec 2 2

D-4

Appendix D - Database Dictionary for Space Biology Initiative Trade Studies

Hardware.dbf

This is the database file for SBI hardware.

	· · · · ·	
Field 1	HW_ID	Unique identification number for each hardware item
Field 2	HW_NAME	Hardware name
Field 3	HW_DESCRTN	Hardware description
Field 4	HW_FACILIT	Facility where SBI hardware is used
Field 5	INFO_SOURC	Information source for SBI hardware data
Field 6	HW_MASS	Hardware mass
Field 7	HW_VOLUME	Hardware volume
Field 8	HW_POWER	Hardware power requirement
Field 9	HW_VOLTAGE	Hardware voltage requirements
Field 10	HW_HEIGHT	Hardware height
Field 11	HW_WIDTH	Hardware width
Field 12	HW_DEPTH	Hardware depth
Field 13	REMARKS	Remarks concerning SBI hardware equipment
Field 14	RECORD_DAT	Update of last record
Field 15	GROUP	Hardware group
Field 16	CATEGORY	Hardware category
Field 17	FUNCTION	Hardware function
Field 18	FAC_ID	Hardware facility ID number
Field 19	GROUP_ID	Hardware group ID number
Field 20	MIN_LEVEL	Miniaturization level for hardware
Field 21	CONFIDENCE	Confidence level for miniaturization
Field 22	SUFFIC_DAT	Is there sufficient data to make a decision of hardware
		miniaturization?
Field 23	PRIORITY	Priority level for hardware item based on mass
Field 24	MIN_LV_POT	Miniaturization level potential for the hardware item
Field 25	MIN_EST_CF	Confidence level for miniaturization
Field 26	MOD_LV_POT	Modularity potential for hardware item
Field 27	MOD_EST_CF	Confidence level for modularity estimate
Field 28	COM_LV_POT	Commonality potential for hardware item
Field 29	COM_EST_CF	Confidence level for commonality estimate
Field 30	SYS_COMPLX	System complexity for hardware item
Field 31	DSN_COMPLX	Design complexity for hardware item
Field 32	BUY_LV_POT	Percent Buy for Hardware Item
Field 33	BUY_MOD_LV	Percent modification to Buy Hardware Item
Field 34	BUY_EST_CF	Confidence Level for Make-or-Buy Estimate
Field 35	BUY_OTS_PT	Percentage of COTS hardware that does not require
		modification
Field 36	BUY_DAT_AV	Is sufficient data available for make-or-buy estimate
Field 37	MOD_CAN	Logical field can the hardware item be modularized Y or N

biblo.dbf	This is the d	latabase for bibliography information.
Field 1	BB_ID	Identification number for the reference
Field 2	AUTHOR_NO1	First author
Field 3	AUTHOR_NO2	Second author
Field 4	AUTHOR_NO3	Third author
Field 5	ART_TITLE	Title of article
Field 6	BOOK_TITLE	Title of book
Field 7	VOLUME_NO	Volume number
Field 8	PUBLISHER	Publisher
Field 9	PUBL_LOC	Publisher's address
Field 10	DATE	Date of publication
Field 11	PAGE_NOS	Page number of reference
Field 12	ABSTRACT	Abstract
Field 13	ACQUIRED	Where the reference was acquired
Field 14	COST	Cost of reference
Field 15	LOANED	Where the reference was loaned from
Field 16	REP_DOC_NO	Report or document number
Field 17	MOD	Was this reference used on the modularity trade study? y
		or n
Field 18	MIN	Was this reference used on the miniaturization trade study?
		y or n
Field 19	CUTS	Was this reference used on the make-or-buy trade study? y
		or n
Field 20	RACK	Was this reference used on the rack compatibility trade study? y or n

rack_com.dbf

This is the database file for the rack comparison study.

Field 1IF_ITEMField 2UNITSField 3UNIT_SYS_Field 4ITEM_TYPEField 4VALUEField 5MODULE	 I/F item being compared, i.e. power converters Units of comparison, i.e. inches Unit system, i.e. metric Functional Grouping of IF Item i.e. Data Mgmt. Value of the comparison Module, i.e. U.S. Lab
---	--

comm_mod.dbf

This is the design modularity and commonality database

Field 1 Field 2 Field 3 Field 4	HW_ID COMM_MOD COUNT COST_DECSC	Unique identification number for each hardware item Modularity function/assembly Used to total hardware items in COMM_MOD Field Cost description Mass of hardware item
Field 5	MASS	Mass of hardware liem

Appendix E Detailed Hardware Description

RECEIVED APR 2 4

CELSS/FEAST Hardware Data Sheet Report Date 4/5/89

	Hardware Status Mod existing
CELSS Controlled Ecological	Revision Date Apr 4, 1989
Life Support System	
Title Germination Experiment Kit	Hardware Description
	Modified Plant Growth Unit.
	4.
Project FEAST Objective 1.) Provide a means for initial screening of plant cultivars in terms of their ability to germinate in μ-g. 2.) Determine root-shoot orientation under μ-g conditions.	
	Desired Features/Functions
	 Lighting : LED @ >180 μmol/sq.m/s Basic nutrient delivery Video recording and/or downlink capability
Hardware Specifications	
Weight (Kg) 27.3 Height (m) .253 Width (m) .440	
Depth (m) .516 Temp Range Ambient	
Peak Power (Kw) .300 Cont Power (Kw) .150	
Power Source	Item Specific Support Equipt
STS Mid-deck.	Plant Growth Module
Data Downlink Regs	4
1.5 MBPS Video; 1.6 KBPS Voice	
Rack Mounted/Stowed STS Middleck	
Hardware Specifications	
•	Design Status
	Modification to PGU required.
	Development Cost (\$K) 5,700
	Development Time (months) 12
	Anticipated Launch Date 1992 & 1996
	Risk Category 1

-

CELSS/FEAST Hardware Data Sheet Report Date 4/5/89

Germination Experiment Kit

Science Justification

Identified Experiments CELSS Germination Studies.

History

Utilizes existing PGU design with modification for germination studies.

Problem/Issues&Concerns

none

Vendor Source List

Interface Requirements STS Mid-deck.

Special Considerations

none

Safety Issues

none

Flight Opportunity USML-1 (3/92) & USML-4 (5/96)

Notes

1.) Two flights needed : Possible flights are USML-1 and USML-4.

REV A : Revised cost 4/4/89 from \$5250K to \$2700K to reflect changes in Cost Estimates.

Report Date _ 4/5/89

	Hardware Status Planned		
Controlled Ecological	Revision Date Apr 4, 1989		
Life Support System			
Title Gas/Liquid Handling Experiment H/W	Hardware Description		
Title Gas/Liquid Handling Experiment H/W Element No 2 Revision A	An experiment package for KC-135, STS (GAS or Mid-deck) or Spacelab for evaluating physical		
Project FEAST	principles pertaining to gas and liquid handling,		
Objective	mixing and separation under µ-g conditions.		
 To evaluate and demonstrate fundamental physical principles of gas and liquid handling, mixing and separation under μ-g environment as applied to CELSS technology development. To demonstrate concept design for gas/liquid handling systems in μ-g. 	Desired Features/Functions		
	1. Video recording and/or downlink capability		
	 Capable of mixing and separation tests of a variety of gas/liquid combinations common to CELSS (water/air, nutrient solution/air,etc) Thermal and shock isolation 		
Hardware Specifications	4. Liquid and gas containment 5. Various gas and liquid reservoirs		
Weight (Kg) 27.3 Height (m) .253 Width (m) .440	 Mixing and separation chamber Simple PLC control with control valves. 		
Depth (m) .516 Temp Range Ambient			
Pesk Power (Kw) .3 Cont Power (Kw) .15			
Power Source	Item Specific Support Equipt		
Standard KC-135, Spacelab or NSTS source.	none		
Data Downlink Reqs			
.05 KBPS Command; 1.5 KBPS Digital; 1.5 MBPS Video; 1.6 KBPS Voice			
Rack Mounted/Stowed NSTS:Mid-deck Stowage SL : Rack Mounted			
Hardware Specifications			
1. Mid-deck locker size, may be partial SL rack size.	Design Status		
	New Design		
	Development Cost (\$K) 1,500		
	Development Time (months) 24		
	Anticipated Launch Date 1993		
	Risk Category 3		

Report Date

Gas/Liquid Handling Experiment H/W

Science Justification

Evaluation of physical principles for FEAST.

Identified Experiments

History

Existing liquid/gas transfer, mixing and separation technologies for µ-g from previous space flight vehicles and payloads.

٠

Problem/Issues&Concerns

none at present

Vendor Source List

none at present

Interface Regulrements

Standard KC-135, NSTS or SL.

Special Considerations

Containment of liquids and gases.

Safety Issues

none

Flight Opportunity USML-2 (8/93)

Notes

REV A : Revised cost 4/4/89 from \$3000K to \$1500K. Changed Unit No. from 3 to 2 to reflect Cost Estimate categorization; added misc data to various categories.

Report Date : 4/5/89

		Hardware Status Planned			
	Controlled Ecological	Revision Date Apr 4, 1989			
	Life Support System	Hardware Description			
Title Water Co	ondensation & Re-cycling Exp H/W	Spacelab, NSTS middeck or KC-135 size			
Element No	3 Revision A	experiment package for water condensation			
Project	FEAST	studies.			
technologies under µ-	plems associated with water condensation g. prove-out conceptual designs.				
		Desired Features/Functions			
		 Video recording and/or downlink capability Water vapor source and water reservoir Condensation chamber with cooling Stream processing capability at various rate Monitoring capability of : relative humidty, 			
Hardware Specific	ations	liquid volume, process rates			
Weight (Kg) 27.3	Height (m) .253 Width (m) .440				
Depth (m) .516	Temp Range Ambient				
Peak Power (Kw) .3	00 Cont Power (Kw) .150				
Power Source		Item Specific Support Equipt			
Standard platform sour	7C9.	none			
Data Downlink Reqs	<u> </u>				
Rack Mounted/Stowe	d Rack Mounted or Stowed.				
Hardware Specifica	ations				
	•	Design Status			
		New Design			
		Development Cost (\$K) 2,900			
		Development Time (months)			
		Anticipated Launch Date 1995			
		Risk Category			

чA.

Report Date 4/5/89

	ensation & Re-cycling Exp H/W
Science Ju	stification
Identified E	ixperiments
	•
History	
Problem/las	ues&Concerns
Vendor Sour	ce List
Interface Re	
Special Con	elderatione
	SIGELETICU 2
Safety Issue	3
Flight Oppor	tunity USML-3 (1/95)
Notes	
1.) Two flights π	tay be required
2.) May only re 3.)	quire KC-135 flight to validate.
REV A . Davias	cost AIA/00 time \$5000K to \$0000K . Ot a state to be a state to be
categorization.	cost 4/4/89 from \$5800K to \$2900K. Changed Unit No. from 2 to 3 to reflect Cost Estimate
-	

Report Date 4/5/89

-

			Hardware Status	Planned	
Co	ntrolled Ecologic	al	Revision Date	Apr 4	4, 1989
Lif	e Support System	ר [
		·	Hardware Descrip	otion	
· · · · · · · · · · · · · · · · · · ·	Delivery Test H/W		Size of two middeck k		
Element No 4	Revision	A	basic µ-g nutrient del	INALA 2A2191112).
Project	FEAST		•		
Objective 1. To evaluate plant nutrient de conditions for CELSS technolog					
		· • •	Desired Features	/Functions	
			 Video recording a Capability for testi delivery concepts Liquid and gas control 	ing a number	
Hardware Specifications					
Weight (Kg) 27.3 Height (m) .253 Width (m) .4	40			
Depth (m) .516	Temp Range Ambient				
Peak Power (Kw) .300	Cont Power (Kw) .150				
Power Source Standard mid-deck power sourc	e or equivalent		Item Specific Sup none	oport Equip	t
Data Downlink Reqs .05 KBPS Command; 1.5 KBPS Voice	Digital; 1.5 MBPS Video; 1.6	KBPS			
Rack Mounted/Stowed Stow	ed				
Hardware Specifications					
		. †	Design Status		
			New Design		
			Development Cost	(\$ K)	3,475
			Development Time	(months)	24
			Anticipated Launch	Date	1992 & 1996
			Risk Category		4

Report Date 4/5/89

٠

Nutrient	Delivery	Test	H/₩
----------	----------	------	-----

Science Justification

Provides test and demonstration of nutrient delivery systems for CELSS technologies.

Identified Experiments

History None

Problem/Issues&Concerns

Vendor Source List

None

Interface Requirements

Special Considerations

Safety Issues

Flight Opportunity SLS-2 (7/92) & IML-4 (3/96)

Notes

REV A : Revised cost 4/4/89 from \$6850K to \$3475K.

.

Report Date 4/5/89

Controlled Ecological Life Support System Revision Date April 1989 Title CELSS Test Facility Crop growth research facility for seed-to-seed crop suides under uptarty. COStation Project FEAST Objective 1.) To provide a facility for conducting plant productivity studies from seed to maturify (in some instances seed to seed) with mixed crops and in maxematic under upgravity conditions. Desired Features/Functions 2.) Assess system reliability and maintainability for CELSS technologies. Desired Features/Functions . 3. Standard Gubie rack size. 4. Complete control of inputs and outputs to Standard Gubie rack size. . . Hardware Specifications S. Implements automation and expert systems. . . Need Rack power Complete control of inputs and outputs to Standard Rack power . . Date Downlink Rege		<u></u>		Hardware Status	Planned	
Itile CELSS Test Facility Hardware Description Crop growth research facility for seed-to-seed crops and in mixed matrifies under updayty conditions. Crop growth research facility for seed-to-seed crops and in mixed matrifies under updayty conditions. 2.) Assess system reliability and maintainability for CELSS technologies. Desired Features/Functions 2.) Assess system reliability and maintainability for CELSS technologies. Desired Features/Functions 1. Modular subsystem elements to allow for design evolution. 2. ED lighting system 3. Standard double rack size. Complete control of inputs and outputs to Station ambient atm. 5. Hardware Specifications S. Implements automation and expert systems. 6. Fuil complement DAS. 7. Maximized degree of closure 7. Maximized degree of closure Item Specific Support Equipt 7. Lighting : 0 - 3000 µmol/sq. m/s Item Specific Support Equipt 7. Lighting : 0 - 3000 µmol/sq. m/s Design Status 9. Montoining, control and data acquisition systems Design Status 1. Automade specimen handing Development Cest (SK) 42.02 9. Montoining despointer Multing specified ranges Site and than bailing Automate Specifier Audition systems 1. Lighting corrol and data acquisition systems Sitevelopment Cest (SK) 42.02	Control	ed Ecologi	cal		Apr 4, 1989	
Itile CELSS Test Facility Hardware Description Crop growth research facility for seed-to-seed crops and in mixed matrifies under updayty conditions. Crop growth research facility for seed-to-seed crops and in mixed matrifies under updayty conditions. 2.) Assess system reliability and maintainability for CELSS technologies. Desired Features/Functions 2.) Assess system reliability and maintainability for CELSS technologies. Desired Features/Functions 1. Modular subsystem elements to allow for design evolution. 2. ED lighting system 3. Standard double rack size. Complete control of inputs and outputs to Station ambient atm. 5. Hardware Specifications S. Implements automation and expert systems. 6. Fuil complement DAS. 7. Maximized degree of closure 7. Maximized degree of closure Item Specific Support Equipt 7. Lighting : 0 - 3000 µmol/sq. m/s Item Specific Support Equipt 7. Lighting : 0 - 3000 µmol/sq. m/s Design Status 9. Montoining, control and data acquisition systems Design Status 1. Automade specimen handing Development Cest (SK) 42.02 9. Montoining despointer Multing specified ranges Site and than bailing Automate Specifier Audition systems 1. Lighting corrol and data acquisition systems Sitevelopment Cest (SK) 42.02	Life Su	pport Syste	m			
Element No 5 Revision A Project FEAST crop studies under µ-gravity. ICC Station Project FEAST Objective 1.) To provide a facility for conducting plant productivity studies trom seed to some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some instances seed to seed) with mixed crops and in mixed maturits (in some maturits (in some maturits) (in some and experit systems. 2. J. Assess system reliability and maintainability for CELSS Desired Features/Functions Hardware Specifications 1. Modular subsystem elements of allow for design systems Modelar Nutrient delivery system Sealed enclosure 1. Lighting : 0 - 3000 µmol/sq.m/s Lighting : 0 - 3000 µmol/sq.m/s 2. Modular nutrient delivery system Beasign Status		-				
Project FEAST Objective 1.) To provide a facility for conducting plant productivity studies from seed to smeal with mixed maturities under u-gravity conditions. 2.) Assess system reliability and maintainability for CELSS technologies. Desired Festures/Functions 1. Modular subsystem elements to allow for design evolution. 2. LED liphting system 3. Standard double rack size. 4. Complete control of inputs and outputs to Station amblent atm. 5. Full complement DAS. 7. Maximized degree of closure 5. Full complement DAS. 7. Maximized degree of closure 8. Selectifications 1. Lighting: 0 - 3000 µmol/sq.m/s 2. Self-control and mail gassous environment (Oz, COz, N2) 8. Morotoring, control and data acquisition system 3. Automated specimen handling 1. Automated specimen handling 1. Fuilt control of parameters withing specified ranges 7. Fuilt control of parameters withing specified ranges			A	crop studies under µ-g	ravity. IOC Station	
Objective 1.) To provide a facility for conducting plant productivity studies trom seed to maturity (in some instances seed to seed) with mixed corps and in mixed maturities under µ-gravity conditions. 2.) Assess system reliability and maintainability for CELSS technologies. 2.) Assess system reliability and maintainability for CELSS technologies. Hardware Specifications Weight (Kg) 634.7 Height (m) 1.89 Width (m) 1.05 Depth (m) 0.91 Temp Range S.S. Ambient Peak Power (Kw) 2.0 Cont Power (Kw) 1.5 Power Source Standard Rack power Data Downlink Rega .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.5 KBPS Voice Hardware Specifications 1. Lighting: 0 - 3000 µmol/sq.m//s 2. Microbial PVAC 5. Pressure compensation system 3. Saaled enclosure wa coess and windows 4. Fully controllable HVAC 5. Pressure compensation system 6. Microbianed with modular subsystems 10. Automated speciment and fung 10. Automated speciment and minding 11. Control of internal gaseous environment (O2, CO2, N2) Microbiane with moularsubysystems <td< td=""><td>Project FE</td><td>AST</td><td></td><td>Freedom implementati</td><td>511.</td></td<>	Project FE	AST		Freedom implementati	511.	
technologies. 1. Modular subsystem elements to allow for design evolution. 2. LED lighting system 3. Standard double rack size. 4. Complete control of inputs and outputs to Station ambient atm. 5. Implements automation and expert systems. Meight (Kg) 634.7 Height (m) 1.89 Width (m) 1.05 5. Implements automation and expert systems. Depth (m) 0.91 Temp Renge S.S. Ambient 5. Implements automation and expert systems. Power Source 1.1 Maximized degree of closure Standard Rack power 1.5 Data Downlink Rege 0.6 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice 1. Lighting: 0 - 3000 µmol/sq.m/s 2. Modular nutrient delivery system - 3. Sealed enclosure w access and windows - 4. Fully controllable HVAC - 5. Pressure compensation system - 6. Mater control and data acquisition systems - 10. Automated specimen handling 1.0 control of internal gaseous environment (Oz, CO2, N2) 8. Microbial monitoring capability - 7. Mationad tap acquisition systems - 10. Automated specimen handling - 11. Eighting i. Ontrol and data acquisition systems - 12. Self contained with modular s	Objective 1.) To provide a facility for conducting from seed to maturity (in some instance	is seed to seed) with	tudies n mixed			
Hardware Specifications 5. Implements automation and expert systems. Weight (Kg) 634.7 Height (m) 1.89 Width (m) 1.05 5. Implements automation and expert systems. Depth (m) 0.91 Temp Range S.S. Ambient Peak Power (Kw) 2.0 Cont Power (Kw) 1.5 Power Source Item Specific Support Equipt Standard Rack power CTF Germination and Storage Chamber. Data Downlink Regs .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice Reck Mounted Hardware Specifications - 1. Lighting : 0 - 3000 µmol/sq.m/s - 2. Modular nutrient delivery system - 3. Sealed enclosure w/a ccess and windows - 4. Fully controllable HVAC 5 Pressure compensation system 6. Water condensation & re-cycling capability Development Cost (\$K) 7. Control of intemal gaseous environment (02, CO2, N2) Bwicrobial monitoring capability 9. Morrobial monitoring capability Development Toet (\$K) 42.03 9. Serie contained with modular subsystems - - 10. Automated specimen handling - - - 11. Eighting : control of parameters withing specified ranges - - - <td>2.) Assess system reliability and main technologies.</td> <td>tainability for CELS</td> <td>5</td> <td> Modular subsystem design evolution. LED lighting system Standard double rational double</td> <td>n elements to allow for n ack size.</td>	2.) Assess system reliability and main technologies.	tainability for CELS	5	 Modular subsystem design evolution. LED lighting system Standard double rational double	n elements to allow for n ack size.	
Pewer Source Item Specific Support Equipt Standard Rack power CTF Germination and Storage Chamber. Data Downlink Reqs .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice Rack Mounted/Stowed Rack Mounted Pesign Status Hardware Specifications . 1. Lighting : 0 - 3000 µmol/sq.m/s . 2. Modular nutrient delivery system . 3. Sealed enclosure w/ access and windows . 4. Fully controllable HVAC . 5. Pressure compensation & re-cycling capability . 7. Control of internal gaseous environment (O2, CO2, N2) . 8. Microbial monitoring capability . 9. Monitoring, control and data acquisition systems . 10. Automated specimen handling . 11. Growing Area: 0.71 sq.m, max growing height : 0.85 m . 12. Self-contained with modular subsystems . 13. Fuill control of parameters withing specified ranges .	Weight (Kg) 634.7 Height (m) 1.89 Width (m) 1.05			 Implements automation and expert systems. Full complement DAS. 		
Standard Rack power CTF Germination and Storage Chamber. Data Downlink Reqs .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice Rack Mounted/Stowed Rack Mounted Rack Mounted/Stowed Rack Mounted Hardware Specifications - 1. Lighting: 0 - 3000 µmol/sq.m/s - 2. Modular nutrient delivery system - 3. Sealed enclosure w/ access and windows - 4. Fully controllable HVAC 5. Pressure compensation system 6. Water condensation & re-cycling capability New Design 7. Control of intemal gaseous environment (O2, CO2, N2) Development Cost (SK) 42.03 9. Monitoring, control and data acquisition systems Development Time (monthe) 42.03 10. Automated specimen handling 11 11 11 11 13. Fuill control of parameters withing specified ranges Anticipated Launch Date 19	Peak Power (Kw) 2.0 Co	ont Power (Kw) 1.	5			
Data Downlink Reqs .05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice Rack Mounted/Stowed Rack Mounted Hardware Specifications 1. Lighting: 0 - 3000 µmol/sq.m/s 2. Modular nutrient delivery system 3. Sealed enclosure w/ access and windows 4. Fully controllable HVAC 5. Pressure compensation system 6. Water condensation system 6. Water condensation system 7. Control of internal gaseous environment (O2, CO2, N2) 8. Microbial monitoring capability 9. Monitoring, control and data acquisition systems 10. Automated specimen handling 11. Growing Area: 0.71 sq.m, max growing height : 0.85 m 12. Self-contained with modular subsystems 13. Fuill control of parameters withing specified ranges						
.05 KBPS Command, 1.5 KBPS Digital, 1.5 MBPS Video, 1.6 KBPS Voice Reck Mounted/Stowed Rack Mounted Hardware Specifications 1. Lighting: 0 - 3000 µmol/sq.m/s 2. Modular nutrient delivery system 3. Sealed enclosure w/ access and windows 4. Fully controllable HVAC 5. Pressure compensation system 6. Water condensation & re-cycling capability 7. Control of internal gaseous environment (O2, CO2, N2) 8. Microbial monitoring capability 9. Monitoring, control and data acquisition systems 10. Automated specimen handling 11. Growing Area: 0.71 sq.m, max growing height : 0.85 m 12. Self-contained with modular subsystems 13. Fuill control of parameters withing specified ranges	Standard Hack power			CIF Germination and	Storage Granoer.	
Hardware Specifications 1. Lighting : 0 - 3000 μmol/sq.m/s - 2. Modular nutrient delivery system - 3. Sealed enclosure w/ access and windows - 4. Fully controllable HVAC - 5. Pressure compensation system - 6. Water condensation & re-cycling capability - 7. Control of internal gaseous environment (O2, CO2, N2) - 8. Microbial monitoring capability - 9. Monitoring, control and data acquisition systems - 10. Automated specimen handling - 11. Growing Area: 0.71 sq.m, max growing height : 0.85 m - 12. Self-contained with modular subsystems - 13. Fuill control of parameters withing specified ranges -	.05 KBPS Command, 1.5 KBPS Digital	, 1.5 MBPS Video, 1	.6 KBPS			
 Lighting : 0 - 3000 μmol/sq.m/s Modular nutrient delivery system Sealed enclosure w/ access and windows Fully controllable HVAC Pressure compensation system Water condensation & re-cycling capability Control of internal gaseous environment (O2, CO2, N2) Microbial monitoring capability Monitoring, control and data acquisition systems Automated specimen handling Growing Area: 0.71 sq.m, max growing height : 0.85 m Self-contained with modular subsystems Fuill control of parameters withing specified ranges 	Rack Mounted/Stowed Rack Moun	ted				
 Modular nutrient delivery system Sealed enclosure w/ access and windows Fully controllable HVAC Pressure compensation system Water condensation & re-cycling capability Control of internal gaseous environment (O2, CO2, N2) Microbial monitoring capability Control and data acquisition systems Automated specimen handling Growing Area: 0.71 sq.m, max growing height : 0.85 m Self-contained with modular subsystems Fuill control of parameters withing specified ranges 	Hardware Specifications					
7. Control of internal gaseous environment (O2, CO2, N2) 8. Microbial monitoring capability 9. Monitoring, control and data acquisition systems 10. Automated specimen handling 11. Growing Area: 0.71 sq.m, max growing height : 0.85 m 12. Self-contained with modular subsystems 13. Fuill control of parameters withing specified ranges	 Modular nutrient delivery system Sealed enclosure w/ access and w Fully controllable HVAC Pressure compensation system Water condensation & re-cycling 	capability	•	2		
10. Automated specimen handlingDevelopment Time (months)11. Growing Area: 0.71 sq.m, max growing height: 0.85 mDevelopment Time (months)12. Self-contained with modular subsystemsAnticipated Launch Date13. Fuill control of parameters withing specified ranges19	 Control of internal gaseous enviro Microbial monitoring capability 	nment (O2, CO2, N	2)	Development Cost	(SK) 42,05	
12. Self-contained with modular subsystems Anticipated Launch Date 19 13. Fuill control of parameters withing specified ranges Anticipated Launch Date 19	10. Automated specimen handling		m	Development Time	(months) 7	
13. Full control of parameters withing specified ranges	12. Self-contained with modular subs	systems		Anticipated Launci	h Date 199	
	13. Full control of parameters withing	l sharillan iquidas		Risk Category		

4/5/89 Report Date

CELSS Test Facility

Science Justification

Hardware is mandatory for developement of future CELSS technologies and advanced life support systems.

Identified Experiments

Hardware to be used in meeting CELSS Project FEAST objectives.

History

Major design elements derived from non-flight Crop Growth Research Chamber (CGRC) requirements.

Problem/Issues&Concerns

Nutrient dlivery system, lighting, & power.

Vendor Source List

None at present.

Interface Requirements

Standard Space Station Freedom rack interfaces.

Special Considerations

None

Safety Issues

None

Flight Opportunity PMC S.S. Freedom

Notes

- 1. Establish reliability baseline for CELSS hardware
- 2. Needs maintenance scenario and possibly S/E for same.
- 3. Current crop candidates are : Potatoes, soybeans, wheat, tomato, lettuce, radish, rice, onion, legume & spinach.

REV A : Revised cost 4/4/89 from \$15,000K to \$42,050K to reflect incorporation of CROP elements into CTF. Flevised growing area from 1.5 - 2.0 sq.m to 0.71 sq.m, power from 1.8kW to 2.0 Kw peak and 1.2 - 1.3 kW cont to 1.5kW, mass changed from 1000 kg to 634.7 kg.

CELSS/FEAST Hardware Data Sheet Report Date 4/5/89

				Hardware Status Planned	
	Co	ntrolled Ecolog	gical	Revision Date	
	Lif	e Support Syst	em		
				Hardware Description	
Title		mination Chamber		Provides germination environment for se germination proir to planting in the CELS	ed S Test
Element No	6	Revision	NR	Facility, Approx. the size of STS Middeo	ck
Project	<u> </u>	FEAST		Locker)
Objective 1. To provide environ the CTF.	onment for g	erminating seeds prior to	planting in		
2. To provide seed	storage.			Desired Features/Functions	
				1. Air-tight chamber	
				 Humidity controlled Heat, shock and vibration isolated 	
Hardware Speci	fications				
Weight (Kg) 6.8	Height	(m) .253 Width (n	n) .440		
Depth (m) .516		Temp Range S.S. A	mbient		
Peak Power (Kw)	.300	Cont Power (Kw)	.150		
Power Source				Item Specific Support Equipt	
none required				none	
Data Downlink Red	q\$				
none					
Rack Mounted/Sto	wed Stow			4	
				-	
Hardware Speci	fications				
Approximately the s	ize of a NS ⁻	TS Middeck Locker.	•	Design Status	
				New Design	
				Development Cost (\$K)	800
				Development Time (months)	12
				Anticipated Launch Date	1998
				Risk Category	1
				1	

Report Date 4/5/89

CTF Germinat	ion C	hamber
--------------	-------	--------

Science Justification

Provides germination of seeds prior to planting in the CTF. Reduces operational power demand on CTF. Provides seed storage.

Identified Experiments

none

History

Plant Growth Unit.

Problem/Issues&Concerns

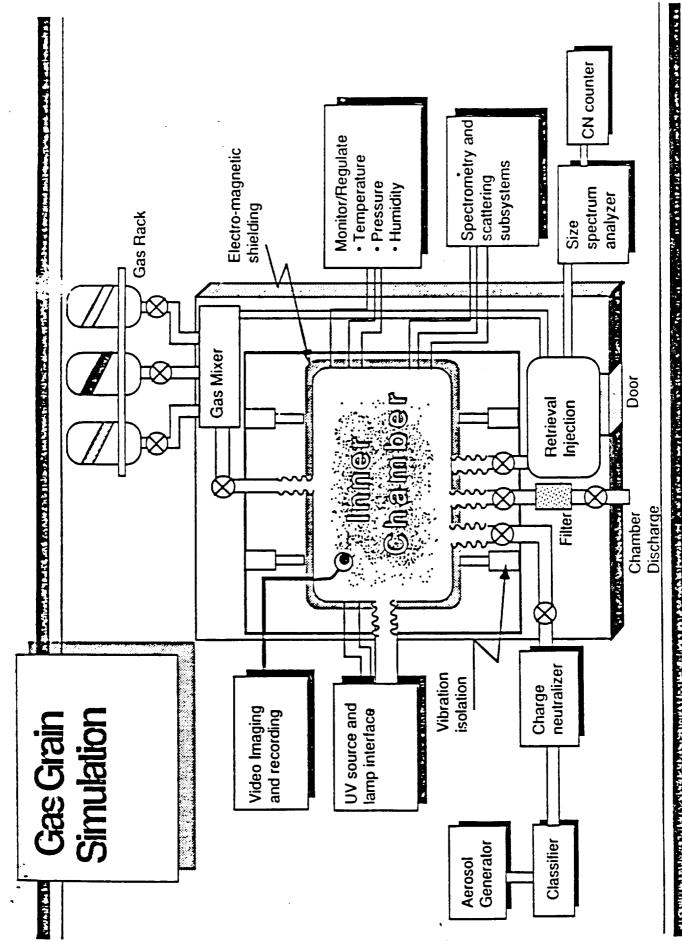
none

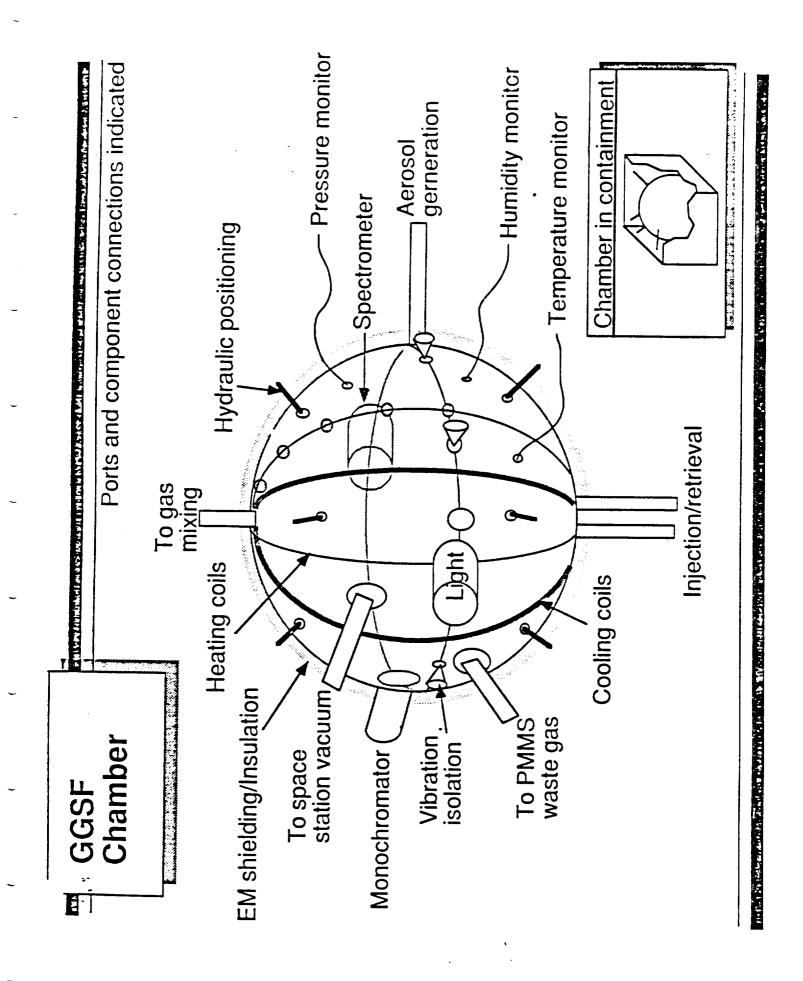
Vendor Source List

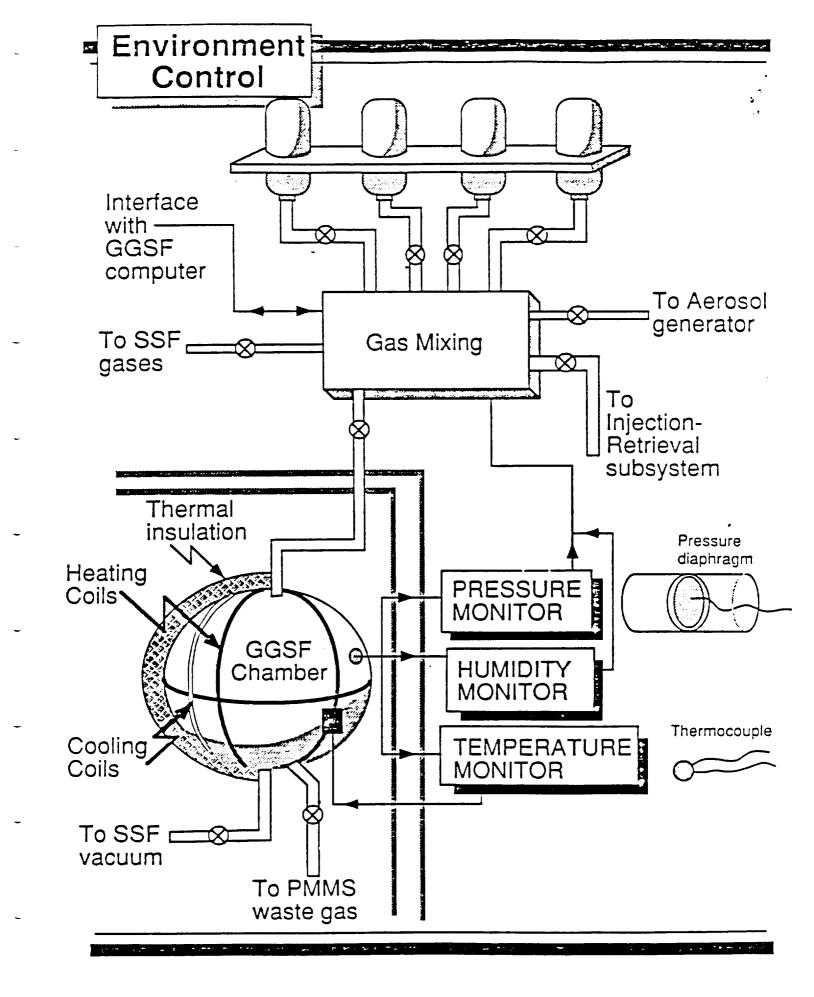
none

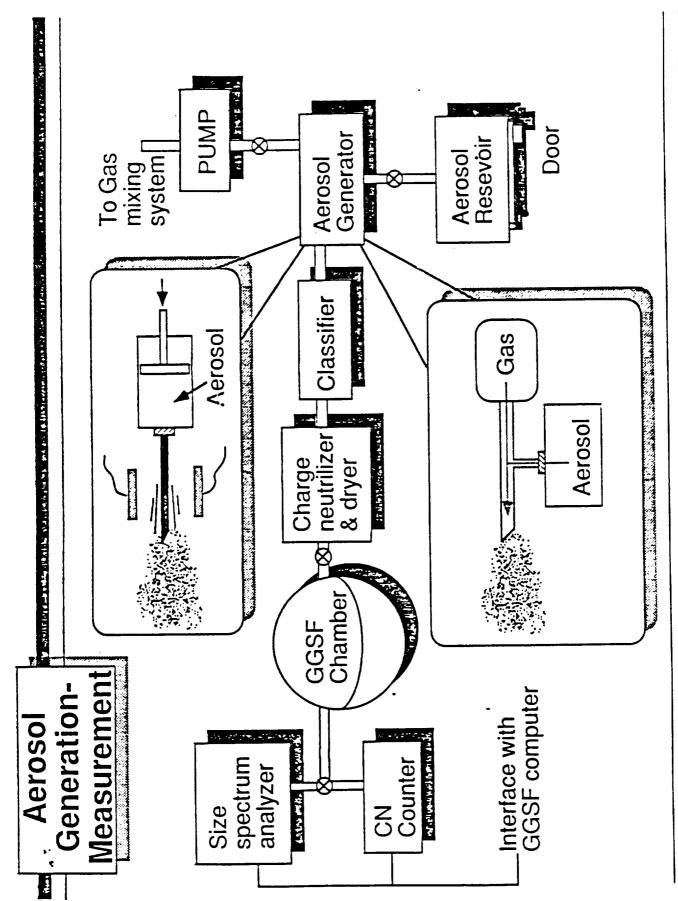
Interface Requirements

Special Considerations

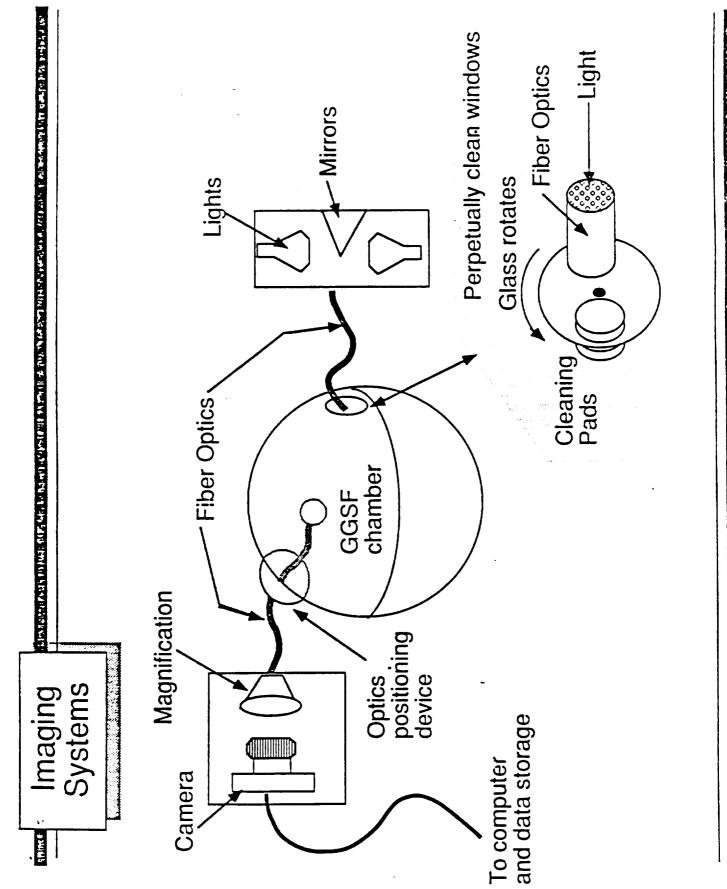

Safety Issues

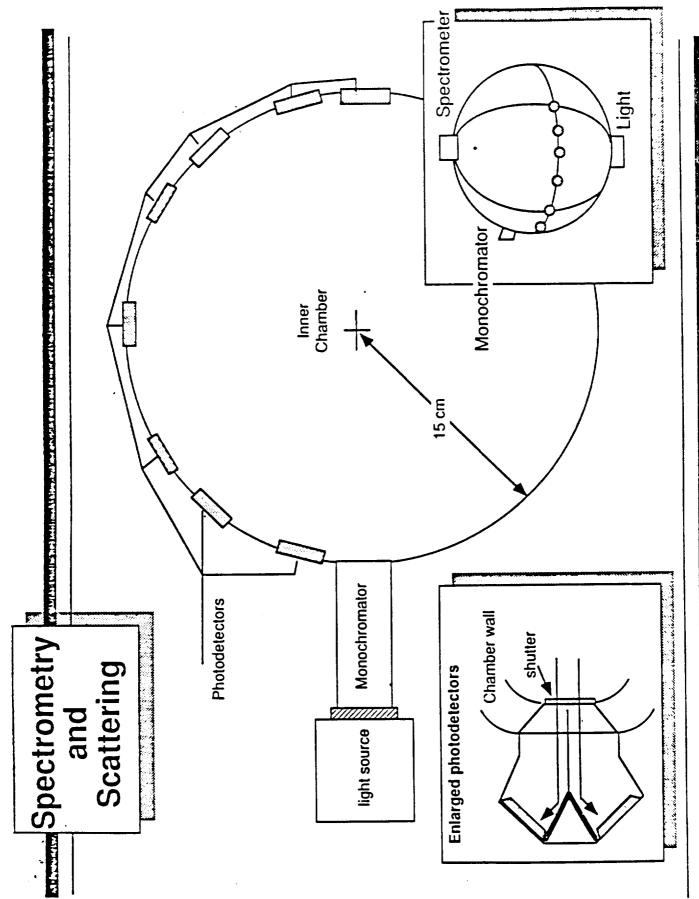

Filght Opportunity PMC Space Station Freedom

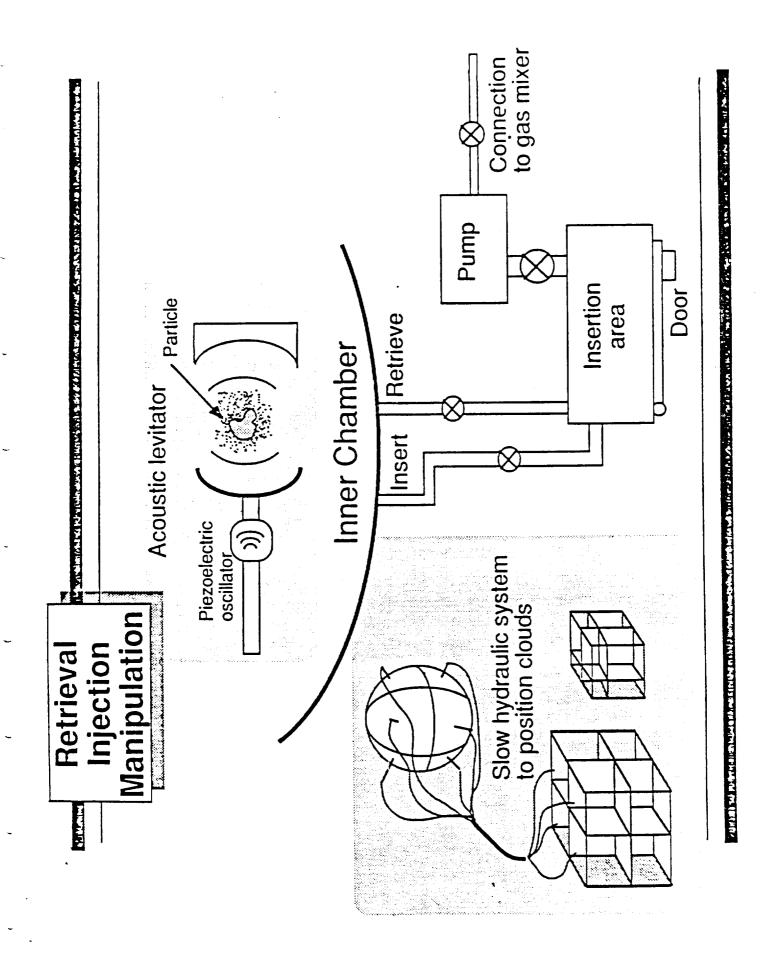

Notes

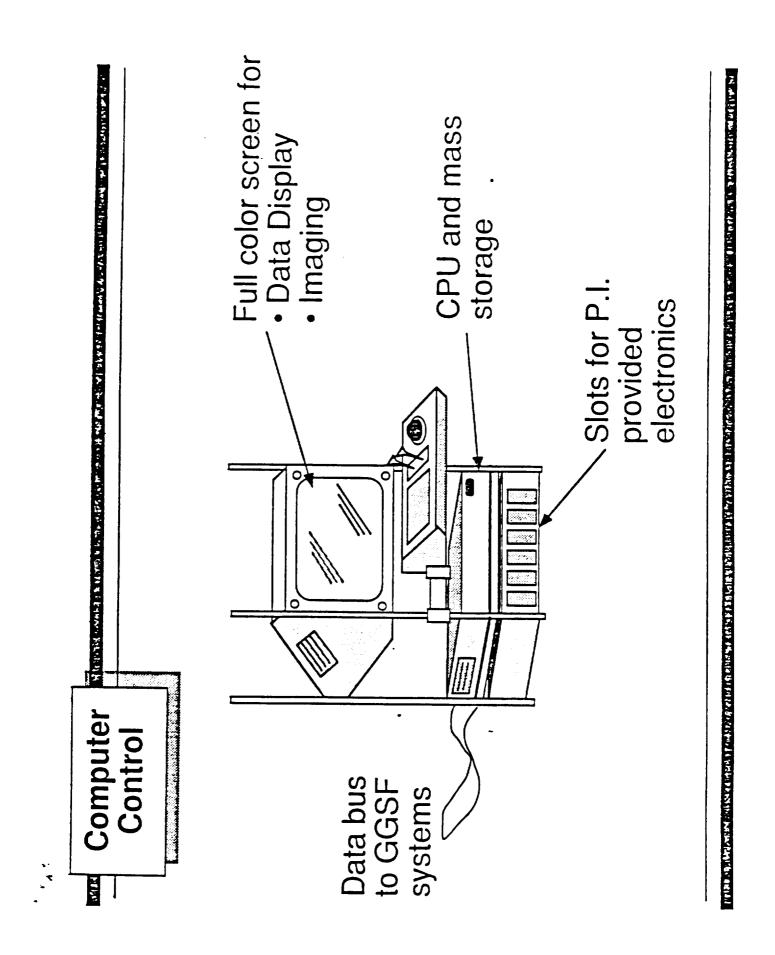

1. Provides for two separate and independent compartments: a.) Seed storage compartment and b.) Germination compartment.

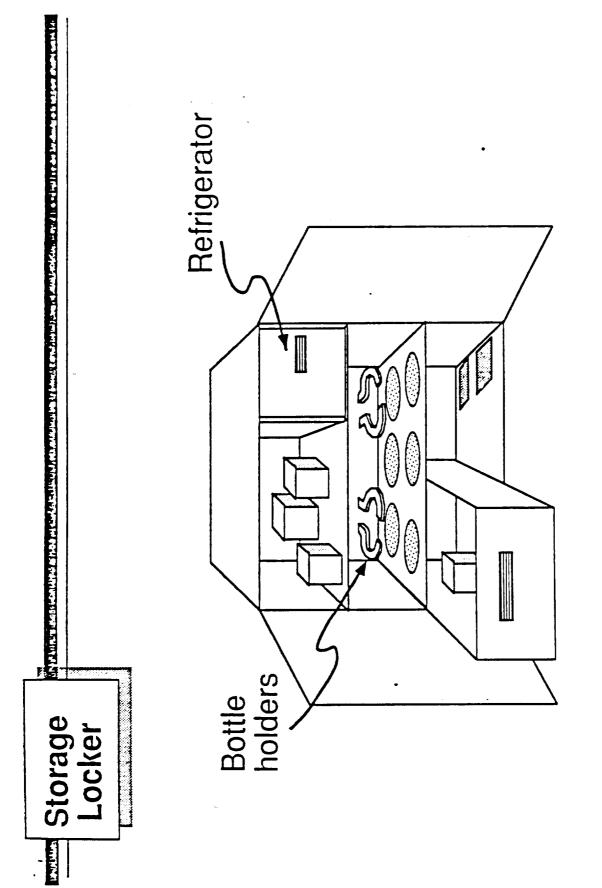
2. Seed compartment could also be used for misc. equipment stowage










語というないないではいいです。 ●・1、それた、1000年には、1000年代に、2010年代の1000年の10日での「日本の日本の10日での10日では、10日では、10日の10日の10日の日本の日本のものでの1000年の。1000年の

A REPORT OF A REPORT OF

Gas-Grain Simulation Facility: Description

The Gas-Grain Simulation Facility (GGSF), currently under development by the Exobiology Flight Experiments Program at Ames Research Center, is a facility-class payload proposed for the Space Station. The GGSF will be used to simulate and investigate fundamental chemical and physical processes such as the formation, collision and interaction of droplets, grains and other particles.

The Gas-Grain Simulation Facility will occupy a Space Station double rack. It will consist of several subsystems supporting an adaptable 10 liter experiment chamber. Subsystems will provide environmental control (e.g., temperature, pressure, gas mixture and humidity), measurement equipment (e.g., video cameras, optical particle counters, spectrometers, and photometers), and energy sources. Subsystems will also furnish: command and control capability; mechanisms for producing, injecting, and removing particles and clouds of particles; and levitation devices for positioning particles and keeping them in fixed positions away from the chamber walls. GGSF mass and power requirements are estimated to be 700 to 800 Kg and 1500 W peak (750 W average) respectively.

The GGSF will be modular in design; that is, it will have an adaptable configuration allowing subsystem components to be connected in a number of ways. Modularity will also allow the GGSF to evolve. At an early stage, the GGSF would be capable of supporting those experiments which promise high scientific yield and require only a few subsystems. Further, modularity will allow outdated subsystems to be replaced. New experiment chambers will be brought to the Space Station once a year so the GGSF will have a very long, useful lifetime (i.e., 10 years).

The facility's computer will control all operations of the facility during an experiment and have an autonomous decision making capability. Data exchange requirements, estimated at 20 to 40 kilobytes per day, are modest. Data/command uplinks will occur about twice per week. Aside from time needed for the initial set-up and calibration of experiments, crew time requirements will be minimal.

One possible GGSF operational sequence is as follows: A chamber designed for a series of experiments is "plugged in" to the GGSF and subsystems are attached in the configuration necessary for the first experiment. A command is then given to begin the execution of preprogrammed instructions for performing the experiment. After the first experiment is completed, the system may be reconfigured for the second experiment. When the sequence of experiments associated with the first chamber is completed, the chamber is removed and stored for return to Earth and a second chamber is attached for the next sequence of experiments.

Since many of the suggested GGSF experiments require gravitational accelerations of 10⁻⁴ to 10⁻⁵ g, it will be necessary to consider the background gravitational gradient when deciding where in the Space Station to place the GGSF. The GGSF will take advantage of some of the user support systems supplied by the Space Station such as the 10⁻³ torr "house" vacuum and data from the accelerometer system. Also, given the delicate physical and chemical properties of some particles generated in the GGSF, some preliminary sample analysis on the Space Station may be desirable. Such analysis will require special sample handling equipment and analytical tools. For example, some GGSF experiments will use a Scanning Electron Microscope, a Gas Chromatograph, a Mass Spectrometer, a (micro) mass measurement system, and/or a High Pressure Liquid Chromatograph if they are available.

Gas-Grain Simulation Facility: Science Rationale/Objectives

In many astrophysical and geological systems (atmospheric clouds, interstellar clouds, planetary rings, Titan's organic aerosols, Martian dust storms, etc.), processes involving small particles significantly contribute to the overall behavior of the system. Grain nucleation and aggregation, low velocity particle collisions, and charge accumulation are a few of the processes that influence such systems. Particles undergoing these processes include interstellar grains, protoplanetary particles, atmospheric aerosols, combustion products, and pre-biotic organic polymers.

The ability to simulate and investigate these types of systems and processes would present an exciting opportunity to answer long-standing scientific questions concerning the life and death of stars, the formation of the Solar System, and the connection between the Solar System's evolution and the appearance of life. These investigations would also increase our understanding of processes of immediate concern such as acid rain formation, ozone depletion, and climatic change on Earth. Furthermore, investigation of particle systems is essential to the achievement of NASA's scientific goal to attain a deep understanding of the Solar System, Earth, and the origin of life.

Many particle systems are not well understood because parameters relevant to these systems are poorly determined or unknown. Examples of such parameters are the coagulation rate of aerosol particles, the size distribution of particles nucleated from a gas, and the dependence of aggregation efficiency on material properties. Due to rapid particle settling in a 1g environment, these parameters are difficult and in many cases impossible to measure in experimental simulations on Earth.

In the study of small particle processes relevant to scientific issues mentioned above, the demands on experiment design are severe. Two common requirements are low relative velocities between particles and long time periods during which the particles must be suspended. Generally, the suspension times required are substantially longer than can be attained in 1g. Furthermore, for many studies, Earth's gravity can interfere directly with the phenomenon under study (e.g., weak inter-particle forces) or preclude the establishment of proper experimental conditions (e.g., a convection-free environment). Consequently, many processes are not amenable to experimentation in 1g.

However, in the Earth-orbital environment, the effects of gravity are reduced by a factor of as much as one million. In this environment, previously impractical or impossible experiments become feasible. Small-particle processes which cannot be studied on Earth can be investigated in Earth-orbit with a general-purpose microgravity particle research facility such as the Gas-Grain Simulation Facility (GGSF).

The GGSF, a facility-class payload proposed for the Space Station, will be used to simulate and investigate fundamental chemical and physical processes such as the formation, collision and interaction of droplets, grains and other particles. Scientific issues that can be addressed with the Gas-Grain Simulation Facility are relevant to the disciplines of exobiology, planetary science, astrophysics, atmospheric science, biology, and physics and chemistry. To date, twenty candidate GGSF experiments have been identified and described in detail. The candidate experiments are as follows:

- 1. Low-Velocity Collisions Between Fragile Aggregates
- 2. Low-Energy Grain Interaction/Solid Surface Tension
- 3. Cloud Forming Experiment

..

- 4. Planetary Ring Particle Dynamics
- 5. Aggregation of Fine Geological Particulates in Planetary Atmospheres
- 6. Condensation of Water on Carbonaceous Particles
- 7. Optical Properties of Low-Temperature Cloud Crystals
- 8. Ice Scavenging and Aggregation
- 9. Synthesis of Tholin in Microgravity and Measurement of its Optical Properties
- 10. Metallic Behavior of Aggregates
- 11. Investigations of Organic Compound Synthesis on Surfaces of Growing Particles
- 12. Crystallization of Protein Crystal-Growth Inhibitors
- 13. Dipolar Grain Coagulation and Orientation
- 14. Titan Atmospheric Aerosol Simulation
- 15. Surface Condensation and Annealing of Chondritic Dust
- 16. Studies of Fractal Particles
- 17. Emission Properties of Particles and Clusters
- 18. Effect of Convection on Particle Deposition and Coagulation
- 19. Growth and Reproduction of Microorganisms in a Nutrient Aerosol
- 20. Long Term Survival of Human Microbiota in and on Aerosols

The GGSF will be sufficiantly flexible to accommodate the above as well as many other scientifically important investigations without compromising the requirements of any particular investigation. By extending the range of conditions in which experiments can be performed, the GGSF will be a powerful tool for studying the physics of small particles and grains. Important advances in our understanding of the many small-particle phenomena should follow from the new ability to study subtle small-particle effects and interactions.

Gas-Grain Simulation Facility: Hardware

The Gas-Grain Simulation Facility (GGSF) consists of eight subsystems which are complimentary and interdependent. All of the subsystems are necessary for meeting the facility science requirements. The GGSF subsystems and hardware are as follows:

- 1. General Purpose Experiment Chamber/Containment Subsystem (Includes ports, feed-throughs, subsystem interfaces, double- or triplecontainment, vibration isolation, EM shielding, etc.)
- Chamber Environment Regulation/Monitoring Subsystem (For regulation and monitoring of temperature, pressure, and humidity. Includes gas-handling system, filters, etc.)
- 3. Aerosol Generation/Measurement Subsystem (Includes aerosol generators, size spectrum analyzers, CN counter, electrostatic classifier, dryer, charge neutralizer, etc.)
- 4. Chamber Illumination, Optics, and Imaging Subsystem (Includes UV sources, camera with optics, various lamps, photometer, etc.)
- 5. Spectrometry/Optical Scattering Subsystem (Includes spectrometers, lasers, photodetectors and other support equipment for light scattering measurements, etc.)
- 6. Particle Manipulation and Positioning Subsystem (Includes acoustic levitator, particle injection mechanisms, particle retrieval mechanisms, etc.)
- 7. Computer Control and Data Acquisition Subsystem (Includes microcomputer and console, data bus, data storage, control electronics, etc.)
- 8. Storage Locker

(For storing special gas mixtures, fluids for aerosol generators, interfaces and adaptors, PI-provided hardware, samples produced in experiment runs, film, etc.)

LIFE SCIENCES FLIGHT PROGRAMS CHANGE REQUEST

Reference Documentation:

Life Sciences Hardware List for the Space Station Freedom Era. R-0006

Description of Change:

Change the Exobiology Facility section to reflect the following:

EXOBIOLOGY FACILITY (8)

		Volume (cu. m)	Weight (kg)	Power (watts)
Gas	-Grain Simulation Facility Hardware Group (8A)	2.40	800	1500
1.	General Purpose Experiment Chamber/Containment Subsystem	0.48	200	0
2.	Chamber Environment Regulation/Monitoring Subsystem	0.23	80	200
3.	Aerosol Generation/Measurement Subsystem	0.45	150	300
4.	Chamber Illumination, Optics, and Imaging Subsystem	0.20	80	200
5.	Spectrometry/Optical Scattering Subsystem	0.20	150	300
6.	Particle Manipulation and Positioning Subsystem	0.16	50	200
7.	Computer Control and Data Acquisition Subsystem	0.20	50	300
8.	Storage Locker	0.48	40	0

Justification/Rationale:

This Change Request identifies the component subsystems of the Gas-Grain Simulation Facility (8A) and includes the volume, weight and power estimates for each subsystem. The additional 0.48 cubic meters of volume indicated in this Change Request is required for storage of items such as special gas mixtures, fluids for aerosol generators, experiment-produced samples to be returned to Earth, and film. These changes reflect further refinement of the Gas-Grain Simulation Facility requirements.

3/3/89

Gas-Grain Simulation Facility: Hardware Definitions

General Purpose Experiment Chamber/Containment Subsystem: The Gas-Grain Simulation Facility (GGSF) experiment chamber for studying small-particle processes and interactions in microgravity.

Chamber Environment Regulation/Monitoring Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that establishes, regulates, and removes the gas-mixture in the GGSF chamber as well as monitors and regulates the chamber/gas temperature, pressure, and humidity.

Aerosol Generation/Measurement Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that generates and introduces into the GGSF chamber aerosol clouds of various concentration, particle-size, and dispersion and monitors the cloud size-distribution and total concentration.

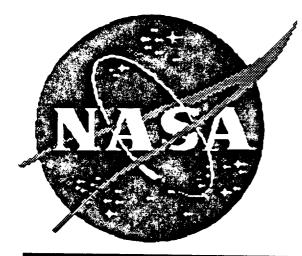
Chamber Illumination, Optics, and Imaging Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that provides optical imaging of processes occurring in the GGSF chamber and provides various light/energy sources.

Spectrometry/Optical Scattering Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that measures light-scattering and extinction properties of aerosol/dust clouds and single grains.

Particle Manipulation and Positioning Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem that mechanically and/or aerodynamically injects particles into the chamber, manipulates them by acoustic and/or aerodynamic levitation, and retrieves samples from the chamber.

Gas-Grain Simulation Facility Computer Control and Data Acquisition Subsystem: A Gas-Grain Simulation Facility (GGSF) subsystem which provides computer and electronic control of experiments, data acquisition and storage.

Gas-Grain Simulation Facility Storage Locker: A locker to store Gas-Grain Simulation Facility (GGSF) support materials such as PI-provided equipment and special dust or aerosol mixtures for a planned suite of experiments and to store samples for return to Earth.

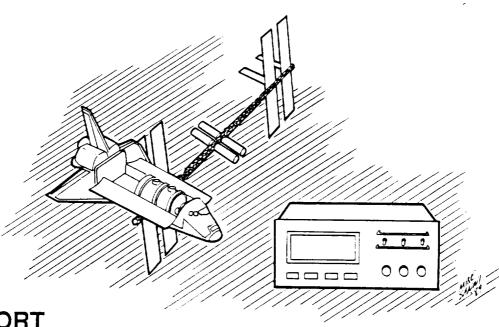

SPACE STATION FREEDOM / SPACELAB MODULE COMPATIBILITY

TRADE STUDIES

JOHNSON SPACE CENTER HOUSTON, TEXAS 77058

SPACE BIOLOGY

INITIATIVE



Space Biology Initiative Program Definition Review

Lyndon B. Johnson Space Center Houston, Texas 77058

HORIZON AEROSPACE

Space Station Freedom/ Spacelab Modules Compatibility

FINAL REPORT

June 1, 1989

HORIZON AEROSPACE

• 18333 EGRET BAY BOULEVARD, SUITE 300 • HOUSTON, TEXAS, USA 77058 • (713) 333-5944 • TELEFAX (713) 333-3743 N93-2808b

SPACE BIOLOGY INITIATIVE PROGRAM DEFINITION REVIEW

TRADE STUDY 6

SPACE STATION FREEDOM / SPACELAB MODULES COMPATIBILITY

FINAL REPORT

Prepared by:

HORIZON AEROSPACE

L. Neal Jackson, President John Crenshaw, Sr. Engineer

and

EAGLE ENGINEERING, INC.

W.L. Davidson C. Blacknall J.W. Bilodeaux J.M. Stoval

EAGLE TECHNICAL SERVICES

T. Sutton

Prepared for:

GE GOVERNMENT SERVICES Houston, Texas Contract No. G966016-J45

June 1, 1989

Space Station Freedom/Spacelab Modules Rack Compatibility Space Biology Initiative (SBI) Definition Review Trade Study Trade Study Number 6

Prepared under Horizon Aerospace Purchase Order No. HAG 966016-J45-EAGLE in Support of GE Government Services Tasks for NASA JSC Life Sciences Project Division

> By Eagle Engineering, Inc. (EEI) Houston, Texas EEI Contract TO-89-32

> > Trade Study 6 Report EEI Report 89-236 Final Report May 31, 1989

Foreword

The "Rack Compatibility Trade Study" was performed as part of the Space Biology Initiative (SBI) Definition Trade Studies Contract which is a NASA activity intended to develop supporting data for JSC use in the Space Biology Initiative Definition (Non-Advocate) Review with NASA Headquarters, Code B, scheduled for the June-July 1989 time period. The task personnel researched, acquired, recorded, and analyzed information relating to rack compatibility for space biology equipment.

This effort is one of four separate trade studies performed by Eagle Engineering, Inc. (EEI). Although the four trade studies address separate issues, the subject of SBI Hardware, the objectives to document the relative cost impacts for the four separate issues, and the intended audience are common for all four studies. Due to factor beyond control of the study management organizations, the trade studies were required to be completed in approximately one half of the originally planned time and with significantly reduced resources. Therefore, EEI immediately decided to use two proven time-and-resource-saving principles in studying these related SBI issues. The first principle employed was commonality. The study methodology was standardized where appropriate, the report formats were made the same where possible, a common database was developed, and the cost analysis techniques development and consultation was provided by a common team member. An additional benefit of this application of commonality with standardized material is to facilitate the assimilation of the study data more easily since the methods and formats will become familiar to the reader. The second principle employed was the phenomenon of the "vital few and trivial many" or sometimes known as the "Pareto principle" (see SBI #96). These are terms which describe the often observed phenomenon that in any population which contributes to a common effect, a relative few of the contributors account for the bulk of the effect. In this case, the effect under analysis was the relative cost impact of the particular SBI issue. If the phenomenon was applicable for the SBI hardware, EEI planned to study the "vital few" as a method of saving time and resources to meet the limitations of the study deadlines. It appears the "vital few and trivial many" principle does apply and EEI adopted the Principle to limit the number of hardware items that were reviewed.

The study was performed under the contract direction of Mr. Neal Jackson, Horizon Aerospace Project Manager. Mr. Mark Singletary, GE Government Services, Advanced Planning and Program Development Office, provided the objectives and policy guidance for the performance of the trade study. The direct study task personnel include:

EEI Project Manager: Trade Study Manager: Cost Analysis Techniques Leader: Visual Materials Support: Information Management Leader: Mr. W.L. Davidson (Bill) Ms. Carolyn Blacknall Mr. James W. Bilodeau (Jim) Mr. J.M. Stovall (Mike) Mr. Terry Sutton (Eagle Technical Services)

Table of Contents

Foreword ii
Table of Contents
List of Figures
List of Tables
List of Abbreviations and Acronyms vii
Glossary and Definitions ix
1.0 Introduction 1 1.1 Background 1 1.2 Task Statement 1 1.3 Application of Trade Study Results 1 1.4 Scope 1 1.5 Methodology 2 1.5.1 Data And Documentation Survey 2 1.5.2 Database Development 2 1.5.3 Survey Data Integration and Comparison 2
2.0 Executive Summary 4 2.1 Assumptions And Groundrules 4 2.2 Rack and Comparisons Experiment Interface 4 2.2.1 Mechanical and Structural Interfaces 4 2.2.2 Electrical Interfaces 4 2.2.3 Thermal And Fluid Interfaces 4 2.2.4 Data And Video Interfaces 5 2.2.5 Spacelab Versus Space Station Experiment Interface Philosophy 5 2.3 Interface Design Feasibility Summary 5 2.3.1 Mechanical And Structural Interfaces 6 2.3.2 Electrical Interfaces 6 2.3.3 Thermal And Fluid Interfaces 6
2.3.3 Thermal And Fluid Interfaces 6 2.3.4 Data And Video Interfaces 6 2.4 Relative Cost Impact 7 2.5 Future Work 7 2.5.1 Compatibility of Specific SBI hardware 7 2.5.2 Coordination and Support for Standardized Interfaces 7 2.5.3 Awareness of Standardized Interface Cost Benefits to Other 7 0rganizations 8 2.5.4 Standardized Rack Interfaces With Other Facilities 8 2.5.5 Evaluation and Testing of Standard Interfaces 8 2.5.6 Investigation of Standardization of Aircraft Racks 8

2.6 Conclusion Summary 8	\$
3.0 Trade Study Database 22 3.1 Database Files 22 3.2 Database Management 22 3.3 Database Use 22	2 2
4.0 Documentation Survey 23 4.1 Documentation Sources 23 4.1.1 Complete SBI Trade Study Bibliography 23 4.1.2 Rack Compatibility Trade Study Bibliography 23 4.2 Documentation Data 23 4.2.2 ESA Module 24 4.2.3 JEM Module 24 4.2.4 Spacelab Module 26 4.2.5 Shuttle Orbiter 29	23333345 56
5.0 Trade Study 42 5.1 Rack Matrices Development 42 5.2 Rack Interface Feasibility Analysis 42 5.2.1 Mechanical and Structural Interfaces 42 5.2.2 Electrical Interfaces 42 5.2.3 Thermal and Fluid Interfaces 42 5.2.4 Data and Video Interfaces 42	2233
6.0 Conclusions 47 6.1 Experiment Location Flexibility 47 6.2 Experiment Changeout Ability 47 6.3 Experiment Design Simplification 47 6.4 Experiment Checkout and Verification 47 6.5 Experiment Flight Testing 48 6.6 Quick Response Experiments 44 6.7 Cost Impact 44	7 7 7 7 8 8
Appendix A - Space Biology Hardware Baseline A-	1
Appendix B - Complete SBI Trade Study Bibliography B-	1
Appendix C - Cost Assessment Techniques Summary C-	1
Appendix D - Database Definition D-	1

List of Figures

Figure 1.5 Space Biology Initiative Definition Review Trade Study Logic Flow	5
Figure 4.2.1-1 U.S. Standard Equipment Rack, Fully Outfitted	3
Figure 4.2.2-1 Payload/Experiment Racks as Distributed in the ESA Laboratory	ŀ
Figure 4.2.3-1 JEM Pressurized Module Internal Layout	5
Figure 4.2.4-1 Spacelab Segments	5
Figure 4.2.4-2 Spacelab Standard Double Rack	1
Figure 4.2.4-3 Spacelab Rack Numbering System	3
Figure 4.2.5-1 Orbiter Middeck Locker Layout)
Figure 4.2.5-2 Middeck Locker and Typical Stowage Packaging 40)
Figure 4.2.5-3 Orbiter Aft Flight Deck 41	l
Figure 5.2.1 Spacelab/Space Station Panel Units	5
Figure 5.2.3-1 Spacelab Rack Cooling Concept 46	5

List of Tables

· _

Table 2.1-1	Common SBI Trade Study Assumptions and Groundrules	9
Table 2.1-2	Rack Compatibility Trade Study Assumptions and Groundrules.	10
	Physical Dimensions and Structures	
Table 2.2.2	Electrical Interfaces	14
Table 2.2.3	Thermal and Fluids	16
Table 2.2.4	Data Management Interfaces	19
Table 2.2.5	Comparison of Spacelab and Space Station Experimentation Factors	21
Table 4.1-2	Bibliography for Rack Comparison Trade Study	32

List of Abbreviations and Acronyms

~

~

-

Α	Amps
AI	Artificial Intelligence
APM	Attached Pressurized Module
ARC	Ames Research Center
BmRP	Biomedical Research Project (Human/Crew Members) Biological Research Project (Non Human/Redents, primates of plants)
BRP	Biological Research Project (Non Human/Rodents, primates or plants)
BSHF	Biological Specimen Holding Facility
CDMS	Command and Data Management Subsystem
CDR	Critical Design Review
CER	Cost Estimating Relationship
CHeC	Crew Health Care
CR	Change Request
DDS	Data Display System
DDT&E	Design, Development, Test and Evaluation
DMS	Data Management System
DR	Double Rack
ECF	Exercise Countermeasure Facility
ECLSS ECS	Environmental Control and Life Support System
ECS	Environmental Control Subsystem Extended Duration Crew Operations
EHS	Environmental Health System
EPDS	Electrical Power Distribution System
EPSP	Electrical Power Switching Panel
ESA	European Space Agency
FSU	Functional Support Unit
GBPS	Giga Bytes per Second
GPWP	General Purpose Work Bench
HMF	Health Maintenance Facility
HRM	High Rate Multiplexer
HQUL	Hardware Quantity and Usage List
HRF	Human Research Facility
H2	Hertz
IATA	International Air Transport Association
I/F	Interface
JEM	Japanese Experiment Module
JCP	JEM Control Processor
JSC	Johnson Space Center
KHZ	Kilohertz
KW	Kilowatt
LAB	Laboratory
LAN	Local Area Network
LSE	Laboratory Support Equipment
LSFEP	Life Sciences Flight Experiment Program
LSLE	Life Sciences Laboratory Equipment
LSPD	Life Sciences Project Division

•

.

LSRF	Life Science Research Facility
MBPS	Mega Bytes per Second
MDE	Mission Dependent Equipment
MDM	Multiplexer-Demultiplexer
MDU	Medical Development Unit
MLI	•
MPAK	Multi-Layer Insulation
	Middeck Payload Accomodations Kit
MUS NASA	Multilateral Utilization Study
	National Aeronautics and Space Administration
NASDA	National Space Development Agency (of Japan)
NIU	Network Interface Unit
NSTS	NASA Space Transportation System
PI	Principal Investigator
PIP	Payload Integration Plan
PMC	Permanent Manned Capability
POCC	Payload Operations Control Center
RAU	Remote Acquisition Unit
RMOAD	Reference Mission Operational Analysis Document
SAIS	Science & Applications Information System
SBHB	Space Biology Hardware Baseline
SBI	Space Biology Initiative
SDP	Standard Data Processor
SLS	Spacelab Life Sciences
SPC	Signal Processing Converter
SR	Single Rack
SSF	Space Station Freedom
SSFP	Space Station Freedom Program
SSIS	Space Station Information Systems
SSP	Standard Switch Panel
STS	Space Transportation System
TBD	To Be Determined
TDRSS	Tracking and Data Relay Satellite System
TFU	Theoretical First Unit
U.S.	Unites States
VAC	Volts/Alternating Current
VDC	Volts/Direct Current
W	Watts
WAN	Wide Area Network

Glossary and Definitions

Assembly

An accumulation of subassemblies and/or components that perform specific functions within a system. Assemblies can consist of subassemblies, components, or both.

Certification

The process of assuring that experiment hardware can operate under adverse Space Station Freedom environmental conditions. Certification can be performed by analysis and/or test. The complete SSFP definition follows. Tests and analysis that demonstrate and formally document that all applicable standards and procedures were adhered to in the production of the product to be certified. Certification also includes demonstration of product acceptability for its operational use. Certification usually takes place in an environment similar to actual operating conditions.

Certification test plan

The organized approach to the certification test program which defines the testing required to demonstrate the capability of a flight item to meet established design and performance criteria. This plan is reviewed and approved by cognizant reliability engineering personnel. A quality engineering review is required and comments are furnished to Reliability.

Component

An assembly of parts, devices, and structures usually self-contained, which perform a distinctive function in the operation of the overall equipment.

Experiment

An investigation conducted on the Space Station Freedom using experiment unique equipment, common operational equipment of facility.

Experiment Developer

Government agency, company, university, or individual responsible for the development of an experiment/payload.

Experiment unique hardware

Hardware that is developed and utilized to support the unique requirements of an experiment/payload.

Facility

Hardware/software on Space Station Freedom used to conduct multiple experiments by various investigators.

Flight Increment

The interval of time between shuttle visits to the Space Station Freedom. Station operations are planned in units of flight increments.

Flight increment planning

The last step in the planning process. Includes development of detailed resource schedules, activity templates, procedures and operations supporting data in advance of the final processing, launch and integration of payloads and transfer of crew.

Ground operations

Includes all components of the Program which provide the planning, engineering, and operational management for the conduct of integrated logistics support, up to and including the interfaces with users. Logistics, sustaining engineering, pre/post-flight processing, and transportation services operations are included here.

Increment

The period of time between two nominal NSTS visits.

Interface simulator

Simulator developed to support a particular Space Station Freedom or NSTS system/subsystem interface to be used for interface verification and testing in the S&TC and/or SSPF.

Integrated logistics support

Includes an information system for user coordination, planning, reviews, and analysis. Provides fluid management, maintenance planning, supply support, equipment, training, facilities, technical data, packaging, handling, storage and transportation. Supports the ground and flight user requirements. The user is responsible for defining specific logistics requirements. This may include, but not be limited to resupply return in term of frequency, weight, volume, maintenance, servicing, storage, transportation, packaging, handling, crew requirements, and late and early access for launch site, on-orbit, and postmission activities.

Integrated rack

A completely assembled rack which includes the individual rack unique subsystem components. Verification at this level ensures as installed component integrity, intrarack mechanical and electrical hookup interface compatibility and mechanisms operability (drawer slides, rack latches, etc.).

Integration

All the necessary functions and activities required to combine, verify, and certify all elements of a payload to ensure that it can be launched, implemented, operated, and returned to earth successfully.

Orbital replaceable unit (ORU)

The lowest replaceable unit of the design that is fault detectable by automatic means, is accessible and removable (preferably without special tools and test equipment or highly skilled/trained personnel), and can have failures fault-isolated and repairs verified. The ORU is sized to permit movement through the Space Station Freedom Ports.

Payload integration activities

Space Station Freedom payload integration activities will include the following:

Pre-integration activities shall include receiving inspection, kitting, GSE preps and installation, servicing preps and servicing, post deliver verification, assembly and staging (off-line labs), rack and APAE assembly and staging, alignment and post assembly verification.

Experiment integration activities shall include experiment package installation into racks, deck carriers, platforms, etc., and payload to Space station interface verification testing. When the Freedom element is available on the ground, Space Station Freedom integration activities (final interface testing) shall include rack or attached payload installation into Freedom element (e.g., pressurized element, truss structure, platform) and shall include payload-to-element, interface verification, followed by module, truss, or platform off-loading of experiments, as required, for launch mass for follow-on increments, Space Station Freedom integration activities shall include rack or attached payload installation into the logistics element and verification of the payload-to-logistics element interface.

Integration activities (final interface testing) shall include: rack or attached payload installation into Space Station Freedom element (e.g., lab module, truss structure, platform) on the ground, when available, and shall include payload to element interface verification, configure and test for station to station interface verification, followed by module, truss or platform off-loading of experiments, as required, for launch mass.

Launch package configuration activities shall include configuring for launch and testing station to NSTS interfaces, (if required), stowage and closeout, hazardous servicing, (if required), and transport to the NSTS Orbiter.

NSTS Orbiter integrated operations activities shall include insertion of the launch package into the orbiter, interface verification (if required), pad operations, servicing, closeout, launch operations, and flight to Space Station Freedom.

On-orbit integration activities shall include payload installation and interface verification with Space Station Freedom.

Hardware removal that includes rack-from-module and experiment-from-rack removal activities.

Payload life cycle

The time which encompasses all payload activities from definition, to development through operation and disbursement.

Permanent manned capability (PMC)

The period of time where a minimum of capabilities are provided, including required margins, at the Space Station Freedom to allow crews of up to eight on various tour

durations to comfortably and safely work in pressurized volumes indefinitely. Also includes provisions for crew escape and EVA.

Physical integration

The process of hands-on assembly of the experiment complement; that is, building the integrated payload and installing it into a standard rack, and testing and checkout of the staged payload racks.

Principal Investigator

The individual scientist/engineer responsible for the definition, development and operation of an experiment/payload.

Rack staging

The process of preparing a rack for experiment/payload hardware physical integration: encompasses all pre-integration activities.

Space Station Freedom

The name for the first Unites States permanently manned space station. It should always be interpreted as global in nature, encompassing all of the component parts of the Program, manned and unmanned, both in space and on the ground.

Subassembly

Two or more components joined together as a unit package which is capable of disassembly and component replacement.

Subsystem

A group of hardware assemblies and/or software components combined to perform a single function and normally comprised of two or more components, including the supporting structure to which they are mounted and any interconnecting cables or tubing. A subsystem is composed of functionally related components that perform one or more prescribed functions.

Verification

The process of confirming the physical integration and interfaces of an experiment/payload with systems/subsystems and structures of the Space Station Freedom. The complete SSFP definition follows. A process that determines that products conform to the design specification and are free from manufacturing and workmanship defects. Design consideration includes performance, safety, reaction to design limits, fault tolerance, and error recovery. Verification includes analysis, testing, inspection, demonstration, or a combination thereof.

1.0 Introduction

1.1 Background

The JSC Life Sciences Project Division has been directly supporting NASA Headquarters, Life Sciences Division, in the preparation of data from JSC and ARC to assist in defining the Space Biology Initiative (SBI). GE Government Services and Horizon Aerospace have provided contract support for the development and integration of review data, reports, presentations, and detailed supporting data. An SBI Definition (Non-Advocate) Review at NASA Headquarters, Code B, has been scheduled for the June-July 1989 time period. In a previous NASA Headquarters review, NASA determined that additional supporting data would be beneficial in clarifying the cost factors and impact in the SBI of miniaturizing appropriate SBI hardware items. In order to meet the demands of program implementation planning with the definition review in late spring of 1989, the definition (Non-Advocate) Review.

1.2 Task Statement

This study will identify the differences in rack requirements for Spacelab, the Shuttle Orbiter, and the United States (U.S.) laboratory module, European Space Agency (ESA) Columbus module, and the Japanese Experiment Module (JEM) of Space Station Freedom. The study will also assess the feasibility of designing standardized mechanical, structural, electrical, data, video, thermal, and fluid interfaces to allow space flight hardware designed for use in the US laboratory module to be used in other locations.

1.3 Application of Trade Study Results

The SBI cost definition is a critical element of the JSC submission to the SBI Definition (Non-Advocate) Review and the results of this trade study are intended to benefit the development of the SBI costs. It is anticipated that the GE PRICE cost estimating model will be used to assist in the formulation of the SBI cost definition. This trade study is planned to be produced in the form of factors, guidelines, rules of thumb, technical discussions, and rack comparison matrices which will provide insight on the mechanical and structural, electrical, data and video, and thermal and fluid interfaces between SBI equipment and Spacelab, Shuttle Orbiter mid-deck, and the U.S., JEM, and ESA Space Station laboratory modules.

1.4 Scope

The space biology hardware to be investigated has been defined and baselined in Appendix A, Space Biology Hardware Baseline (SBHB). By study contract direction, no other space biology hardware has been considered. The complexity and importance of the subject could warrant an extensive study if unlimited time and resources were available. However, due to the practical needs of the real program schedule and budget, the depth of study has been adjusted to satisfy the available resources and time. In particular, cost analyses have emphasized the determination of influential factors and parametric relationships rather than developing detailed, numerical cost figures. While program objectives and mission definitions may be stable in the early program phases, hardware item specifications are evolving and usually change many times during the design phase. For this reason, the trade study analyses have focused on the category and function of each hardware item rather than the particular, current definition of the item. In the process of acquiring trade study data, certain information could be considered a snapshot of the data at the time it was recorded for this study. The data have been analyzed as defined at the time of recording; no attempt has been made to maintain the currency of acquired trade study data.

1.5 Methodology

The methodology used in performing the Rack Compatibility Trade Study, shown in Figure 1.5, consists of the initial, important phase of search and acquisition of related data; followed by a period of data integration and comparison of rack requirements, and finally, the assessment phase where the feasibility of designing standardized interfaces to allow space biology flight hardware to be used in racks in all modules.

1.5.1 Data And Documentation Survey

A literature review and database search were conducted immediately upon study initiation. Information pertaining to Shuttle mid-deck lockers, Spacelab racks, and Space Station Freedom racks in the U.S., ESA, and JEM modules were collected and analyzed. Documents containing information on Spacelab and Space Station Freedom racks and on Shuttle locker accommodations are listed in the bibliographies in Section 4.1. Every attempt was made to utilize the most up-to-date versions of these documents in this Rack Compatibility Trade Study.

1.5.2 Database Development

An analysis of the trade study data needs was performed to provide an understanding of the logical database design requirements. Based on the knowledge gained in the database analysis, the trade study data structures were developed and implemented on a computer system. The pertinent information collected from the data and documentation survey was input to the trade study database.

1.5.3 Survey Data Integration and Comparison

Data on racks and experiment interfaces were entered into the relational data base. Information was then sorted into the following categories to facilitate comparison of similar rack interfaces and accommodations:

Mechanical and Structural Interfaces, Electrical Interfaces, Thermal and Fluid Interfaces, and Data and Video Interfaces.

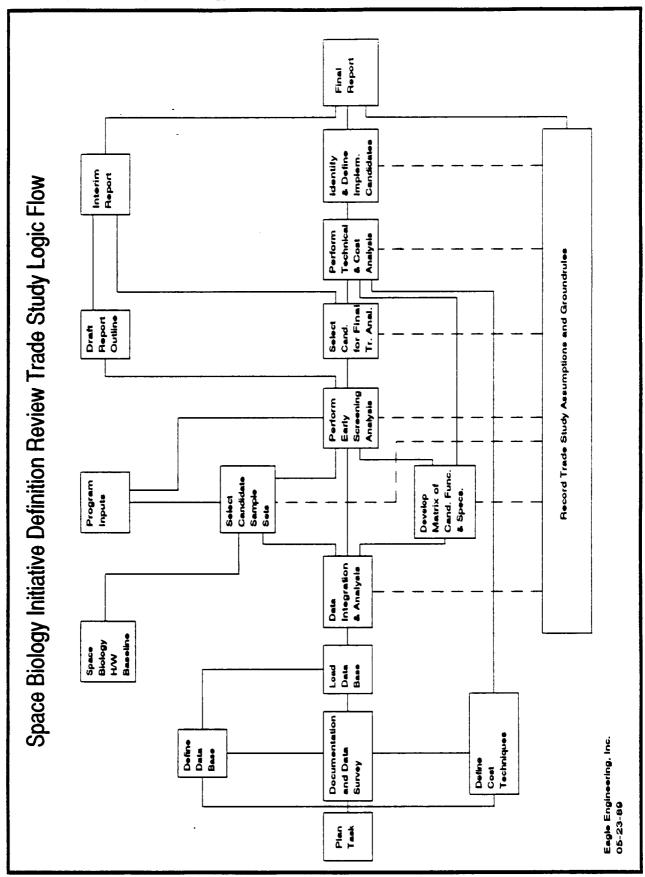


Figure 1.5 Space Biology Initiative Definition Review Trade Study Logic Flow

2.0 Executive Summary

2.1 Assumptions And Groundrules

In the process of performing the subject trade study, certain data or study definition was not available or specified. Assumptions and groundrules have been established to document, for the purposes of this trade study, the definition of important information which is not definite fact or is not available in the study time period. Major assumptions and groundrules which affect the four EEI trade studies are provided in Table 2.1-1, Common SBI Trade Study Assumptions and Groundrules. Assumptions and Groundrules which directly and uniquely effect this trade study are provided in Table 2.1-2, Rack Compatibility Trade Study Assumptions and Groundrules.

2.2 Rack and Comparisons Experiment Interface

This study examines the physical, electrical, thermal, and data interfaces between experiments and racks located in the three laboratory modules on the Space Station, the Spacelab, and lockers in the Shuttle Orbiter. At present, the three laboratory modules on Space Station Freedom are not designed to provide the user with common experiment to rack interfaces. This could result in the design of an experiment that is limited to only one module, the design of several experiment systems with different interfaces for each module, or be limited to experiment change-out as part of a rack level set of experiments. Common interfaces between Space Station modules and Spacelab and Shuttle Orbiter could allow early test flights for Space Station experiments using the Shuttle as well as allow quick change-out and flexibility among missions.

2.2.1 Mechanical and Structural Interfaces

The mechanical and structural interfaces between experiments and racks were examined for the Space Station Freedom U.S. lab module, the ESA Columbus module, and the JEM module and, also, for Spacelab and Shuttle Orbiter. This section compares height, width, depth, internal diameter, and structural weight. This information is provided in Table 2.2.1.

2.2.2 Electrical Interfaces

The electrical interfaces between experiments and racks were examined for the Space Station Freedom U.S. lab module, the ESA Columbus module, and the JEM module, and also for Spacelab and Shuttle Orbiter. This section compares voltages, current, power, and power converters. This information is provided in Table 2.2.2.

2.2.3 Thermal And Fluid Interfaces

The thermal and fluid interfaces between experiments and racks were examined for the Space Station Freedom U.S. lab module, the ESA Columbus module, and the JEM module, and also for Spacelab and Shuttle Orbiter. This section compares types of fluid interfaces, pressures, vacuum venting capabilities, waste gas and liquid accommodations, and the type of gasses provided. This information is provided in Table 2.2.3.

2.2.4 Data And Video Interfaces

The data and video interfaces between experiments and racks were examined for the Space Station Freedom U.S. lab module, the ESA Columbus module, and the JEM module, and also for Spacelab and Shuttle Orbiter. This section compares bus frequency, bus time, high and low data rates, LAN interfaces and processing capabilities. This information is provided in Table 2.2.4.

2.2.5 Spacelab Versus Space Station Experiment Interface Philosophy

The management of experiment resources for Spacelab flights were suited to the short missions of Spacelab. Space Station must be approached considering a very different set of inherent capabilities and limiting resources. The Spacelab Science Plan was developed with much stronger time constraints on orbit and ground development was organized in mission format with long-lead times and extensive mission-specific configurations. These constraints result in very crew-intensive timelines with limited flexibility.

Space Station Life Sciences Research will more effectively serve the needs of the scientific community by being organized with respect to developing <u>capabilities</u> which may be effectively used to carry out a highly flexible and evolutionary science program, rather than using the mission-by-mission approach used for Spacelab.

This permits creative and innovative scientific developments while still following the guidelines and priorities established by NASA Life Sciences Flight Experiment Program (LSFEP). By designing the Space Station to a <u>capabilities</u> requirement rather than specific <u>missions</u> requirements, the value of the Space Station is expanded to encompass the broadest population of Life Science disciplines and interests. Table 2.2.5 presents a comparison between current Life Sciences planning and experiment factors for the Spacelab and the proposed approach for the Space Station suggested in Life Sciences Study for the Space Station, SBI #94.

Current Spacelab preflight mission development activities require a premission schedule lead time of approximately four years for planning and preparation. It is expected that as the Space Station and programmatic elements mature the resultant time and requirements constraints will be significantly reduced and the processing procedures would approach the efficiency and routine of modern medical laboratories.

2.3 Interface Design Feasibility Summary

The Experiment Standard User Interface Study by the JSC Life Sciences Project Division is investigating the feasibility of designing a set of standard equipment mechanical, electrical, data, and cooling interfaces between the equipment and the spacecraft systems. William G. Davis is the NASA Technical Manager for this report, cataloged as SBI #39. This trade study concludes that the standardized interface suggestions of the Interface Study will result in a significant savings in design, development, test, and evaluation (DDT&E) and operational and maintenance costs.

The advantages of having standard interfaces are that one experiment system design can be flown in any of the three Space Station modules or the Spacelab. The experiment ground

integration and verification process for equipment is simplified significantly by the use of standard data interfaces that can be evaluated by automated electronic systems. The use of standard mechanical interfaces will not require the flight experiment system to be integrated into the Spacelab racks as early as is presently required.

The development cost for experiment systems can be reduced by allowing the equipment developers to work with commercially available standard input and output data and video interface circuits. The special spacecraft interface requirements can be accommodated by the interfacing equipment at the rack level.

2.3.1 Mechanical And Structural Interfaces

The compatibility of experiment to rack interfaces must be founded on the compatibility of mechanical and structural interfaces. Standardized mechanical interfaces consist of built-in equipment to allow installation from the front of the rack on generic chassis slides without using tools. The mounting system can be designed with significant margins for the stress of launch and landing where required, such as on Spacelab. The installation of experiments in the Space Station racks on orbit will result in a significant weight savings due to light mounting systems that are unloaded during launch.

2.3.2 Electrical Interfaces

Electrical interface compatibility is also of primary importance in a study of standardized experiment to rack interfaces. At the time the Experiment Standard User Interface Study was written, the primary power sources available to the experiments on Spacelab was 115 VAC 400 Hz and 28 VDC. The U.S. Space Station module was planning for primary power of 208 VAC at 20 KHz with conversion available, at the experimenter's expense, to 28 VDC and 115 VAC 60 Hz. The power available in the Japanese module and the ESA module were not defined, but the ESA module was proposed to be 120 VDC. Even with changes in these requirements, it is obvious that commonality and standardization do not exist. One of the objectives of the study is to recommend identical power accommodations and interfaces in any of the Space Station or Spacelab modules.

2.3.3 Thermal And Fluid Interfaces

Standardized experiment to rack interface feasibility must also consider the compatibility of thermal and fluid interfaces. The experiment cooling interface to the spacecraft avionics cooling air can be simplified by using fans within the experiment chassis that will "dump" the experiment heat load into the ambient rack air volume. The ambient rack air volume will be maintained within the prescribed limits by the spacecraft thermal control system. Current investigations have identified fan assemblies that have variable speeds which are determined by either temperature or command inputs.

2.3.4 Data And Video Interfaces

The standardized data interface that is being investigated for the experiments is an IEEE-488 parallel data bus configuration. Utilization of this widely accepted data transfer technique will

provide not only a standard interface, but will also allow the experiment to be designed using commercially available and proven circuitry. A standard parallel data bus interface module in each rack will be used to route data from each experiment within the rack to the spacecraft data system or from one experiment box to another. All special isolation and grounding requirements for each module or spacecraft would be accommodated in this data bus interface module.

The present Spacelab video input and output requirements are somewhat unique variations of standard video RS170 signal characteristics. The unique variations have been the source of many problems for previous experimenters. It is planned that the standardized interface would accommodate variations and allow the experimenter to work with completely standard characteristics. Standardization between the Spacelab and Space Station video systems must be further evaluated to determine if this is feasible.

2.4 Relative Cost Impact

The standardized interfaces examined in this study appear to provide commonality with little weight and volume penalty. The benefits of standardization, including experiment location flexibility, experiment changeout and quick response ability, experiment design simplification, and more efficient experiment checkout and verification imply that standardized interfaces would actually lower life cycle costs. See Appendix C, Table 7-1 for Life Cycle Costs.

2.5 Future Work

2.5.1 Compatibility of Specific SBI hardware

An area of future work directly related to this trade study is a task to evaluate specific items of SBI hardware in terms of the compatibility of rack interfaces and the effect on project science and cost. It is estimated that standardized interfaces will decrease experiment planning and development times and reduce DDT&E, operational, and maintenance costs.

2.5.2 Coordination and Support for Standardized Interfaces

The trade study has indicated that the practical aspects of achieving compatibility of racks in the various space modules. An important contribution to space biology experimentation would be a future task to study and develop methods for facilitating common interest between the SBI and other organizations to achieve successful rack compatibility. The International partners should be made aware of the Experiment Standard User Interfaces Study and the advantages of implementing standardized interfaces.

2.5.3 Awareness of Standardized Interface Cost Benefits to Other Organizations

Related to the above task is potential future work to analyze, develop, and define the relative cost to the various space projects of not having rack compatibility between different space laboratory modules. This may encourage some organizations to consider the benefits of standardized rack interfaces.

2.5.4 Standardized Rack Interfaces With Other Facilities

The design of a set of standardized experiment-to-spacecraft interfaces will simplify the mechanical cooling and electrical interfaces between the experiment and the spacecraft systems. The possibility of outfitting other facilities potentially usable by SBI, such as the Industrial Space Facility, with these standardized interfaces should be investigated.

2.5.5 Evaluation and Testing of Standard Interfaces

The Experiment Standard User Interfaces Study by the JSC Life Sciences Project Division investigated the possibility of standardized interfaces between the U.S. Laboratory module, the European Space Agency's Columbus Module, the Japanese Experiment Module, Spacelab, and the Shuttle Orbiter. This Rack Compatibility Trade Study, confirms that standardized mechanical, electrical, data, video, thermal, and fluid interfaces would make the design, development, testing, installation, maintenance, and changeout of experiments faster, less expensive, and more flexible. The interfaces suggested by the Standard Interfaces Study should be built into rack models for evaluation and testing.

2.5.6 Investigation of Standardization of Aircraft Racks

The International Air Transport Association (IATA), a regulating organization for the world's airlines, has successfully standardized many systems and aspects of commercial transport aircraft, including the packaging and installation of avionic equipment in racks (SBI #95). These racks are built to the same standards by the free world's aircraft manufacturers. A study of the methodology used by IATA to accomplish this standardization would be a valuable assist in equipment and rack standardization for space flight.

2.6 Conclusion Summary

Experiment to rack interfaces, and rack to module interfaces should be standardized. Standardization will benefit experiment location flexibility, changeout ability, checkout and verification, and flight testing. Standardized interfaces will simply experiment design, and the experiment integration process. The technical and economic negatives to standardization are insignificant compared to the potential benefits. Standardization of experiment to rack interfaces should be implemented, and the international partners should be included in the implementation process.

Table 2.1-1 Common SBI Trade Study Assumptions and Groundrules

- 1) Where project, hardware, and operations definition has been insufficient, detailed quantitative analysis has been supplemented with assessments based on experienced judgement of analysts with space flight experience from the Mercury Project through the current time.
- 2) Space flight hardware cost is primarily a function of weight based on historical evidence.
- 3) The effects of interrelationships with space biology and life science hardware and functions other than the SBI baseline hardware are not considered in the trade study analyses.
- 4) Trade study information, once defined during the analysis for the purpose of establishing a known and stable baseline, shall not be changed for the duration of the trade study.
- 5) Hardware life cycle costs cannot be studied with quantitative analyses due to the unavailability of definition data on hardware use cycles, maintenance plans, logistics concepts, and other factors of importance to the subject.
- 6) The SBI hardware as identified is assumed to be designed currently without any special emphasis or application of miniaturization, modularity, commonality, or modified commercial off-the-shelf adaptations.
- 7) It is assumed that the required hardware performance is defined in the original equipment specifications and must be satisfied without regard to implementation of miniaturization, modularization, commonality, or modified commercial off-the-shelf adaptations.

Table 2.1-2 Rack Compatibility Trade Study Assumptions and Groundrules.

- 1) Space Station Freedom payload accommodations will evolve over time. This study deals only with initial capabilities.
- Space Station Freedom U.S. Module, ESA Columbus Module, and JEM Module rack and interface information is based on NASA information published in February, 1989, (SBI #02).
- 3) For the purpose of this study, the Spacelab configuration and payload experiment accommodations are defined as those of Spacelab 4, also known as Spacelab Life Sciences-1, (SLS-1).
- 4) The Experiment Standard User Interface Study by the JSC Life Sciences Project Division, with William G. Davis as Technical Manager is the only study found which considers standard rack to experiment design feasibility.

Fage No. 05/25/89

Table 2.2-1 Rack Comparison - Nechanical and Structural

1 ante -	lable z.z-1 hack comparized		
F ARAME T E K	VALUE	UNITS	MODULE
Internal Module Diameter	152 ID	L 1	ESA
Internal Module Diameter	157.5 ID	i n	JEM
internal Module Diameter	166 ID	in	U.S. Lab
Rack Depth	17 17	ţ U	ESA
Rack Depth	BOO		ESA
fack Depth	32.5	μ	JEM
Rack Depth	914.4	E	JEM
Kack Depth	35	ţu	U.S. Lab
Rack Depth	914	U E	U.S. Lab
Kack Depth - Gouble Kack	29.9	UĮ	Spacel ab
Kack Depth - Double Kack	760	88	Spacel ab
Kack Depth - Single Kack	29.9	i n	Spacel ab
Rack Depth - Single Rack	760	EE	Spacl ab
Kack Gross Weight	No Info	kg	ESA
ƙack Gross Weight	600	kg	JEM
Kack Gross Weight	761	ķg	U.S. Lab
Kack Height	74.5	i n	ESA
Rack Height	1892.3	E	ESA
Kack Height	74.5	u I	JEM
Kack Height	1892.3	E	JEM
Rack Height	74.5	L I	U.S. Lab

Page No. 05/25/89

CI

Table 2.2-1 Rack Comparison - Mechanical and Structural

~

,

	Interfaces		
PAKAMETER	UN VALUE UN	JH STINU	NODULE
Kark Heinht	1892.3		U.S. Lab.
Kark Height - Double Rack	75.4	in S	Spacel ab
I	1892.3	0	Spacel ab
I	75.4	in 5	Spacel ab
I	1892.3	8	Spacel ab
	200-400 k	kg F	ESA
-	TBD	kg J	JEM
-	400-700	kg L	U.S. Lab
	Na Info	kg E	ESA
Rack Structural Weight	TBD	7 6×	JEM
Rack Structural Weight	135	1 1 1 1 1	U.S. Lab
fack User Volume	38.8	cu-ft f	ESA
fack User Valume	TBD	cu-ft	JEM
Rack User Volume	38.5	cu-ft 'l	U.S. Lab
Rack Width	41.5	in a second	ESA
Kack Width	1054		ESA
ƙack Width	41.5	in	JEM
Rack Width	1054	uu	JEM
Rack Width	41.5	in	U.S. Lab
Rack Width	1054	u e	U.S. Lab
Rack Width - Double Kack	41.4	in	Spacel ab

٠

12

i

Fage No. 05/25/89

М

Table 2.2-1 Kack Comparison - Nechanical and Structural

-

•

ų.	UNITS MODULE	an Spacelab	in Spacel ab	mm Spacelab	Matrla. ESA	Matr is. JEM	re Matris. U.S. Lab
Interfaces	VALUE	1052	22.2	563.5	Graphite Epoxy	Al Alloy	Graphite Skin/Al Core
	PAKAMETER	Rack Width - Double Rack	Rack Width - Single Rack	Kack Width - Single Kack	Ƙack Material	Ƙack Material	Kack Material

-

.

-
Fage No. (5/26/89

Table 2.2-2 Kack Comparison - Electrical Interfaces

PARAME TER	VALUE	UNITS	HODULE
117/203 Vac at 400 Hz (3 phase)	Yes	Valts	Spacel ab
120 Vdc	Y.es	Val ts	ESA
120 Vdc	Ves.	Val ts	JEM
120 Vdc	Yes	Val te	Û.S. Lab
24 to 32 Vdc (28 nominal)	Yes	Val t s	Spacelab
Converter Losses	Charged to Users	Valts	ESA
Converter Losses	Charged to user	Vol t s	JEM
Converter Losses	Charged to Users	Val ts	U.S. Lab
Current	TBD	Amps	ESA
Current 15 A	Yes	Amps	U.S. Lab
Current 25 A	Yes	Amps	JEM
Current 30 A	Yes	Amps	U.S. Lab
Current 75 A	Yes	Amps	U.S. Lab
Fhysical 1/F	TBD	1 /F	ESA
Fhysical 1/F	16D	1 /F	JEM
Physical 1/F	TBD	1.F	U.S. Lab
Power 1 kW	Yea	1:14	ESA
Power 1.5 kW	Yes	μw	ESA
Fower 11 kK Fallet-only config.	Yes	ж	Spacel ab
Power 15 kW	Yes	кw	U.S. Lab
Power 3 kW	Yes	КW	ESA
Power 0 LW	Yes	КЫ	JEM

i

0
No

Fage No. 2 05/26/89 Table 2.	Table 2.2-2 Rack Comparison - Electrical Interfaces	
FAKANETER	VALUE UNITS	NODULE
	Yes	U.S. Lab
FOURT 5 KW	Yes.	U.S. Lab
Fower & HW (r Pa))et	Yes	Spacelab
Fower B.D KW NOULLE AND		, SA
Frog. Provided Fwr. Converters	Na	- - - - - - -
Frag. Fravided Fwr. Converters	Na Ka	
Frag. Fravided Fwr. Converters 120 Vir	Yes Volts	
reg. Fravided Fwr. Converters 28 Viar	Yes. Volts	U.S. Lab
vuc Unique Fawer Converters	User Frovided Volts	ESA
Unique Fawer Converters	User Provided Volts	JEM
Unique Fwr. Converters	User Provided - Volts	U.S. LAU

Page No.	05/25/89

05/25/89	Table 2.2-3 Rack Comparison - Thermal and Fluid Interfaces	d Fluid Interfaces	
· FARANETER	VALUE	UNITS	HODULE
Argon Gas	Yes	8 8	JEM
Argan Gas	Yes	8 P S	U.S. Lab
Argon Gas 1/F	line from storage vessel	1 / F	JEM
Argon Gas 1/F	Direct 1/F from rack	1./F	U.S. Lab
Cooling Capacity	8.85 max to orbiter	Ku	Spacel ab
Fluid 1/F	TBD (USER DEFENDENT)	1 /F	ESA
Fluid Types	Fluids provided by pyld.	Fluid	ESA
Helium Gas	Yes	Gas	JEM
Helium Gas	Yes	Gas	U.S. Lab
Helium Gas 1/F	line from storage vessel	1/F	JEN
Helium Gas 1/F	Direct 1/F from rack	1/F	U.S. Lab
Krypton Gas	Yes	Gas	JEM
Kryton Gas 1/F	line from storage vessel	1/F	JEM
Liquid Nitrogen	Yes	Liquid	U.S. Lab
Liquid Nitragen 1/F	line from storage vessel	1/F	U.S. Lab
Mass Flow	TBD (USER DEFENDENT)	Flow	ESA
Mass Flow	TBD	F1 aw	JEM
Mass Flow	TBD	Flow	U.S. Lab
Ni trogen Gas	Yes	Gas	JEM
Nitrogen Gas	Yes	Gas	U.S. Lab
Nitrogen Gas 1/F	Direct 1/F from rack	1 /F	JEN
Nitrogen Gas 1/F	Direct I/F from rack	1.F	U.S. Lab

ï

.

Fage No.	

05/25/89	Table 2.2-3 Rack Comparison - Thermal and Fluid Interfaces	nd Fluid Interface	4
PARAMETER	VALUE	UNITS	MODULE
()×ygen Gas	Yes	6as	JEM
Uxygen Gas	Үеы	Sas	U.S. Lab
Oxygen Gas 1/F	line from storage vessel	1./F	JEM
Oxygen Gas 1/F	Direct 1/F from rack	1./F	U.S. Lab
Pressure	T6D (USER DEPENDENT)	FSIA	ESA
Pressure	TED	PSIA	JEM
Fressure	TBD	PSIA	U.S. Lab
Ultrapure Water	Yes	Li qui d	JEM
Ultrapure Water	Yes	Li qui d	u.S. Lab
Ultrapure Water I/F	Direct 1/F from rack	1/F	JEM .
Ultrapure Water I/F	Direct 1/F from rack	1/F	U.S. Lab
Vacuum Vent Fort	TBD	Fort	JEM
Vacuum Vent Fort	Yes	Fort	Spacel ab
Vacuum-Vent Fort	T BD-Access	Fart	ESA
Vacuum-vent Fort	Yes	Fort	U.S. Lab
Waste Gas Fort	Yes	Fart	ESA
Waste Gas Port	Yes	Part	JEM
Waste Gas Fort	Yean	Part	Spacel ab
Waste Gas Fort	Yess	Fart	U.S. Lab
Waste Liquid Fort	Yes	Fart	ESA
Waste Liquid Fort	Yes	Fort	JEM
Waste Liquid Port	Yes	Fart	Spacelab

NODULE Table 2.2-3 Rack Comparison - Thermal and Fluid Interfaces UNITS М PARANETER Page No. 05/25/89

U.S. Lab Fort VALUE Yes Waste Liquid Fort

Maste Liquid Full

Fage No. 1 05/25/89

Table 2.2-4 Rack Comparison - Data Hanagement and Video

	Table 2.2-4 Kack Comparison - Data management Interfaces	- Data Nanagement and Vir aces	1
PARAMETER	VALUE	UNI TS	HODULE
Hus Frequency	_	ΞHM	ESA
Bus Frequency	1	2442	JEN
Bus Frequency	4.2	MHZ	Spacel ab
Bus Frequency	~	MHz	U.S. Lab
Bus Time	10	Microsec	ESA
Bus Time	10	Microsec	JEM
Bus Time	10	Ni crosec	U.S. Lab
Data Kate JCP	TBD	MBPS	JEM
Data Kate MDM	-	MBFS	U.S. Lab
Data Kate KAU	£.12	KBPS	Spacel ab
Data Kate SDP	10	SABM	U.S. Lab
Data Rate SPC	4	NBPS	JEM
Data Kate STAU	1	NBPS	ESA
Data Rate STF	TBD	SABM	ESA
High Data Kate	32	MBFS	ESA
High Data Rate	100	NBPS	JEM
High Data Kate	50	MBPS	Spacel ab
High Data Rate	1	GEFS	U.S. Lab
LAN 1/F JCP	5 00 X	1/F	JEM
LAN 1/F MDM	Yes	1/F	U.S. Lab
LAN 1/F SDP	Yes	1/F	U.S. Lab

÷

,

19

.

Fage No. 05/25/89

Table 2.2-4 Kack Comparison - Data Management and Video

-

-

-

~

-

	Interfaces		
PARAMETER	VALUE	UNITS	NODULE
LAN 1/F SPC	Yes	1.F	JEM
LAN I/F STAU	Yes	1/F	ESA
LAN 1/F STP	Yes	1/F	ESA
Proc. Cap. JCP	TBD	SAIM	ЛЕМ
Proc. Cap. MDM	c	SAIM	U.S. Lab
Proc. Cap. SDP	4	SAIM	U.S. Lab
Frac. Cap. STAU	0	NIFS	ESA
Froc. Cap. STF	TED	MIPS	ESA
Froc. Cap. SIF	ō	MIFS	JEM
UPDF Data Kate	TBD	1/F	ESA
UPDP Data Rate	TBD	MBPS	JEM
UPDP Data Kate	TED	1./F	U.S. Lab
UPDF LAN 1/F	Yes	1.F	ESA
LIPDP LAN 1/F	Yes	1 / F	JEM
UPDP LAN 1/F	Yes	1/F	U.S. Lab
UPDP Proc. Cap.	160	SAIM	ESA
UPDP Proc. Cap.	TBD	HIFS	JEM
UPDF Proc. Cap.	TBD	MIFS	U.S. Lab
Video Inst. Tape Recorder	64	VITR	Spacelab

•

20

ï

.

 Table 2.2.5 Comparison of Spacelab and Space Station Experimentation Factors

	Spacelab	Space Station
Available Time on Orbit	Fixed, limited (10 days)	Variable, 20-180 days
Crew Participation Scheduling:	Crew intensive, fixed to optimize mission	Variable, to optimize science
Timeline:	Inflexible	More Flexible
Science training:	Mission specific	General per objectives
Instrumentation:	Mission specific	General capabilities
Consumable supplies:	Limited, specific, non-renewable	Extended, comprehensive, renewable
Science return on Investment:	Expensive, high risk	Comparatively economical (lower risk)
Time in Service	Mission Flight Time (7-10 days)	20-30 years
Implementation Lead Time for New Expt's	Typically 2-5 years	6 mos-2 years

3.0 Trade Study Database

The trade study database has been implemented on the dBase IV program by Ashton-Tate. The database definition including a database dictionary is provided in Appendix D.

3.1 Database Files

Four types of dBASE IV files were created for the Space Biology Initiative (SBI) Trade Studies database. These files are database files, index files, report files and view files. Database files have the file name extension dbf. A database file is composed of records and records comprise fields which contain the data. Index files have the file name extension ndx. Index files are used to maintain sort orders and to expedite searches for specific data. Report files have the file name extension frm. Report files contain information used to generate formatted reports. View files contain information used to relate different database (dbf) files. View files link different database files into a single view file.

3.2 Database Management

The development of the SBI Trade Studies database consist of two major steps, logical database development and physical database development. Defining attributes and relationships of data was the major emphasis of the logical database development. The attributes and relationships of the data were determined after analysis of available data and consultation with other SBI team members. Based on the knowledge from the logical database development, the physical structure of the database was developed and implemented on a computer. Setting up the database on a computer was the second major development process. The first step of this process was to determine how to store the data. dBASE IV allows data to be stored as character, numeric, date or logical data types. The second step was to create the database files. After the database files were created, the actual data was entered. For a complete listing of the database structures see Appendix D.

3.3 Database Use

To the maximum extent possible, data generated in performance of this trade study was stored in the database. This approach not only facilitated analysis and comparison of trade data, but also enabled the efficient publication and editing of tables and figures in the study report. In addition, the data are available in the database for future evaluation using different screening logic and report organization.

4.0 Documentation Survey

A literature review and database search were conducted immediately upon study initiation. Library searches were make using titles, authors, key words, acronyms, phrases, synonyms, time periods and any possible (both in-person and by telephone) having knowledge of the study subject activities. Interviews with personnel were make throughout the initial portion of the study.

4.1 Documentation Sources

4.1.1 Complete SBI Trade Study Bibliography

The complete list of all references used in the four Eagle Engineering, Inc. trade studies is provided in Appendix B. A unique SBI reference index number has been assigned to each information source and was used to identify references in these trade studies. For more information on a referenced source, locate the source by SBI number in Appendix B.

4.1.2 Rack Compatibility Trade Study Bibliography

Particular reference information from Appendix B that is of special importance to module rack compatibility was repeated and compiled in Table 4.1.2. This rack compatibility bibliography shows the references that were used for the modules rack compatibility analysis.

4.2 Documentation Data

This section summarized existing data from documentation sources for the data used in this Rack Compatibility Trade Study. Brief descriptions of the individual U.S. Lab Module, ESA Columbus Module, JEM Module, Spacelab and Shuttle Orbiter payload accommodations are provided.

4.2.1 U.S. Module

The United States laboratory module is a pressurized module of the Space Station Freedom. Information on the U.S. laboratory module was obtained mainly from the multilateral utilization study entitled "Station Interface Accommodations for Pressurized and Attached Payloads", SBI# 02, and from the notes of the U.S. Lab Review Workshop, SBI# 86. More detailed information on documentation sources can be found in the bibliography in section 4.1. Figure 4.2.1-1 shows a fully outfitted U.S. standard equipment rack.

4.2.1.1 Electrical Interfaces

The U.S. laboratory module will provide 120/208 VDC at 60 Hz. potential. Power available is 3 KW, 6 KW, or 15 KW, depending on experiment location. The current is 15 A, 30 A, or 75 A, also depending on the location. Program provided power converters are 28 VDC, 120 VAC, 60 HZ, single phase.

4.2.1.2 Data and Video Interfaces

The U.S. laboratory module provides multiplexer/demultiplexer (MDM), standard data processor (SDP), and user supplied data processor interfaces to the payload local area network (LAN). The data rates are 1 MBPS for the MDM, 10 MBPS for the SDP, and TBD for the user supplied data processor. The U.S. lab module provides a high rate fiber optic link via direct patch with up to 1 GBPS capability. The time and frequency bus has 10 microseconds accuracy relative to universal time at 1 megahertz frequency.

4.2.1.3 Thermal and Fluid Interfaces

The U.S. laboratory module supplies both liquid cooling interfaces and air cooling interfaces for experiment payloads. The liquid cooling interfaces are to station-provided coldplates (0.4 KW, 0.6 KW, 1 KW) or rack interface heat exchanger (8 KW). The coolant is single phase water at a low temperature loop of 4 to 21 °C (40 to 70°F) or at a high temperature loop of 21 to 50°C (70 to 122°F). The liquid cooling capacity is up to 15 KW at a rack. This is location dependent.

Air cooling interfaces in the U.S. laboratory module are supply air duct/diffusers and an air duct to payload drawer. Both air cooling ducts have rates which have not been determined at this time. The air cooling capacity is 1.5 KW nominal and 3.0 KW maximum cooling per rack. Fluids available to the payload are: Ar, He, O2, CO2, H, and N2.

4.2.2 ESA Module

The European Space Agency's (ESA) Columbus Attached Pressurized Module (APM) internal architecture is adapted to a laboratory configuration. Information on the ESA module was obtained from the Columbus Reference Configuration Report, SBI# 51, and the Multilateral Utilization Study (MUS) entitled "Station Interface Accommodations for Pressurized and Attached Payloads", SBI# 02. For more details on a referenced source, see the bibliography information in Section 4.1. Payload accommodation is provided at the rack locations as per Figure 4.2.2-1. Payloads can be replaced in total (with instruments integrated) or on drawer level as necessary.

4.2.2.1 Mechanical and Structural Interfaces

The locations labeled in Figure 4.2.2-1 as "P/L" provide the following volume per racks for payload accommodation:

lateral (right/left)	12 double size racks (DR)	$=16.8 \text{ m}^3$
lateral (right/left)	3 single size racks (SR)	=2.1 m ³
ceiling	7 double size racks	=9.8 m ³
ceiling	1 single size rack	=0.7 m ³

Each single rack has a volume of 0.7 cubic meters, and each double rack has a volume of 1.4 cubic meters. Storage locations are shown in Figure 4.2.2-1. Payload storage of 2.8 m³ is available in two lateral (right/left) double racks. This includes two single racks for hatch inclusion. The general purpose work bench (GPWB) and airlock stowage is also payload dedicated for 3.5 m³ of stowage. The total volume available for payload experiments and stowage is:

29.3 m³ P/L accommodation (in racks) net volume 21 m³ 2.8 m³ P/L storage 3.5 m³ GPWB and P/L

4.2.2.2 Electrical Interfaces

The ESA Columbus module provides the following electrical interfaces:

Lateral double rack (max. 3 per side)	2000 watts/average 3000 watts/average
Lateral single racks	1000 watts/average 1500 watts/peak
Ceiling rack	750 watts/average 1000 watts/peak
Power level	120 VDC +1/-3, 5% at I/F

<u>Remark</u>: Above power is available only within the 10 kw average and 12 kw peak when supplied by the Space Station to the attached pressurized module.

4.2.2.3 Thermal and Fluid Interfaces

Heat dissipation per experiment rack is in line with the electrical power distribution. In the ESA Columbus module, ceiling racks have only air cooling and lateral racks have air and water cooling. Payload vacuum and venting is 1 paper each interface line in lateral racks only.

4.2.2.4 Data Interfaces

The following experiment data is supplied to the Payload Data Bus: 1 MPS via NIU network node

300 KPS via STAU network node

Two network nodes per single rack equivalent are projected. Experiment high rate data multiplexer interface is 32 MPS. Payload application video data has not been determined.

4.2.3 JEM Module

The Japanese Experiment Module (JEM) is a pressurized Space Station Freedom module. Information on the JEM module was mainly obtained from the multilateral utilization study entitled "Station Interface Accommodations for Pressurized and Attached Payloads", SBI # and from a briefing handout entitled "NASDA Standard Rack Envelope Study Status", SBI# 02. For more details on a referenced source, see the bibliography information in Section 4.1. Figure 4.2.3-1 illustrates the JEM module internal layout.

4.2.3.1 Mechanical and Structural Interfaces

The JEM module equipment racks measure 74.5"h x 41.5"w x 32.5"d, or 1892.3 mm x 1054 mm x 914.4 3 mm. Internal module diameter is 157.5 inches, or 4 meters. JEM modules plan to use double racks; the use of single racks has not been determined.

4.2.3.2 JEM Electrical Interfaces

The JEM module will be equipped with 120 VDC potential. The JEM module provides two lines of 3 KW of power at 25 A.

4.2.3.3 Thermal and Fluid Interfaces

The JEM module supplies both a liquid cooling interface and an air cooling interface through a station-provided coldplate. Cooling capacity has not been determined. The coolant is single phase water with inlet temperatures of 25-30°C (77-86°F) in the high temperature loop, $8-10^{\circ}$ C (46-50°F) in the medium temperature loop, and 2°C (36°F) in the low temperature loop. The liquid cooling capacity is 6 KW per rack. Fluids available to the payload are: Ar, He, Kr, N2, O2, CO2, and dry air.

4.2.3.4 Data and Video Interfaces

The JEM module provides signal processing converter (SPC), JEM control processor (JCP), and user provided data processor interfaces to the payload local area network (LAN). The signal processing converter provides a data rate of 4 MBPS. Data rates for the JEM control processor and user supplied data processor have not been determined. Processing capabilities are also not established at this time. The JEM module provides a high data rate of 100 MBPS via direct patch. The time and frequency bus has 10 microseconds accuracy relative to universal time and 1 megahertz frequency.

4.2.4 Spacelab Module

The Spacelab module is a pressurized module flown in the cargo bay of the Shuttle Orbiter. Information on the Spacelab module was mostly obtained from "Spacelab Configurations", SBI# 56. Spacelab Mission 4 Integrated Payload Requirements Document, SBI# 27, and the Spacelab Payload Accommodations Handbook, SBI# 92. For more details on a referenced source see the bibliography information in Section 4.1. The Spacelab pressurized module provides a controlled environment for users and their equipment. In defining Spacelab accommodations, it should be noted that throughout the on-going Spacelab programs, interfaces and capabilities are being redefined, updated, and planned.

There are two basic configurations for the module, which contains two double racks and one single rack per side. The second configuration is the long module. The long module contains four double racks and two single racks per side. For the purposes of this study, we will concentrate on Spacelab Mission 4, also called Spacelab Life Sciences - 1, or SLS-1. Figure 4.2.4.1 shows a view of the SLS-1 module.

4.2.4.1 Mechanical and Structural Interfaces

Each module is divided into two segments, the core segment and the experiment segment. In the case of a long module, the core segment is the forward half of the module, consisting of five single-rack widths, and the experiment segment is the rearward half of the module also consisting of five single-rack widths. Within the core segment of the long module, the forward two rack widths are designated as subsystem and the other three widths are designated experiment. Those areas designated as subsystem are used to accommodate the Spacelab systems hardware and standard Spacelab equipment (i.e., Mass Memory Unit, Intercom Master Station, High Data Rate Recorder (HDRR), tools). The three rack spaces designated experiment may also be used to accommodate subsystem equipment if the need for space arises. Such is the case with the use of rack 4 for subsystem equipment when flying a long module. Within the experiment segment all rack space is allocated to the payload.

The short module is simply the core section of the long module. The allocations of the rack spaces are identical to those in the long module core segment: two rack widths designated subsystem and three rack widths designated experiment.

4.2.4.1.1 Accommodations For Floor-Mounted Experiments

The floor of the Spacelab provides support and mounting attach points for standard experiment racks and/or experiment equipment. The center panels of the floor are known as the center aisle. A certain volume envelope, known as the payload envelope, has been established in the center aisle for accommodating floor-mounted experiments. The center aisle is also outfitted to provide for the use of some Spacelab resources. Cutouts in the center aisle provide for Electrical Power Distribution System (EPDS)/Command and Data Management Subsystem (CDMS) interface through a connector bracket which provides power and support for an experiment Remote Acquisition Unit, Environmental Control Subsystem (ECS) interface through a cutout for cabin loop airflow, and Experiment utility interface through a cutout with attachment provisions for an experiment-provided connector bracket.

4.2.4.1.2 Experiment Racks

Experiment racks are standard 19-in. wide racks provided to accommodate standard as well as nonstandard equipment. These racks are mission-dependent Spacelab subsystem equipment and can be removed if required. Experiment equipment can be mounted using the same attachment points in the floor and the overhead structure. Two types of racks are available: single racks

with an overall width of 563.5 mm and double racks with an overall width of 1052 mm. Both types of racks are 760 mm deep at their greatest depth and 1892.3 mm high. A double rack of standard configuration is shown in Figure 4.2.4-2.

The following Spacelab mission-dependent subsystem equipment (MDE) may be located within some racks:

One Experiment Power Switching Panel (EPSP) may be included per rack if elements within the rack require power.

One Remote Acquisition Unit (RAU) may be used when experiment requires downlink of data or an interface with the experiment computer.

One experiment heat exchanger and one experiment-dedicated coldplate, may be located only in rack 4.

Remote intercom stations may be located only in racks 4,7, and 10.

Air cooling systems and fire suppression systems are located within all racks that require power.

4.2.4.1.3 Rack Numbering

For ground processing and integration purposes, the spacelab racks are numbered 1 through 12. This rack numbering system is shown in Figure 4.2.4-3.

4.2.4.1.4 Allowable Envelope

Experiments that require no standard Environmental Control System (ECS) cooling ducts, fire suppression, or rear struts for cabling attachments, may use the entire internal depth allowed by the basic rack structure.

4.2.4.2 Electrical Interfaces

Electrical power constraints for Spacelab SLS-1 based on fuel cell capability and thermal constraints are:

7.8 KW maximum continuous 11.4 KW peak for 15 min. (limited to once every 3 hours)

The following voltages are provided:

24 V to 32 VDC power 115 V to 200 V_{ma} AC power, 400 HZ

Power for racks is received through the Electrical Power Distribution System (EDPS). The EDPS receives its DC power from a dedicated Orbiter hydrogen/oxygen fuel cell through the

Orbiter bus system which is connected to the Spacelab emergency box. The AC power is generated from the dc main power by the Spacelab inverters. This power (AC and DC) is distributed to the Experiment Power Switching Panels (ESPS). These panels represent the power interface for experiments in the racks and to dedicated connector brackets in floor cutouts for experiments on the center aisle. Power flow diagrams and specific power characteristics can be found in the Spacelab Payload Accommodation Handbook (SBI #92).

4.2.4.3 Thermal and Fluid Interfaces

Spacelab racks are cooled by the avionics air loop. The avionics air loop has a heat exchanger located in the subfloor. The airflow distribution may be adjusted to the specific payload needs by means of rack shutoff valves located at the bottom of all racks.

4.2.4.4 Data and Video Interfaces

The Spacelab 4, SLS-1 mission requires 3 experiment Remote Acquisition Units (RAU's). High rate serial data is acquired via the 16 experiment input signals of the High Rate Multiplexer (HRM). Data acquired by the Subsystem Computer and Experiment Computer are downlinked via the HRM. Input rates accepted by the HRM must be 1.31 KBPS to 500 KBPS. Data will be downlinked from the HRM at 1 MBPS.

Spacelab 4 provides experiments with the capability for real-time downlinked video. The MDE Video Switch has 14 video/analog switch inputs and 9 outputs. Only 1 channel of video data may be transmitted at a time, due to bandwidth limitations in the KU-band downlink, Time signals originate in the Orbiter Master Timing Unit (MTU) and are sent to Spacelab via the Payload Timing Buffer.

4.2.5 Shuttle Orbiter

Information on the Orbiter Middeck and Aft Flight Deck payload accommodations was obtained mainly from "Shuttle/Payload Interface Definition Document for Middeck Accommodations", SBI# 52, and from "Spacelab Configurations", SBI# 56. For more details on a referenced source, see the bibliography information in Section 4.1. Payloads may be located in the Middeck in the following three areas:

- a. AFT surface of wire trays of Avionics Bays 1 and 2.
- b. Forward surface of wire trays of Avionics Bay 3 A.

Payloads shall be attached to the surface of the wire trays forming bulkheads of Avionics Bays Number 1,2 and 3 A. See Figure 4.2.4-1 for middeck locker layout.

Often Life Science experiments require Orbiter Middeck stowage. Middeck stowage is ideal for items to be stowed for a Spacelab mission which must be loaded into the Orbiter late and offloaded early to preserve them. Some examples would be live plants and animals; temperature-critical items such as biological samples which must be refrigerated; and timecritical items which would exceed their shelf life if loaded at Spacelab closeout.

4.2.5.1 Mechanical and Structural Interfaces

Middeck payload mounting provisions shall consist of standard modular stowage locker accommodation or Middeck Payload Accommodations Kit (MPAK). The maximum weight of a payload which is to stowed in a modular stowage locker shall not exceed 54 pounds. The maximum weight of the payload, the stowage locker shell, stowage trays, and protective provisions, such as dividers, bungees, and vibration isolating foam shall not exceed 70 pounds. Payloads that cannot be stowed inside trays shall be stowed directly in a locker, provided the payload is isolated from vibrating contract with the locker and has zero "g" retention for on-orbit activities. Payloads, where possible, should be designed to the size and shape of a small or large stowage tray. A standard Modular Stowage Locker provides 2 cubic feet of stowage volume. Figure 4.2.4-2 shows a Middeck locker and typical stowage packaging.

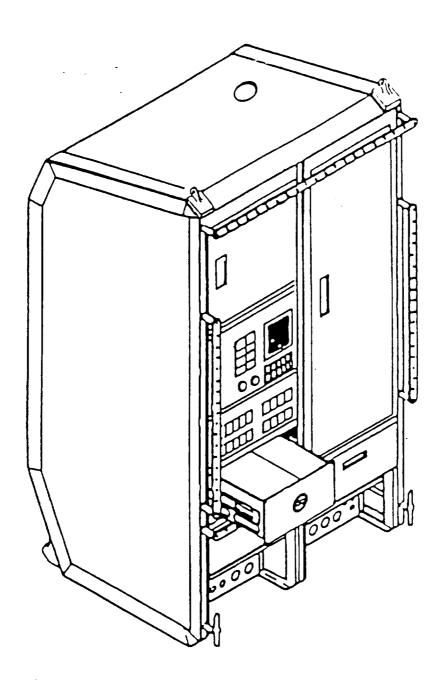
Some panel area and volume in the Orbiter aft flight deck are available to support Spacelab payload operations. The aft flight deck is divided into three workstations: the mission station, the on-orbit station, and the payload station. The payload station and part of the on-orbit station are dedicated to experiment operation. The following paragraphs summarize the payload accommodations in the aft flight deck. See Figure 4.2.4-3 for panel locations.

4.2.5.2 Electrical Interfaces

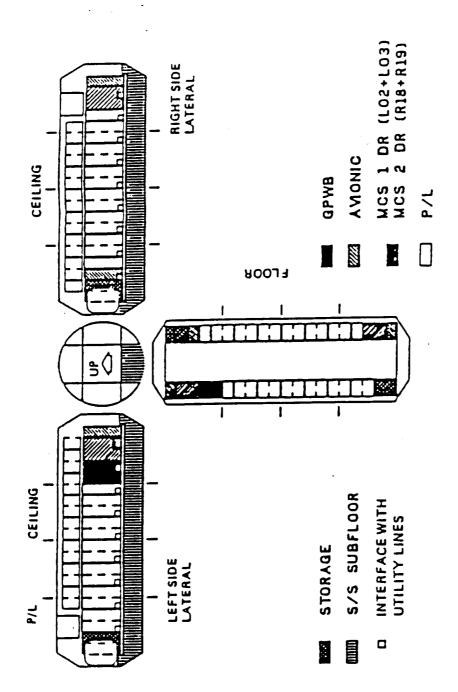
Orbiter Main DC electrical power is available to payloads via ceiling outlet connectors. Power shall be available for periods up to 8 hours in duration during on-orbit operations. No power shall be available during ascent and/or descent mission phases. Circuit protection for the middeck ceiling outlets is provided by 10 amp circuit breakers (derated to 9.5 amps) which also shall protect flight deck utility outlets. In order to allow mixing with other standard Middeck payloads, power usage is limited to a maximum of 5.0 amps (approximately 115 watts). The payload will be limited to the use of only one middeck utility outlet at any one time. All payload wiring connecting to Orbiter power sources shall be sized to be consistent with appropriate circuit protection devices. If a payload reduces the size of the wiring on its side of the interface, additional current limiting devices must be provided.

4.2.5.3 Thermal and Fluid

Payload waste heat shall be considered dissipated to cabin air. A payload may be cooled with or without payload provided capability to internally circulate cabin air during on-orbit operations. Payloads which are required to operate during EVA or EVA pre-breathe periods shall design cooling based on 10.2 psia cabin pressure. Payloads generating waste heat and not incorporating in the design a means of rejecting this heat to the cabin air by means of a fan or similar means shall be constrained to a maximum continuous heat load in the standard stowage locker of 60 W. The design value for the free convective heat transfer coefficient shall be 0.25 Btu/hr F ft² for 14.7 psia or 0.17 Btu/hr F ft² for 10.2 psia cabin pressure.


When a payload provides an air circulation fan which discharges to the cabin, the maximum air outlet temperature shall not exceed 120°F. The forced cooling design shall be compatible with investment of contamination from the cabin or provide protection from that contamination. Additionally, the cooling system shall not contribute to further contamination of the cabin.

4.2.5.4 Data and Video Interfaces


Panels R7 and L11 can be fully dedicated to Spacelab hardware. A Spacelab Data Display System (DDS) with a keyboard can be accommodated in L11. Additional Spacelab hardware is located in the lower portion of L16 and L17 marked "additional volume for electronics" in Figure 4.2.4-3. A second DDS for the Spacelab payload can be installed in the mission station at panel R11.

lable 4.1-2 Bibliography	VOL. PU
	T11LE
No. 1 /89	ID # AUTHOR
te No. 1/26/89	# 01

1.1/29/89	Table 4.1-2 Bibliogr	1-2 Bibliography for Rack Comparision Trade Study	rade Study		
1D # AUTHOR	Т1ТLE VOL.	PUBLISHER	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCAT I UN	DATE
SB102 Kozarsky, D.	Latest Space Station Rack Studies	NASA MSFC		Huntsville, AL.	02/02/89
SBI51 NASA JSC	Columbus Reference Configuration Report	NASA JSC	RP 1213800000	Houston, TX.	05/31/88
SB152 NASA HQ	Shuttle/Payload 1/F Definition Document for Middeck Accomodations	NASA HQ	NSTS 21000	Washington, DC	03/01/88
69153	Rack Accomodations Users Manual				• •
SB168 Hamaker, Joe	Telephone interview relating to MSFC history and techniques for cost estimating.	Cost Analysis Branch Chief NSFC		Huntsville, Al.	04/27/89
SB179 Booker, Clef	Fersonal Interview - Minaturization on amplifiers, computers and modularity	NASA JSC/SF 341 Man-System Division		Houston, TX.	04/04/89
16193	NASDA Standard Rack Envelope Study Status	NASDA			-
68192	Spacelab Fayloads Accompdations Mandbook	NASA NSFC	SLP/2104	Huntsvillle, 08/16/85 Al.	08/14/85
59193	Station Interface Accomudations for Fressurized and Attached Fayloads	NASA			02/01/89
56194	Life Sciences Study for the Space Station	Management and Technical Services Co.		Houston, TX.	TX. 08/01/84
SB195 Crenshaw, John	Fersonal Interview with John Crenshaw – Discussion of standarized avoins (mounted on racks) in airlines.			Houston, TX.	TX. 05/16/89

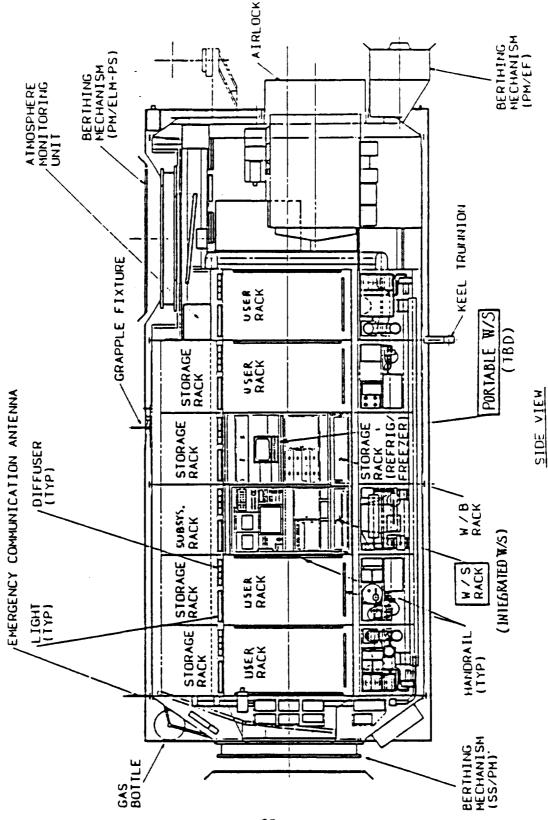
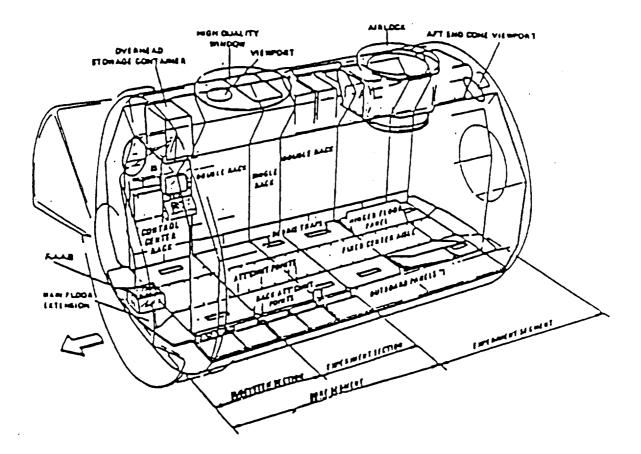
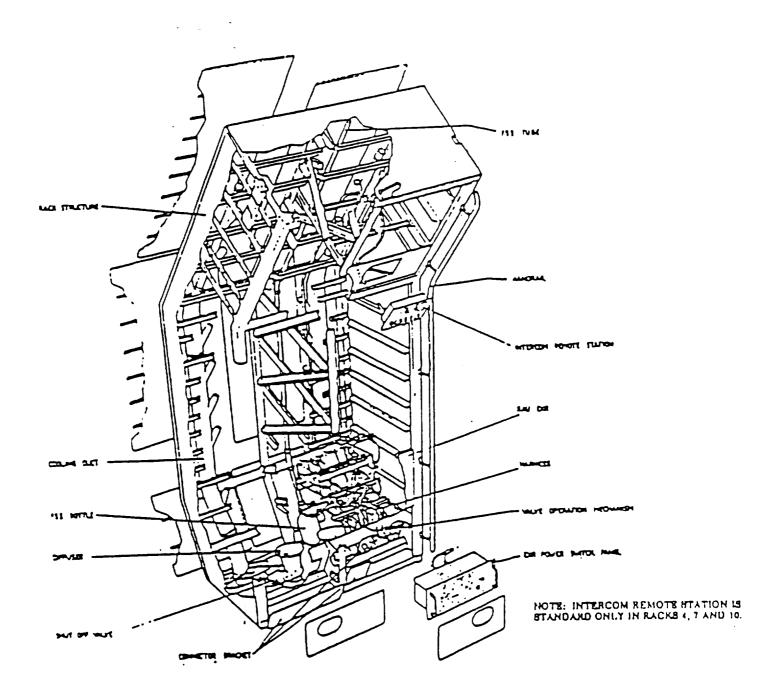




Figure 4.2.3-1 JEM Pressurized Module Internal Layout

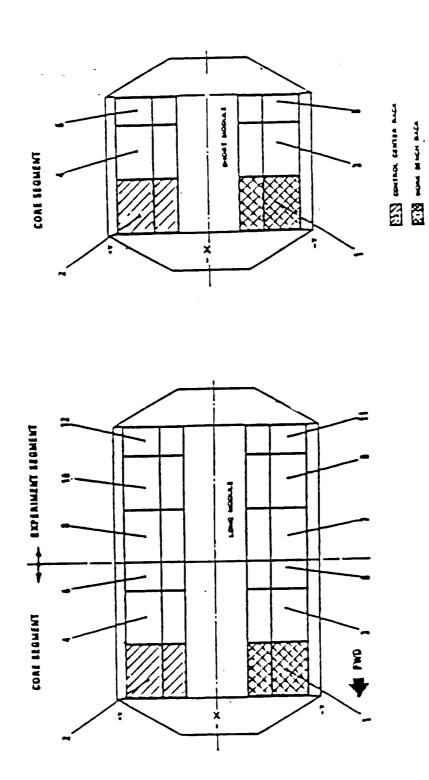
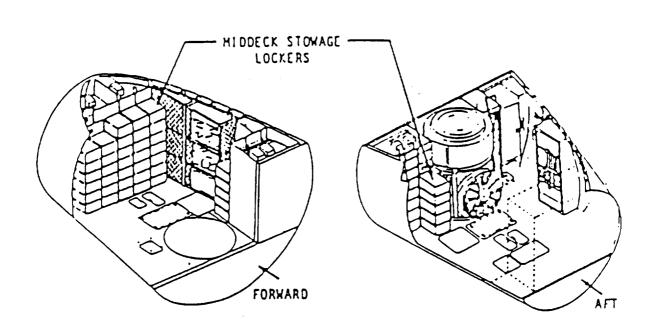
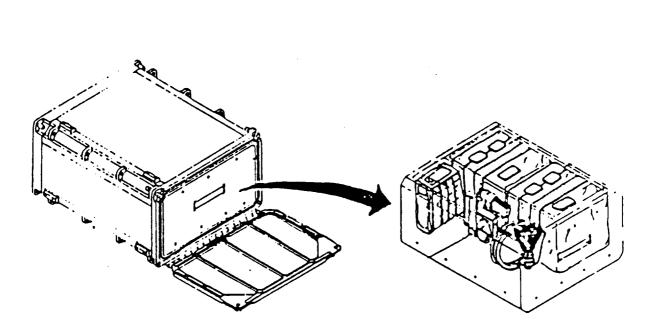
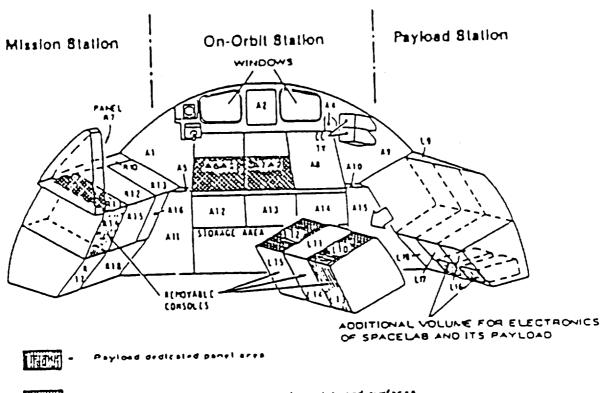





Figure 4.2.4-3 Spacelab Rack Numbering System

- 11

Additional payload dedicated panels on indoard surfaces

C-3

5.0 Trade Study

5.1 Rack Matrices Development

Information was collected for Spacelab, Shuttle Orbiter, and the United States (US) module, the Japanese Experiment Module (JEM), and European Space Agency (ESA) Columbus module. This information included experiment-to-rack mechanical, structural, electrical, data, video, thermal, and fluid interfaces. Comparison matrices of these data were formed and given in the following tables:

Table 2.2.1 Mechanical and Structural Interfaces

Table 2.2.2 Electrical Interfaces

Table 2.2.3 Thermal and Fluid Interfaces

Table 2.2.4 Data and Video Interfaces

5.2 Rack Interface Feasibility Analysis

The feasibility of standard mechanical, structural, electrical, data, video, thermal, and fluid interfaces between SBI equipment and spacecraft systems are being studied at NASA's Johnson Space Center. This section considers the work of the Experiment Standard User Interface Study, SBI# 39, by the JSC Life Sciences Project Division, William G. Davis, Technical Manager. The information in this section is taken from the July 1988 Progress Report. For the purposes of this trade study, the Experiment Standard User Interface Study may be referred to as simply the Interface Study.

5.2.1 Mechanical and Structural Interfaces

Mechanical problems can arise during installation of experiment systems into racks. The basic problem of dimensional variations from one rack to another rack is very difficult to avoid in large sheet metal structures such as the Spacelab racks and probably the Space Station racks, according to the Interface study. An objective of the Interface Study is to design, fabricate, and demonstrate a set of mechanical experiment interface assemblies that provide a standard mechanical user interface. The design as it is presently being developed will provide for installation from the front of the rack with no tools. The design also considers the problems that have arisen in the area of stress analysis and will provide a mechanical mounting system that have positive margins when analyzed for STS launch and landing loads.

Figure 5.2.1, Spacelab/Space Station Panel Units, illustrates Spacelab and Space Station racks broken down to the panel unit (PU) level. One panel unit = 1.75 inches. The Spacelab Lower rack (34 PU's) and the Space Station rack (35 PU's) are sufficiently similar to utilize the Lower Spacelab rack for initial hardware comparison studies. A concept of the Interface Study is to develop standardized interfaces which may be demonstrated and tested in a Spacelab single/double rack structure. These concepts may then be extended to the Space Station double rack without alteration of the basic concepts.

5.2.2 Electrical Interfaces

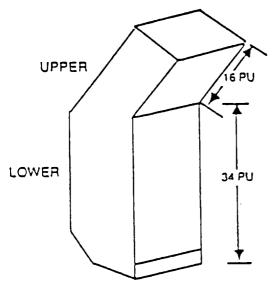
Another objective of the Interface Study is to provide the user with one type of power at the experiment-to-rack interface in the Spacelab rack, the US Lab Module, the ESA module, or the Japanese module. At present, the power available to the Spacelab experiments is 28 VDC and 115 VAC 400 HZ. Conversion of the basic 208 VAC 20 KHz power source to one or two of the more common types, (e.g. 28 VDC and 115 VAC 400 HZ) seems to be a reasonable standardization. The Interface Study recommends using 28 VDC and 115 VAC based on the amount of experiment development that has taken place with 28 VDC power and the fact that Spacelab is already configured in this way.

5.2.3 Thermal and Fluid Interfaces

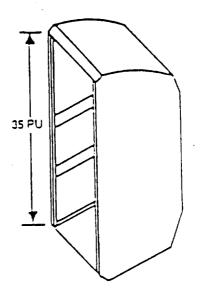
A cooling concept intended to simplify the experiment-to-spacecraft cooling interface from the rather complex direct hose coupling method used on Spacelab is shown in Figure 5.2.3. The object of the proposed experiment cooling is for the experiment to exchange its heat load with the air within the rack structure, and the Spacelab avionics system cools the circulated air. The experiment housing would utilize internal fans to remove the heat load. Initial analysis in the Interface Study shows that this heat exchange process is practical in a Spacelab rack. Details of this analysis work is shown in Appendix C of the Experiment Standard User Interfaces Study, SBI #39. Development tests will include the operation of one of the LSPD mockup Spacelab racks with several controllable heat load sources in experiment type chassis mounted in the rack using cooling fans to transfer the experiment heat load to the rack air volume. The Space Station rack cooling mechanism is not fully defined at this time; therefore, study efforts were concentrated on new cooling techniques in a Spacelab rack.

Cooling fans were also investigated in the study. The fans have speed control based on either a temperature sensor input or by pulse width modulation from a microcomputer. Other aspects, such as cooling fan noise must also be considered. These aspects will be best evaluated using prototype experiment assemblies and various fan assemblies. Appendix D of the Experiment Standard User Interfaces Study provides information that on the evaluation and selection of fans.

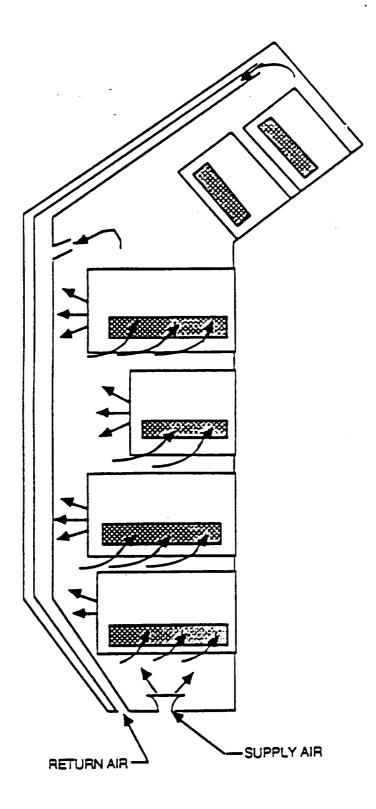
5.2.4 Data and Video Interfaces


5.2.4.1 Data Interfaces

The Interface Study is investigating the use of a standard parallel data bus interface concept in each rack. This data bus interface concept could be used to route data from identified data ports within the rack to the spacecraft data system or could also route data from one experiment box to another. This would eliminate the necessity for many unique experiment box to experiment box to another. This would eliminate the necessity for many unique experiment-box-to-experiment-box cables. Several parallel data bus systems have been evaluated and the advantages and disadvantage of each are documented in Appendix B of the Experiment Standard User Interfaces Study, SBI #39. The report found that the IEEE-488 parallel data bus system appears to be a very practical data communications mechanism.


Each rack would incorporate a data interface module to route the data from the experiments and convert the data into the appropriate parallel data buss or serial data stream to be interfaced with the spacecraft data system. The data interface module could be reprogrammed to perform the various data routing functions that would be necessary when new experiments are installed in the rack. The data interfacing connector could be automatically connected to the data bus during the mechanical installation process.

5.2.4.2 Video Interfaces


The Experiment Standard User Interfaces Study made no specific recommendations for experiment to spacecraft video interfacing. The Interface Study cited the experience of the JSC Life Sciences Experiment Division with interfacing experiments with the Spacelab video system as good example of the difficulties that arise from the use of non-standard interfaces. The Interface Study's video objective is to allow the hardware developer to utilize standard input and output video circuits and specialized level shifting, and impedance isolation requirements. The fact that the Spacelab video system is analog and the Space Station system is planned to be fully digital will require a rather extensive evaluation to determine the practicality of a fully standardized video interface. The physical interfacing of experiment video input and outputs can be achieved through the same connector used for data transfer.

SPACELAB RACK

SPACE STATION RACK

6.0 Conclusions

A set of standardized experiments-to-spacecraft interfaces would simplify the mechanical, cooling, and electrical interfaces between the experiment and the spacecraft systems. Standardized interfaces could make the installation and usage of experiments on Space Station, Spacelab and other missions as user-friendly and flexible as possible with a minimum weight and volume penalty. This standardization would also result in the following benefits.

6.1 Experiment Location Flexibility

Providing standardized interfaces in the Life Sciences Space Station experiment racks would allow the use of one experiment system in all three Space Station modules. The staging of the experiment racks with standard interfaces prior to launch of the racks would eliminate the limitations on experiment locations in the Station. Spacelab racks could also be outfitted with the same standard interfaces. This would allow the use of one experiment design on Spacelab or Space Station.

6.2 Experiment Changeout Ability

On Space Station Freedom several experiments will use the same rack for different experiments for varying lengths of time. The ability to replace part of the experiment systems in a rack during flight will be a significant factor in satisfying the needs of the individual experiments.

The amount of SBI science achieved can be enhanced by the ability to replace experiment systems at less than a full rack level. If the racks in the U.S., the ESA, and the Japanese Space Station modules do not have identical mechanical, electrical, and cooling interfaces, the flexibility of changing experiment locations within and among the modules will be lost. Interchangeability of location will be possible with the use of standardized user interface systems installed into the racks prior to launch.

Further studies should be done to define a set of standard experiment mechanical, electrical, data, and cooling interfaces between the equipment and the spacecraft systems.

6.3 Experiment Design Simplification

Standardized experiment-to-spacecraft interfaces would simplify the design of the experiment interfaces by the principle investigator or hardware developer. The video and data interface circuits that are required for proper interfacing with the present Spacelab subsystems have some rather unique requirements that have caused integration problems for some life sciences experiments in the past. Based on the experiences of the JSC Life Sciences Project Division in resolving these interface problems, developing standard interfaces using accepted and proven industry and scientific standards would greatly simplify experiment hardware design.

6.4 Experiment Checkout and Verification

Standardized mechanical and electrical interfaces will allow faster and more efficient experiment checkout and verification. Computer controlled automated test and checkout equipment can

very quickly provide a detailed evaluation of the experiment operation. This improvement in experiment verification and checkout should improve the ability to quickly process an experiment assembly through the extensive testing processes that are presently required before an experiment can be launched or activated.

6.5 Experiment Flight Testing

With standardized interfaces, proposed Space Station experiments could be flown on a Spacelab mission to demonstrate the feasibility of in-flight experiment removal from and integration into the racks. This would be a demonstration of Space Station technology and methodology while the Space Station program is still in the development stages.

6.6 Quick Response Experiments

Racks staged with standard interfaces leads to the possibility of flying quick response experiments since the integration process would be simple. The providing of experiment chassis by NASA to be used in student-type experiments would also be useful.

6.7 Cost Impact

The cost of making racks compatible between the spacecraft and the modules covered by this trade study would be primarily due to the need for inter-program coordination and standardization. Although these costs would cause some increase in the programmatic area due to the need for ICD's, common interface data, and common inter-program rack configuration control, the benefits should be substantial. From an overall life cycle cost perspective (overview of several programs), the benefits of being able to change racks between modules and between spacecraft, the benefits of common ground checkout and pre-flight preparation cycles, and the benefits of having standard data formats are potentially invaluable. There is not sufficient data available to quantify these benefits at this time, but there is no question that they are worth further study and deserve support by all those involved in the SBI program.

Appendix A - Space Biology Hardware Baseline

		UNIT HARD	HARDWARE PAR	PARAMETERS
ITEM HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)		POWER (watts)
1.8 METER CENTRIFUGE FACILITY (1)				
SPECIMEN SUPPORT GROUP (1A)			-	
1 1 R M Centrifice	ပ	2.40	1100	1500
	3	0.96	320	2500
2 Lito Sciences Glove Box (Conv 1 of 2)	3	0.96	350	800
Lile Sciences diave box (Sop) - St Madular Labitat Halding System	U	0.48	200	500
Mouulai Habitat Holonig	с С	0.10	50	550
	0	0.10	50	220
6 Primate module 7 Rodent Module	00	0.07	40	230
BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2)				
RIOWASTE COLLECTION & MONITORING GROUP (2A)				
8 Fecal Monitoring System (24 Hr)	ш	0.12	.25 00	50
	ш	0.20	60	00
BIOLOGICAL SAMPLE STORAGE GROUP (2B)			2	
10 Freeze Drver	3	0.07	Я I	041
	3	0.48	120	300
	3	0.48	120	300
12 Freezer (-/u.ueg. v) 4.0 Freezer Crimanic (-106 den C) w/ Snan Freezer	3	0.09	20	0
Freezer Uryugenic (*130 ucg. V) Junt Douton Chicker (Conv. 1 of 2)	3	0.20	80	0
Refrigerator (4 deg. C)	3	0.48	120	300

LIFE SCIENCI	LIFE SCIENCES HANDWARE LIST FUR THE SPACE STATION THEEDOM FILE				
L			IINIT HARDWI	HARDWARE PARAMETERS	ETEF
			-	MASS PC	POWER
				(kg) (w	watts
				•	
				c	c
					ہ م
				40	450
				26	200
				2	34
				-	0
				TBD	TBD
				4	0
				80	100
				300	700
				350	800
				80	200
				-	0
				2	0
				10	50
				4	20
					0
				+ :2	0
)		22	150
	Sample Freparation Device	ш	0.02	22	0
	Shilenda Isotope comaner Sectiment I aboline Trols/Device	>	0.01	4	20
	Specifient Labering Tools.	Ν	0.06	20	0
	Sweat Collection Device	S	0-01.005	50'S 001	-0-72

•	ES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA
	LIFE SCIENCE

December 1988

			UNIT HARDWARE	WARE PA	PARAMETERS
ITEM	ITEM HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
*	CICAL CAMPLE MANAGEMENT FACILITY (2) (CON'I)				
BIOLC	BIOLUGICAL SAMPLE MANAGEMENT LAULET (2) (201				
ROI	RODENT SUPPORT GROUP (2D)	c		C	c
39	CO2 Administration Device	n (0.01	ָר <mark>י</mark>	
40	Rodent Blood Collection System	S	0.03	01	nc
	Bodent Caudal Vertebrae Thermal Device (CVTD)	ა	0.01	2	50
	Rodent Guillotine	ა	0.01	4	0
5 C		S	0.01	e	0
		S	0.01	3	0
t 4		S	0.01	e	0
ם די ד	Urine Collection Sv	S	0.03	10	50
7 C	5	ა	0.03	10	0
4/	Hodent Verennary Onn				
РВ	PRIMATE SUPPORT GROUP (2E)	c		c	140
48	Primate Blood Collection System	n a	c0.0	4 -	
49	Primate Handling Equipment	י מ	0.01	- (
50	Primate LBNP Device	S	c0.0	ŋ	- 4 0
р ч С	Primate Surgery Platform	ა	0.04	5	0
- 0		S	0.02	5	0
2 U 7 U	Line Collection S	S	0.01	10	14
	Drimoto Veterinary Unit	S	0.03	10	0
55 55	Small Primate Restraint	S	0.05	2	0

Page 3 of 10

CIENCES HARDWARE LIST FOR THE SPACE	STATION FREEDOM ERA	HARDW	1-10	December 1988 PARAMETERS S POWER
ITEM HARDWARE IIEM NAME	CODE			(watts)
BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING F	FACILITY	(3)		
PULMONARY ANALYSIS GROUP (3A)	ſ			c
	ທີ່	0.01	10	
	ŋu	0.01	<u>;</u>	0
	i v	0.08	13	100
- 59 Electrotics Country Assembly	<u>ہ</u>	0.01	e	30
61 Mask/negulator of storie 61 Mase Spectrometer	S	-0-02.087	40405	100 ZCC
_	S	.0.39 0 <i>51</i>	20	0
	S	0.09	30	0
	S	0.02		0
	S	0.01	-	0
	S	0.01	0	0
			•	
PHYSICAL MONITORING GROUP (3B)	C		4 F	35
	ົ້	0.04	TRA/	, o
	o 3	0.15	50	150
	: v	0-06 015	780-16	180 /3C
/ U COMPILANCE VULUINOMETEI	s S	0.06	180 <i>2</i>	1BD
- 0	ш	0.01	2	20
	ш	0.01	-	10
	S	0.40	70	
	S	0.03 .063	1 80 2	1808at. cf
	Ľ	0.01	2	25
0 0				Page 4 of 10

LIFE S(LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA	I FREEDON	A ERA	Dece	December 1988
			UNIT HARDWARE	1	PARAMETERS
> 2	HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (walls)
# BIOINS	# BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING	FACILITY	(con't)		
HH	PHYSICAL MONITORING GROUP (3B) (con't)	Ċ		136	008
77	Hard Tissue Imaging System	ი თ	0.01	5 2	0
78	Mass Calibration Unit	ш	0.65	35	15
67	Mass Measurement Device Doug	3	0.08	17	15
80	Mass Measurement Device-Micro	3	0.08	17	15
81	Mass Measurement Uevice-Silian	S	0.05	20	100
82	Motion Analysis System	ഗ	0.01	ო	30
83	Plethysmograph Measuring System	s S	0.96	300	800
84		s S	0 -01.0002	100-081	O Cot OF
85	Tonometer '	, Ц	0 10	30	300
86	Video System	L	2)	
NE	NEUROPHYSIOLOGICAL ANALYSIS GROUP (3C)	(č	ç	c
0.7	EEG Can	Ś	0.01		
10		S	0.01	2	5.0
88		ш	0.01		0
80		ш	0.01	2	20
06	Electro-oculograph (EUG)	ш	0.09	11	120
91	_	ш	0.01	0	20
92	Heimel intender	ш	0.04	13	110
93		ш	0.01	2	20
94		ш	0.01	2	20
95	Neurovestibular Optokinetic Stiniuus	ч Ш	0.12	38	220
96	Neurovestibular Hotating Citati	ш	0.05	18	0
97 97	Subject Hestraint System Visual Tracking System	Š	0.01	2	20
	source codes: C=1 & CFP_S=SBI, E=EDCO, W=WP-01				Page 5 of 10

)

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA H/W ITEM HARDWARE ITEM NAME SOURCE VOLU (cu. #/W BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING FACILITY (col BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING FACILITY (col 00 99 Animal Biotelemetry System 100 Biood Pressure And Flow Instrumentation 101 Cardiodynamic Monitor 102 Electrocardiograph (ECG) 103 Holter Recorder 104 Human Biotelemetry System 105 LBNP Device CARDION SIMUS BARGRECEPTOR STIMULABRE 106 (Neck Baro-Cult) · CARDION SIMUS BARGRECEPTOR STIMULABRE 106 (Neck Baro-Cult) · CARDION SIMUS BARGRECEPTOR STIMULABRE 107 Physiological Hemodynamic Assess Device W 108 Ultrasonic Imaging System 109 Venous Pressure Transducer/Display	V FREEDON SOURCE CODE CODE E CODE E CODE E CODE E CODE E SOURCE SOURCE CODE E SOURCE S	A ERA UNIT HARDWARE VOLUME MAS (cu. m) (kg) (cu. m) (kg) (cu. m) (kg) (con't) (kg) 0.05 20 0.016 20 0.01 220 0.01 220 0.05 117 0.05 118 0.05 20 0.05 20 0000000000000000000000000000000000		December 1988 PARAMETERS S POWER (watts) 100 200 150 200 140 55 345.2 HBD-145 100 600 100 100 100 100 100 100
PLANT MONITORING GROUP (3E) 110 Plant Gas Chromatograph/Mass Spectrometer 111 Plant Gas Cylinder Assembly 112 Plant HPLC Ion Chromatograph	აია	0.20 0.09 0.12	25 19 40	100 0 200

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

Page 6 of 10

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA	FREEDO	A ERA	Dec	December 1988
		UNIT HARD	HARDWARE PAF	PARAMETERS
ITEM HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
ANALYTICAL INSTRUMENTS FACILITY (4)				
DIDIDEICAL SAMPLE ANALYSIS GROUP (4A)				
	S	0.13	4 5	250
	ш	0.10	30	200
0	S	0.08	23	100
113 Unemistry System 446 Continuous Elow Electrophoresis Device	S	0.06	TBD	180
110 CUININUUS FIOM LICCUOPINGUOUS CONTRACTOR	ш	0.02	9	100
11/ ELIJA NEAUGI 440 Coo Chromatoaraoh/Mass Snectrometer	3	0.20	25	100
118 Gas Cillollialographimass operations	ഗ	0.09	19	0
	8	0.12	40	100
, .	3	0.16	50	400
Incubator (33-63 ueg y cop)	ш	0.02	S	20
	3	0.02	7	2
123 pH Meter/Ion Specific Analyzer	S	0.03	.10	100
	ш	0.05	20	0
	S	0.24	06	500
	3	0.11	40	300
	ш	0.16	55	400
- -	ഗ	0.05	20	50
-	S	0.06	19	50
_	S	0.06	180	180
131 Cell Ferusion Apparatus 131 Cell Ferusion Apparatus	ш	0.16	40	300
deg C Copy 2 of	ш	0.16	40	300
source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01				Page 7 of 10

LIFE S	LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA	N FREEDON	I ERA	Dec	December 1988
			UNIT HARDWARE PARAMETERS	WARE PAI	AMETERS
H/W ITEM	H/W HITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER
#		CODE	(cu. m)	(Kg)	(walls)
	(1) (4) (4) (4) (5)				
ANAL	CIICAL INSTRUMENTS FACILITY (4) (2011)			-	
Ĺ	CLI ANALVEIS CDOILD (AB) (con't)				
		S.	0.01	~	
134	Centrituge Hematocrit		0.01	N N	
135	Chromosomal Slide Preparation Device	v (0.05	TBD	
136	Fluoromeasure Probe	у Ц	0.24	36	
137	Flow Cytometer	L C	0.07	5 6	
138	Hematology System	n c	0.00	20-1-4 20-1-4	
139		n B		100	400
140	Microscope System (Optical & Stereo	~)) -)
	Macroscope Subsets)	L	0.01	~	20
141	Mitogen Culture Device	U C	0.0	10	0
142	Skin Window Device	n ∟		10	20
143	Slide Preparation Device	Ц		ı	,

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

Page 8 of 10

December 1988

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA	I FREEDO	M ERA	Dece	December 1988
H/W		UNIT HARDWARE		PARAMETERS
ITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER
#	CODE	(cu. m)	(kg)	(watts)
LAB SUPPORT EQUIPMENT FACILITY (5)				
ENVIRONMENTAL MONITORING & CONTROL GROUP (5A)			•	
144 Accelerometer Subsystem	3	0.10	30	200
	ა	0.20	· 0 /	500 // 0
-	3	0.09	35	0
	S	0.12	TBD 32	0
	3	0.16	50	400
Microbial Preparation System	S	0.01	2	50 -1/0
Badiation	3	0.20	80	0
Bautar Microhioloov Air Samoler	ഗ	0-01 005	+1.45	0
- ົ	S	0.01	2	0
-	S	0.03	10	20
_ E	S	0-01.00/	7802	0
·	S	0.20	70	250
			•	
HARDWARE MAINTENANCE GROUP (5B)			C	
156 Battery Charger	3	0.03	0	00-
Camera	3	0.30	100	0
-	3	0.20	70	500
	3	0.06	20	50
General	3	0.10	30	0
LOGISTICS CONTROL GROUP (3C)	ഗ	0.20	70	500
101 IIIVEIIIUIY COUNCI OJSCON 160 Lab Materials Packaning & Handling Equipment	S	0.20	7.0	500
	ي	0.20	70	200
source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01				Page 9 of 10

~

.

)

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION	STATION FREEDOM ERA	A ERA	Dec	December 1988
H/W ITEM HARDWARE ITEM NAME #	SOURCE CODE	UNIT HARDWARE VOLUME MAS (cu. m) (kg)		PARAMETERS S POWER (watts)
CENTRALIZED LIFE SCIENCES COMPUTER FACILITY (6)				
LIFE SCIENCES DATA GROUP (6A) 164 - Digital Recording Oscilloscope 165 Experiment Control Computer System 166 Multichannel Data Recorder 167 Voice Recorder	х п ν Х Ω Ω Ω	0.03 0.05 0.09 0.01 .003	10 20 4 26	100 400 150 - اکما را
CLOSED ECOLOGICAL LIFE SUPPORT FACILITY (7)				
FEAST GROUP (7A) 168 CELSS Test Facility	လ	1.92	1000	1300
EXOBIOLOGY FACILITY (8)			•	
GAS/GRAIN GROUP (8A) 169 Gas Grain Simulator	S	1.92	800	1500
1 C 1 C C C C C C C C C M=WP-U1				Page 10 of 10

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

From Neal Jackin : 19

LIFE SCIENCES LIARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

Baselined: December 1988

			HNIT HARDWARE		PARAMETERS	UPDATED: 3-M	3-M-C	BY:DRP	w
N/H				1.73	POWER	VOLUME	_	POWER	s
ITEM	HARDWARE ITEM NAME			(40)	(walls)	(Cr. m)	(ka)	(walls)	۵
*									<
16	Animal Tissue Biopsy Equipment	S	60.0	xo ·	 > (: - -
17	Blood Collection System	S	0.02	-	0				· ·
	Electrotision Device	S	0.06	180	8				
4 C		S	0.02	4	0				<
2		5	0.01	-	0				<
28	Muscie Biopay Equipment			~	0				<
29	Pertusion & Fixation Unit	•		• •	, , ,				<
30	Plant Care Unit	S	60.0	2.					<
31	Plant HarvesvDissection Unit	S	0.01	4	50			6	(-
	Saliva Collection Unit	S	0.01	-	0	0.001	0.2	0	2
2	Samola Prenaration Device	Ø	0.17	22	150				< . - -
	cattrine reparation barres	S	0.01	180	0	0.005	5.05	15	<u>-</u> '
	SWEAL COMPCINIT DEVICE	S	0.01	ŋ	0				<
30		S	0.03	10	50				<
40	Hodent Brood Confections Systems	G.	0.01	~	50				<
4	DUCDISC INCIMA	, u	0 01	4	0				<
42	Rodent Guiltotine	, ,	0.0		0				<
43	Rodent Restraint	n (<
4	Rodent Surgery Platform ,	0 0		ۍ د	Ċ				<
45	Rodent Surgery/Dissection Unit	0	10.0	- -	, v , v				<
46		ŝ	0.03	2	ς -				<
47	Rodent Veterinary Unit	ŝ	0.03	2 0					<
4.8	Primate Blood Collection System	s.	60.0	N •					<
		ა	0.01	- (<
6 C	-	S	0.05	ימ					<
		S	0.04	ŝ	5				<
-		S	0.02	ŝ	0				<
52		S	0.01	10	14				
53		U,	0.03	10	•				
54		. 0	0.05	2	0				
55		, u	0 0	-	0				
56	i Bag Assembly	ри	0.15	19	0			-	+
57		n u	80 0	13	100				+
59		n (00.0		30				+
60		<i>n</i> (, -	100	0.087	40.7	200	-
61		n (0.02		0	0.051	20	0	_
62	_	0 0			0				_
63		0	60'0	· ·					-
64		n (20.0						-
65		ິ	0.01	- r					
		S	10.0	v (> .		16.06	4	
0 P		თ	0.04	16	5		2.2]

Updated: 3/22/09

A=ARC, J=JSC, '=Prime

Fage 1

Baselined: December 1966

LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

1

						UNIT HARDWARE		PARAMETERS	æ
M/H			UNIT HARDWARE		PARAMETERS	UPDATED:	J-Mar	BY:DRP	w
ITEM	HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	S
-		CODE	(cu, m)	(kg)	(walls)	(cu, m)	(64)	(*alls)	•
68	Anthropometric Measurement System	s	0.02	180	0		-		-
07		S	0.06	081 1	081	0.0152	16	130	-
11	Electroencephalomeonetooram (EEMG)	S	0.06	1 80	08T		2		-
74	Force Resistance System	S	0.40	70	100			220	-
75	Fundus Camera	S	0.03	081	081	0.003	2	Banery Op	-
11	Hard Tissue Imaging System	S	0.29	136	300				-
7.8	Mass Calibration Unit	Ø	0.01	7	0				-
82	Motion Analysis System	S	0.05	20	100				ن
9.9	Plethysmoarsch Messuring System	S	0.01	6	30				7
84	Soft Tissue Imacing System	S	0.96	300	800				-
85	Tonometer	S	0.01	OBT	0	0.000226	0.06	Battery Op	-
87	EEGCap	S	0.01	8	0				-
88	EEG Signal Conditioner	S	0.01	8	20				-
98	Visual Tracking System	S	. 0.01	8	20				-
66	Animal Biotelemetry System	ທ	0.05	20	100				<
100	Blood Pressure And Flow Instrumentation	S	0.06	20	200				~
101	Cardiodynamic Monitor	s	0.02	4	150				-
102	(5	S	0.01	2	20				-
103	Hollar Recorder	S	0.01	2	•				- -
106	Neck Baro-Cut	S	0.10	081	081 0	0.132	45.2	145	-
109		S	0.05	20	100				
110		S	0.20	25	100				
111		ທ	0.09	6	0 0				{ <
112		S	0.12	•	200				-
113		S	0.13	45	062				
115		S	0.08	53	001				
116		S	0.06		<u>R</u> •				
119		S	0.09	61	.				-
124		S	E0.0	0 0					-
126		S I	0.24	5					ſ.∢
129	Celi Handling Accessories	s o	0.US) ()					۲.۷
130	Cell Harvestor	n a	0.0		S EE				.rv
131	Cell Perfusion Apparatus	0	0.00	8					
134		S	0.01	2	07				-
135		S	0.01	2					-
136		S	0.05						- -
138		S	0.07	23	200				, - -
139		S	0.25	70	500	0.03			, - -
142		S	0.01	~	0				
•			A-ARC.	J-JSC, '-Prime	ime				

Pege 2

A=ARC, J=JSC, "-Prime

Updaled: 3/22/89

Baselined: December 1946

LIFE SCIENCES NARDWARE LIST FOR THE SPACE STATION FREEDOM ERA

1

						UNIT HARDWARE PARAMETERS	WARE PI	ARAMETERS	æ
M/H			UNIT HARDWARE PARAMETERS	WARE PAI	RAMETERS	UPDATED: 3-M.	3 - M = r	BY:DRP	ш
ITEM	ITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER	VOLUME	MASS	POWER	S
		CODE	(cu. m)	(kg)	(walls)	(cu. m)	(64)	(walls)	٩
145	145 Automated Microbic System	s	0.20	70	500	0.2	20	110	-
	Mead/Torso Phantom	s S	0.12	08T	0		32		ſ
	Microhial Prenaration Svatem	0	0.01	0	20	0.01	2	110	٦
	Microvial reputation of static Review Microbiology Als Sampler	, w	0.01	-	0	0.005	1.45		. r v
152	Solid Sorbant Alr Samolar	S	0.01	'n	0				-
153		S	0.03	10	20				-
154	Tissue Fourivalent Proportional	S	0.01	081	0	0.001	2	0	-
155	Total Hudrocarbon Analyzar	ß	. 0.20	70	250				?
1 1 1		. 0	0.20	70	500				, (
101		s S	0.20	70	500				Γ. ∢
16.1		S	0.20	70	200				,
		S	0.05	20	400				۲ . ך
		0	0.01	-	0	0.003	0.26	Battery Cp	-
101		v (1 92	1000	1300				<
168		5 6		UU B	1500				<
169	Gas Grain Simulator	n	74.1	2					

Updated: 3/22/89

A=ARC, J=JSC, '-Prime

Page 3

Appendix B - Complete SBI Trade Study Bibliography

Page No. 1 05/30/89	Appendix B - Cae	Complete SBI Trade Studies Hibliography	ogr aphy		
ID # AUTHOR		VOL. PUBLISHER NO.	KEPORT/DOCUMENT NUMBER	FUBL ISHER LOCATION	DATE
Still Kozarsky, D.	MUS Inputs	Lockheed Life Sciences Program Office	Lockheed Nemo	Washington, DC	01/19/89
SB102 Kozarsky, D.	Latest Space Station Rack Studies	NASA MSFC		Huntsville, AL.	02/02/89
SBI03 Halt, A.	PHWG-SS Freedom Assly. Seq. Irial Pyl. Manifest	Fayload Manifest Working Group (FMWG)		Reston, VA.	
SBI04 Shannon, J.	Business Fractice Low Cost System Activity	NASA JSC		Houston, TX.	
SB105 NASA	0ff-the-Shelf Hardware Procurement	NASA JSC	NASA MEMO HB/73-M286	Houstan, TX.	
SB106 NASA	015 Technology Use For Space Shuttle Frogram	NASA JSC	NASA MEMO	Houston, TX.	
SBI07 NASA	Proposed Space Shuttle Directive On OTS HW.	NASA JSC	NASA MEMO NB/74-L149	Houston, TX.	
SBI08 NASA	Cancellation Of Space Shuttle Directive On OTS	NASA JSC		Houston, TX.	
SB109 NASA	Agency Balloon Pyl. Util. of Avail. Equip. & Exper	NASA JSC	NASA PLAN 323-50-XX-71	Houston, TX.	. 05/25/76
SB110 NASA	Space Shuttle Program DTO/DSO Noncritical Requirements Document	Flight Support Equipment Office - JSC	NSTS 21096	Houston, TX.	. 08/01/88
SB111 NASA	Reference Mission Operational Analysis Document (RMOAD) For The Life Sciences Research Facilities.	NASA JSC	NASA TM 89604	Houston, TX.	. 02/01/87
SB112 Breiling, R.		RCA Price Systems		Moareston, NJ.	09/01/87
SB113 Fogleman, G.Schwart, D.Fonda, M.	Gas Grain Simulation Facility: Fundamental Fudies of Farticle Formation And Interactions	l NASA Ames Research Center	r NASA ARC/SSS 88-01	Moffet Field, CA.	AB / 10/ BD

-

~

es Bibliography	REPORT/DOCUMENT PUBLISHER DATE NUMBER LOCATION	JPL D-1489 Kev. Pasadena, 04/30/87 A CA.	ces Huntsville, 06/15/87 AL.	SSP 30285 Rev. Reston, 09/15/88 B	ional Anaheim, CA. 04/17/86	Houston, TX. / /	ience Moffet 01/01/86 Field, CA.	JSC 31013 Houston, TX. 11/30/87	o Contract NASW - Redondo 03/19/89 2717 Beach, CA.
- Complete SBI Trade Studies Bibliography	VOL. PUBLISHER NO.	JPL	PRC Systems Services	ty NASA SSPO	Rockwell International	NASA JSC	ch NASA Ames Life Science Division Space	R NASA JSC	ic TRW Systems Group hed
Appendix B .	111ге	Flight Projects Office Payload Classification Product Assurance Frovisions	Cost Estimate For The Bearch for Extraterrestrial Intelligence (SETI) Kevised	Space Station Commonality Process Requirements Kev.B	Technology Forecasting Using Price - H	Classification Of NASA Office Of Space Science And Applications (OSSA) Space Station Payloads	Life Science Research Objectives And Representative Experiments For The Sp Station (Green Book)	Medical Requirements Of An In-Flight Medical System For Space Station	A Study Of Low Cost Approaches To Scientific Experiment Implementa- tion For Shuttle Launched And Serviced Automated Spacecraft
Page No. 2 05/30/89	ID # AUTHOR	SBI14 JPL	SRII5 PRC Systems	SB116 NASA SSPO	SB117 Webb, D.	SBIIB NASA	SB119 NASA	SB120 NASA	SBI21 TRW

· ·

•

--

-

~

Page No. 3 05/30/89	Appendix B - Comp	Complete SB1 Trade Studies Bibliography	ogr aphy		
ID # AUTHOR	TITLE VOL.	PUBLISHER	REPORT / DOCUMENT NUMBER	PUBL I SHER LOCATION	DATE
SH122 LNSC	Low-Cost Program Practices For Future NASA Space Frograms	LMSC	LMSC-D387518	Sunnyvale, CA.	05/30/74
SB123 Steward, GM111er, L	Biomedical Equipment Technology Assesment For The Science Laboratory Module	Management and Technical Services Company		Houston, TX. 08/01/86	0 8∕01/86
SBI24 General Electric	WP-3 Commonality Plan	General Electric	NAS5-32000	Philadelphia 04/22/88 , FA	04/22/88
5B125 NASA	Microbiology Support Plan For Space Station	NASA JSC	JSC-32015	Houston, TX.	09/01/86
SB126 NASA	Concepts And Requirements For Space Station Life Sciences Ground Support And Operations	NASA JSC	LS-70034	Houston, TX.	04/11/88
SB127 NASA	Spacelab Mission 4 Integrated Payload Requirements Document	NASA JSC	SM-SE-03	Houston, TX.	-
SB128 General Dynamic e	Life Sciences Payload IV Definition And Integration Study	General Dynamics	CASD-NAS-74-046	San Diego, CA.	08/01/74
SB129 General Dynamics	Life Sciences Payload 1 Definition and Integration Study - Executive Summary	General Dynamics	CASD-NAS-74-046	San Di e go, CA.	08/01/74
SBI 30 NASA	8L-3 Ames Research Center Life Sciences Payload Familiarization Manual	Ames Research Center	ADP-81-50-001	Moffet Field, CA.	02/01/81
SBI31 Kockwell Intl.	EMS Data Data Package 2.34 S4200.2 Methodology Definition - Commonality Analysis Trade Study	Rockwell Internation	SSS 85-0168	Downey, Ca.	10/04/85

- Z >	Appendix B - Comple TITE VOL.	Complete SBI Trade Studies Hibliography VOL. PUBLISHER	DOCUMENT	PUBL 1SHER	DATE
ID AUTHOR				LOCATION	
SB132 Rockwell Intl.	EMS Data Data Package 2.28 54201.2, Module Commonality Analysis	Rockwell International	555 85-0137	Dawney, CA	09/06/85
68133 General Electric	Space Station Work Package 3 Definition And Preliminary Design Commonality Candidates	General Electric Space Systems Division	DKD - 19		05/10/85
SBI34 Rockwell Intl.	EMS Data Data Package 2.3A 54203.2, Module Outfitting/System Commonality Analysis	Rockwell International	555 85-0158	Dawney, CA	
SB135 NASA JSC	Space Station Freedom Human-Oriented Life Sciences Research Baseline Reference Experiment Scenario	JSC- Medical Sciences Space Station Office	Blue Book	Houston, TX.	
SBI36 NASA SSPD	Bpace Station Approved Electrical Electronic, And Electromechanical Parts List	Space Station Program Office	SSP 30423 Rev. A	Reston, Virgina	11/15/88
SB137 NASA SSPD	Space Station Program Design Criteria and Practices	Space Station Program Office	SSP 30213 Rev. B	Keston, Virgina	07/30/88
SBI38 MDAC	Manufacturing Management Plan	McDannel Dauglas	DR MU-01	Houston, TX	•
SBI39 NASA JSC	July 1988 Pogress Report On Experiment Standard User Interfaces Study	JSC - Life Sciences Project Division		Houston, TX.	-
SB140 Rockwell Intl.	EMS Data Data Package 2.3A 54207.2, 65E Commonality Analysis	Rockwell International	855 B5-0099	Downey, CA	10/04/85
SRI41 NASA OSSA	Life Sciences Space Station Planning Document: A Keference Payload For The Life Sciences Kesearch Facility	Office of Space Science and Applications	NASA TM 89188	washington, D.C.	01/01/86

		PUBLISHER DATE LOCATION	Milan, Italy 10/01/78	Segunda, 01/01/75	Angeles, 08/22/74	New York, NY 10/07/85	New York, NY '06/05/84	Houston, TX 10/01/85	Hauston, TX. 01/28/89	New York, NY 01/10/86	Houston, 11/01/88 Texas	Houston, TX. 05/31/88	Washington, 03/01/88 DC
			Milé	EI CA	Los CA	Nev	New	Hou	Нач	New	Houst Texas	Ηοη	Was DC
~	i ogr aphy	REPORT/DOCUMENT NUMBER			-			JSC 20799			MDC H3924	RP 1213800000	NSTS 21000
~	Complete SBI Trade Studies Bibliography			Aerospace Corporation	20th Annual Meeting	r r B B			l Douglas Space Co.	Press			
~	ete SBI Tr	PUBL I SHER	ESA	Aerospace	AIAA 20th	Fergamon Fress	AIAA	NASA JSC	Mcdonnell D Station Co.	Anchor P	MDAC	NASA JSC	NASA HQ
	Comp 1	VOL. ND.		Ξ.							4		
	Appendix B		st equipment 1s	ion and ect Analysis - t	edical :velopment	Commonality Analysis For The NASA Space Station Common Module - 36 IAF Meeting, October 7-12 1985	re Autonomy - Station Systems	Life Sciences Research Laboratory (LSRL) Human Research Facility forSpace Station Initial Operating Configuration (IOC) Science Reqts.	n Care System elopment Plan	Creation	h Care	eference ion Report	Shuttle/Fayload 1/F Definition Document for Middeck Accomodations
		111LE	The OBDH test and its goals	Standarization Program Effect Final Report	Skylab Biomedical Hardware Development	Commonality An The NASA Space Common Module Meeting, Octob 1985	Progressiv For Space Operation	Life Sciences Res Laboratory (LSRL) Research Facility forSpace Station Operating Configu (10C) Science Req	Crew Health Care S) (CHec) Development	Engines of Creation	Crew Health Care	Columbus Reference Configuration Report	Shuttle/Payload 1/F Definition Document Middeck Accomodation
~	No. 5 /89	AUTHOR	Burani, A.Pascucci, B	SB143 Shiokari, A.	Huffstetler, W.	. Fowell, A.	58146 Anderson, A.	SB147 NASA JBC	SBI48 MDAC	SBI49 Minsky, M.	U MDAC	I NASA JEC	SB152 NASA HQ
~	Page No. 05/30/89	* 01	5 B 142	5 814 3	58144	SB145	5B146	58147	SB148	58149	58150	S9151	58152

.

Page No. 6 05/30/89	Appendix B - C	omplete SB] Trac	Complete SB1 Trade Studies Bibliography			
ID # AUTHOR	T11LE	VOL. PUBLISHER NO.	REPORT/ NUMBER	REPORT/DOCUMENT F NUMBER	PURL I SHER LOCAT I ON	DATE
68153	Rack Accomodations Users Manual		·			•
SBI54 NASA JSC	Mission Integration Plan	NASA JSC	SSP 30000 Appendix	<u>م</u>	Houston, TX.	TX. 04/30/86
SBIS5 Pacheo	Analyzing Commonality in a System	Boeing	NASA STI Facility		Baltimore, ' MD.	03/01/88
SBI56 NASA MSFC	Spacelab Configurations					• •
SBI57 Rockwell Intl.	Space Shuttle Management Proposal	II Rockwell I	Intl. SD 72-6	72-SH-50-2		05/12/72
BISB LMSC	Space Shuttle Management Proposal	11 LMSC	LMSC-D157364	157364		05/12/72
SB159 MDAC	Space Shuttle Program Management Froposal	MDAC	E0400			05/12/72
SB160 MSFC	MSFC Space Station CER's Report	MSFC	PRC D-	D-2185-H		12/01/82
SBI&1 NASA JSC	CERV larget Costs for Benchmark and Reference Configurations	JSC CERV Office	if fice		Haustan, TX.	06/15/88
SB162 CB0	Cost Estimating For Air Missles	Congressic Office	Congressional Budget Office		Washington, D.C.	01/01/83
SRI63 Evans, Jim	Meeting with Jim Evans Technical Assistant, NASA Bpace and Life Sciences	Eagle Engr	÷		Houston, TX.	04/19/89
SB164 Whitlock, R.	JSC Cost Analymis Office	Eagle Engr.	·		Houston, TX.	04/11/89
SB165 PRICE	PRICE Users Newsletter					10/01/88
SB166 General Electric	PRICE H Reference Manual					01/01/88
SB167 NASA JSC	Satellite Services Workshop	14,2 NASA JSC	JSC 20	20677	Houston, TX.	11/06/85

.

...

--

~

-

	DATE	04/27/89	04/04/89	04/19/89	03/10/89	03/14/89	03/15/89	03/14/89		. 03/29/89	03/27/89	TX, 04/10/89
	PUBL ISHER LOCATION	Huntsville, Al.	Houston, TX.	Hauston, TX.	Haustan, TX.	Houston, TX.	Houston, TX.	Houston, TX	Hauston, TX.	Houston, TX.	Haustan, TX	Hauston, TX
- Yugraphy	REPORT/DOCUMENT NUMBER											
, ade Studies Bibliography		Cost Analysis Branch Chief MSFC	Man-Systems Division JSC	Science Project ion JSC	ional Business (IEM)	Assistant Director (Plans) JSC		Man-System Division, JSC	l Douglas	1 Douglas	Eagle Technical Services	it Kesearch ie
complete SBI Trade	VOL. FUBLISHER NO.	Cost Anal Chief MGF	ManSyste	Life Science Division JSC	International Machines (IEM)	Assistant Di (Plans) JSC		Man-Byst	McDonnell	Mc Donnel 1	Eagle Te	Southwest Institute
Appendix B -		phone interview iting to MSFC history techniques for cost mating.	Interview	lnterview	: interview to make-or-buy earned from	Telephone interview relating to make-or-buy history	 interview to hardware and and ouy 	Interview	relating to or-buy	interview CHeC experience curization, cy and ouy	Personal Interview relating to LSLE make-or-buy experience	Interview to 11fe science background at
~	TITLE	Telephone intervi relating to MSFC and techniques fo estimating.	Personal lu	Personal In	Telephone interview relating to make-or- lessons learned fro Apollo	Telephone interv relating to make history	Telephone interview relating to hardward development student experiments, and make-or-buy	Telephone Interview	Interview relati CHeC make-or-buy	Personal intervi relating CHeC ex to miniaturizati modularity and make-or-buy	Personal Intervi relating to LSLE make-or-buy expe	Fersonal 1 relating t hardware b JSC
. , , , , , , , , , , , , , , , , , , ,	AUTHOR	SB168 Hamaker, Joe	Booker, Clef	Evans, Jim	Heberlig, Jac k	SBI72 Loftus, Joe	SBI73 Christy, Neil	McAllister,F red	Trowbrid ge, John	Trowbridge, John	Nagel, John	SB178 McFadyen, Gary
Page No.	8 G I	1 8919S	SB169 1	58170	58171 J	SB172	SB173	58174	SB175	58176	SB177	5R178

Page No. 8 05/30/89	Appendix B - Compl	1 1	ography		
to a Author	TITLE VOL. NO.	PURL I SHER	REPORT/DOCUMENT NUMBER	PUBL I SHER LOCAT I ON	DATE
58179 Booker, Clef	Personal Interview - Minaturization on amplifiers, computers and modularity	NASA JSC/SP 341 Man-System Division		Houston, TX.	04/04/87
58180 McFadyen	Bioengineering on SBI hardware	Southwest Research Institute		San Antonio, 04/06/89 TX.	04/06/89
SBIBI Allen, Joe	Personal interview - 5.3. Life Science AIAA Meeting	Space Industries		Houston, TX.	04/07/89
SB182 Averner, Maurice	Personal intervi e w on CELSS	NASA HQ. CELSS Coordinator		Washington, DC.	04707789
5R183 Fogleman, G. PhD	Personal interview relating to Gas Grain Simulation Facility	NASA AMES		Moffet Field, CA.	04/06/89
SB184 White. Bob	Personal Interview relating to modularity and commonality	NASA JPL		Pasaden a , CA.	04/10/89
50185 Grumm, Richærd	Personal interview relating to SBI hardware	NASA JPL		Pasadena, CA.	04/11/89
SB186 Boeing	U.S. Lab Review Workshop				
60187 McGillroy, B.	. Personal Interview on CELSS	NASA AMES		Moffet Field, CA	05/05/89
SRIBB NASA JSC	Life Science Flight Experiments Program Life Sciences Laboratory Equipment (LSLE) Deacriptions	NASA JSC	JSC-16254-I	Houston, TX.	09/01/86
SBIB9 Roeing	Space Station Program Commonality Plan Draft 3	Boeing	D683-10112-1		10/31/88
SB190 GE Gavt.Service 5	Life Bciences Mardware e List for the Space Station Freedom Era - Baselined December 1988 Updated 3/22/89	GE Government Services		Houston, TX.	03/22/89

P Appendix B - Complete S01 Trade Studies B1b11007-BDV HB TILE VQL. PUBLISHER REPORT/DOCUMENT F01.007-BDV HB TILE VQL. PUBLISHER REPORT/DOCUMENT F01.007-BDV MSDA TILE VQL. PUBLISHER REPORT/DOCUMENT F01.007 MSDA Standard Reck. MSDA Report 100 Standard Reck. MSDA MSDA Reconstruction Handbook Standard Reck. MSDA MSDA Reconstruction Handbook Huntsvillis. Standard Reck. MSDA Standard Reck. MSDA Huntsvillis.	~		E	•	/16/85	68/10/20.	1/01/84	4	•	0/17/73	2/01/88		
9 Appendix B - Complete SBI Trade Studies SIDILOgraphy Appendix B - Complete SBI Trade Studies SIDILOgraphy IIIL 11LE VOL. PUBLISHER REPORT/MOCUMENT P NASIA MSSN Standard Rack Envelope Study Status MSSN MSSN Status NASIA Specials Foulded Reconstations Handbook NASIA NASIA Status Status NASIA MSSN Status Status NASIA Francis Status NASIA MASIA Status NASIA Francis Status NASIA NASIA Status NASIA Francis Status NASIA NASIA Status Status Status Status NASIA Status Status Status NASIA Status Status Status NASIA Status Status Status NASIA Status Status Status NASIA NASIA Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status Status NASIA Status Status Status Status Status Status Status NASIA			DATE		80 	0.2	0			¥ .	i ≩		
P Appendix B - Complete SBI Trade Studies Bibli HOR TILE VOL. PUBLISHER HOR TILE VOL. PUBLISHER MSDA Standard Rack MASDA Recease Study Status MASDA Envelope Study Status MASDA Envelope Study Status MASDA Reconditions Handbook MASDA Station Interval MASDA Station Interval MASDA Station Interval MASDA Station Interval MASDA Stational Attached MASDA Station Attached Station Attached Attached Station Dom Creanation of the Conditions for Payloads MASA JSC Ensume JAN France Station Station Dom Creanation of the Conditions for Payloads MASA JSC France JAN France Station Tite Sciences Study for Station Payloads JANA Station Station Stations station <t< td=""><td></td><td></td><td>PUBL I SHER LOCATION</td><td></td><td>Huntsville Al.</td><td>-</td><td></td><td></td><td></td><td>Houston, T)</td><td>New York, h</td><td></td><td></td></t<>			PUBL I SHER LOCATION		Huntsville Al.	-				Houston, T)	New York, h		
P Appendix B - Complete SBI Trade Studies Bibli HOR TILE VOL. PUBLISHER HOR TILE VOL. PUBLISHER MSDA Standard Rack MASDA Recease Study Status MASDA Envelope Study Status MASDA Envelope Study Status MASDA Reconditions Handbook MASDA Station Interval MASDA Station Interval MASDA Station Interval MASDA Station Interval MASDA Stational Attached MASDA Station Attached Station Attached Attached Station Dom Creanation of the Conditions for Payloads MASA JSC Ensume JAN France Station Station Dom Creanation of the Conditions for Payloads MASA JSC France JAN France Station Tite Sciences Study for Station Payloads JANA Station Station Stations station <t< th=""><th>~</th><th>ography</th><th>REPORT/DOCUMENT NUMBER</th><th></th><th>BLP/2104</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	~	ography	REPORT/DOCUMENT NUMBER		BLP/2104								
 Appendix B - Appendix B - HIJIR TITLE MASDA Standard Rack Envelope Study Status Bpacelab Payloads Attached Station Interface Accomodations for Payloads Life Sciences Study for the Space Station Accumic for Payloads Life Sciences Study for The Non-Pareto Principle attan, D. Beware Off-the-Shelf Andarize Baroceptor Reflexes 	-	Studies Bíblic			-		d Technical				lefs		
 Appendix B - Appendix B - Appendix B - Appendix B - TITLE MASDA Standard Rack Envelope Study Status Bpacelab Payloads Station Interface Accomodations for Payloads Canal Interview with bon of status Can, J.M. The Non-Pareto Principle abian, D. Beware Off-the-Shelf Appendix Galance Appendix B Study Station 	w.	te SBI Trade (PUBL I SHER	NASDA	NASA MSFC	NASA	Management ar Services Co.			NASA JSC	NASA Tech Br		
 Appendix B - Appendix B - Appendix B - Appendix B - TITLE MASDA Standard Rack Envelope Study Status Bpacelab Payloads Station Interface Accomodations for Payloads Canal Interview with bon of status Can, J.M. The Non-Pareto Principle abian, D. Beware Off-the-Shelf Appendix Galance Appendix B Study Station 		ap 1 e	- - -								12		
chick of the second sec	2	L L		ASDA Standard Rack invelope Study Status	ipacelab Payloads Accomodations Handbook	station Interface Accomodations for Pressurized and Attached Payloads	_ife Sciences Study for the Space Station	Personal Interview with John Crenshaw - Discussion of standarized avoins (mounted on racks) in airlines.					
	-	Page No. 9 05/30/89		69191 E	58192 6 A	SP193 8	58194 L		SB196 Juran, J.M. 1	SBI97 Arabian, D. 	SB198 SB198NASA (

.

· .

Appendix C - Cost Assessment Techniques Summary

1.0 Introduction

1.1 Relative Cost Impact Analysis Task

JSC and GE Government Services are developing the SBI hardware cost estimate to be presented to NASA Headquarters. The cost related task in these trade studies is to develop and present factors which assist the cost estimators in using tools to develop the effect of the trade study specialty area (miniaturization, modularity and commonality, and Modified COTS) on SBI cost estimates. The life cycle costs are most important in judging the long term benefits of a new project. However, consideration of life cycle costs requires knowledge of the probable project life, operational use time lines, maintenance concepts, and logistics relationships. These data are not available at the time of these initial trade studies. Therefore, the trade studies address primarily the relative cost impact analysis of the design and development phase of the SBI. Life cycle costs are dealt with on a comparative, subjective basis in order to illustrate the influence of life cycle cost factors on the various trade study subjects.

1.2 Documentation Approach

The application of cost methods as applied to SBI trade studies involves some methods common to all of the studies and others that apply uniquely to a specific trade subject. Therefore, the selected approach to the problem is to deal with cost methods and cost trends in this appendix that is to be a part of each study report. In the cost appendix, subsequent sections of Section 1.0 deal with various methods examined for the trade studies, Section 2.0 defines the cost estimating relationship (CER's) and their factors and sensitivities, and Section 3.0 deals with specific variations and parameters of interest with respect to each trade study. Sections 4, 5 and 6 provide brief discussions of testing, SE&I and project management costs, Section 7.0 life cycle effects, and Section 8.0 summarizes the conclusions.

1.3 Cost Method Overview

Cost methods considered and evaluated in the course of this effort include the basic types listed below:

- a. Detailed cost build-up method. The detailed cost estimate is compiled using estimates from specialists in the various design disciplines and is constructed from a spread of hours required in design, labor rates, overhead and other factors affecting the cost of DDT&E.
- b. General Electric PRICE. The PRICE H model is a sophisticated cost modeling program requiring a variety of inputs including weight, manufacturing complexities, and design complexity plus secondary factors.
- c. Cost estimating relationship (CER's). The simplest cost estimating tools are empirical relationships based primarily on system weight and derived to match past experience on previous programs.
- d. Cost impact analysis methods. Parametric studies to establish and/or to quantify cost drivers and cost trend effects.

The choice between the foregoing alternatives was narrowed to options c and d which are used in combination as described in the balance of this report. Initial SBI cost estimates will be developed in a separate effort using PRICE H. Therefore, the task in the trade studies is to provide data and/or factors which will be helpful in assisting cost estimators in the use of the tools from which the actual estimates will be formulated. A secondary purpose is to develop parametric trend data that will help the reader understand the potential impact of the various trade study subjects on cost, i.e. miniaturization, commonality, and the use of commercial products (COTS) in lieu of new design.

Empirical cost relationships use system weight as the primary factor in deriving development and theoretical first unit (TFU) costs. A series of such relationships can be used to reflect the inherent complexity of different types of space-borne systems, i.e., one relationship for structural or mechanical systems, a second for packaged electronics, and a third for complex distributed hybrid systems. This approach has its roots in past program experience in that the end results are usually compared with past program actual costs and the relationships adjusted to match what has happened on similar system development during their life cycle. References SBI No. 60 and SBI No. 61 were used as a data source for CER's. Also, a discussion was held with the cost analysis specialist at JSC and MSFC (ref. SBI No. 64 and No. 68) as part of the effort to determine whether or not other cost work has been accomplished on the SBI trade study subjects.

As will be seen in the ensuing sections and in the trade studies proper, the results and trends also employ second order effects such as the amount of new design required, the impact of sophisticated technology and alternate materials.

Regardless of how one approaches the subject of cost development or cost trends there are three fundamental principles are involved in evaluating costs, cost drivers and cost trends (ref. SBI No. 65). These are as follows:

- 1. Estimates require reasoned judgments made by people and cannot be automated.
- 2. Estimates require a reasonably detailed definition of the project hardware that must be acquired or developed before estimates can be made.
- 3. All estimates are based upon comparisons. When we estimate, we evaluate how something is like or how it is unlike things we have seen before.

The SBI Program estimates are particularly challenging because the definition of the hardware items and the data that will permit comparisons is not detailed and complete. We are dealing with some items in their earliest conceptual phase of definition.

A couple of study principles should also be mentioned because they may help us understand the validity of the results we obtain. These are:

1. The sensitivity that study results show to variations in assumption provides an indication as to the fundamental nature of the assumption. If results are highly sensitive to variations in assumption then the assumption should be used with caution. Extrapolations are particularly hazardous in such instances. On the other

hand if results are not highly sensitive, then scaling over a wide range may be feasible, although extrapolations of cost values can yield misleading results in any event and should always be applied carefully.

Parametric approaches may be necessary in order to understand trends due to the 2. absence of specific data for use in the study. Parametric in the sense used here means the arbitrary variation of a given parameter over a range of expected values, while holding other values constant.

The costing relationships used in SBI trade studies are applicable to space systems and are founded on past programs as described in references SBI No. 60 and No. 61. The only questions, therefore, are whether or not they can be used on SBI hardware (which does use subsystems similar in nature to other manned space systems) and how accurately they can be scaled to fit the range of SBI sizes. Insofar as practical, these questions have been circumvented by means of reporting cost trends in lieu of cost values.

2.0 General Development Cost Methods

2.1 Empirical Methods

As stated in Section 1.3 CER's are empirical cost estimating relationships that express expected costs on the basis of past program experience. Empirical cost estimating requires some sort of systems definition plus good judgement in the selection of the constants, and exponents. The nature of a system element or assembly, and the size/weight of the item are primary cost drivers. The most predominant variable is the exponent of the weight term in the following generalized equation:

Cost = df * $(C_1 (Wt)^n) + C_2 (Wt)^n$

n =

factor)

Where

an exponent selected on the basis of system complexity

wt = weight of the system, module or assembly

- a factor reflecting the amount of new design required (design df =
- constant selected to establish the cost trend origin C, =
- a constant to reflect special requirements such as tooling can be C, = zero

Adjustments to the weight exponent and the constants yields values which show dramatic cost increases as a function of weight but decreasing cost per pound as the weight is increased. Cost relationships always show these trends when applied to launch vehicles, spacecraft, or payloads. Therefore, it is assumed that they apply to biology equipment (for space) as well. Economies of scale are present in all such systems. The larger the system, assembly, or component, the lower its cost per pound. There is, however, a limitation to the applicability of CER's to SBI hardware due to size limitations. All CER's have a range of applicability and produce consistent results in terms of cost per pound over that range. The limitation comes into play when extrapolating outside the range of applicability, particularly where the size is small. Unfortunately, this limitation may be a factor in SBI hardware elements and assemblies due to their size being relatively small compared to manned spacecraft systems. Therefore, when a CER yields costs in a very high range, on the order of \$100,000/lb. or \$220,000/Kg, or higher, caution and judgement are necessary to avoid the use of misleading results.

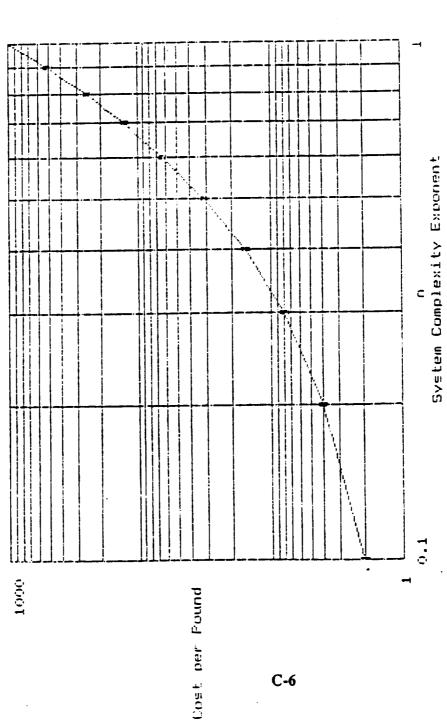
2.2 System Complexity Exponents (n)

Past experience in estimating costs with empirical methods suggests that the exponent, n, increases with increasing system complexity and as a function of the degree to which a system is distributed. For example, relatively simple, structure or packaged power modules may be represented by n = 0.2. The cost of more complex mechanical systems and structures which are comprised of a variety of components and assemblies can be represented by an exponent, n = 0.4 and the most complex distributed electronics call for an exponent on the order of 0.5 to 0.6. Inasmuch as the SBI systems involve all the foregoing elements plus sophisticated sensors, it may be necessary to use exponents that are as high as 0.8 or 1.0 to represent cost trends of parts of the SBI systems. Reference No. 60 uses an exponent, n, equal to .5 for development when historical data are not available. This value has been used in SBI Reference No. 60 for displays and controls, instrumentation and communications, all of which are comprised of distributed electronics and is consistent with the range recommended here (.5 to .6).

The dramatic effect of the system complexity exponent is illustrated by Figure 2-1. Figure 2-1 is a plot of cost per pound vs. complexity exponent, n, for a range of values of n between 0.1 and 1.0. As can be seen from the figure, 1000 units of weight costs 0.2% per unit weight as much at n = 0.1 compared to the cost at n = 1.0. The point is that care must be exercised in making a proper selection of exponent in order to achieve reasonable accuracy in estimating actual costs.

The historical use of lower exponents for simple, packaged systems, and the use of higher values for complex distributed systems matches common sense expectations. To express it another way, one can safely assume that the cost of a system will be influenced dramatically by the number of different groups involved in the design, by the number of interfaces in the system, and by the complexity of the design integration effort required. Distributed power and data systems invariably cost more (per pound) to develop than do packaged elements. However, the degree to which this applies to SBI is not clear due to the fact that biological systems tend to be more packaged and less distributed than do other space systems.


2.3 Design Factors (df)


Figure 2-2 defines the design factors that represent the degree of new design required in a development. On the low side is the factor representing the use of existing designs that require very little modification, integration or testing. For all new current state-of-the-art designs which involve no new technology, the design factor is 0.9 to 1.0. The factor for new design requiring advancement in technology is expressed as greater than unity and can be as high as 2 or 3 for efforts that dictate a multiple design path approach to achieve the desired goals. Price H refers to this type of factor as the engineering complexity factor and uses design values similar to those

in Figure 2-2. However, Price H varies the experience of the design team as well as the complexity and the difficulty of the design.

2.4 Method Summary

The SBI trade studies will all require a definition of system element size, complexity and degree of new design. These factors may have to be varied over a range of probable values to evaluate trends, but they will all come into play in costing comparisons.

C-6

Figure 2-2 Design Factors	Description of the Design Task	Off-The-Shelf. Minor design modifications and little or no qualification testing required	Design Exists. Some new design drawings required Minimum integration costs involved	Design exists but requires significant modification. On the order of 40% to 50% to existing drawings.	Similar designs exist but mostly new drawings required No new technology involved in electronics, structure etc.	New design with all new drawings. Little or no new technology required	All new design, new technology required. May require multiple attack on new technology problems
	Design Factor	.1 to .2	.3 to .4	.5 to .6	.7 to .8	.9 to 1.0	1.0 to 3.0
			C-7				

.

3.0 Cost Methods Applicable to Specific Trade Studies

Three of the four studies are discussed separately in this section although there are common elements associated with them that were not covered in Section 2.0. The intent is to examine the prime cost drivers that come into play with the subjects of miniaturization, modularity and commonality, use of COTS, and compatibility between spacecraft. Rack compatibility is covered in Section 7.4 under life cycle costs.

3.1 Hardware Miniaturization Cost Drivers

Fundamentally the variables of system (or component) weight, system complexity, and difficulty of design all influence miniaturization cost trends. For the purposes of this section weight and design difficulty will be varied, while system complexity will be treated as a series of constants, each being evaluated separately. Materials changes will not be dealt with even though it is valid to assume that the use of titanium, graphite, steel or composites will adversely affect cost. In fact, the dense materials (titanium and steel) will adversely affect cost due to weight and cost due to manufacturing complexity as well.

Given the foregoing exclusions, the miniaturization cost trends have been dealt with by parametric variation of the system size, and the degree of new design needed to achieve a given degree of miniaturization. The selected values of miniaturization vary between 10% and 90% in increments of 10%. In other words, if an unminiaturized system size is treated as 100%, Tables 3-1 through 3-4 show the effect on cost of weight reduction between zero and 90% on the first line. In order to include the effect of system complexity, Tables 3-1 through 3-4 are provided for values of n = 0.2, 0.4, 0.6, and 0.8.

The columns in the tables vary the design difficulty between a minimum change (.1 to .2 on Figure 2-2) and an all new design (0.9 to 1.0 on Figure 2-2). However, Tables 3-2 through 3-4 show the minimum design change as unity for reasons of simplifying the numbers. Thus the minimum design change number becomes 1.0 in lieu of 0.15 and the all new design becomes 6.0 which represents a relative value, compared to the minimum change value, i.e. 0.90 /0.15 = 6.0.

The use of Tables 3-1 through 3-4 is simple. Numbers less than 1.0 indicate a cost reduction and the degree of same, while numbers above 1.0 represent cost increases and the relative size of the increase. For example, using a 50% size reduction, and miniaturization requiring an all new design (df = 6) for n = 0.4, table 3-2 shows that the cost will be on the order of 4 1/2 times the cost for an unmodified item that is not miniaturized. In like manner, one can deduce that the cost of an all new design that achieves a 90% reduction in size (was 20 lbs., is 2.0 lbs.) will cost approximately 2 1/2 (2.4 from Table 3-2) the amount of an unmodified design.

Figure 3-1 is included to illustrate the cost trends for various systems complexity factors between n = .2 and n = .8. The curves all use a design factor df = 1.0 and all have been normalized so that the unminiaturized weight is unity. The purpose of Figure 3-1 is to show the effect of complexity factors on cost as weight is reduced. No design modification effects are included in Figure 3-1 so the curves indicate complexity trends only. To generate an estimate of the relative cost of miniaturization including redesign effects, one must multiply the cost factor (Figure 3-1) by a design factor as is done in Tables 3-1 through 3-4.

Table 3-1 Miniaturization Guide Chart n=.2

% Minhai.	0	10	20	30	40	50	60	70	80	06
Design integration						1	G	C r	, ç	S
Only	1.00	.98	96.	£6.	06.	78.	٤۵.	۶ <i>۲</i> .	c/.	<u>6</u> .
Significant Modification Req'd (30%)	2.00	1.96	1.92	1.86	1.80	1.74	1.66	1.58	1.46	1.26
Major Modification Req'd (50%)	3.00	2.94	2.88	2.79	2.70	2.61	2.49	2.37	2.19	1.89
All New Design	6.00	5.88	5.76	5.58	5.40	5.22	4.98	4.74	4.38	3.78

Table 3-2 Miniaturization Guide Chart n=.4

% Minhail.	0	10	20	30	40	50	60	70	80	06
Design integration Only	1.00	96.	.92	.87	.82	.76	69.	.62	.53	.40
Significant Modification Req d (30%)	2.00	1.92	1.84	1.74	1.64	1.52	1.38	1.24	1.06	.80
Major Modification Req'd (50%)	3.00	2.88	2.76	2.61	2.46	2.28	2.07	1.86	1.59	1.20
All New Design	6.00	5.76	5.52	5.22	4.92	4.56	4.14	3.72	3.18	2.40

C-9

			Minlat	Table 3-3 urization Gi n=.6	Table 3-3 Miniaturization Guide Chart n≕.6	Chart				
% Minlat. di	0	10	20	30	40	50	60	70	80	06
Deskyn Integration Only	1.00	.94	.86	.81	.74	.66	.58	.49	.38	.25
Significant Modification Req'd (30%)	2.00	1.88	1.72	1.62	1.48	1.32	1.16	98.	.76	.50
Major Modification Req'd (50%)	3.00	2.82	2.58	2.43	2.22	1.98	1.74	1.47	1.14	.75
All New Design	6.00	5.64	5.16	4.86	4.44	3.96	3.48	2.94	2.28	1.50
			Miniat	Table 3-4 turization G n=.8	Table 3-4 Miniaturization Guide Chart n=.8	Chart				
% Miniat. di	0	10	20	30	40	50	09	70	80	06
Design Integration Only	1.00	.92	.84	.75	.67	.57	.48	.38	.28	.16
Significant Modification Req'd (30%)	2.00	1.84	1.68	1.50	1.34	1.14	96.	.76	.56	.32
Major Modification Req'd (50%)	3.00	2.76	2.52	2.25	2.01	1.71	1.44	1.14	.84	.48

C-10

.84 1.14 1.44 1.1 2.01 2.25 2.52 2.76 3.00 Req'd (50%)

96.

1.68

2.28

2.88

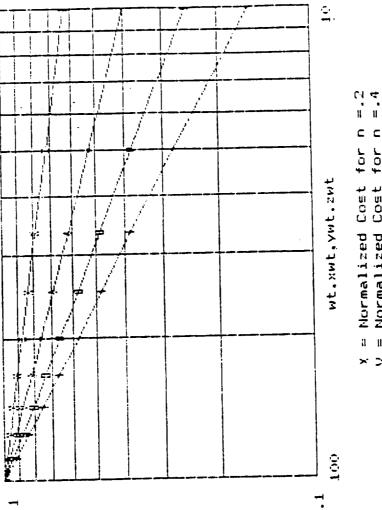
3.42

4.02

4.50

5.04

5.52


6.00

All New Design

Figure 3 a Function of Weight មា ជ Variation of Cost

C C for for for for Co≤t Normalized Cost Cost Co⊆t = Normalized
= Normalized Normalized Normalized a R > 0 + ×

C-11

The examples are not meant to suggest that certain combinations of miniaturization and design difficulty are more rational than others, but were selected simply to demonstrate table usage. It is conceivable that a modest degree of miniaturization is achievable with modest design (df = 2).

Caution is advised! for several reasons:

- 1. Some items <u>cannot</u> be reduced in size.
- 2. Some items should not be reduced in size.
- 3. Significant size reductions may require technology breakthroughs in materials, electronics, displays, etc. that could complicate the SBI development task.
- 4. Substitute materials will often negate weight reductions and raise costs even higher than estimated by the tables.

Notwithstanding all the adverse possibilities, one could conceivably reduce size and cost by miniaturizing an item or an assembly.

3.2 Modularity and Commonality

Common system modules, assemblies or components can have a profound impact upon development cost because of the potential savings associated with the use of a common module in more than one SBI hardware item. The following examples serve to illustrate this fact.

Table 3-5 shows the impact of using learning to reduce costs. For example, consider the case where sixteen units are to be constructed for a given SBI application of a system rack or drawer, but the item in question can be used in four applications rather than in only a single place. If the system is to be produced in small quantities, exotic tools and automation are not cost effective and the item is normally assembled using piece parts. Such systems usually have learning factors of 80%, i.e., each time the number of units is doubled (SBI Ref. No. 68), the cost of the nth unit is 80% of the previous cycle's end product cost. To be specific, the 2nd unit costs .8 times the first unit, the 4th unit .8 times the second, etc. See Table 3-5. In the case of a built-up drawer or rack which is used in four places, 16 units for prototypes, test, flight hardware, etc., becomes 64. As can be seen from Table 3-5, the cost of the 64th unit is 26.2% of the 1st unit and 64% of the 16th unit. The average cost for 64 items is reduced to 37.4% of the first unit cost compared to 55.8% of the first unit cost for 16 items. The lower the learning, the less dramatic the unit cost reduction, but for any item that is fabricated by other than completely automated processes, there is a cost reduction to be realized by common use in more than one application.

If one considers the programmatic input of multiple applications, there also exists the opportunity to avoid duplicate design and development efforts. For the sake of simplicity, we will confine this discussion to D&D plus fabrication and assume that four separate developments each require a test program. This being the case, we can treat a single, dual, triple and quadruple application in terms of the D&D effort and include the effect of reduced costs due to learning as well.

D&D = Design and Development Cost TFU = Theoretical First Unit Cost L.F. = .80 Number of articles required per application = 16

Then:

Let CP ₁ = Let 35% D&D=	Cost of a single program, TFU Cost
$C.P_1 =$	1.0 D&D _{cest} + [.35 D&D * L.F.] 16
=	1.0 D&D + [.35 D&D * .558] 16
$C.P_i =$	1.0 D&D + 3.1248 D&D = 4.1248 D&D
	CD /4 1049 D&D

Normalized cost = C.P./4.1248 D&D

In a similar manner, the cost of 2, 3 and 4 applications can be calculated which yields the data in Table 3-6.

TABLE 3-5Learning Factor TableAll First Articles are 100%

Quanti	ity	2	4	8	16	24	32	64
Learni								
Factor	N th	95.0%	90.3%	85.7%	81.5%	79.0%	77.4%	73.5%
0.95	Aver.	97.5%	94.4%	90.8%	87.0%	84.65	83.0%	79.1%
	N th	90.0%	81.0%	72.9%	65.6%	61.7%	59.0%	53.1%
0.90	Aver.	95.0%	88.9%	82.2%	75.2%	71.3%	68.5%	62.0%
	N th	85.0%	72.3%	61.4%	52.2%	47.5%	44.4%	37.7%
0.85	Aver.	92.5%	83.6%	74.2%	64.9%	59.7%	56.2%	48.3%
	N th	80.0%	64.0%	51.2%	41.0%	35.9%	32.8%	26.2%
0.80	Aver.	90.0%	78.6%	69.3%	55.8%	49.8%	45.9%	37.4%

Notes:

1. Nth refers to the 2nd, 4th etc article in the fabrication of identical articles by the same process

2."Aver.", refers to the average cost of the 1" through the Nth article under the same conditions

3. The External Tank learning factor has been estimated at 80% (0.80) due to the relatively large amount of manual labor that goes into the fabrication process. In general the more manual the process, the greater the learning and the smaller is the number from the table that applies.

4. As the learning factors approach unity the reduction in cost for each succeeding cycle is reduced and 1.0 represents a fully automated process wherein the first article and the Nth article cost is the same.

5. For the purposes of the SBI trade studies we can use the guidelines that the manual fabrication and assembly processes of sheet metal have learning factors of 80% to 90% while the more automated and repetitive processes range between 90% and 95% or even as high as 97%. There probably won't be any automated processes where the costs of a number of articles remains the same as the first article cost.

Table 3-6 Cost of Multiple Applications

Applications	D&D Cost	Production Cost	Normalized Total Cost Per Application
1	1.0 (D&D)	3.1248 (D&D)	1.00
2	.50 (D&D)	5.1408 (D&D)	.744
3	.33 (D&D)	6.7704 (D&D)	.628
4	.25 (D&D)	8.3776 (D&D)	.568
5	.20 (D&D)	9.785 (D&D)	.523

Figure 3-2 is a linear plot of the foregoing information based upon a theoretical first unit (TFU) cost of 35% * (DD), Figure 3-3 is based on a TFU of 15% * (DD). Figures 3-2 and 3-3 illustrate two facts. The first is that a significant cost reduction result from the use of hardware in more than a single application. The second is that the point of diminishing cost return occurs rapidly beyond the third application.

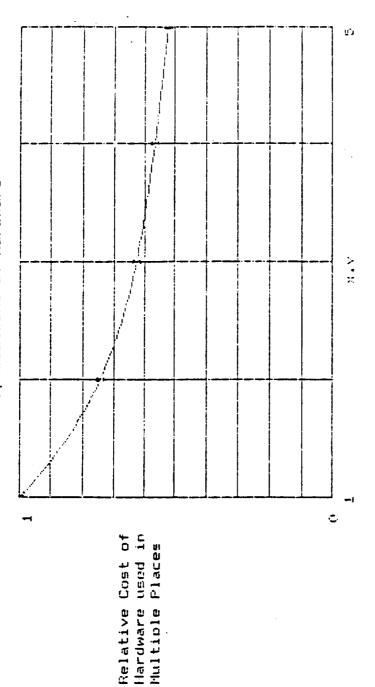
Modularity, although similar to commonality in some respects, offers other advantages as well. However, one must acknowledge that modular designs may cost more initially than non-modular designs due to the tendency for them to require added weight for packaging and more design integration due to an increase in the number of interfaces present in the system. Nevertheless, such systems have lower life cycle costs because of simplicity in assembly, repair, replacement, problem diagnosis and upkeep in general. Also there are the advantages of being able to upgrade individual modules with new technology and/or design improvements without impacting the rest of the system and without complicated disassembly and assembly to affect a module changeout.

Thus, if modules can be made common, the system possesses the attributes of modularization and offers potential cost savings from the multiple use of various system modules. The long and short of it is that the system cost can be reduced and the system flexibility and life cycle attributes improved. Common elements in modular designs should be a major, high priority goal in all SBI systems.

3.3 Modification of Existing Hardware (COTS) vs. New Hardware Build

Commercial off-the-shelf (COTS) hardware has been used for space applications sporadically since the early days of manned space flight and it poses the same cost-related challenges today as it did 25 years ago. The variables involved are the cost of the item, the cost of modification to meet space flight requirements, and the cost of demonstrating the hardware's reliability in qualification testing.

Past experience indicates that the cost of hardware modification is normally the primary cost factor of the cost elements listed. In an effort to assign an order of magnitude to modification costs, the weight of the COTS, the degree of modification (design factor, df), and the nature of the system (weight and system complexity, n) are used as prime cost drivers. Table 3-6 and 3-7 show the cost of modification against size (wt), and for systems with complexity factors (n) of .2 and .4. The higher order complexity factors are assumed to be not applicable on the basis that COTS is usually procured as modules or assemblies and then integrated into a larger system as necessary.

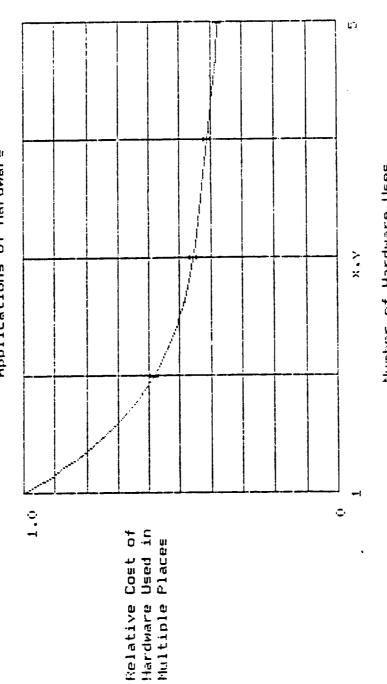

The costs shown in Tables 3-7 and 3-8 are based upon the assumption that COTS modifications are approximately the same cost as are redesigns to existing systems. The degree of modification (or redesign) is reflected in the design factor, df. The degree of system complexity is reflected by the system complexity factor, n. The range of weights over which these parameters are varied was selected on the basis that few items to be modified would be heavier than 50 Kg and that the small items less than 5 Kg would be procured as components or small assemblies which would be used in the design of a new system. The assumed size limit can be modified if necessary but were made to keep the number of weight variables in a reasonable size range with modest increments between each one. Here, again, caution is needed when applying CER type relationships to small items and to items where the portion of a hardware element being modified is small. See paragraph 2.1 for a discussion of scaling limitations. Specific modifications to COTS may be simple enough to invalidate the assumption that modifications and redesign costs are similar. If so, alternate COTS modification cost methods will be required and will reflect greater savings. Thus, the foregoing assumption degrades gracefully because it is conservative from a cost point of view.

A popular viewpoint today is that modified COTS is always less costly than is a new design. This belief is reflected in the emphasis on "make or buy" in recent NASA RFP's and also in recent cost seminars held by major aerospace companies. Nonetheless, some cost specialists express the opinion that modifications to COTS greater than 30-35% probably makes a new design preferable. The COTS vs. new design trade study deals with these subjects so this part of the report will be confined to cost trends only. From the viewpoint of modification costs alone it appears straightforward that COTS has great cost reduction potential and should be seriously considered whenever a commercially available system element exists that can be utilized in SB1.

In order to illustrate the cost trends for modification costs and modification cost per pound, Figure 3-4 and 3-5 are included. Figure 3.4 represents minor modifications (df = .15) and n = .2, and, therefore, shows the lowest cost per pound of any of the cases in Tables 3-7 and 3-8. Figure 3-5 is for the case of substantial modifications and n = .4, df = .55 and thus represents a high side cost case. The figures both show the trends that are typical for the values presented in the tables. Figure 3-2 Effect on Cost of Multiple Applications of Mardware

~

.


Number of Hardware Uses

First Unit Cost (TFU) = .35#(Dev. Cost)

Learning Factor = 80%

C-18

Figure 3-3 Effect on Cost of Multiple Applications of Mardware

Number of Hardware Uses

First Unit Cost (TFU) = .15%(Dev.Cost)

Learning Factor = 00%

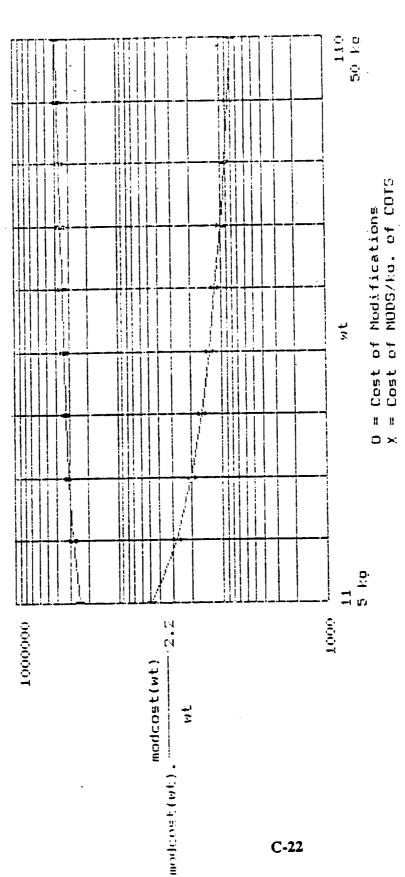
C-19

Table 3-7 Cost of Modifying Commercial Off-the Shelf Hardware

System Complexity Factor (n) =.2

Design Factor	Minor		Modest df=.35		Substantia df=.5		Major M df=.7	
Weight of Part Modified	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg
Weight =5 kgs	242.3	48.46	565.4	113.1	888.5	177.7	1212	242.3
Weight = 10 kgs.	278.3	27.83	649.5	64.95	1021	102.1	1392	139.2
Weight = 20 kgs.	319.7	15.99	746.0	37.3	1172	58.62	1599	79.93
Weight = 30kgs.	346.7	11.56	809.1	26.97	1271	42.38	1734	57.79
Weight = 40 kgs.	376.0	9.182	857.0	21.42	1347	33.67	1836	45.91
Weight = 50 kgs.	384.0	7.681	896.1	17.92	1408	28.16	1920	38.4

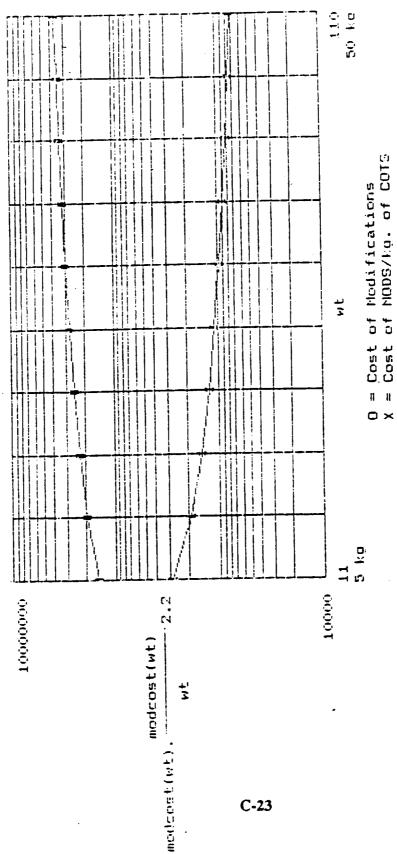
Notes: 1) All costs are in thousands of dollars


Table 3-8 Cost of Modifying Commercial Off-the Shelf Hardware

System Complexity Factor (n) =.4

Design Weight Factor	Minor Minor M		Modest df=.35		Substantia df=.5		Major M d1=.7	
of Part Modified	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg	Mod. Cost	Cost/kg
Weight =5 kgs.	391.4	78.28	913.3	182.7	1435	287.0	1957	391.4
Weight = 10 kgs.	516.5	51.65	1205	120.5	1894	189.4	2582	258.2
Weight = 20 kgs.	681.5	34.08	1590	79.51	2499	148.5	3408	170.4
Weight = 30 kgs.	801.5	26.72	1870	62.34	2939	97.96	4008	133.6
Weight = 40 kgs.	899.3	22.48	2098	52.46	3297	82.43	4496	112.4
Weight = 50 kgs.	983.2	19.66	2294	45.88	3605	72.10	4916	98.32

Notes: 1) All costs are in thousands of dollars


^cigure 3 - 4 Variation of Cost & Cost/kg for COTS Nods dfs.15 n=.2

C-22

•

Figure 3 - 5 Variation of Cost & Cost/kg for COTS Nods df=.55 n=.4

4.0 Testing Costs

A cursory treatment of testing costs is presented so as to make the cost picture as complete as possible. However, the applicability of test costs to SBI has not been validated and the guide-lines presented should be applied with care only where a similarity exists between SBI elements and/or subsystems; and other manned spacecraft systems.

4.1 Test Hardware

Test hardware costs in past manned programs have included the cost of labor and materials for major test articles used to verify design concepts. However, test hardware cost relationships exclude element tests, component tests, qualification and certification tests. The cost of labor and material for the design, procurement, installation, checkout and operation of the instrumentation system on major test articles is included and as one might expect, these factors drive the cost of test hardware up to a value greater than the first unit cost.

The CER's examined put the cost of test hardware at 30% more than the theoretical first unit (TFU) cost, i.e. 1.3 * TFU. It should be noted that this cost is to demonstrate and to verify the operation of the designed hardware and should not be construed to include experimentation and testing to acquire biological information of an experimental or research character.

4.2 Integration Assembly and Checkout (IACO)

This factor is most commonly estimated as a function of TFU costs or test hardware costs. It will generally run on the order of 10 - 20% of test hardware costs for manned systems, but care must be exercised in applying such a rough rule of thumb to SBI. Therefore, a simple CER is suggested in cases where PRICE H estimates have not yet been formulated. The CER is as listed below:

 $IACO = .3 (1.3 \text{ TFU})^{0.7}$

The resulting estimate can only be generated when all other hardware costs are available.

4.3 Test Operations

Test operations CER's indicate that costs generally run on the order of 20% to 30% of the cost of test hardware plus integration, assembly and checkout costs. However, as is the case with other test related items of cost, the applicability to SBI hardware has not been validated. Nonetheless, the order of magnitude could be used for SBI estimates pending specific definition of test requirements for the various experiments.

Examination of the SBI hardware list (Ref.SBI No. 87) and the Life Science Laboratory Equipment description (Ref. SBI No.88) suggests that test operations could vary from little or nothing all the way up to the level indicated in CER's and approximated above.

5.0 SE&I Costs

SE&I cost for the design and development phase are generally expressed as a function of the DDT&E + Systems Test Hardware + IACO + Test Operations + GSE costs. However, the lower end of the validity range is almost \$1.0 billion of DDT&E costs and the applicability to SBI is extremely doubtful. For that reason, it is recommended that the preliminary SBI SE&I cost be taken as 10% to 15% of the SBI total system development cost until a detailed estimate or a PRICE H value is generated.

6.0 Program Management Costs

Program management costs usually run 5% of the total of all other costs, i.e., 5% of the sum of DDT&E + IACO + Test Hardware + Test Operations + GSE + SE&I (for DDT&E) costs. Inasmuch as there is no basis to assume that SBI program management cost is any more or any less than other types of programs, it seems reasonable to use a very preliminary value of this order of magnitude for budgetary estimating purposes.

7.0 Life Cycle Costs

As noted previously in this appendix, life cycle cost information is not available and therefore only a subjective treatment of the subject is possible. Nonetheless, Table 7-1 provides some worthwhile insights concerning all the SBI trade study subjects being addressed by Eagle. Taken singly, these subjects reveal the following probable life cycle impacts.

7.1 Study No. 3 - Miniaturization

The possible reduction of cost due to the impact of weight reduction is more theoretical than achievable. Indications are fairly clear that most attempts to miniaturize will cost rather than save money. Therefore, one must conclude that the reason for attempting size reductions is other than cost savings. It is beyond the scope of this write-up to postulate or to speculate further.

7.2 Study No. 4 - Modularity and Commonality

If the SBI program-wide support can be mobilized to support modular design and the development of hardware for common application to a number of SBI experiments and/or facilities, the cost benefit should be very significant. All the factors noted in Table 7-1 tend to substantiate this conclusion and only the programmatic direction and support has any identifiable cost or problem related to it.

Modular designs and common equipment should be a top priority requirement, goal and objective of SBI effort.

7.3 Study No. 5 - COTS vs. New Hardware

COTS should be regarded as a slightly trickier subject than commonality due to the potential pitfalls and cost penalties that can be incurred in its application to spaceflight. Nonetheless, the potential cost savings are large enough so that judicious use of COTS where it fits with the SBI program appears to be a cost-wise approach which could yield tremendous cost benefits for only nominal technical risk. Technical risk which can be offset by care in selecting, testing, and screening the procured items.

The use of modified COTS in lieu of a new design appears to pay off until the modification cost approaches the cost of an optimized new piece of hardware. The cut-off point has not been defined but would make an interesting and worthwhile follow-on study. Intuitively one would expect to find a series of cut-off points that are a function of the hardware complexity, and therefore, the cost and complexity of the modification program.

7.4 Study No. 6 - Rack Compatibility

To a greater degree than the other SBI trade studies, this subject seems to defy analysis that could give cost trend indications or life cycle cost indicators. Nevertheless, if one assumes that the inter-program coordination of rack compatibility can be accomplished with a reasonable effort, there exists the possibility to lower cost, to reduce the cost of data normalizing and comparison, and improved scientific data return might possibly be a companion benefit to lower experimentation costs.

The entire spectrum of life cycle costs beyond the design and program management phase that would accrue due to compatibility all appear to be very positive and beneficial. Logistics, ground processing, pre-flight checkout, operations, repair and replacement all would be impacted in a beneficial way by this approach. A comparable achievement that comes to mind is the establishment of standard equipment racks by the International Air Transport Association (IATA). The benefits apply to a large number of items (commercial transports) and of course the impact is greater, but the concept has been a true bonanza to all the world's commercial airlines. Rack compatibility is potentially a smaller sized cousin to IATA's achievement.

Table 7 -1 Life Cycle Cost

Phase Study	Study No. 3 Hardware Miniaturization	Study No. 3 Study No. 4 Hardware Miniaturization Modularity and Commonality	Study No. 5 COTS vs. New Hardware	Study No. 6 Rack Compatibility
Design	Design change always required. Cost of redesign may be partially offset by size & weight reduction.	Requires programmatic support and some allowance for increased weight and cost in design phase.	Dependent upon availability and suitability of commercial modules and/or elements for SBI system application.	Requires inter-program coordination/communication and direction which is very difficult to achieve.
Development	Fabrication may be complicated due to size reduction.	Development, manufacture or procurement is facilitated by modularity. Commonality cost impacts all positive.	Modified COTS appears to have significant potential advantage. Requires sound make or buy antysis & eval.	Common source would be highly desireable but will be hard to do due to specification differences & organiz. barriers
Test and Evaluation	Test costs may increase due to difficulty in set-up and trouble shooting.	Module testing, integrated testing and test trouble shooting are simplified and cost savings result.	Testing impact appears to be negative due to need for extra qualification tests and periodic retest (screening).	Should have only minor impact which stems from differences in test requirements.
Sustaining Engineering	No significant impact pro or con is apparent.	Individual engineering groups can operate with less sytems integration effort.	Should be automatically supported by vendor's program. Generally positive. Mods could pose problems.	Responsibility may be difficult to establish and to identify. Problem potential is small due to type of hardware.
Technology Upgrade	May be less likely due to absence of atternate hardware availability.	Facilitated and made easier by modular design.	Not predictable. Experience indicates that it can vary from easy and to very painful and awkward.	Should be possible within a rack or module. Compatibility will reduce the overall cost of inserting new tech. upgrades.
Maintenance and Operations	Possible adverse impact on maintenance due to small size. Operation should not be affected.	Common module impacts on maintenance, logistics and operations are all positive & highly significant.	Maintenance of unmodified portion could pose problem. Operation not affected if reliability is adequate.	Design for long life should mean small scale preventive maintenance is all that is required.
Replacement	May be less costly due to size and favorable impact on logistics.	Can be accomplished in planned phases and/or steps with minimum disruption to system operation.	COTS use suggests that low cost replacements are available. Advantage can erode with age.	Standard interfaces can only work to reduce the cost of replacement. Fewer spares, standard procedures etc.
Overall Life Cycle Cost Impact	Tends to look negative. The need to miniaturize must be based upon reasons other than cost.	Life cycle cost impacts are all highly favorable except for design phase coordination & possible weight penalties.	Very significant life cycle cost advantage inherent in COTS. However, initial selection and mod program must be prudent.	Whatever the cost of inter- program coordination, ICD's etc., the impact on overall NASA cost is very beneficial

8.0 Recommendations

- 1. Perform a follow-on effort to generate a designer's "John Commonsense" manual for cost avoidance and/or reduction. The manual should be a series of simple groundrules and guidelines to help reduce Space Biology Initiative Program costs. Where possible, a series of tables or curves to help assess the potential cost gain should be included.
- 2. Mount an effort to accumulate an SBI historical cost data base. The objective should be at least two-fold. First, identify the breakpoint for various cost trade-offs. Examples are presented in Figures 3-2 and 3-3 which show that commonality soon reaches a point of diminishing return insofar as it pertains to development and manufacturing. Given such breakpoints, explore the possibility of additional life cycle cost benefits which result from reduced sparing, simplified logistics, reduced maintenance, etc. Second, obtain enough historical cost information to permit the development of CER's that are properly scaled for the range of sizes in question. Existing CER's have limitations that may invalidate their use on SBI. Therefore, actual cost data from ongoing SBI efforts would provide a valuable asset to future work of a similar nature.
- 3. Consider a follow-on program to develop a rule-based or expert system that could be used for quick cost estimates and cost comparisons. Such an effort can only proceed in parallel with item 2, above, but the development time is such that it should begin as soon as practical.
- 4. Generate a comprehensive compendium of cost estimating relationships and apply them to SBI. Subsequently, make comparisons with other cost estimating methods in an attempt to remove the existing programmatic skepticism about the voodoo and black magic of cost predictions.

Bibliography

- A. MSFC Space Station CER's Report PRC D-2185-H, Contract NAS8-33789, December, 1982.
- B. CERV Target Costs for Benchmark and Reference Configurations JSC CERV Office Presentation, June 15, 1988.
- C. PRICE Users Newsletter, Volume 12, Number 3, October, 1988.
- D. Cost Estimating for Air to Air Missiles, Congressional Budget Office, January, 1983.
- E. PRICE H^{III} Reference Manual, General Electric Company, 1988.
- F. SBI Team Contact Report Joe Hamacke, April 27, 1989.
- G. SBI Contact Report Richard Whitlock, April 11, 1989.
- H. Report No. MSC-01248, ASSCAS Cost Handbook, Contract NAS 9-9018, January, 1970.

Appendix D - Database Definition

•

•

.

D-1

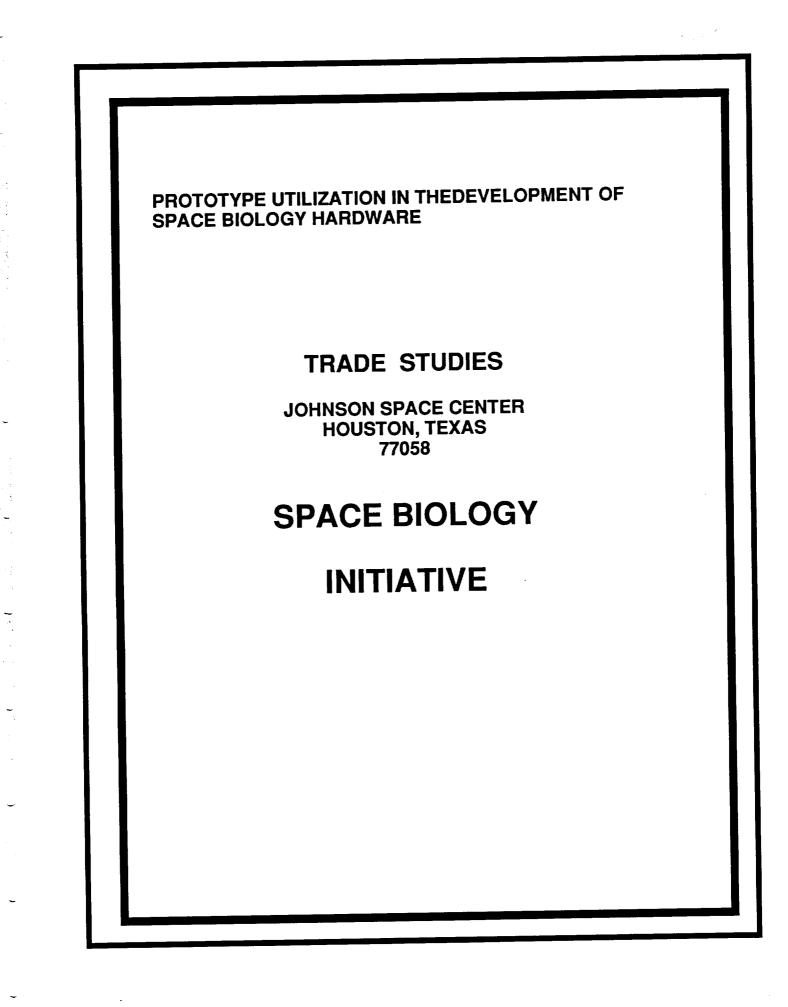
Appendix D - Database Definition

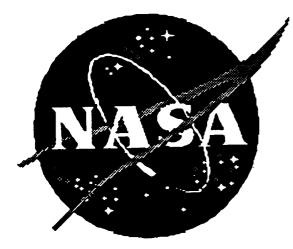
The database files for the SBI trade Studies were developed using dBASE IV. The database files consist of dbf, ndx, and frm files. The dbf files are dBASE IV database files. NDX files are the index files for the dbf (database) files. The frm files are report files for the trade study candidate and bibliography reports. The SBI trade study database consist of 4 database files with 78 fields of information. A complete listing of the database structure and dictionary is included in this database definition.

Database Structure For SBI Trade Studies

		_		
Structu	re for datab	base: W:hard	lware.dbi	
Number	of data reco	ords:	13	
Date of	last update	e : 05/30/	89	_
Field	Field Name	TVDE	WIGEN	Dec
1	HW ID	Character	3	
2	HW_NAME	Character	50	
2		<u> </u>	·) \ A	
4	HW FACILIT	Character	55	
5	HW_DESCRIN HW_FACILIT INFO_SOURC HW_MASS HW_VOLUME HW_POWER	Character	250	_
6	HW MASS	Numeric	6	3
7	HW VOLUME	Numeric	8	6
8	HW_POWER	Numeric	4	
9	HW VOLTAGE	Numeric	D	-
10	HW_HEIGHT	Numeric Numeric	6	
11	HW WIDTH	Numeric	6	
12	HW_WIDTH HW_DEPTH	Numeric	8	
13	REMARKS	Character		
14	PECORD DAT	Date	8	
	GROUP	Character	50	
16	CATECORY	Character	50	
17	FINCTION	Character	60	
18	FAC_ID GROUP_ID MIN_LEVEL	Character	4	
19		Character	4	
	MIN LEVEL	Character	5	
20	MIN_LEVEL CONFIDENCE SUFFIC_DAT	Character	5	
22	SUFFIC_DAT	Character	4	
22	DDTODITV	Character	2	
23	PRIORITY MIN_LV_POT	Character	C	
24	MIN_LV_POT MIN_EST_CF	Character	6	
25	MOD_LV_POT	Character	6	
20	MOD_LV_FOI	Character	6	
2/	MOD_EST_CF COM_LV_POT COM_EST_CF	Character	6	
28	COM_LV_POT	Character	6	
29	SYS_COMPLX	Character	6	
30	SIS_COMPLA	Character		
31	DSN_COMPLX BUY_LV_POT BUY_MOD_LV	Numeric	4	
32	BUI_LV_PUI	Numeric	4	
33	BUI_MOD_LV	Character	4	
54	BUI_EST_CF	Numeric	- -	
35	BUI_UTS_PT	Character Numeric	Ă	
36	BUI_DAT_AV	Logical	1	
37	MOD_CAN	HOATCAT	-	
34 35 36 37	BUY_EST_CF BUY_OTS_PT BUY_DAT_AV MOD_CAN	Character Numeric Character	4	

** Total **

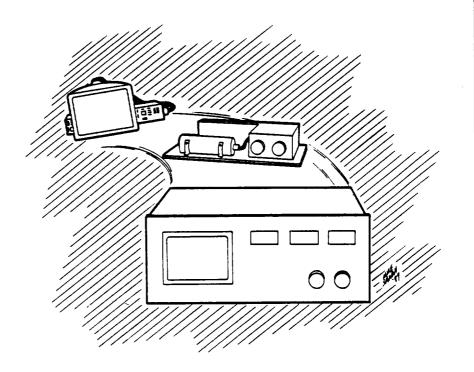

D-3


Number Date o Field 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	BB_ID AUTHOR_NO1 AUTHOR_NO2 AUTHOR_NO3 ART_TITLE BOOK_TITLE BOOK_TITLE VOLUME_NO PUBLISHER PUBL_LOC DATE PAGE_NOS ABSTRACT ACQUIRED COST LOANED REP_DOC_NO MOD	ords: e : 05/26 Type Character Character Character Character Character Character Character Character Date Character Character Character Character Character Character Character Character Character Character Character Character Character	98 Width 5 16 12 135 100 3 42 32 8 4 100 20 6 4 22	Dec
18	MIN COTS RACK	Logical Logical Logical	1	
19	COTS	Logical Logical	1	
** Tot	ACA al **	LUGICAI	526	
Number	ure for data of data rec f last updat	ords: 1	66	
Field	Field Name	TVDA	Width	Dec
1	IF_ITEM	Character Character Character	38	
2	UNTTS	Character	8	
3	UNIT_SYS	Character	1	
4	ITEM_TYPE VALUE	Character		
56		Character Character	50 25	
** Tot		Character	135	
Number	ure for data of data rec f last updat	ords: 1	53	
Field			Width	Dec
	HW_ID	Character	3	
2	COMM_MOD	Character	30	
	COUNT	Numeric	1	-
4	• •		4	2
5	MASS	Numeric	4	2
** Tot	ai ≖≭		43	

D-4

Appendix D - Database Dictionary for Space Biology Initiative Trade Studies

This is the database file for SBI hardware. Hardware.dbf Unique identification number for each hardware item HW_ID Field 1 Hardware name HW_NAME Field 2 Hardware description HW_DESCRTN Field 3 Facility where SBI hardware is used Field 4 HW_FACILIT Information source for SBI hardware data INFO_SOURC Field 5 Hardware mass HW_MASS Field 6 Hardware volume HW_VOLUME Field 7 Hardware power requirement HW_POWER Field 8 Hardware voltage requirements HW_VOLTAGE Field 9 Hardware height HW_HEIGHT Field 10 Hardware width HW_WIDTH Field 11 Hardware depth HW_DEPTH Field 12 Remarks concerning SBI hardware equipment REMARKS Field 13 Update of last record RECORD_DAT Field 14 Hardware group GROUP Field 15 Hardware category CATEGORY Field 16 Hardware function FUNCTION Field 17 Hardware facility ID number FAC_ID Field 18 Hardware group ID number GROUP_ID Field 19 Miniaturization level for hardware Field 20 MIN LEVEL Confidence level for miniaturization CONFIDENCE Field 21 Is there sufficient data to make a decision of hardware SUFFIC_DAT Field 22 miniaturization? Priority level for hardware item based on mass Field 23 PRIORITY Miniaturization level potential for the hardware item MIN_LV_POT Field 24 Confidence level for miniaturization MIN_EST_CF Field 25 Modularity potential for hardware item MOD_LV_POT Field 26 Confidence level for modularity estimate MOD_EST_CF Field 27 Commonality potential for hardware item COM_LV_POT Field 28 Confidence level for commonality estimate Field 29 COM_EST_CF System complexity for hardware item SYS_COMPLX Field 30 Design complexity for hardware item DSN_COMPLX Field 31 Percent Buy for Hardware Item BUY_LV_POT Field 32 Percent modification to Buy Hardware Item BUY_MOD_LV Field 33 Confidence Level for Make-or-Buy Estimate BUY_EST_CF Field 34 Percentage of COTS hardware that does not require Field 35 BUY_OTS_PT modification Is sufficient data available for make-or-buy estimate BUY_DAT_AV Field 36 Logical field can the hardware item be modularized Y or N Field 37 MOD_CAN



Space Biology Initiative Program Definition Review

Lyndon B. Johnson Space Center Houston, Texas 77058

Prototype Utilization in the Development of Space Biology Hardware

FINAL REPORT

June 1, 1989

HORIZON AEROSPACE

• 18333 EGRET BAY BOULEVARD, SUITE 300 • HOUSTON, TEXAS, USA 77058 • (713) 333-5944 • TELEFAX (713) 333-3743 N 9 3 - 2 3 0 8

SPACE BIOLOGY INITIATIVE PROGRAM DEFINITION REVIEW

TRADE STUDY 2

PROTOTYPE UTILIZATION IN THE DEVELOPMENT OF SPACE BIOLOGY HARDWARE

FINAL REPORT

Prepared by:

HORIZON AEROSPACE

L. Neal Jackson, President John Crenshaw, Sr. Engineer

and

LOVELACE SCIENTIFIC RESOURCES, INC.

A. Schulze, P.E. J. Wood

Prepared for:

GE GOVERNMENT SERVICES Houston, Texas Contract No. G966016-J45

June 1, 1989

FOREWARD

This study, entitled "Prototype Utilization in the Development of Space Biology Hardware", was performed under a subcontract to Horizon Aerospace. It is one of six studies performed as a part of the NASA Space Biology Initiative (SBI) Definition Review Trade Studies Contract.

The study was performed under the direction of Mr. Neal Jackson and Mr. John Crenshaw of Horizon Aerospace and was conducted by Mr. H. J. Wood, Jr. and Mr. Arthur E. Schulze of the Biomedical Technologies Division of Lovelace Scientific Resources, Inc., Houston, Texas.

Management and engineering review were provided by the staff at Lovelace in Albuquerque, New Mexico.

TABLE OF CONTENTS

Page No.

Foreward	· ii
Table of Contents	iii
List of Figures	. v
Acronyms and Abbreviations	vi
Glossary and Definitions	viii
EXECUTIVE SUMMARY	xv
1.0 Introduction	. 1
1.1 Background	1
1.2 Purpose	7
1.3 Methodology	7
1.4 Scope	. 10
2.0 Findings	11
2.1 Equipment Categories	11
2.1.1 Experiment-Unio	jue Equipment 11
2.1.2 Operational Equ	
	tial Off-The-Shelf Hardware 12
	l Contribution to Reliability 13
2.2.2 MCOTS Technic	al Skill Requirements 14
2.2.3 Modification Ca	
2.2.4 Quantitiy of Uni	ts to Purchase 19
2.2.5 Who Should Do	
2.3 New Design and Develo	
2.3.1 General Finding	-
2.3.2 Requirement De	
2.3.3 Technique and	
2.3.4 Specification De	evelopment 24
2.3.5 Technical Monit	
2.3.6 Analysis and Re	•
	ion of Engineering Model 26
2.3.8 Fabrication of T	raining and Qualification Units 26
2.3.9 Flight Hardware	Production 27
	and Maintenance Program 27
2.4 Determination of Proto	type/Flight Quantities 28
	rmination Method 28
2.4.2 Definition of Re	
2.4.3 Outline of Plans	30

2.4.4 Quantity Drivers	32
2.4.5 Quantity Selection Procedure	33
2.4.6 Prototype Usage Matrix	33
2.5 Relative Costs	36
2.5.1 Affect of Prototypes on Program Costs	36
2.5.2 Cost of MCOTS Program Versus New	
Dévelopment	38
2.6 Parts Considerations	38
2.6.1 Identifying the Problem	38
2.6.2 Candidate Solutions	40
2.7 Programmatic Requirements	42
3.0 Recommendations	44
4.0 Conclusions	47
Appendix A A Partial List of Documents Applicable	le to

•	SSF Hardware Prototyping
Appendix B	Personal Interviews and Opinions
Appendix C	Bibliography
Appendix D	Life Sciences Hardware List for the Space
	Station Freedom Era

iv

•

.

LIST OF FIGURES

Figure	1.1-1	Role of Prototypes in the System Design Process	6
Figure	2.2-1	Procedure for Selecting and Purchasing COTS Hardware for Modification	18
Figure	2.4-1	Procedure for Selecting Development/ Procurement Plan	34
Figure	2.4-2	Summary of Multiple Usage of Hardware	35
Figure	2.5-1	Relative Costs of Development	37

ACRONYMS AND ABBREVIATIONS

AI	Artificial Intelligence
BIT	Built In Test
BITE	Built In Test Equipment
BMMD	Body Mass Measurement Device
BPMS	Blood Pressure Measuring System
BPMU	Blood Pressure Measuring Unit
Œ	Contractor Furnished Equipment
CHE CDR	Critical Design Review
	Cassette Data Tape Recorder
CDIR	Crew Health Care System
CHeCS	Commercial Off-The-Shelf
COIS	
DFI	Development Flight Instrumentation
DMS	Data Management System
DPA	Destructive Physical Analysis
DVTU	Design Verification Test Unit
ECF	Exercise Countermeasure Facility
ECG	Electrocardiograph
EDCO	Extended Duration Crew Operations
EEE	Electrical, Electronic and Electromechanical
EM	Engineering Model
EMG	Electromyograph
EMI	Electromagnetic Interference
ESA	European Space Agency
FMEA	Failure Modes & Effects Analyses
FRR	Flight Readiness Review
GAMS	Gas Analyzer Mass Spectrometer
GFE	Government Furnished Equipment
GSE	Ground Support Equipment
HMF	Health Maintenance Facility
ISO	International Standard Organization
JSC	Johnson Space Center
KSC	Kennedy Space Center
LBNPD	Lower Body Negative Pressure Device
LSE	Laboratory Support Equipment
LSLE	Life Sciences Laboratory Equipment
LSRF	Life Science Research Facility
MIL-STD	
MCOTS	Modified Commercial Off the Shelf
NASA	National Aeronautics and Space Administration
NSTS	National Space Transportation System

OSSA OTS	Office of Space Science and Applications Off-The-Shelf
PDR	Preliminary Design Review
PFM	Protoflight Model
PI	Principal Investigator
PMS	Physiological Monitoring System
Qual.	Qualification
R&QA	Reliability and Quality Assurance
RF	Radio Frequency
RMS	Remote Manipulator System
SBI	Space Biology Initiative
SEU	Single Event Upset
Spec.	Specification
SRM&QA	Safety, Reliability, Maintenance & Quality
	Assurance
SSAEPL	Space Station Approved EEE Parts List
SSF	Space Station Freedom
SSP	Space Station Program
STS	Space Transportation System
TBD	To Be Determined
TU	Training Unit
VOCC	Venous Occlusion Cuff and Controller

Glossary and Definitions

From JSC 31000, Vol. 1, Rev. D, Appendix B

ACCEPTANCE TEST: Formal testing conducted to determine whether or not an item satisfies its acceptance criteria and to enable the user to determine to accept or reject same. Required on an end item where quantitative data is a prerequisite to demonstrate compliance of the item with design/procurement specifications.

ACCEPTANCE TESTING: 1) Formal tests conducted to assure equipment meets contracted or design requirements. Includes performance demonstrations and environmental exposures to screen out manufacturing defects, workmanship errors, incipient failures, and other performance anomalies not readily detectable by normal inspection techniques or ambient functional tests. 2) Tests to determine that a part, component, subsystem, or system is capable of meeting performance requirements prescribed in the purchase specification or in other documents specifying adequate performance capability for the item in question. Anomalies not readily detectable by normal inspection techniques or through ambient functional tests.

ADVANCED DEVELOPMENT PROGRAM: A program which focuses emerging generic technologies toward a space station application, builds and integrates prototype components into subsystems for demonstration in ground-based test bed facilities, and conducts flight experiments using the Shuttle as necessary.

ALGORITHM: Mathematical steps used in the process of solving a problem. The objectives of the algorithm is to produce a desired result (output) from specified input.

ARTIFICIAL INTELLIGENCE: 1) A subfield of computer science dealing with concepts and methods of symbolic inference by a computer and the symbolic representation of knowledge used in making inferences to make a machine behave in ways humans recognize as "intelligent" behavior. 2) A discipline devoted to developing and applying computational approaches to intelligent behavior. Also referred to as machine intelligence or heuristic programming.

ASSEMBLY: A number of parts, or subassemblies and/or any combination thereof, joined together to perform a specific function

and capable of disassembly. The distinction between an assembly and a subassembly is determined by the individual application. An assembly in one instance may be a subassembly in another, where if forms a portion of an assembly.

COMMERCIAL PART OR ITEM: A part or item which is manufactured primarily for the commercial rather than the government market and having both commercial and government applications. Commercial parts also include parts which are manufactured in accordance with normal commercial quality controlled production runs which meet or exceed the requirements of government specifications or standards.

COMMON ELEMENTS: Equipment items or subsystems that are interchangeable.

COMMON EQUIPMENT: Any equipment that can be utilized at more than one operational site.

COMPONENT: 1) A major functional entity within a susbystem which can contain both hardware and software subcomponents which can be either collocated or physically distributed within the Space Station Program element. 2) A particular hardware item within a system (e.g., a pump, valve within pump, electrical power distribution box). 3) A combination of parts, devices and structures, usually selfcontained, which performs a distinctive function in the operation of the overall equipment or system (e.g., transmitter, cryogenic pump, encoder).

CONTRACTOR: The supplier of the end item and associated support items to the Government under the terms of a specific contract.

CONTRACTOR-FURNISHED EQUIPMENT (CFE): CFE is equipment provided to NASA by a prime contractor whose activities are monitored directly by a NASA program or project office.

DELIVERABLE: An item of hardware, software, or documentation which the contractor is required to deliver to the government.

DESTRUCTIVE PHYSICAL ANALYSIS: Analysis of EEE parts to assure that the internal construction, quality, and condition of samples do not vary from lot to lot.

ix

DEVELOPMENT TESTS: Tests performed with minimum rigor and controls to substantiate a design approach. Includes tests performed to minimize technical risks and to assist design engineering activities. They encompass material selection, design tolerance verification, and identification of operational characteristics.

ENVIRONMENTAL TEST: Any test performed under environmental conditions other than ambient for the primary purpose of verifying the quality of the GSE.

EXPERIMENT: The system of hardware, software, and procedures for performance of a scientific or applications investigation undertaken to: --Discover unknown phenomena

--Establish the basis of known laws

--Evaluate applications processes and/or equipment

FAILURE MODES AND EFFECTS ANALYSIS (FMEA): Identification and evaluation of what items are expected to fail and the resulting consequences of failure.

FAULT TOLERANCE: 1) The ability to continue to operate in the presence of anomalies or failures. 2) The number of failures which can be allowed without disruption of nominal functional performance.

GOVERNMENT-FURNISHED EQUIPMENT: Equipment in the possession of or acquired by the Government, and delivered or made available to a non-government organization.

LIFE CYCLE COSTS: A process and technique for predicting and considering the entire cost of a program or project from inception to ultimate disposition.

LIMITED LIFE: An equipment item or system is designated as having a limited useful life in relation to its application. Limited life includes operating time or cycles and age life.

LIMITED-SHELF-LIFE ITEM: Any item which deteriorates with the passage of time and thus requires periodic replacement, refurbishment, retesting, or operation to assure that its operating characteristics have not degraded beyond acceptable limits. This includes installed as well as stored components.

X

LONG LEADTIME ITEMS: Those items which because of their complexity of design, complicated manufacturing processes, or limited production, may cause production or procurement cycles which would preclude timely or adequate delivery, if not ordered in advance of normal provisioning.

OFF-THE-SHELF DESIGN: An existing design for equipment with known characteristics and proven history that has not been manufactured for which product enhancement changes could be incorporated into its production.

OFF-THE-SHELF EQUIPMENT: Equipment of an existing design that has already been completely manufactured and is already for delivery.

OFF-THE-SHELF HARDWARE: Production or existing design hardware (black box, component) used in or for NASA, military, and/or commercial programs.

OPERATING LIFE: The maximum operating time or cycles which an item can accrue replacement or refurbishment without risk of degradation of performance beyond acceptable limits.

PART: One or more pieces joined together which are not normally subject to disassembly; it maybe deviated, EEE, or substituted.

Deviated Parts--Parts deviating to some degree from their controlling specifications.

EEE Parts--Devices such as transistors, diodes, microcircuits, resistors, capacitors, relays, connectors, switches, transformers and inductors which are in compliance with the NASA Standard Parts List MIL-STD-975.

Nonstandard EEE Parts-- A EEE part not listed in MIL-STD-975, NASA Standard EEE Parts List or SSAEPL.

Grade 1.--The classification used for higher quality standard parts intended for applications that the responsible NASA project office has determined to be critical. Grade 2--The classification used for inclusion within the applicable standard and are intended for applications not requiring Grade 1 parts.

Substitute Parts-- Parts differing from those specified in the approved equipment design.

PROTOFLIGHT: A verification activity using flight hardware and software for ground qualification in lieu of a dedicated test article. The approach includes the use of reduced test levels and/or durations and post-test hardware refurbishment where required.

PROTOFLIGHTING: The programmatic process of manufacturing a singular item, using it for verification and limited (nondestructive) testing, refurbishing it as required, and then using it as a flight article.

PROTOTYPE: A hardware item having essential features of a production unit, but differing in certain respects, such as packaging and weight. It is used to support test activities, and to demonstrate manufacturing techniques, but is not used for flight.

QUALIFICATION TESTS: Tests conducted as part of the certification program to demonstrate that design and performance requirements are realized under specified conditions.

REDUNDANCY: The existence of more than one means for performing a given function.

RELIABILITY: The probability that a system or product will perform in a satisfactory manner for a given period of time when used under specified operating conditions.

REPAIR PARTS: Individual parts or assemblies required for the maintenance or repair of equipment, systems, or spares. Such repair parts may also be repairable or nonrepairable assemblies, or onepiece items. Consumable supplies used in maintenance or repair such as wiping rags, etc., are not considered repair parts.

RISK: 1) The probability of suffering harm or loss. 2) The chance (qualitative) of loss of personnel, loss of system or damage to, or loss of equipment or property.

SOFTWARE VALIDATION: Tests and/or analyses to determine that software design meets requirements:

- A. Validation by Testing-- The process of conducting tests to prove the software design meets established design requirements.
- B. Validation by Analysis--1) Analysis performed to show a software article previously validated is reused or recovered (modified) to perform a similar function. 2) Analysis performed to satisfy validation objectives when testing under simulated mission conditions is not feasible or cost-effective or the need exists to extrapolate test data beyond the performed points.

SPARE PARTS: Components, assemblies, and equipment that are completely interchangeable with like items installed or in use which are or can be used to replace like items removed during maintenance and overhaul.

SPARE(S): An item or items whose fit, form and functions are completely interchangeable with another or like item or items. Types of spares for the SSFP are identified as: (1) development spare parts, (2) initial spare parts, and (3) replenishment spare parts.

SPARING: The act of quantifying and identifying spares and associated parts required to support an item or total system (e.g., control moment gyros--two spares).

SPECIFICATION: Document or combination of documents controlling the design parameter (i.e., materials used, physical and electrical characteristics.

SUBASSEMBLY: Two or more parts which form a portion of an assembly or a component replaceable as a whole, but having a part or parts which are individually replaceable (e.g., telephone dial, mounting board with mounted parts, etc.).

SUBSYSTEM: A specific set of hardware and/or software functional entities and their associated interconnections, which perform a single category of functions (e.g., data storage and retrieval subsystem, video subsystem). The functional level immediately below the "system" level. VERIFICATION: A process which determines that Space Station hardware and software systems meet all design, performance, and safety requirements. The verification process includes analysis, test, inspection, demonstration, or a combination thereof.

The two levels of verification activities include:

- A. Hardware/Software Verification Activities--A process to ensure specific hardware/software is built in accordance with the design, meets established performance requirements and is free of manufacturing and workmanship defects.
- B. Design Verification Activities--A process to ensure design of the Space Station, subsystems, or components as designed and meets requirements defined in contractual specifications. They include both formal certification and system-level verification activities (including hardware/software and interface compatibility). Where verification is not accomplished by testing, analysis is to be performed.

EXECUTIVE SUMMARY

TECHNICAL FACTORS: Examination of the past and present prototype hardware development activities has disclosed that there are a number of valuable lessons to be learned from NASA's experience as well as from that of a number of other industry and government groups. In addition to the outlined approaches to the construction and use of protytypes and the identification of the driving factors, major findings are related to the impact of component and system obsolescence, shortened time of support by part manufacturers, the reduced number of part manufacturers, and the resulting non-availability of replacement parts. These findings all impact the planning for SBI Hardware prototypes.

It is shown that adaptation of modified commercial off-the-shelf hardware has distinct advantages over new starts in the areas of reduced cost and greater design maturity. Experience shows that the adaptation must be done methodically and with great skill by persons having extensive previous experience.

Many technical details for successfully implementing prototype development programs are presented. They cover full hardware development from a new start as well as development based on modification of commercial off-the-shelf hardware.

The possible applications of each type of prototype article are examined and the major program value of each identified. The limits to apparent cost advantages and the increased risk of the "protoflight" hardware approach are discussed as well as the continued need for an engineering unit within the program.

PROCEDURES: The various methods of developing prototype hardware have been combined and simplified into an integrated sequence of steps which define a recommended approach for each set of circumstances. Using the flow chart procedure presented, one determines a reference set of required hardware units. Then, by considering the parameters identified in a family of "drivers", the starting quantities are driven down or up to match them with the particular programmatic application.

RECOMMENDATIONS: A number of items are identified and discussed which, if uncorrected, will drive up costs and reduce the number of potential prototype hardware suppliers supporting NASA.

XV

Ten major areas of concern are highlighted in the Recommendations (Section 3.0) of this report.

CONCLUSIONS: The major conclusions of this trade study are summarized in Section 4.0.

1.0 INTRODUCTION

1.1 BACKGROUND

The factors that should be used by designers and planners of space hardware to determine the number and types of prototypes required to successfully conduct a biomedical research program are overwhelmingly numerous. Organized decision-making requires subdivision of the problem such that it can be attacked in reasonable, digestible pieces.

The prototyping activities to be considered in this study range from no prototypes where a single unit serves as a flight unit, often called a "protoflight", to multiple prototypes for each function; i.e., concept unit, reliability unit, DVTU unit, training unit, back-up unit, etc. Prototyping fits into a phase of system engineering which can nominally be called "evaluation." (Machol, 1965)

The evaluation phase should determine whether the performance of a system is adequate to fulfill the operational mission assigned to the system. In a well-managed development program, the evaluation is conducted throughout the design phase and is "largely completed before the prototype is constructed." "It therefore follows that evaluation should be largely completed before the really expensive phases of prototype construction and test are undertaken." (Machol, 1965)

The following definitions apply to the various terms as used in this study:

ENGINEERING PROTOTYPE: "A hardware item having essential features of a production unit, but differing in certain respects such as packaging and weight." Prototypes are "used to support test activities and to demonstrate manufacturing techniques, but are not used for flight."

PROTOFLIGHTING: "The programmatic process of manufacturing a single item, using it for verification and limited (nondestructive) testing, refurbishing as required, and then using it as a flight article." (For purposes of this study, a protoflight unit is considered a flight unit and not a prototype).

1

RELIABILITY: "Distribution of failures in the time domain"

QUALITY CONTROL: "Distribution of defects in a population"

OPERATION: "Activity resulting from the use of systems."

Some of the terms commonly used to refer to prototypes of aerospace subsystems are as follows:

- 1. Breadboard
- 2. Proof of Concept Model
- 3. Brassboard
- 4. Pre-Production Model
- 5. Mock-Up (Not necessarily a "prototype")
- 6. Design Verification and Test Unit (DVTU)
- 7. Training Unit
- 8. Qualification Test Unit
- 9. Engineering Model
- 10. Thermal Test Article

These items are often semantically intertwined and mock-up units are not necessarily operational prototypes--the need for mock-ups is usually independent of the need for prototypes. Mock-ups are usually non-functioning units used for a multitude of purposes. Generalized drivers to define the number and types of mock-ups are uniquely programmatic and are not a part of this study.

Analyses of the naming of prototypes have shown that the fundamental categories might be listed in the order of increasing fidelity as follows:

- 1. Breadboard ("Commercial Off The Shelf Unit")
- 2. Brassboard (Proof of Concept Model)
- 3. Design Verification and Test Unit (DVTU) (Engineering Model)
- 4. Training Unit
- 5. Qualification Unit (Pre-Production Unit)

Even these fundamental prototypes can have double and triple uses; e.g., a DVTU might be used as a Qualification Unit and/or Back-Up Flight Unit. Obviously, computer simulation might even be used for some hardware to eliminate the need for the lower level prototypes. (Hopcroft, 1988) Definitions and conventional uses for these units are as follows:

BREADBOARD: A breadboard is the first experimental combination of hardware, and in some cases software, developed in a sequence of progressively more complex prototype units. It may consist of a group of standard test equipment, together with various experimental circuits. It is used to demonstrate a concept and to investigate or optimize various functions. Most digitial and some analog circuit development is suitable for computer simulation rather than hardware experimentation.

BRASSBOARD: A brassboard is a hand-crafted prototype unit which usually incorporates all electronic elements of the final article. Its configuration allows assessment of effects such as mutual circuit interactions and distributed capacitance. Realistic computer simulation of this evaluation unit is difficult to achieve. This prototype is particularly useful in the evolution of radio-frequency and high speed digital systems. It is often the first opportunity to confirm anticipated interface compatibility.

DESIGN VERIFICATION TEST UNIT (DVTU) OR ENGINEERING MODEL (EM): This prototype may be called either name. It is essentially identical, both mechanically and electrically, to the flight article except that it is assembled with commercial, rather than highreliability, parts. All design changes should be incorporated and evaluated on this unit. Compatibility, software performance, and all functional tests should be accomplished with this prototype. It should also be subjected to extensive environmental tests. One of the most valuable aspects of the DVTU or EM is that it normally allows methodical analysis of the device and completion of all design changes prior to the activation of rigorous formal SRM&QA documentation procedures necessary for all subsequent activities.

QUALIFICATION UNIT: A qualification unit is the highest quality prototype. It is absolutely identical to the flight hardware and software in every respect. Ideally, it is reserved for formal testing which verifies that the system or device meets all requirements and specifications. Normally this system is not flown since it has been exposed to higher than flight environmental test levels. The exception is in a protoflight program where only one flightconfigured article is built, qualification tested, and flown. Every aspect of the life of this unit is under strict procedural and documentation control.

3

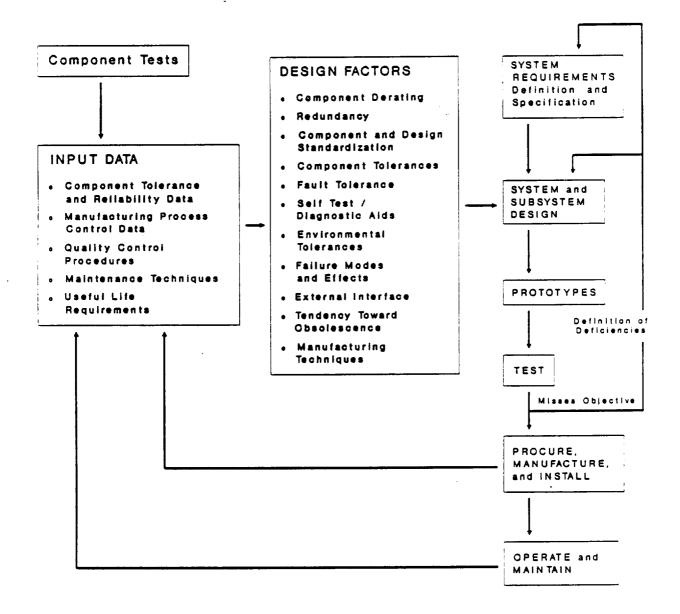
MOCKUP: Mockup units are not operational prototypes but they demonstrate some particular attribute of the flight article and thereby provide valuable support in design and application testing. Typical evaluation activities include thermal and cooling tests, mass distribution tests, mechanical interface tests, and human factors evaluations.

PROTOFLIGHT MODEL: (PFM) Under the protoflight concept, only one unit is built using flight standard high-reliability parts. This protoflight model combines the normal prototype and flight models in some cost-critical applications. The protoflight model should be preceded by a development/engineering model in order to allow completion of all changes and engineering tests prior to fabrication of the qualification/flight unit.

TRAINING UNIT: A training unit is a prototype article which is normally dedicated to flight crew training. It should be physically and functionally like the flight articles. In some cases, the engineering model is used for this purpose. Nominal control procedures apply to the unit unless it is designated a flight or spare unit, in which case stringent SRM&QA procedures will apply.

The overriding reason for constructing engineering prototypes is to provide "early warning of potential operational problems." (Machol, 1965). Other primary reasons are as follows:

- 1. Verify that operational performance meets design specific specifications
- 2. Determine the effects of extreme environments
- 3. Assess reliability for extended periods of operation
- 4. Determine the effects of component tolerance and variability on overall system performance


Some of the secondary uses of prototypes are as follows:

- 1. Train operators and maintenance personnel
- 2. Demonstrate system performance to users and management
- 3. Debug system interfaces and software
- 4. Evaluate the EMI emission and susceptibility

4

Figure 1.1-1 is a diagram which illustrates the role of prototypes in the system disign process. The importance of a strong prototyping program to the successful completion of an iterative design program is obvious.

ROLE OF PROTOTYPES IN THE SYSTEM DESIGN PROCESS

[From Machol, 1965]

1.2 PURPOSE

The objective of this study was to define the factors which space flight hardware developers and planners should consider when determining:

- 1. Number of hardware units required to support program
- 2. Design level of the units
- 3. Most efficient means of utilization of the units

The analysis considered technology risk, maintainability, reliability, and safety design requirements for achieving the delivery of highest quality flight hardware. Relative cost impacts of the utilization of prototyping were identified.

1.3 METHODOLOGY

Numerous sources of information on the utilization of prototypes for the development of commercial hardware, space flight, research hardware, and industrial hardware have been surveyed by literature searches, personal interviews, and telephone interviews. The following sources provided a significant input for this study:

- 1. NASA past experience (Skylab, Spacelab, etc.)
- 2. Similar Shuttle requirements/experience
- 3. Experience of other programs (JPL Deep Space, communications satellites, DOE, etc.)
- 4. Industrial experience (medical implants, downhole instrumentation, etc.)
- 5. Space Station requirements already defined
- 6. Software development experience of similar programs

Case studies of past and present NASA hardware development experience have supplied considerable information describing the proper use of prototypes in the research hardware development process. The following NASA Life Sciences hardware programs provided insight into the prototype development process:

Blood Pressure Measuring Unit	(BPMU)	
Blood Pressure Measuring System	(BPMS)	(Skylab)
Physiological Measuring System	(PMS)	

7

ElectromyographSignalConditioner(EMG)ElectrocardiographSignalConditioner(ECG)MinicentrifugeBodyMassMeasuringDevice(BMMD)GasAnalyzerMassSpectrometer(GAMS)CassetteDataTapeRecorder(CDTR)SkylabRefrigerator/FreezerOrbiterRefrigerator/FreezerBaroExperimentNeckCuffLSLEMicrocomputerMicrocomputer

Large quantities of telecommunications equipment have been developed by NASA/JSC and supplied as GFE to the manned space flight programs. This equipment is similar in many respects to the SBI hardware and the experience of these engineers and managers in GFE hardware should be of direct applicability to SBI. The following representative samples of this hardware were considered from the prototype development standpoint:

<u>Hardware</u>	Program	Proto. Method
DFI Telemetry	Apollo GFE	Shelf & Dev.
Lunar Comm Ry	Apollo GFE	New Dev.
AF Tape Player	Apollo GFE	Mod. Off-Shelf
TV Systems	Apollo & STS GFE	New Dev.
Signal Process	STS GFE	New Dev.
Teleprinter	STS GFE	Mod. Off-Shelf
Text & Graph	STS GFE	Dev/Shelf Tech.
Cabin Leak Det	STS GFE	Off-Shelf
Sir-C Payload	STS GFE	Off-Shelf Mod/ Internat'l. Dev.

Representative personnel from the following fields were contacted and supplied data and <u>opinions</u> for the study:

- 1. Manned space flight
- 2. Deep space flight
- 3. Geosynchronous communications satellites
- 4. Military satellites and undersea electronic devices
- 5. Military missile nuclear war heads
- 6. Medical electronic implants
- 7. Commercial communications satellites
- 8. Commercial undersea telephone electronics

9. Commercial nuclear power instrumentation

10. Oil industry deep hole instrumentation

The current NASA documents related to STS flight hardware and Space Station Freedom hardware were reviewed. Various electronic engineering databases were searched using combinations of key words; e.g., prototyping, modelling, simulation, systems, hardware, etc. The "Computer Database Plus" yielded the following numbers of citations for the listed key words:

Key Words	No. of Citations
Prototyping or Modelling	66
Simulation and Hardware	28
Computer/Simulation/Prototyp	e 4
Systems and Modelling	8
Systems and Simulation	295
Systems/Simulation/Hardware	16

These citations were all too general for direct utility to this study, except as statistical background. Good, vigorous analysis work pertaining to the effectiveness of prototyping in the engineering design process is scarce.

Algorithms and decision flow charts were synthesized which reflect the analysis of all of the data that were collected. These "road maps" simplify and organize the decision making process, but the raw data and opinions as summarized in the appendices of this report are the supporting documentation with additional details which cannot be adequately summarized in a few charts. The study utilized a consensus approach to gather and compile pragmatic data rather than approaches which are more inherently theoretical. The names and dates in parentheses that are contained throughout this report refer to the references of Appendices B and C.

It was found in the course of the study that a strictly numerical rating system would cause the user to lose sight of the overall system aspects. Thus, the use of more subjective inputs can retain the "common sense" reality of the output. For example, the political realities of the program cannot easily be quantified. Initially, it was assumed that the quantity and quality of prototypes required for any piece of hardware might be determined by some formula starting from "none." As the study progressed, it became obvious that the interrelationships were too complex to model in a meaningful, yet simplistic, algorithm. Future studies of this type should consider the use of artificial intelligence (AI) techniques.

Thus, the methodology was revised to specify the ideal quantity and quality of prototypes required and then to identify the factors (or "drivers") which would cause an increase or decrease in the actual, required, prototyping activities. Attempts were made to separate engineering requirements from programmatic requirements; however, clear-cut distinctions could not always be made.

1.4 SCOPE

The development of Space Biology Initiative research hardware will involve intertwined hardware/software activities. Although the purpose of this study involved analyzing hardware, the software development impact must be considered and included in the analysis. Experience has shown that software development can be an expensive portion of a system design program. While software prototyping could imply the development of a significantly different end item, an operational system prototype must be considered to be a combination of software and hardware.

In the course of this study, hundreds of factors were identified that could be considered in determining the quantity and types of prototypes that should be constructed. In developing the decision models, these factors were combined and reduced by approximately ten-to-one in order to develop a manageable structure based on the major determining factors.

The Baseline SBI hardware list of Appendix D was examined and reviewed in detail; however, from the facts available it was impossible to identify the exact types and quantities of prototypes required for each of these items. Although the factors that must be considered could be enumerated for each of these pieces of equipment, the exact status and state of development of the equipment is variable and uncertain at this time.

2.0 FINDINGS

Examination of the SBI hardware development program and extensive discussions with experienced hardware developers both inside and outside NASA have disclosed a number of areas of concern common to all of the developers. The regularity with which the same problems surface in a variety of diverse programs indicates that they will recur during SBI hardware development. Solutions utilized by those interviewed are, in many cases, suitable for inclusion in this program from the beginning in order to preclude or minimize these predictable difficulties. The following sections discuss the identified problems relative to prototyping and their influence on hardware development. They also suggest solutions which are tailored to the SBI equipment development and procurement program. The findings of this study are presented as an assessment by consensus. Validation is also by consensus.

2.1 EQUIPMENT CATEGORIES

Previous programs have shown that SSF hardware systems will come from one of three sources: 1) Existing or modified flight rated hardware; 2) Adaptation of commercial off-the-shelf hardware; and 3) New design and development. Further, equipment will generally fall into one of two categories: 1) Experiment-unique, for scientific investigation; and 2) Operational, primarily for routine clinical tests, emergency usage, and some experiment support.

2.1.1 EXPERIMENT-UNIQUE EQUIPMENT

Equipment for experimental applications is intended to explore a particular phenomenon or group of objectives. Groups of standard operational equipment can be used, but customized special purpose equipment is more desirable in order to simplify configurations, increase probability of success, more efficiently use the crewperson's time, and increase precision.

With few exceptions, equipment in this class will be designed and developed specifically for its narrow field of investigaton. It is highly unlikely that any single piece of commercially available equipment can be adapted to perform the function, though several pieces of commercial hardware might be combined with new elements into a single, unique test system. Development of such a system, together

C.4

with the other aspects of a research program, would normally be under the supervision of a scientist (Principal Investigator).

2.1.2 OPERATIONAL EQUIPMENT

This equipment is used, singly or in groups, for numerous applications which include vehicle/crew operations, health maintenance, emergencies, performance monitoring, or experiment support. It may be derived from modified flight or commercial offthe-shelf hardware or it may be custom designed. It will not normally be under the cognizance of a principal investigator but rather managed as a single item or group of instruments.

2.2 ADAPTATION OF COMMERCIAL OFF-THE-SHELF HARDWARE

In some cases commercial equipment exists which offers capability near that required for the space hardware. If a number of considerations related to the product and manufacturer are favorable, its adaptation can be a cost-effective and efficient method of obtaining the desired capability.

If executed or managed poorly, however, this approach can result in a very expensive, unreliable array of patches on top of patches. The preferred approach is to repackage as little as possible and to make fundamental mechanical or circuit redesigns only when absolutely necessary. If drastic changes are required, then the wrong unit has been selected for modification or a complete new design from "scratch" should be reconsidered. Since continuation of a modification program beyond a critical point leads so certainly to trouble, some mechanism should be built into the technical monitoring process which will trigger an automatic change to a new-design program. The inertia to continue such a program is tremendous. The management procedures should make it necessary to justify continuation rather than to justify a new start. The following cases, based on good and bad experiences, should be studied for their lessons in planning and implementing such a program.

Examples of very successful modifications are the Mini Oscilloscope (JOO1), which required a different power supply, and the Automatic Blood Pressure System (ABPS), which required repackaging. Both of these devices followed the rules of using highly qualified, modification-experienced, personnel and incorporating a minimum of

fundamental system changes. Unsuccessful adaptation efforts are numerous. The adverse experience in NASA and industry has been so costly in dollars or reputation that some of those involved have either moved on to other activities or refuse to discuss the problems unless the project names are not mentioned. (Buckley,1989; Evans,1989; Richards,1989)

2.2.1 MCOTS POTENTIAL CONTRIBUTION TO RELIABILITY

Proper use of commercial, off-the-shelf hardware can contribute significantly to the operational reliability of that SBI hardware which properly fits into a MCOTS program. Hardware that has been manufactured and distributed in quantity over several years has accumulated huge numbers of operational hours of experience. This database allows the manufacturer to reduce marginal designs and to factor component tolerances and selection into the product. This type of experience is usually lacking in hardware uniquely designed for space flight. The operational reliability demonstrated in the automotive and appliance industries, for example, has never really been achieved in equipment designed for limited distribution. This difference in experience occurs in spite of the fact that highreliability components and rigorous design procedures are followed in some of those limited-distribution industries. Perhaps, each of the units that were manufactured and distributed commercially might be considered a prototype. Thus, the customers/consumers became the testers of numerous prototypes. This huge experience base of information is difficult to capture or duplicate by building a total of only four or five units.

This seemingly enigmatic experience can also be elicited from the various companies that attempted to make commercial products from medical hardware developed for the space program in the decade of the 1970s. In general, these companies found that commercial versions of the high-reliability equipment designed for space flight demonstrated disappointing operational reliability when manufactured and distributed in quantity. The existing "lower stateof-the-art" medical monitoring equipment that had been on the market for several years was significantly more reliable on an operational basis than the new-technology, high-reliability designs which had been proven extensively in theory and had even undergone full qualification testing. It was only when this hardware was produced in quantities over several years that it established an

operational reliability that was even of the same order of magnitude as the older commercial-off-the-shelf hardware.

Thus, one has to consider the subjective, informal prototype experience behind commercial-off-the-shelf equipment. A company that responds to its user's complaints and has mechanisms in place to change design, manufacturing ttechniques, procedures, and components based upon the ooperational experience of its customers can produce a superior product that is thoroughly "debugged." In evaluating commercial-off-the-shelf hardware, the huge numbers of "hidden prototypes" must not be forgotten or neglected. (Schulze, 1989)

2.2.2 MCOTS TECHNICAL SKILL REQUIREMENTS

The process of modifying commercial off-the-shelf equipment for use in a manned space program should be undertaken only by skilled engineers and technicians who have successfully performed this analysis and modification numerous times. There is a pronounced learning curve which is very demanding of newcomers to this activity. Well-developed engineering skills are required to determine the suitability of the existing system design, circuit implementation, component selection, interface compatibility, software design, etc. Related engineering experience is required to grasp fully the subtleties of a complex design, especially where the documentation is limited. Use of custom integrated circuits and sophisticated embedded computer functions add greatly to the skills required to identify the implications of modifying and applying a device in some way other than that intended by the original designer.

The use of COTS equipment generally requires careful assessment and evaluation of the following:

- Performance versus requirements
- Safety
- Capability to function in zero-g
- Materials compatibility (flammability, outgassing, shelf-life, etc.)
- Environmental qualification (vibration, shock, temperature, pressure, etc.)
- Weight and volume

In addition, special insight into the logic and procedures involved in FDA approval of medical equipment is needed to avoid invalidation of the extensive experience base inherent in commercially available medical products.

Practical experience and detailed knowledge of technical programmatic requirements is essential to assess the more mechanical attributes and limitations of a candidate for modification. The scope of experience required ranges across diverse technologies which include human factors, power sources, cooling, non-metallic materials, mechanical robustness, and potential impacts of extremes of thermal, shock, and vibration exposures.

Scientific and medical flight hardware will be used directly by the astronauts and should receive thorough human factors consideration. Hazards to the crew and demands on their time must be minimized. It is desirable for human factors experts to participate throughout the project. Personnel with extensive experience in training a variety of crew persons can be of immense benefit to the program. Continuous consideration of typical crew demands can prevent additional changes later in the program.

The variety and subtly of required skills approach those of an "art", implemented with extreme attention to detail. Miscalculation or under estimation can lead to a domino reaction of one change causing another--and then another. (Evans, 1989; Richards, 1989

2.2.3 MODIFICATION CANDIDATE SELECTION

Selection of a suitable candidate for a modification program requires much more than picking a good piece of hardware. Consideration must also be given to a series of other factors. These typically include the match between a product's performance and the required specifications, the factory's ability and interest in providing support, the extent of required modifications, the potential for repair/maintainability, and the total cost for modification, application, and lifetime support.

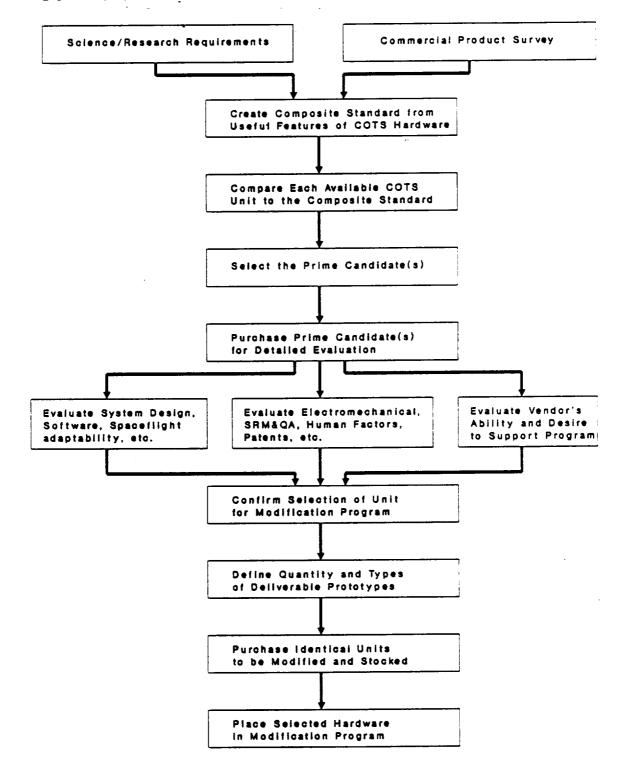
A selection process used successfully in the recent past by NASA for obtaining COTS medical and science related hardware incorporates the following steps:

- 1. Determine the useful performance features offered by each reasonable candidate unit available in the market.
- 2. Combine the most useful of these features into a composite-standard list of desired features.
- 3. Compare the capability of each candidate unit the optimum capability represented by the composite-standard list.

It is often useful to make a matrix which facilitates ranking the units numerically on each of the characteristics listed. This ranking, together with the evaluator's seasoned judgment, should provide a clear "best choice".

The single unit providing performance closest to the compositestandard becomes the prime candidate for selection. At this point, it is usually desirable to purchase the prime candidate and two or three close runners-up for further, detailed, examination.

Evaluation of each candidate should consider many factors, such as:


- Workmanship
- Robustness
- Internal element accessibility for repair/modification
- Human factors: location and feel of controls, displays, etc.
- Breakable glass or sharp edges
- Fundamental system engineering approach used
- Suitability of the circuit implementation
- Limits to fault propagation
- Test connectors or self diagnostic routines
- Quality, quantity, depth, and completeness of documentation for installation, operation and maintenance
- Software provided and availability of source codes and support
- Cooling technique and coldplate adaptability, if needed
- Power sources used and circuit overload protection
- Electrical, fluid, and gas interfaces
- Connector configuration
- Quantity and use or non-metallic materials
- Potential ignition sources, catalytic materials, etc.
- Hazardous materials mercury, ethylene dioxide, etc.
- Nonstandard, unreliable, hazardous, or obsolete parts
- EMI emission or susceptibility
- Measured performance against advertised specifications
- Mechanical configuration: size, weight, shape, mounting, etc.
- Dependence on 1G for proper operation
- Electromechanical and data/computer interfaces

In addition to the detailed evaluation outlined above, discussions with the manufacturer and a visit to his factory should reveal his willingness and ability to support the product throughout the phases of modification and application. Chances of success increase with his degree of professionalism which is often reflected in the quality of his documentation. A lack of genuine interest and ability on his part should automatically disqualify the unit from further consideration. (Evans, 1989)

It is necessary to determine whether the essential documentation describing electrical, mechanical and software code designs is proprietary. The status of patent activity may make essential information unavailable or create disclosure limitations with which NASA cannot comply.

The proposed steps in a procedure for selecting and purchasing COTS hardware for modification are shown in the diagram of Figure 2.2-1.

Figure 2.2-1 Procedure for Selecting and Purchasing Commercial Off-The-Shelf Hardware for Modification

2.2.4 QUANTITY OF UNITS TO PURCHASE

The number of units required will normally include those for redesign, engineering test, interface compatibility test support, qualification testing, training, flight, and spares. Additional units should be purchased, and stored at this time, for cannibalization to provide unique parts and parts which will become obsolete and unavailable during the program life.

It is imperative that all units to be modified in a MCOTS program be identical before modification, both physically and electrically. Several actions may be taken in order to ensure that all units are the same. The units purchased should be from the middle of a single, stable, production run. They should have sequential serial numbers, unless one has been rejected for technical reasons. The total number of units ever to be purchased should be obtained at this time.

All documentation describing theory of circuit and mechanism operation, operation and repair procedures, software codes, and operational programming procedures should be obtained at the time of the purchase and should accurately describe any revisions or modifications incorporated in the product received. (Evans, 1989)

2.2.5 WHO SHOULD DO THE MODIFICATIONS?

It is very important for the modification team to possess expert ability in many areas. In-depth knowledge of the system, circuit, and software operation is essential. The original designer has an obvious advantage over any others in making design changes in these areas. It is, therefore, desirable for the designer to work with the NASA modification team if he or she is still employed by the manufacturer and if the manufacturer is cooperative.

Experience has shown, however, that manufacturers usually are not sufficiently familiar with many of the other requirements to be met for manned space flight. The experienced NASA modification team is in the best position to handle the engineering of other modifications beyond circuit and software changes.

Normally, a manufacturing facility is configured for production rather than for custom modification of hardware. While each situation must be judged separately, it might often be better to make the actual physical modifications in a NASA prototype shop or in a

private facility specializing in custom modification and fabrication. Organizations which develop specialized equipment for the military often have the necessary facilities, organization, and space-oriented knowledge.

The Shuttle teleprinter development is an example of a combined effort by a manufacturer and NASA. The apparatus was derived from a production millitary device. Honeywell pulled partially completed units from the production line, and made mechanical modifications in their model shops. NASA/JSC personnel designed and fabricated specialized interface electronics. NASA model shops fabricated a mechanical interface to a standard spacecraft locker. Qualification testing was performed in JSC facilities.

The teleprinter project demonstrates the cost and time-saving potential of modified off-the-shelf hardware. This six-month program (time from authorization to flight) provided the selection, design, modification, testing, qualification, and delivery to KSC. The equipment involved were electronic breadboards, a DVTU, a qualification model, four flight articles, GSE, a ground terminal and interface boxes. The cost was perhaps 25% of a new development from "scratch." The program success can be attributed to the excellent military product history and a highly motivated team with a full-time, dedicated manager who was personally challenged. (Evans, 1989; Richards, 1989)

2.3 NEW DESIGN AND DEVELOPMENT

2.3.1 GENERAL FINDINGS

The alternative to adaptation of existing hardware is the design and development of a completely new device or system. This approach, typical for experiment-unique equipment, allows the configuration and performance to be matched exactly to the task. It affords the opportunity to automate test set-up or configuration, calibration, operating procedures, data acquisition, calculations, and interpretation of results. Comparisons must be made to determine the extent of automation appropriate in each case.

In new designs, use may be made of common, interchangeable, functional modules. If these elements are to be compatible with other hardware systems, then it is imperative that a systems engineering approach be applied to all hardware involved. Special care must be exercised in engineering, procurement, and technical management unless the common elements have been fully flight qualified before they are mandated for multiple usage.

Many tens of millions of dollars worth of GFE flight hardware has successfully been developed for manned space flight programs from Apollo through Shuttle using the following procedure as described by Sinderson (JSC,TCDD). The procedure is similar to that used for Life Sciences and other experimental and operational hardware.

A Representative Procurement, Qualification, and Maintenance Procedure

1. A document was generated which set down a preliminary set of requirements and interfaces.

2. A review was held including representatives of flight crew operations (users); project/program offices (funders); subsystem manager; supporting and interfacing groups such as hardware integration, payloads, and network communication (GSFC); reliability, safety, quality assurance, and integration/compatibility testing laboratories; and the engineering group designing and providing the hardware. Out of this review emerged a set of requirements which provided the best combination of capability, simplicity, cost effectiveness, SRM&QA, and potential for accommodating future needs. The resulting information was formalized in a document which became the basis for the subsequent engineering development, the specifications and the interface control document.

3. A buy-or-develop decision was made based on a thorough review of available hardware/techniques and in-house evaluations of candidate off-the-shelf devices.

4. If a suitable device was in production, the specification was adjusted and a MCOTS (modified commercial off-the-shelf) procurement program was initiated. Some modifications were accomplished within JSC while the manufacturer was willing and equipped to modify other products to accommodate special requirements such as selection or elimination of nonmetallic materials, reduction of weight, addition or elimination of some features, and incorporation of special testing.

5. If development was required, a program of in-house work was begun which included breadboarding critical elements, competitive evaluation of algorithms, system simulation, and extensive testing of candidate techniques in a fully integrated spacecraft and ground configuration. The in-house investigation and findings were completely documented and very detailed specifications and test criteria were prepared.

6. A competitive, often firm-fixed-price, procurement was initiated. Vendors were invited to propose implementations using the best and most cost-effective circuit and hardware techniques utilized in their facilities. The well-documented in-house NASA work eliminated vendors' concerns about potential expensive complications and produced a sufficiently high level of confidence to warrant minimum dollar, fixed-price proposals even where extensive development was involved.

7. The insight gained (and the definitive interface control documentation developed) during the in-house work provided an outstanding degree of integration compatibility of the delivered product.

8. Complete environmental test equipment was available in the JSC engineering laboratories, allowing qualification testing to be done either there or in the vendor's facility.

9. Complex maintenance and repair work was usually done at the vendor's facility. Spare parts and kits of parts for additional builds were maintained both in bonded storage at JSC and at the vendor's facility, since a limited number of units were produced and there was the possibility that critical components would become unavailable.

10. Hardware refurbishment and preparation for flight were accomplished at JSC while vehicle installation was done at KSC.

A highly successful variation of the above procedure involved a twostep approach. In the first phase, a contractor or in-house engineers researched the design prospects and built a proof of concept model which demonstrated the concept and its growth potential to management for programmatic approval. The second phase incorporated a separate hardware development program as described in steps 1-10 above. A highly successful example of such a

two-phase program was the LCRU (Lunar Communication Relay Unit) which sent live television directly from the Moon to Earth under the real time command of an operator in the JSC Mission Control Center.

The following sections provide additional information related to the procedural steps above. The information is derived from a consensus of the individuals providing the experience data base.

2.3.2 **REQUIREMENT DEVELOPMENT**

There apparently exists some disagreement over the semantics of a requirement versus a specification. A reasonable understanding can be obtained by considering a "spectrum" of specificity. One end can be defined as a requirement and the other end as a specification. Although they deal with the same essential elements, they vary in degree of specificity. For the purposes of flight hardware development, it is appropriate to define a requirement as a broad statement of the need, one which describes the capability or the functions to be provided and the circumstances under which they will operate.

Conversely, a specification describes precisely the capability, the method of providing it, the exact details of the environment and resources, as well as the test methods and acceptable limits by which the performance will be confirmed.

A special challenge exists in the clarification of requirements in science and medical-related hardware development. There is a perception that many scientists and engineers view requirements, specifications, and developments so differently that there exists a fundamental communications problem. Deliberate action must be taken to bring the scientists (who have the need) and the engineers (who will fulfill it) together in a cooperative relationship which will foster creativity, productivity, and quality. Though the personnel may report to different organizations, it should be possible to create a spirit which bonds them as a team, stimulating communication while defining responsibilities and expectations. The result can be a synergism of creativity and energy which allows sharing successes as well as failures. The team, probably best moderated by a senior engineering manager, should scrub the requirements until clear statements exist which properly describe the need without "gold plating." (Evans, 1989; Sinderson, 1989)

2.3.3 TECHNIQUE AND APPROACH RESEARCH

With a clear statement of the requirements in hand, the team can methodically explore for the best theoretical and practical methods for solution of the basic problem. This may well include laboratory evaluation of various techniques, algorithms, etc.

A survey of the market place can reveal which of the theoretical methods are being used commercially. Examination of the equipment in use in the field will reveal the ease of application, reliability, accuracy as well as subtle problems in the man/machine interface.

A 'Phase A'' study by specialized experts in the field has been productive in many instances. The refinement of in-house expertise which occurs in this process is invaluable in implementing the actual hardware development.

A well-defined approach, which utilizes the in-house information, perhaps augmented by experience with laboratory hardware, can be formulated. Good documentation from this work serves to inform management of technical details, to help secure funding, and to dispel apprehensions of potential bidders concerning the difficulties and unknowns in building the article. Experience has shown that the technique can sufficiently satisfy bidders to result in firm-fixedprice contracts, an excellent control of costs.

2.3.4 SPECIFICATION DEVELOPMENT

The ground work described above results in the insight and detailed information needed to generate a thorough, detailed, specification. Few things have more value in cost effectively obtaining excellent prototype hardware than a good specification. A major cost-cutting aspect of a well-developed specification is its ability to avoid technical changes and disputes over test methods and tolerances.

2.3.5 TECHNICAL MONITORING

The technical monitor should be a prime member of the NASA engineering team. He is the only person other than the procurement officer who can give direction to the contractor. All of his direction must be of a technical nature and must be within the scope of the contract. Changes of scope alter the contract's dollar value and must be negotiated by the contracting officer only.

The development of some medical experiment hardware for Skylab used a manufacturer's expertise to substitute for the Phase A and team activity described above. In these cases, the PI acted as the technical monitor. Breadboards were moved from the contractor's to JSC's laboratories where testing with human subject was done. A high degree of cooperation was achieved and high-quality equipment resulted. The need for JSC in-house work is greater now because there are very few appropriate manufacturers remaining with both medical and space flight hardware experience. NASA must take the technical lead in cultivating an industry support base.

2.3.6 ANALYSIS AND REVIEW

In addition to the pre-procurement analyses discussed above, many other areas of design analyses exist which may potentially add to the assurance that the prototype and flight system will be safe and reliable. The following list identifies many elemental analyses from the conceptual, preliminary, and final design phases. The size, criticality, sophistication, and specific end product of a development program determine which items are appropriate.

- 1 Conceptual design phase
 - a. Preliminary hazards analysis
 - b. Preliminary failure modes and effects analysis (FMEA)
 - c. Reliability allocations
 - d. Conceptual design review
- 2. Preliminary design phase
 - a. Preliminary hazards analysis (update)
 - b. Preliminary FMEA (update)
 - c. Reliability allocation (update)
 - d. Common cause failure analysis
 - e. Redundancy techniques/standby
 - f. Preliminary fault tree analysis (FTA)
 - g. Stress/strength analysis
 - h. Configuration optimization technique
 - i. System design review (PDR)
- 3. Final design phase
 - a. Hazards analysis
 - b. FMEA
 - c. Reliability predictions
 - d. Breadboard, brassboard, mockup, & engineering modes tests
 - e. Critical design review (CDR)

- f. Qualification tests
- g. Equipment design reviews
 - Changes
 - Data requirements
- 4. Post-Production phase
 - a. Verification
 - b. Certification
 - c. Flight Readiness Review (FRR)

Obviously, guidance by an experienced technical monitor is essential to keep most manufacturers out of bureaucratic trouble. The need for some programmatic requirement simplification to achieve affordable reliability is addressed later in this report.

2.3.7 TEST AND EVALUATION OF ENGINEERING MODEL

This unit, similar to the flight unit except for its construction with commercial parts, is perhaps the most important of all prototypes. It receives all changes and every type of test, usually to levels exceeding flight and qualification. As a result, there should be no need to make any changes whatever to the qualification or flight units. There is more known about this unit than any other--ever. By subjecting it to higher than the qualification level in every test, it is possible to define the margins of physical and electrical performance for the flight articles. The engineering documentation developed on this unit should be complete. Under normal circumstances, the extremely rigorous SRM&QA documentation begins after this unit. With all problems solved using the engineering model, it should be possible for the qualification and flight units to move on through assembly and test without any negative documentation.

2.3.8 FABRICATION OF TRAINING AND QUALIFICATION UNITS

The training unit is normally the last of the units to be built under prototype conditions and controls. It should be configured and operated very much like the flight articles. The primary difference is that it is normally built with commercial quality parts. In some instances, there is a desire for it to serve as a flight spare. If that is the plan, it must be built identically to flight units and under the same controls and documentation. This arrangement can be undesirable since its primary training use would be very restricted and encumbered by operating limitations, required presence of inspectors, and documentation. The original objective, to reduce costs, could easily be lost in the "red tape."

The qualification unit is usually the first item off the flight article assembly line. This is desirable since it truly represents the flight article. However, if it does not pass qualification tests, the flight articles built along with it must receive the same modifications that it receives.

2.3.9 FLIGHT HARDWARE PRODUCTION

"Production", when used to describe flight hardware is perhaps a misnomer since there are so few units built. It does imply the correct impression that such units are the highest quality and best documented units available. Full SRM&QA (suitable for the criticality class) imposed.

2.3.10 SPARES, REPAIR AND MAINTENANCE PROGRAM

Information gained in the prototype analysis and testing program adds to the original criticality definition to confirm the planning basis for this activity. The specifics of the spare parts inventory are driven by the design and flight application. Detailed drawings, schematics, software source/debug codes, adjustment/allingment procedures and perhaps an "expert system" for trouble-shooting and repair are all forms of documentation which must be obtained at the time of design and fabrication. Shuttle experience has shown that economy here is very short-sighted. If it is possible at all, later reconstruction of this information is extemely expensive. (Sinderson, 1989; Richards, 1989)

2.4 DETERMINATION OF PROTOTYPE/FLIGHT QUANTITIES

2.4.1 CONCEPT OF DETERMINATION METHOD

The many factors which influence the required number of prototypes have been combined and arranged into a logic flow with three fundamental steps. The logic moves from an input of hardware requirement definition, through 1) risk classification, 2) implementation plan outline, and 3) quantity adjustment, to emerge as the quantity definition output, as shown below.

(INPUT) HARDWARE REQUIREMENT DEFINITION

RISK CLASSIFICATION

IMPLEMENTATION PLAN OUTLINE

QUANTITY ADJUSTMENT BY DRIVERS

QUANTITY DEFINITION (OUTPUT)

2.4.2 **DEFINITION OF REQUIRED TERMS**

A clear understanding of the quantity definition method requires that several terms be understood. They are:

PAYLOAD CLASSES:

- Class A payloads are those for which a minimum risk approach is clearly dictated by prohibitively high cost of consequence of failure, or by unacceptable combination of costs and intangible factors associated with failure. A full formal qualification and acceptance program is mandatory.
 - Class B payloads are those for which an approach characterized by reasonable compromise between minimum risks and minimum costs is appropriate due to the

capability to recover from in-flight failure by some means that is marginally acceptable. The qualification and acceptance program is less stringent than Class A.

- Class C payloads are those for which re-flight is a possibility. This class was originally established for certain STS payloads where manifesting can accommodate a reflight in the event of an in-flight payload associated failure. Duration of payload operations for Space Station can be orders of magnitude greater than on STS, and the policies concerning routine re-flight on Space Station have not yet been established. On-orbit servicing may enable recovery from failure without the requirement for a separate flight opportunity. The qualification and acceptance program is less formalized than in Class B.
 - Class D payloads are those that have objectives worth achieving at a cost not to exceed the amount required for a single, low-cost attempt. The qualification and acceptance program is limited to verifying safety and interface compatibility.

(From OSSA Classification Instruction, 1988)

PROTOTYPE UTILIZATION:

- Conventional Development: A development program using a sequence of progressively more complex prototype units for each step from concept through engineering development and on to qualification testing.
- Protoflight Development: A procedure in which only one flight model (PFM) is built to flight standards with high-reliability parts. Some use this unit for development, qualification testing, and flight, ESA and others include an engineering moder (EM).

EQUIPMENT SOURCES:

• Modified Commercial Off-The-Shelf (MCOTS): Equipment in commercial production which, with modification, can be adapted for flight.

New Development: A development program starting from a "clean page", using either a conventional development or protoflight program, as appropriate.

2.4.3 OUTLINE OF PLANS

One of two development and prototype utilization plans is used. The plan selected depends on the class of the equipment (A and B or C and D). Each plan is designed around a different "reference" quantity of prototype equipment and a different degree of SR&QA rigor. Each plan is outlined below:

PLAN #1, a minimum cost approach for classes A & B:

- The number of units shown is the reference quantity and will be modified by the drivers. It is based on consensus.
- Analysis, reviews, SR&QA, and testing are rigorous.
- Engineering development is based on MCOTS or a new start.
- Use this reference quantity to support these functions:

Number of Units	Function Supported
1 - Brassboard	•Hardware and software design
1 - Engineering unit	 Design adjustments and tests System interface compatibility tests Software performance tests Testing - through qualification level All changes and fixes Mechanical interface tests EMI tests Human factors integration Confirmation of flight harness
1 - Qualification unit	•Qualification tests •Training
1 - Flight unit	•Flight (application may require more)
1 - Spare	•Flight

Repair and Maintenance Program (Quantity depends upon whether equipment is built from new-start or is MCOTS) If MCOTS Add 3 more units during purchase for cannibalization and/or for additional build. If New Start Buy parts for 2 complete kits plus buy selected critical parts. (a kit is all the parts, except chassis, required to build on unit)

PLAN #2, a minimum cost approach for classes C & D

- The number of units shown is the reference quantity and will by modified by the drivers. It is based on consensus.
- Analysis, reviews, SR&QA, and testing are less rigorous.
- Engineering development is based on MCOTS or a new start.
- Use this reference quantity to support these functions:

Number of Units	Function Supported
0 - Brassboard	•Use computer simulation to substi- ute for soft/hardware testing.
1 - Engineering unit	 Design adjustments and test System interface compatibility tests Software performance tests Testing - through qualification level All changes and fixes Mechanical interface tests EMI tests Human factors integration Training (change from plan #1)
1 - Protoflight unit	•Qualification tests •Flight
0 - Spare	
0 - Training	

Repair and Maintenance Program (Quantity depends upon whether equipment is built from new-start or is MCOTS)

If MCOTS:

Add 2 more units during purchase for cannibalization and /or for additional build.

If New Start: Buy parts for one complete kit plus buy selected critical parts. (kit is all the parts, except for chassis, required to build one unit.)

2.4.4 QUANTITY DRIVERS

A large number of additional factors which influence the quantity of prototype units have been combined and grouped into the items on the following list. The reference quantities in each of the two plans should be adjusted down or up in response to the applicability of these factors for each design project.

PROTOTYPE QUANTITY DRIVERS

IMPACT OF FAILURE

This factor allows adjustment for extremes of safety, unusually expensive interfacing apparatus, critical timing of coordinated events, excessive media coverage, etc.

TECHNOLOGY MATURITY

If, for example, the apparatus has been derived from a highquality commercial model which has been in broad use for a number of years, a brassboard might not be needed and less time might be spent refining the computer codes. On the other hand, a first-time application of a state-of-the-art technique will require the full complement of prototypes.

INTERFACE COMPLEXITY

Additional engineering models might be required for independent, simultaneous tests for a device with numerous complex interfaces.

DEGREE OF PROTOTYPE REUSE

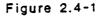
In some cases, it is possible to use prototype hardware for more than a single purpose. For example, it might be possible to utilize the engineering model as a training unit for an application where the program timing, regulations, and simplicity are favorable. (See Figure 2.4-2)

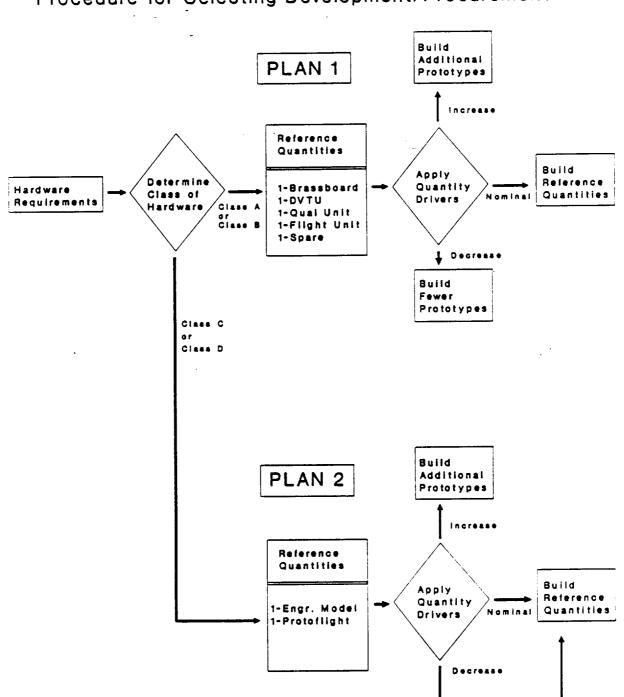
FLIGHT USE AND DURATION

Requirements for multiple simultaneous uses of a device will obbiously require more flight articles as will very long-duration critical applications where sparing is a factor.

APPLICATION LEAD TIME

Additional prototype articles can be required when the development program is very short. Simultaneous engineering development of hardware and software, multiple interface tests, and training at multiple sites can readily increase the prototype and TU requirements.


2.4.5 QUANTITY SELECTION PROCEDURE


Figure 2.4-1 brings together graphically all of the sub-elements which have been explained in the previous sections. A hardware class determination is made from the hardware requirements and the flow chart is entered from the left. Classes A and B are implemented by Plan #1 which delineates a set of prototypes to start with. On the right, the quantity drivers are applied, altering quantities down or up as described.

In similar manner, classes C and D utilize Plan #2. The drivers are applied to the plan's standard quantity to derive the numbers to be built. Since there is only one flight article, it is impossible to reduce that element further.

2.4.6 PROTOTYPE USAGE MATRIX

Figure 2.4-2 identifies various ways in which multiple use can be made of prototype hardware. In some cases special permission must be obtained to use the units as indicated. Special precautions are needed to safeguard the equipment and to document its various exposures.

Procedure for Selecting Development/Procurement Plan

Figure 2.4-2

SUMMARY OF MULTIPLE USAGE OF HARDWARE

HARDWARE UNIT	APPLICATION						
	Devel- opment	Engr. Tests	Qual. Test	Spare	Training	Flight	
Breadboard	x	X					
Brassboard	x	x					
Engineering Model	×	Х			×		
Qual. Unit			x	(X)	(X)	(X)	
Training Unit				(X)	X		
Flight Unit(s)						x	
Back-Up Unit(s)				×	(X)	x	

() Denotes special procedures and controls required.

Decisions regarding multiple uses are usually programmatic decisions which cannot be completely defined by technical factors. The cost savings in prototype deliverables is obvious if multiple uses can be made a part of the program plan.

2.5 RELATIVE COSTS

The relative costs (see Figure 2.5-1) of prototyping are dependent upon numerous and diverse factors. The major ractors impacting the incremental cost of the hardware development program are associated with the fidelity of the construction and the requirements for deliverability. The cost is influenced by such subtle factors as the accounting system used by the subcontractor; i.e., "Is engineering overhead or manufacturing overhead applied to the construction effort?" The expense to prepare and deliver prototypes on an expedited schedule can add to the cost of the program. If the prototype can be retained at the vendor's plant or if it can be built and delivered with other hardware, some cost savings can result from seemingly minor programmatic changes.

2.5.1 AFFECT OF PROTOTYPES ON PROGRAM COSTS

It is clear that each higher level of prototype is usually progressively more expensive. However, the managers of a number of programs have discovered (after the fact) that reducing the number of prototypes in a program does not necessarily reduce the program cost. In fact, there are numerous instances where the shortage of an engineering model has significantly increased the cost of R&QA documentation and manpower. Lost time in the engineering, environmental testing, and training areas can easily occur when equipment in not available when needed. A shortage of units for testing complex interfaces can easily cause testing delays in concurrent and adjacent projects where interface testing is scheduled.

The actual cost of <u>all</u> prototype hardware is very low when compared to the cost of the development program and the flight hardware. Numerous economies of construction are and can be practiced in the construction of prototypes, such as the use of commercial grade parts rather than expensive, high-reliability items. Breadboards and brassboards are also usually built without special enclosures and expensive connectors. The increased reliability associated with design maturity and the efficient utilization of design and test time

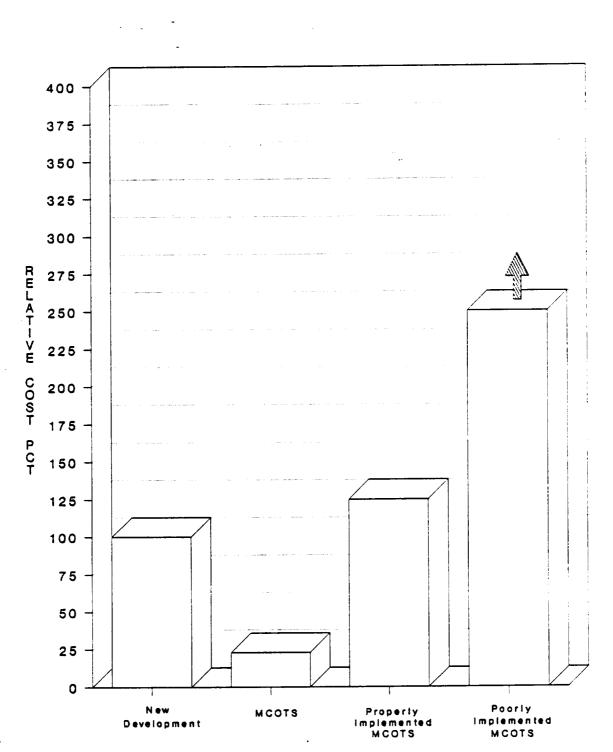


Figure 2.5-1 RELATIVE COSTS of DEVELOPMENT

made possible through assembly of adequate prototypes represent value to the program that can far exceed the cost of increased prototyping activity over the minimal amount required to deliver hardware.

If the technology is well-defined and a detailed end item specification can be written, then it is frequently possible to obtain a firm-fixed-price contract. In such a contract, there is normally no additional cost for some prototypes (such as breadboards), since these prototypes are an essential, inherent part of the design and development process. Thus, the cost of a breadboard does not necessarily represent and incremental cost to the program. This should be noted and accommodated by any cost models that use number of prototypes as an input.

2.5.2 COST OF MCOTS PROGRAM VERSUS NEW DEVELOPMENT

The relative costs of developoing equipment in a well-conducted MCOTS program may be kept to a total of about 15 to 25 percent of the cost of a full new development. It is possible that problems beyond the control of the engineering team will occur at some point during the program. If the MCOTS program is halted in a timely manner and a new development is efficiently initiated, the costs can be kept in the order of 125 percent of what a new development would have cost in the beginning. On the other hand, costs can ren several hundred percent of a new development if an MCOTS development is carried on for a long time beyond the optimum break point. These realtive costs are shown graphically in Figure 2.5-1. (Buckley, 1989; Evans, 1989, Land, 1989)

2.6 PARTS CONSIDERATIONS

Various component part problems in the U.S. have a major impact on the development of a prototyping strategy. They impact commercial, industrial, military, and NASA activities in many similar ways. Because of their complexity, the problems will be subdivided into those affecting high and then moderate reliability applications.

2.6.1 IDENTIFYING THE PROBLEMS

Maximum reliability applications: Criticality 1 and Class A applications demand that everything possible be done to ensure reliable operation. When the SBI equipment is deployed in

conjunction with the Space Station Freedom, the problem is compounded by the extremely long operational life requirements. Clearly the best parts obtainable are required for this application. Three major factors impact the availablilty of the desired parts.

First, the electronic component industry in the United States appears to be deteriorating rapidly. Many part manufacturers have ceased manufacturing operations in the U.S. Others have been sold to foreign interests and still others have moved off-shore. There exists no U.S.made source for many types of parts and for others there is no second source. Many uncertainties and unacceptable delays reduce the utility of foreign sources.

Second, the technology associated with many parts, especially integrated circuits, is changing very rapidly. New, improved products, are brought on-line continuously at a rapid rate. The older products are quickly dropped from inventory, as is the support for obsolete items. Typically, a new computer processor or memory chip now becomes obsolete in two to three years and support is dropped in another two. Some parts experts have observed that by the time an "S" part has been approved for NASA's qualified parts lists it is perhaps half way to obsolescnece and it will have been superseded by flight time. Many Shuttle systems contain parts which are obsolete and totally unavailable. Redesign is usually the only viable recourse. Electronics for the RMS arm, the main computers, the radar, and data recorders are but a few systems being redesigned at this time.

Third, NASA's quantity requirement is generally too small either to interest manufacturers in extending component availability or to warrant the expense of dedicated custom fabrication facilities. The high cost of qualifying a part for "S" rating, for example, tends to cause manufacturers to stretch availability.

Moderate reliability applications: The problems affecting highreliability parts apply equally to moderate-reliability applications as well. Some consolation in this area can be derived from noting that the quality of military and commercial microcircuits and certain other components has increased markedly. The large production quantities of some of these parts tends to keep them on the market a little longer. The extremely long operational life required for use on SSF introduces many problems with availability of repair components, even for moderate reliability applications.

2.6.2 CANDIDATE SOLUTIONS

Although there are few good solutions to these problems, several candidate solutions are listed below:

Maximum reliability applications: Many experts consider the following actions to be appropriate in an effort to achieve maximum reliability. Some of these are not exactly component solutions but are strategically associated with the desired objective.

- Use components and circuit designs which have a maximum
- of maturity or heritage, but which are not approaching end of useful life
- Use the highest grade of parts available (S)
- Use highly integrated devices in order to minimize the parts count and the amount of circuitry outside the device packages
- Configure all custom designed circuitry to facilitate computer testing
- Use extensive assembly and fabrication controls
- Refine the design by the proper use of prototypes and design reviews
- Utilize adequate engineering models
- Use extreme caution in 100% incoming component test to avoid subtle damage to components due to static charge, humidity in temperature cycle, contamination of leads by chemical contact with skin, etc.
- Store spares in an inert environment
- Avoid devices which are not hermetically sealed
- Consider possible radiation hardening for high density memories in applications subject to SEU ("single event upset" associated with high energy particles in space)
- Always include a mild random shake test with tests imposed on 100% of flight articles
- Analyze performance signature during test
- Stockpile spares
- Monitor spares
- Consider component DPA (Destructive Physical Analysis discussed below) with batch signature

Destructive Physical Analysis is the name given to a process which provides a complex signature for sectioned samples taken from a component production line. It detects subtle changes in the product generation process before more catastrophic problems develop. Allied-Signal Aerospace Company is one group who performs this test in conjunction with the Naval Weapons Support Center, Crane, Indiana. It is applied to components in various nuclear warheads and a broad variety of electronic devices and weapon systems.

The process allows detection of any change (induced by manufacturing variations) which has occurred in a device and which would cause it to be different in any way from the original qualification devices. "We have found this expecially useful with semiconductor products where the generating processes are complex and interrelated and initial changes in output performance are not readily detectable by other means. Once a semiconductor lot is qualified, destructive physical analysis samples are taken from all succeeding lots, which not only help detect subtle changes in the process, but also show lot-to-lot variations which make more visible the degree of vendor process control." (Wilson, 1989)

It is possible that the use of this or a related process could substitute for some of the testing and inspection involved in producing "S" level parts. The outcome might conceivably be equally reliable, but less expensive components, with much shorter delivery times. Information on the process is being provided to NASA/JSC and SR&OA for consideration.

Moderate reliability applications: The major reliability problems of custom-designed hardware, typical of that used in the space programs, are workmanship and design imperfections. In mass-produced products, where these problems have been gradually refined out, the problem of component part reliability becomes more obvious. Space hardware never has enough total operating time, with enough operational feedback, to reach this state. Therefore, while the reliability of components is important, the design and manufacturing techniques must be given an unusual amount of attention. These observations make it clear that commercial and military components are suitable for a great many SSF applications. The items listed below should receive attention when developing SSF flight hardware of moderate reliability:

- Achieve design maturity through use of proven circuits, devices, algorithms, and software together with extensive engineering testing.
 - Use an adequate number of engineering prototypes

- Use proven fabrication techniques and controls
- Use burned and tested Mil-spec. parts
- Stockpile kits of components for repairs or additional builds (store in inert environment)
- If item is MCOTS, stockpile parts and unmodified units for cannibalization in an inert environment
- Provide a liberal quantity of flight spares
- Consider a shorter replacement life cycle

In view of the complex part situation, it is anticipated that repair will become a serious limitation to the long service life of each item. It is suggested that consideration be given to a shorter replacement life cycle of perhaps five years or less. Such a period seems more consistent with the present and expected component obsolescence cycle time. This possibility should be given much more detailed study by qualified experts, since its impact on design and parts selection in prototype and flight hardware is very significant. (Goeke, Holt, Hymer, Ramsey, Wilson, all 1989)

2.7 PROGRAMMATIC REQUIREMENTS

The Space Station Freedom is a very complicated project and there must necessarily be a great many rules and regulations which must be strictly followed. These rules, which are referred to here as programmatic requirements, are contained in hundreds of documents containing tens of thousands of pages of details.

The details which apply to the development of prototype and flight hardware are distributed throughout a large percentage of the documents. Many of the rules have not been completed and contain numerous TBDs. It is not yet possible to define absolutely which of the incomplete rules apply to prototyping. There is no known document which summarized which requirements the designers of equipment such as SBI hardware must meet. By comparison, the STS program has succeeded in compiling such summaries, though the one applying to DTO/DSO was signed as late as March, 1989.

A major impact on the SBI of not having summary requirements documents is high cost. Every designer/vendor must adhere strictly to these requirements. In order to do so, each must possess an immense set of ever-changing documents and have an operating understanding of which rules he must follow. At the beginning of a contract, a binding legal document defines his regulatory obligation.

This situation is generally like that in any Government contract, except it is unusually extensive and continually changing. It is necessary that planners and designers recognize the cost impact of the technical and legal staff each contractor must access. Completion of the TBDs and some simplifying and summarizing documentation is necessary before cost effective SBI prototype development can begin.

The designer's problem can be better appreciated by a review of Appendix A which is a partial list of applicable documents. Many are still incomplete and others will be added to the list as they are defined. A file drawer of these documents as they now exist can be intimidating to a small vendor of SBI hardware.

3.0 RECOMMENDATIONS

The following recommendations are based on extensive inputs from industry and NASA's Life Sciences and Engineering personnel. The recommendations might be applied essentially to most of the laboratory equipment which will be flown and operated on the Space Station Freedom. They apply directly to the SBI equipment and in particular to the cost-effective use of prototypes in development of that equipment. Their desired impact is to: 1) keep costs down, 2) provide the necessary degree of reliability, 3) provide the functional capability required, and 4) ensure that the vendors are able and willing to participate in the associated development and production programs.

1. Use a systems engineering approach to integrate and coordinage development programs for SBI devices which are expected to share common hardware element designs. It is essential that the designs incorporate the common requirements. Further, the development of common elements must be complete and qualified/verified prior to imposing their use on other system designs. Failure of a mandated common element design could cause failure of other systems in which it was used.

2. Automate functions requiring higher levels of operator knowledge. Education and skill training can be cost beneficial in many systems. Incorporation of automation in any SBI hardware development program may have an impact on prototype quantities and utilization and should, therefore, be considered in the very earliest stages of planning and development.

3. Establish shorter use/life expectations for SBI hardware. By initiating a replacement development program at the four-to-five year point, costly problems may be avoided. Such problems include hardware/software obsolescence, loss of developer engineering support capability, loss of component manufacturing sources, increased failure rate of hardware approaching the end of its useful life, and the expense of stocking and tracking critical and obsolete parts.

4. Stress risk-reduction, not low initial costs alone, in the development of hardware for long-duration applications on Space Station Freedom.

5. Incorporate ways productively to combine science and engineering personnel in teams for generation of detailed flight hardware requirements and specifications and for management of the development programs. These diverse talents, frequently located in different organizations, must fully cooperate to evolve efficiently the necessary hardware capability.

6. Re-establish long-term, in-house expertise in flight equipment engineering, modification, application, and support. It has been repeatedly shown that strong in-house capability is essential in obtaining good reliable flight equipment at the lowest possible cost.

Generate integrated technical requirements documents. 7. Although excellent work has been done in the generation of the technical requirement documents which define SSF hardware development and its application, there are many TBDs remaining which must be clarified before SBI flight hardware contractors can begin their work. Serious consideration needs to be given to methods of simplifying the designers' task of properly applying these directives. Most manufacturers would be forced to incorporate a large staff, over a considerable period of time, to insure adherence to the thousands of applicable details. The cost for such a staff, (which must be added onto the actual hardware expense) would be significant. Small manufacturers, who comprehend the magnitude and seriousness of the problem, simply might not be able to bid on SBI development work for lack of staff experienced in reading and interpreting large stacks of specifications.

8. Examine the actual long-term reliability improvement due to the use of "S" level parts. Many factors in the U.S. component manufacturing industry have changed. Today's very rapid rate of electronic component obsolescence and the short period of availability (with technical support) demand careful attention to the effects on hardware development cycles, repair/maintenance, and logistics. Use of other MIL-specification levels, batch sample signature techniques, and more frequent redesign cycles are some factors which should be examined for potential solutions to long component procurement lead times and high program-life costs.

9. Develop mechanisms for indemnifying hardware and software development contractors. Rapid changes in U.S. litigation practices have made it almost impossible for small-to-medium-sized manufacturers of medical equipment to obtain reasonably priced

product liability insurance. Quoted insurance premiums may run several orders of magnitude more than the hardware costs. Large companies with an existing insurance "umbrella," covering many product lines, are able to obtain coverage at high, but manageable, costs. However, in many instances small specialized manufacturers are needed for their level of expertise, experience with development hardware, and their more acute interest in production of small quantities of customized prototype and flight hardware.

10. Standardize batteries and chargers. A recurring problem, obvious from a review of the SBI hardware list and common to adaptation of off-the-shelf hardware, is associated with the power source. Modern electronic hardware is frequently designed to utilize rechargeable batteries. More convenient and cost-effective use can be made of commercial off-the-shelf hardware if NASA can determine safe and acceptable methods which allow less restrictive use of rechargeable batteries. Utilizing conventional power sources can reduce the tests required in order to prove the performance of the power supply interfaces.

4.0 CONCLUSIONS

Prototype hardware development programs conducted by NASA and within various industries offer an experience knowledge-base which is very useful in establishing guidelines and procedures to be used by planners and developers providing future space biology research hardware. This study has been able to combine such knowledge with contemporary facts related to SSF regulations and component limitations to evolve information which should contribute to the success and cost efficiency of SBI hardware development. The following items summarize the major findings of this study for ease of application:

1. Prototype development programs may be subdivided according to: 1) type of application, 2) degree of reliability required (class), 3) availability of usable devices in the commercial market, and 4) the required useful life expectancy.

2. The numbers of required units and the development implementation methods may be determined using an algorithm described in Figure 2.4-1 and the associated text (Section 2.4) together with consideration of sets of "drivers."

3. There are two principal approaches to SBI hardware development that drive prototype development programs: 1) modification of commercial off-the-shelf equipment and 2) new development.

4. Each approach can be generalized with essential steps and hazards as identified in Sections 2.2 and 2.3.

5. Prototypes are needed to varying degrees in hardware and software development programs of every type.

6. Computer simulation can substitute, in some cases, for breadboard and brassboard prototypes.

7. Nothing can efficiently substitute for the design verification test unit (DVTU) or engineering model (EM) prototype.

8. The operational experience base of an MCOTS prototype program can enhance reliability due to product maturity and evolution from extensive user feedback.

9. Significant engineering design efforts and extensive prototype testing must be accomplished in a new-build development program in order to approach the maturity of an MCOTS development.

10. A MCOTS prototype development program can potentially provide a good flight article for a cost of 15 to 25% of a full new development program. If done poorly it can cost many times as much as a new development.

11. It is necessary to build a mechanism into an MCOTS program which will terminate the program and activiate a new build from "scratch" if problems exceed certain limits.

12. The actual cost of a full complement of prototype development hardware is very small compared to the development itself and the associated flight hardware. It is small also when compared to the impacts which can occur due to a shortage of prototype hardware.

13. For contracted development programs, some non-deliverable prototypes, such as breadboards, do not add cost directly to the program. However, additional <u>deliverable</u> units obviously add moderate cost the the program.

14. Currently, prototype development programs are impacted by the reduced availability of U.S. component manufacturers as well as the scarcity of potential subcontractorts experienced with both medical and space hardware.

15. Maintenance and repair of equipment in long-duration applications is severely impacted by the current high rate of component obsolescence, early elimination of inventory and termination of factory support. Thus, an abundance of component parts, spares, and prototypes should be purchased with the initial contract.

16. Because of the impact of parts obsolescence problems on SSF equipment, consideration should be given to a shorter planned useful life cycle of perhaps 5 years.

17. The major limitation to reliability in high-quality, massproduced equipment is component quality and the stochastic features of component tolerances.

48

18. The major limitations to reliability in high-quality equipment, produced in small quantities, are design imperfections and assembly/workmanship problems.

19. Since space flight hardware quantities are always small, major attention must be paid primarily to design and workmanship imperfections and secondarily to parts problems.

20. Class A equipment requires the highest reliability attainable. Therefore, maximum care must be applied to design refinement, workmanship, and component quality. In this case, Destructive Physical Analysis techniques being pioneered by DOD and DOE offer a potential for ensuring greater component consistency during component production runs continuing over long periods of time.

21. Prototype hardware development programs beginning from a new start can potentially make excellent use of modularization and commonality techniques. Special safeguards must be observed to prevent propagation of technical, schedule, and lifetime availability problems of the mandated module into each development program.

22. Prototype hardware development programs beginning from a new start are better suited than MCOTS programs for incorporation of automation techniques.

23. Exceptional NASA in-house technical knowledge and hands-on experience will facilitate increasing success in flight prototype hardware development and evaluation while providing conditions which yield developments at the lowest cost.

24. The interrelationships between the quantity drivers and other factors that should be used for the determination of the ideal quantities and types of prototypes that should be required of SBI hardware are too complex to model in a meaningful, yet simplistic, algorithm.

49

APPENDIX A

A PARTIAL LIST OF DOCUMENTS APPLICABLE TO SSF HARDWARE PROTOTYPING

ANSI/MIL-STD-1815A	Ada Language Reference Manual 22 Jan, 1983
ISO 7498/4	International Standardization Org.
JPL 86-14	The NASA Aerospace Battery Safety Handbook, 15 July, '86
JSC 31000	Product Assurance Requirements Volume 4
JSC SPEC M1	Specification Marking and Requirements Volume 4 4.9.1.1
JSC TBD	Space Station/NSTS Safety Identification, Vol. 4 2.1.4.1,2
JSCM 1700D	JSC Safety Manual, Vol. 4, 2.3
JSC 20527	Space Station EVA User Interfaces Design Guidelines Documentor 19 Nov. '86
JSC 20793	Manned Space Vehicle Battery Safety Handbook, Sept '85
JSC 21053	Space Station Program Payload Integration Plan
JSC 30213	Space Station Program Design Criteria and Practices. 15 Apr. '86
JSC 30233	Space Station Requirements for Materials and Processes 26 Nov. '86

A - 1

JSC 30237	Space Station Electromagnetic Emission and Susceptibility Re- quirements for Electromagnetic Compatibility, 1 Dec '86
JSC 30238	Space Station Electromagnetic Techniques (MIL-STD-462 amended)
JSC 30240	Space Station Grounding Standard
JSC 30242	Space Station Cable/Wire Design and Control Standard
JSC 30243	Space Station Specification, System Electromagnetic Compatibility Requirements (MIL-E-6051D amended)
JSC 30244	Space Station Software Standards Document
JSC 30245	Space Station Electrical and Electronic Material and Process Standard
JSC 30425	Space Station Systems Require- ment, Natural Environment Definition for Design, 15 Jan '87
JSC 31000	Product Assurance Requirements Volume 4
JSC 31011	WP-2 Master Verification Plan November '86
JSC 31013	Medical Requirements of an Inflight Medical System for Space Station, Revision A 30 Nov. '87
JSC 31016	FSE/OSE General Design Requirements, Nov. '86

A-2

JSC 31019	JSC Software Management Plan
JSC 31025	Acquisition Logistics Support Requirements
JSC 32015	Microbial Contamination
NSTS 07700	Space Shuttle Systems Payload Accommodations, Vol. 14, Revision J, 21 Oct. '86
KMI 1710.1	Safety, Reliability and Quality Assurance Program, Vol. 4, 2.1.6 and 4.1.3
MIL-HDBK-217	Reliability Prediction of Electronic Equipment, Vol. 4, 3.2.5.2
MIL-STD-105D	Sampling Procedures and Tables for Inspection by Attributes, Vol. 4, 4.11.1
MIL-STD-414	Sampling Procedures by Variables for Percent Defect, Vol 4, 4.11.1
MIL-STD-756	Reliability Modeling and Predic- tion, Vol. 4, 3.2.5.3
MIL-STD-970	Order of Precedence for the Selection of Standards and Specifications, Vol. 4, 3.3.2
MIL-STD-975	NASA Standard Electrical, Electronic and Electro-mechanical Parts List, Vol. 4, 3.3.1.2 and 3.3.1.4 and 3.3.1.6
NASA RP 1024	Anthropometric Source Book, Vol. 1 11 Nov., '86
NASA STD 3000	Man Systems Integration Standard Vol. 4, 21 Nov. '86

A-3

NHB 1700.1	Basic Safety Manual, Vol. 1A, 2.1.5 and 2.3 and 4.2.3
NHB 1700.1	System Safety, Vol. 3, 2.2.1
NSTS 07700	Space Shuttle Systems Payload Accommodations, Vol. 14, Revision J, 21 Oct. '86
SSP 30240	Space Station Grounding Standard Vol. 3
SSP 30257	Architectural Control Document Man-Systems: Revision B 15 June '88
NHB 1700.7A	Safety Policy and Requirements for Payloads Using the STS Vol. 4 2.2.2
SSP 30000	Product Assurance Requirements Section 9, Revision A 18 Mar '88
SSP 30309	Instructions for the Preparation of Hazard Analysis for the SSP Revision A, 15 Aug '88
SSP 30312	Electrical, Electronic and Electro- mechanical Parts Management and Implementation Plan for Space Station Jan '87
SSP 30233	Space Station Requirements for Materials Processing Vol. 4, 3.2.11
SSP 30234	Instructions for Preparation of FMEA/CIL For Space Station Vol. 4, 3.2.3
SSP 30309	Instructions for the Preparation of Hazard Analysis, Vol. 4, 2.2.3

SSP	30312	EEE Parts Management for Imple- mentation Plan Vol. 4, 3.3.1.1 and 3.3.1.7 and 3.3.1.8
SSP	30313	Space Station Reliability/Main- tainability Analysis, Vol. 4, 3.2.5
SSP	30423	Space Station Approved EEE Parts List (SSAEPL) Vol. 4, 3.3.1.2
SSP	30260	Architectural Control Document Communications and Tracking System Revision A,. Change 1, 5 Feb '88
SSP	30261	Architectural Control Document Data Management System, Revision B, Change 1, 19 Feb '88
SSP	30262	Architectural Control Document Environmental Control Life Support System, Revision B, 30 July '88
SSP	30263	Architectural Control Document Electrical Power System Revision B, Change 1, 19 Feb '88
SSP	30264	Architectural Control Document Fluid Management Systems Revision B, 15 Jan '87
SSP	30420	Space Station Electromagnetic, Ionizing Radiation and Plasma Environment Definition and Design Requirements, 15 Jan '87
SSP	30482	Space Station Electrical Power Characteristics, 5 May '87

APPENDIX B

PERSONAL INTERVIEWS AND OPINIONS

- 1. Aeivoli, Domonic; Program Manager for Commonality; General Electric Co., Philadelphia, PA. Telephone conversation covered wide range of flight hardware related subjects including: commercial communication satellites, earth resources (Landsat), and military satellites. Discussion included Protoflight type articles. He stressed that under all circumstances use of an engineering model prototype is essential.
- 2. Barnes, William J.; Design Engineering Manger, AT&T Technologies Systems: Burlington, NC. Mr. Barnes discussed use of prototypes in AT&T laboratory (was Bell Telephone Laboratory) development of guided missiles and commercial telephone equipment. He was unable to discuss exact details of under sea telephone signal repeater amplifiers for proprietary reasons. The laboratories utilize a large number of prototypes and extensive testing before building flight or commercial operational equipment.
- 3. Buckley, J.; Program General Manager, Science and Applications Programs, General Electric, Cherry Hills, NJ. Mr. Buckley discussed electronic parts problems and protoflight hardware programs. He described how program costs and schedules had been unfavorably impacted by lack of an engineering protoytpe model. His experience strongly demonstrates that it is essential to perform engineering development and thorough testing on prototype equipment prior to application of full R&QA formal documentation.
- 4. Burns, Frederick T., Jr.; Assistant Manager, Flight Support Equipment Office; Orbiter and GFE Projects Office Johnson Space Center. Mr. Burns provided extensive information on the rules, regulations, and procedures which must be complied with in order to fly equipment on the STS. He identified documents which greatly simplify and facilitate the process for hardware of certain types such as DTO and DSO programs.
- 5. Cubley, Dean, Ph.D.; Director of Engineering, Communications and Data Systems Associates, Webster, Texas. Dr. Cubley described how their company has been able to use computer

B-1

simulation in place of breadboard and brassboard prototypes in a protoflight development program. The single flight article will be used to conduct superconductivity experiments in space.

- 6. Evans, James S.; Technical Assistant, Life Sciences Project Division, Space and Life Sciences Office, Johnson Space Center. In two long and wide ranging meetings, Mr. Evans discussed many aspects of development programs for science and medical prototype equipment. He discussed both the good and bad experiences using the various techniques described in this study. He shared findings of a number of investigations he has conducted involving medical and science hardware used throughout all of NASA's manned space flight programs.
- 7. Fielder, George H.; Manager for Orbiter and GFE Projects; Safety, Reliability and Quality Assurance Office, Johnson Space Center. Mr. Fielder provided information related to the programmatic requirements imposed on flight hardware to be used on the Shuttle spacecraft. He also suggested individual persons to be contacted for specialized details and experiences.
- 8. Frey, Michael; Director, Mechanical Engineering; Intermedics Inc., Freeport, Tx. Mr. Frey's company is a world leader in the design and manufacture of implantable medical devices such as pacemakers and drug dispensers. Their products require the highest reliability attainable. He described their extensive and essential use of prototype development and test hardware. He described the effect of the parts availability problems on their company. It is now necessary for them to manufacture most of their components. With the exception of a few items such as batteries, they build all of their components including custom microcircuits and semiconductors.
- 9. Glanville, Roy W.; SSF Regulation Specialist; Reliability and Maintainability Division; Safety, Reliabililty and Quality Assurance Office, Johnson Space Center. Mr. Glanville provided an excellent insight into the documentation which will control every aspect of the design and application of flight hardware for the Space Station Freedom. He provided an understanding which allowed this study to identify the magnitude and complexity of the regulatory problem confronting any manufacturer wishing to design and build prototype and flight hardware for the SSF.

- 10. Goeke, Robert, Ph. D.; Center for Space Research, MIT, Cambridge MA. Dr. Geoke has had extensive experience in the design and fabrication of flight hardware for scientific investigations in space. Included are several pieces of LSLE equipment and astro physics payloads. He provided this study with much additional insight into the parts problems, the essential need for in-house design and hands-on hardware expertise, cost effective use of FMEAs, and many details which can boost reliability and flight article quantities while keeping costs at a minimum.
- 11. Graham, Olin L.; Section Head, Television Systems Section, Tracking and Communications Division, Engineering Directorate, Johnson Space Center. Mr. Graham provided details on prototype development programs, part problems, requirement documentation, and adaptation of commercial off-the-shelf hardware. Based on his extensive experience with flight hardware, he strongly recommended incorporation of numerous prototypes to achieve the greatest technical maturity possible.
- 12. Harlan, Charles S.; Director, Safety, Reliability & Quality Assurance Directorate, Johnson Space Center. The meeting with Mr. Harlan assisted in determining good contacts from which to obtain historical information. Part problems were discussed and he and his staff are interested in examining the potential benefits of Destructive Physical Analysis of semiconductor products.
- 13. Harris, Jackson D.; Technical Manager, Man-Systems Support, Lockheed Engineering. Mr. Harris assisted in understanding details of the Space Station Freedom programmatic technical requirements. Various subjects were discussed including which organizations and individuals could provide needed information on scientific instruments and their integration into SSF.
- 14. Holt, Aubry; Manager, Oil Equipment Systems Design; Smith International, Houston, Tx. Mr. Holt's company specializes in development and use of oil field instruments which operate under extremely adverse conditions of temperature, vibration, and pressure at the bottom of an oil well hole. Reliability is essential in their hardware. His insight into the parts problem, the use of development prototypes, and quality control testing contributed much pertinent new information.

- 15. Hymer, Robert L.; Manager, Nuclear Weapons Manufacturing Office, US Department of Energy, Albuquerque Operations Office, Albuquerque, NM. Mr. Hymer is responsible for nuclear weapons manufacturing in the United States and has an extreme interest in and understanding of reliable hardware development. He is an advocate of the use of numerous prototypes to develop device maturity before production. His insight into the parts problem led this study to the technique of Destructive Physical Analysis and the experts at Allied and Crane who perform it.
- 16. Kujawski, Peter; Chief, Re-Entry Systems, General Electric Company, Philadelphia, PA. Mr. Kujawski, who previously headed the GE Science and Applications Programs, is highly experienced in the development of reliable space flight hardware. He managed a massive protoflight program which produced the UARS (Upper Atmospher Research Satellite). His experience proves that it is extremely false economy to use too few prototype articles in a development program. He provided insight into the techniques of protoflight development.
- 17. Land, D. Kenneth; Chief, Tracking and Techniques Branch, Tracking and Communications Division, Engineering Directorate, Johnson Space Center, Houston, Tx. Mr. Land has extensive experience in all aspects of design and development of flight hardware. He has had notable success with modification of off-

the

shelf hardware. His identification of important details has contributed to the study.

- 18. Ramsey, Jim; Manager, Physical Analysis Laboratories, Naval Weapons Support Center, Crane, Indiana. Mr. Ramsey has a very great insight into all aspects of flight hardware reliability and production control. He contributed many details to this study. He and his personnel perform the Destructive Physical Analysis for DOD, DOE, and numerous private companies. They provided an understanding of the process and ways in which it may contribute to the SBI program.
- 19. Richards, Randall W.; Section Head, Command and Modulation Section, Tracking and Communications Division, Engineering Directorate, JSC. Mr. Richards has extensive experience in the development of GFE flight hardware. He is a strong advocate of ample prototype hardware. He assisted in understanding the

requirements placed on GFE flight hardware by the Shuttle program and clarified many points about the STS documentation tree. He provided very useful history of prototype development programs of all types.

- 20. Schulze, Arthur E.; Director, Biomedical Technologies Division; Lovelace Scientific Resources. Mr. Schulze provided some opinions on various aspects of designing and manufacturing medical and scientific equipment. During his career in the biomedical device industry, he has had the opportunity to optimize techniques for providing mature, reliable, hospital and space flight hardware. He has provided an historical perspective from the vendor's side of NASA's hardware programs which date back to the Skylab era.
- 21. Sinderson, Richard, Jr.; Section Head, Telemetry and Audio Section, Tracking and Communications Division Engineering Directorate, Johnson Space Center. Mr. Sinderson provided a myriad of facts describing the various methods by which NASA, JSC, has obtained much of its manned flight hardware from the time of Apollo on. His detailed procedures preserve much of the development technique for future developers to adapt for their needs.
- 22. Wilson, Burris G.; Engineering Manager, Kansas City Division Allied Signal Aerospace Company, Kansas City, Kansas. Mr. Wilson's organization performs many of the hardware development and manufacturing activities involved in equipping the nations weapons arsenals. He has provided information and contacts which have assisted this study in scoping the parts reliability problems. The Destructive Physical Analysis technique which he described is of interest to NASA's SR&QA personnel and will be explored by them for possible use by JSC.

APPENDIX C

BIBLIOGRAPHY

- 1. Arno, Roger (ed): <u>Life Science Research Objectives and</u> <u>Representative Experiments for the Space Station.</u> <u>Biological Research Project.</u> NASA Ames Research Center, Life Science Division, Advanced Program Office January, 1986
- 2. Evans, James S.: Memorandum SE3-1/88-011 to Chief, Life Sciences Project Division, NASA, JSC, 1988
- 3. Hopcroft, John : "Electronic Prototyping", <u>IEEE Transactions</u> on Aerospace and Electronic Systems, Vol. 24, No. 2, March, 1988, pp. 663-667
- 4. Juran, J. M.; Gryna, Jr., Frank M.; Bingham, Jr., R.S.: <u>Ouality Control Handbook</u>, McGraw-Hill Book Company, New York, NY, 1951
- 5. Lerner, Eric J.: "Finding Weak Electronics Links," <u>Aerospace</u> <u>America.</u> Washington, DC, April, 1989 pg. 50
- 6. Lion, Kurt S. : Instrumentation in Scientific Research, McGraw-Hill Book Company, New York, NY, 1959
- 7. Lowery, A.; Rivera, R. J.: <u>Device Good Manufacturing Practices</u> <u>Manual.</u> Third Edition, Publication HHS (FDA) 85-4179, Washington, DC, 1984
- 8. Machol, Robert E. (ed.) : <u>System Engineering Handbook.</u> McGraw-Hill Book Company, New York, NY, 1965
- 9. NASA Technical Memorandum 89188: <u>Life Sciences Space</u> <u>Station Planning Document: A Reference Payload for the</u> <u>Life Sciences Research Facility.</u> August, 1986
- 10. Taylor, Gerald R., Ph.D. (ed): <u>Space Station Freedom. Human-Oriented Life Sciences Research Baseline Reference Experiment Scenario.</u> NASA Johnson Space Center, October, 1988

C-1

- 11. Tillman, George: "Prototyping for the Right Results," Technology Forum, <u>DATAMATION</u>, April, 1989, pg. 42-45
- 12. Vaghi, S. : "<u>Hipparcos-Ready for Launch.</u>" ESA Bulletin 57, ESTEC, Noordwijk, The Netherlands, Feb., 1989

APPENDIX D

LIFE SCIENCES HARDWARE LIST

FOR THE

SPACE STATION FREEDOM ERA

M/H			UNIT HARDWARE		PARAMETERS
TEM	ITEM HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER
*		CODE	(cu. m)	(kg)	(watts)
8 MI	1.8 METER CENTRIFUGE FACILITY (1)				
SPE	SPECIMEN SUPPORT GROUP (1A)			•	
-	1.8 M Centrifuae	ပ	2.40	1100	1500
• •	Equinment Washer/Sanitizer	3	0.96	320	2500
1 0	Life Sciences Glove Box (Coov 1 of 2)	3	0.96	350	800
, -	Modular Habitat Holding System	U	0.48	200	500
r ư		ပ	0.10	50	550
ט כ	Drimate Modula	ပ	0.10	50	220
~	Rodent Module	ပ	0.07	40	230
BIC 8	BIOWASTE COLLECTION & MONITORING GROUP (2A) B Fecal Monitoring System (24 Hr) 0 I trine Monitoring System (24 Hr)	шш	0.12 0.20	25 60	50 50
BIC	BIOLOGICAL SAMPLE STORAGE GROUP (2B)				
0	Fraaza Drvar	3	0.07	19	140
	Freezer (-20 deg. C)	3	0.48	120	300
· ~	Freezer (-70 deg. C)	3	0.48	120	300
1 65	Freezer Cryogenic (-196 deg. C) w/ Snap Freezer	3	0.09	20	0
14	0	3	0.20	80	0
- L4		3	0 48	120	300

~

Page 1 of 10

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

			IINIT HARD	HARDWARF PAI	PARAMETERS
2 2	HARDWARE ITEM NAME	SOURCE CODE			POWER (watts)
# BIOLO	# BIOLOGICAL SAMPLE MANAGEMENT FACILITY (2), (con't)	-			
	(Je) allogy Julyshourd and thereas				
SAN	SAMPLE COLLECTION AND PHOCESSING GROUP (24)	c		a	C
16	Animal Tissue Biopsy Equipment	n c	0.03	0 .	
17	Blood Collection System	n j	0.02		
18	Centrifuge Refrigerated	3	0.15	40	450
0 0	Centrifine Standard Lab	ш	0.09	26	200
	Diaital Thermometer	3	0.01	0	34
	Digital Tribinionoco. Dana Administration Equipment	ш	0.01		0
2		C.	0.06	TBD	TBD
22	Electrotusion Device	0 0		4	C
23	Fixation Unit	n :	0.02	t 0	
24	Fluid Handling Tools/System	3	0.48	80	
- L - C	I aboratory Sciences Workbench	3	0.96	300	700
7 2	Laburatory Octomos Conv 2 of 2)	3	0.96	350	800
0 r 0	Missions Cystem (Staren Macroscone Subset, Coov	2	0.25	80	200
12			0.01	-	0
28	Muscie biopsy Equipment) (J	0.01	2	0
59	Perfusion & Fixation Unit	5 V.	0.05	- 10	50
30	Plant Care Unit	ი ი	0.01	4	20
5	Plant Harvest/Dissection Office	ш	0.01	2	0
	ב	S S	0.01	-	0
5	Saliva Collection Unit	s S	0.17	22	150
1 1 1 1 1	Sample Freparation Device) [11	0.02	22	0
0 E 0	Snielded Isolope Cultanie Constants Inchaine Trafe/Device	3	0.01	4	20
0 0		3	0.06	20	0
3 N 3 B	Sweat Collection Device	S	0.01	TBD	0
source	source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01				Page 2 of 10

3				UNIT HAR	HARDWARE PA	PARAMETERS
ITEM	ITEM HARDWARE ITEM NAME		SOURCE	VOLUME	MASS	POWER
#			CODE	(cu. m)	(kg)	(watts)
BIOLO	BIOLOGICAL SAMPLE MANAGEMENT FACILITY	FACILITY (2), (con't)	n't)			
ROI	RODENT SUPPORT GROUP (2D)				• _	
39	CO2 Administration Device		S	0.01	ო	0
40	Rodent Blood Collection System		S	0.03	10	50
41	Bodent Caudal Vertebrae Thermal Device (CVTD)	CVTD)	S	0.01	2	50
40	Rodant Guillotine	•	S	0.01	4	0
4	Rodent Restraint		S	0.01	က	0
44			S	0.01	ი	0
45			S	0.01	e G	0
46	Urine Collection Svst		S	0.03	10	50
47	•		S	0.03	10	0
РВ	PRIMATE SUPPORT GROUP (2E)	·				
48	Primate Blood Collection System		လ	0.05	2	140
49	Primate Handling Equipment		S	0.01		0
50	Primate LBNP Device		လ	0.05	e	140
5 1	Primate Surgery Platform		S	0.04	5	0
- 6			S	0.02	5	0
5.2	Urine Collection Sv		S	0.01	10	14
42	Primate Veterinary Unit		S	0.03	10	0
5			((

r 1988 1

~

-

-

-

-

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

•

Page 3 of 10

			UNIT HARDWARE PARAMETERS	WARE PAI	RAMETERS
H/W ITEM #	HARDWARE ITEM NAME	SOURCE CODE	VOLUME (cu. m)	MASS (kg)	POWER (watts)
NIOIE	BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING	FACILITY	(3)		
PUI	PULMONARY ANALYSIS GROUP (3A)	ſ		-	c
56	Bag Assembly	S -	0.01	- - 1	5 0
57	Bao-in-Box	S	0.15	ַ תַ) (
58	Doppler Recorder	ш	0.01	- !	0,
5	Flectronics Control Assembly	S	0.08	13	001
200		S	0.01	e	30
) T	More Spectrometer	S	0.02	10	100
- 0	Mass opecitioned Distances Exection Equipment Stoward Assembly	S	0.39	20	0
2 0	uhu bhu	S	0.09	30.	0
00	Pullinulary das dymoer Association	S	0.02	-	0
0 4 (S.	0.01	-	0
65	Spirometry Assertiuly	v (0.01	~	0
66	Syringe (3 Liter Calibration)	0	- 	I	,
Hd	PHYSICAL MONITORING GROUP (3B)				чc
67	Accelerometer And Recorder	S	0.04	10	сç Ű
. a	Authronometric Measurement Svstem	ა	0.02	180	0
	,	3	0.15	50	150
ס ת ס ר	Califoras Comolicação Volumometer	S	0.06	TBD	TBD
	CUITIPITERICE VOIDITIONOCO	S	0.06	TBD	TBD
7	Ingli alli	ч	0.01	2	20
12		ιu	0 01	-	10
73	Force Measurement Device	ט נ	0.40	70	100
74	Force Resistance System	ົ້	0.03	TBD	TBD
75	Fundus Camera	י נ)) () (36
76	Goniometer And Recorder	ш	0.01	N	67

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

,

LIFE S	LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA	N FREEDON	A ERA	De	December 1988
H/W			UNIT HARDWARE		PARAMETERS
ITEM	HARDWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER
*		CODE	(cu. m)	(kg)	(watts)
BIOIN	BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING	FACILITY	(con't)		
μ	PHYSICAL MONITORING GROUP (3B) (con't)				
77		S	0.29	136	300
78	Mass Calibration Unit	S	0.01	N	0
67	Mass Measurement Device-Body	ш	0.65	35	15
80	Mass Measurement Device-Micro	3	0.08	17	15
81	Mass Measurement Device-Small	3	0.08	17	15
82	Motion Analvsis System	S	0.05	20	100
83	Plethysmooraph Measuring System	S	0.01	e	30
84	Soft Tissue Imaging System	S	0.96	300	800
85	Tonometer	S	0.01	TBD	0
86	Video System	ш	0.10	30	300
NFI	NELIROPHYSIOL OGICAL ANALYSIS GROUP (3C)				
87	FEGCan	S	0.01	0	0
88	EEG Signal Conditioner	S	0.01	2	20
68	Electrode Impedance Meter	ш	0.01	-	0
06	Electro-oculograph (EOG)	ш	0.01	2	20
91	Neurovestibular ECDI	ш	0.09	11	120
92	Neurovestibular Helmet Interface Box	ш	0.01	2	20
03	Helmet Asse	ш	0.04	13	110
94		ш	0.01	2	20
95	Optokin	ш	0.01	0	20
96	Rotating Chi	ш	0.12	38	. 220
97	Subject Restraint System	ш	0.05	18	0
98	1	S	0.01	2	20
0031100	20102. V 1 8 CED 8 CD1 E-ENCO W-WD-01				Pade 5 of 10

Page 5 of 10

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

			UNIT HARDWARE	WARE PA	PARAME I EHS
	H/W TTM UAROWARE ITEM NAME	SOURCE	VOLUME	MASS	POWER
∑ ∐ ≭		CODE	(cu. m)	(kg)	(watts)
SNIOI	BIOINSTRUMENTATION & PHYSIOLOGICAL MONITORING	G FACILITY	(t,uo)		
CAI	CARDIOVASCULAR GROUP (3D)	U.	0.05	50	100
66	Animal Biotelemetry System		0.06	50	200
100	Blood Pressure And Flow Instrumentation	<u>م</u> ا	0.02	4	150
101		ۍ ا	0.01	2	20
102	Electrocardiograph (EVG)	<u>م</u> ا	0.01	2	0
103	Holter Hecorder	ш	0.05	17	140
40 L		ш	0.16	20	55
co l		ഗ	0.10	TBD	TBD
106) LL.	0.05	18	100
107	Physiological Hemodynamic Assess Device	13	0.20	70	600
108 109	Ultrasonic imaging system Venous Pressure Transducer/Display	ະ ທ	0.05	20	100
PLA	PLANT MONITORING GROUP (3E)	C		9.F	100
110		ט מ	0.2.U	19	0
111	Plant Gas Cylinder Assemoly Plant HPI C Ion Chromatograph	, S	0.12	40	200

December 1988

-

~~~

LIST FOR THE SPACE STATION FREEDOM ERA 

Page 6 of 10

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

| LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA | N FREEDOI | M ERA         | De      | December 1988 |
|---------------------------------------------------------------|-----------|---------------|---------|---------------|
| H/W                                                           |           | UNIT HARDWARE | WARE PA | PARAMETERS    |
| ITEM HARDWARE ITEM NAME                                       | SOURCE    | VOLUME        | MASS    | POWER         |
|                                                               | CODE      | (cu. m)       | (kg)    | (watts)       |
| ANALYTICAL INSTRUMENTS FACILITY (4)                           |           |               |         |               |
| BIOLOGICAL SAMPLE ANALYSIS GROUP (4A)                         |           |               | · .     |               |
|                                                               | ა         | 0.13          | 45      | 250           |
| 114 Chemistry Analysis System                                 | ш         | 0.10          | 30      | 200           |
| System                                                        | ა         | 0.08          | 23      | 100           |
| -                                                             | ა         | 0.06          | TBD     | 180           |
| 117 ELISA Reader                                              | ш         | 0.02          | 9       | 100           |
| 118 Gas Chromatograph/Mass Spectrometer                       | 3         | 0.20          | 25      | 100           |
| 119 Gas Cylinder Assembly                                     | လ         | 0.09          | 19      | 0             |
| 120 High Performance Liquid Chromatograph                     | 3         | 0.12          | 40      | 100           |
| 121 Incubator (35-65 deg C Copy 1 of 2)                       | 3         | 0.16          | 50      | 400           |
| 2                                                             | ш         | 0.02          | S       | 20            |
| ო                                                             | 3         | 0.02          | 7       | 5             |
| 124 Qualitative Reagent Strip And Reader                      | S         | 0:03          | 10      | 100           |
| Radioimmunoassay                                              | ш         | 0.05          | 20      | 0             |
| 126 Scintillation Counter                                     | S         | 0.24          | 06      | 500           |
| 127 Spectrophotometer (UV/VIS/NIR)                            | 3         | 0.11          | 40      | 300           |
| 128 Urine Analysis System                                     | ш         | 0.16          | 55      | 400           |
| CELL ANALYSIS GROUP (4B)                                      |           |               |         |               |
|                                                               | S         | 0.05          | 20      | 50            |
|                                                               | S         | 0.06          | 19      | 50            |
| 131 Cell Perfusion Apparatus                                  | S         | 0.06          | TBD     | TBD           |
|                                                               | ) Е       | 0.16          | 40      | 300           |
| @37 deg C Copy                                                |           | 0.16          | 40      | 300           |
| source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01               |           |               |         | Page 7 of 10  |

| M/H          |                                             |                | UNIT HARD         | UNIT HARDWARE PARAMETERS | RAMETER          |
|--------------|---------------------------------------------|----------------|-------------------|--------------------------|------------------|
| TEM HAR<br># | ITEM HARDWARE ITEM NAME                     | SOURCE<br>CODE | VOLUME<br>(cu. m) | MASS<br>(kg)             | POWER<br>(watts) |
| NALYTICA     | ANALYTICAL INSTRUMENTS FACILITY (4) (con't) |                |                   |                          |                  |
| CELL AN      | CELL ANALYSIS GROUP (4B) (con't)            |                |                   | • -                      |                  |
| 134 Cent     | Centrifuge Hematocrit                       | S              | 0.01              | 8                        | 20               |
|              | Chromosomal Slide Preparation Device        | S              | 0.01              | N                        | 20               |
|              | Fluoromeasure Probe                         | S              | 0.05              | TBD                      | TBD              |
|              | Flow Cvtometer                              | ш              | 0.24              | 36                       | 500              |
|              | Hematoloov Svstem                           | S              | 0.07              | 23                       | 200              |
| -            | Image Digitizing System                     | S              | 0.25              | 70                       | 500              |
|              | Microscope System (Optical & Stereo         | 3              | 0.40              | 100                      | 400              |
|              | Macroscope Subsets)                         |                |                   |                          |                  |
| 141 Mitod    | Mitogen Culture Device                      | ш              | 0.01              | 5                        | 20               |
|              | Skin Window Device                          | S              | 0.01              | 2                        | 0                |
|              | Slide Preparation Device                    | ш              | 0.01              | 2                        | 20               |

•

-

•

) • •

~

-

~

-

-

source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

٠

Page 8 of 10

| LIFE SCIENCES HANDWAKE LIST FOR THE SPACE STATION FREEDOM ENA |        | M ERA<br>IINIT UADAWADE |        | DARAMETERS   |
|---------------------------------------------------------------|--------|-------------------------|--------|--------------|
| H/W                                                           | SOURCE | VOLUME                  |        | POWER        |
| IIEM NANUWANG IIEM NAME                                       | CODE   | (cu. m)                 | (kg)   | (watts)      |
| LAB SUPPORT EQUIPMENT FACILITY (5)                            |        |                         |        |              |
| ENVIBONMENTAL MONITORING & CONTROL GROUP (5A)                 |        |                         |        |              |
|                                                               | 3      | 0.10                    | 30     | 200          |
| Automated Micro                                               | S      | 0.20                    | 70     | 500          |
| Dosimeter, Passive                                            | 3      | 0.09                    | 35     | 0            |
| Head/Torso                                                    | S      | 0.12                    | TBD    | 0            |
| . œ                                                           | 3      | 0.16                    | 50     | 400          |
| ) <b>с</b>                                                    | S      | 0.01                    | 2      | 20           |
|                                                               | 3      | 0.20                    | 80     | 0            |
| 1 Reuter Microbiology Air Sampler                             | S      | 0.01                    | -      | 0            |
| - 0                                                           | S      | 0.01                    | 5      | 0            |
|                                                               | S      | 0.03                    | 10     | 20           |
| g                                                             | S      | 0.01                    | TBD    | 0            |
| -                                                             | S      | 0.20                    | 70     | 250          |
|                                                               |        |                         |        |              |
| HARDWARE MAINTENANCE GHOUP (5B)                               |        |                         | (<br>1 |              |
| 156 Battery Charger                                           | 3      | 0.03                    |        | 001          |
| 157 Camera Locker                                             | 3      | 0.30                    | 100    | 0            |
|                                                               | 3      | 0.20                    | 70     | 500          |
|                                                               | 3      | 0.06                    | 20     | 50           |
| -                                                             | 3      | 0.10                    | 30     | 0            |
| I OCICTICS CONTROL GROUP (5C)                                 |        |                         |        |              |
| 161 Inventory Control System                                  | S      | 0.20                    | 70     | 500          |
|                                                               | S      | 0.20                    | 70     | 500          |
|                                                               | S      | 0.20                    | 70     | 200          |
| source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01               |        |                         |        | Page 9 of 10 |

| LIFE SCIENCES HARDWARE LIST FOR THE SPACE STATION FREEDOM ERA                                                                                   | N FREEDO       | M ERA                          | Dec                      | December 1988                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|--------------------------|----------------------------------------------------------|
| H/W<br>ITEM HARDWARE ITEM NAME<br>#                                                                                                             | SOURCE<br>CODE | UNIT HARD<br>VOLUME<br>(cu. m) | WARE PAI<br>MASS<br>(kg) | HARDWARE PARAMETERS<br>IME MASS POWER<br>m) (kg) (watts) |
| CENTRALIZED LIFE SCIENCES COMPUTER FACILITY (6)                                                                                                 |                |                                |                          |                                                          |
| LIFE SCIENCES DATA GROUP (6A)<br>164 Digital Recording Oscilloscope<br>165 Experiment Control Computer System<br>166 Multichannel Data Recorder | З ω Ш          | 0.03<br>0.05<br>0.09           | 10<br>20<br>30           | 100<br>400                                               |
| 167 Voice Recorder                                                                                                                              | ა              | 0.01                           | -                        | 0                                                        |
| CLOSED ECOLOGICAL LIFE SUPPORT FACILITY (7)                                                                                                     |                |                                | <b>.</b> .               |                                                          |
| FEAST GROUP (7A)<br>168 CELSS Test Facility                                                                                                     | လ              | 1.92                           | 1000                     | 1300                                                     |
| EXOBIOLOGY FACILITY (8)                                                                                                                         |                |                                |                          |                                                          |
| GAS/GRAIN GROUP (8A)<br>169 Gas Grain Simulator                                                                                                 | S              | 1.92                           | 800                      | 1500                                                     |
|                                                                                                                                                 |                |                                |                          |                                                          |

~

~

)

. • source codes: C=1.8 CFP, S=SBI, E=EDCO, W=WP-01

.

Page 10 of 10

| LIEI<br>L.B. M. Centrifuge<br>Accelerometer Subsystem<br>Accelerometer Subsystem<br>Animal Biotelemetry System<br>Animal Tissue Biopsy Equipment<br>Animal Tissue Biopsy Equipment<br>Bag Assembly<br>Bag Assembly<br>Bag-in-Box<br>Battery Charger<br>Blood Collection System<br>Blood Gas Analyzer |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

~

.

## PAGE 1 OF 13

|                                                       | LIFE SCIENCES HARDWARE B4 <b>ILINE, REV 1, DEFINITIONS</b>                                                                                                                                         |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Camera Locker                                         | Provides equipment storage space for cameras, accessories and associated components, to include lights, mountings, hardware, etc.                                                                  |
| Cameras                                               | Still and video cameras for general taboratory photography.                                                                                                                                        |
| Cardiodynamic Monitor                                 | Determines cardiac output by measuring changes in regional (thoracic) impedance.                                                                                                                   |
| Cardioputmonary Analyzer Flowmeter                    | Measures oxygen uptake, carbon.dioxide production and heart rate as it relates to total pulmonary ventilation.                                                                                     |
| Cell Handling Accessories                             | Tools used to transfer cells from specimens to microscope slides in a microgravity environment.                                                                                                    |
| Cell Harvester                                        | Used to isolate cells from a large sample and deposit isolated cells into a chamber for further analysis.                                                                                          |
| CELSS Test Facility                                   | A testbed experiment for the Controlled Ecological Life Support System, intended to test the feasibility of a self-sustaining life support system in microgravity.                                 |
| Centrifugal Incubator (5% CO2 @37 deg. C Copy 1 of 2) | A centrifuge, producing a 1g radial acceleration, with a set temperature of 37 degrees C and a carbon dioxide-rich atmosphere. This centrifuge will provide 1g control for tissue culture studies. |
| Centrifugal Incubator (5% CO2 @37 deg. C Copy 2 of 2) | Identical to above centrifuge (copy 1) except that the spinning function is disabled, for use in tissue culture studies.                                                                           |
| Centrifuge Hematocrit                                 | A specialized centrifuge for separating plasma from formed elements in blood samples.to determine hematocrit                                                                                       |
| Centrifuge Refrigerated                               | Uses centrifugal acceleration to separate materials by density in a temperature controlled environment.                                                                                            |
| Centrifuge Standard Lab                               | An instrument which provides centrifugat acceleration for separation or processing of liquid samples in hematology, microbiology and immunology.                                                   |
|                                                       |                                                                                                                                                                                                    |

1 . .

~

-

## PAGE 2 OF 13

| LIFE SCIENCES HARDWARE BA 'LINE, REV 1, DEFINITIONS | An instrument which employs liquid reagents to measure various components of serum, plasma, and urine. The system includes provisions for sample pick-up, sample delivery, protein separation, reagent addition, mixing, incubation, reaction detection and data presentation. | An instrument primarily used to determine the levels of compounds in blood and urine (e.g. urea, glucose, calcium, etc). | A device used to prepare microscope slides in a manner such that the chromosomes can be properly observed. | Tools and supplies necessary to perform housekeeping and cleanup of laboratory equipment, to include interior surfaces of gloveboxes. | A device used to quantitatively increase the amount of CO2 inspired by either rodents or primates. | General purpose hand-held voltage, current and resistance meter for use<br>in maintenance and adjustment of electric/electronic equipment, and for<br>temporary service in ad hoc experiments. | Instrument for detecting, digitizing, recording and displaying periodic and transient electrical waveforms for use in electronic maintenance and experiment calibration. | Portable, hand-held temperature measurement system for spot checking<br>and fault diagnosis in experiment systems, as well as for temporary<br>service in ad-hoc experiments. | Portable data recorder to record blood flow as monitored from doppler blood flow instrumentation. | A small badge (Thermoluminescent Dosimeter or TLD) used to monitor various forms of radiation. The TLD badge is read by placing it in a reader/annealer, specifically designed for this purpose. The badge emits light upon heating in proportion to radiation exposure; this release of energy in the form of light returns the badge to a ready-to-use condition. |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIFE SCIENCES HARDWARI                              | Chemistry Analysis System                                                                                                                                                                                                                                                      | Chemistry System                                                                                                         | Chromosomal Slide Preparation Device                                                                       | Cleaning Equipment                                                                                                                    | CO2 Administration Device                                                                          | Digital Multimeter                                                                                                                                                                             | Digital Recording Oscilloscope                                                                                                                                           | Digital Thermometer                                                                                                                                                           | Doppler Recorder                                                                                  | Dosimeter Passive                                                                                                                                                                                                                                                                                                                                                   |

---

and the state of the structure of the state of the state

)

)

.\_\_\_

~

### PAGE 3 OF 13

| E SCIENCES HARDWARE | Drug Administration Equipment     Equipment for the administration of various drugs to Include oral, IV and rectal administration.       EEGCap     A cap fitted with appropriate electrodes for the measurement and recording of brain electrical activity. | EEG Signal Conditioner EEG Signal Conditioner Decords biopotential signal amplification and conditioning.<br>Conditioning.<br>Electro-Magnetic Tendon Striker A device used to stimulate the contraction of voluntary muscle groups. |  | Electrocardlograph (ECG) Measures, records and displays the electrical activity of the heart. | Electrode Impedance Meter<br>(particularly EOG) to ensure signal quality. | Electromyograph (EMG) A device used to monitor the electrical activity of skeletal muscles during contraction. | Electronics Control Assembly part of the Pulmonary Function hardware, which controls the mixture of gases introduced to the subject through the Bag Assembly. | ELISA Reader<br>record the change in spectral absorbance within the wells of an ELISA<br>microtiter plate, with time, either single event, continuously or at<br>trequent intervals, thus allowing kinetic measurements to be made. | Equipment Washer/Sanitizer can be clean and sanitize laboratory equipment, to include tools, animal cages, plant cuvettes, etc. | Experiment Control Computer System stem to provide buffer memory and mass storage capability and interface between experiment hardware and the data management system. | Eacal Monitoring System (24 Hr) | Striker<br>by<br>Lot Hri<br>24 Hri | Sment for the administration of various drugs to include oral, IV and<br>I administration.<br>I administration.<br>I administration.<br>In administration and<br>dring of brain electrical activity.<br>Internation to provide biopotential signal amplification and<br>itioning.<br>Internation to provide biopotential signal amplification and<br>itioning.<br>Interview the electrical activity of the muscles controlling<br>novement.<br>Interview and displays the electrical activity of the heart.<br>Istrument used to measure impedance between electrodes<br>cularly EOG) to ensure signal quality.<br>Interview to continue the electrical activity of skeletal muscles during<br>action.<br>Interview the subject through the Bag Assembly.<br>Interview the electrical activity of the matture of<br>a introduced to the subject through the Bag Assembly.<br>Interview the single event, continuously or at<br>an interview, thus allowing kinetic measurements to be made.<br>Interview the single event, continuously or at<br>at an interview the single event, controlete actors<br>at a curine active the single event, controlete active the |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

-

....

~

## PAGE 4 OF 13

ī

-

## **PAGE 5 OF 13**

\_ .

-

-

**-**

-

**PAGE 6 OF 13** 

| LIFE SCIENCES HARDWARE BL                               | BL FLINE REV 1. DEFINITIONS                                                                                                                              |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lab Materials Packaging & Handling Equipment            | System that provides for the transfer of biological materlals (e.g. tissue samples, biological reagents), while maintaining bio-isolation from the crew. |
| Laboratory Sciences Workbench                           | A bench (or table top) where samples not requiring biolsolation can be prepared for storage or analysis.                                                 |
| LBNP Device                                             | A Lower Body Negative Pressure device used to direct blood from the upper extremities to the lower extremities in a controlled manner.                   |
| Life Sciences Glove Box (Copy 1 of 2)                   | A bio-isolated compartment used for the manipulation of biological specimens and samples, specifically those associated with plant and animal studies.   |
| Life Sciences Glove Box (Copy 2 of 2)                   | A bio-isolated compartment used for the manipulation of biological specimens and samples, specifically those associated human-oriented studies.          |
| Mask/Regulator System                                   | Part of the Pulmonary Function hardware complement which provides the crew interface.                                                                    |
| Mass Calibration Unit                                   | Set of known masses to calibrate onboard mass measuring devices.                                                                                         |
| Mass Measurement Device-Body                            | A device used to determine the mass of human subjects in microgravity.                                                                                   |
| Mass Measurement Device-Micro                           | A device used to determine the mass of specimens having a mass less than 1 mg in microgravity.                                                           |
| Mass Measurement Device-Small                           | A device used to determine the mass of specimens in the range of 1 mg to 10,000 gm in microgravity.                                                      |
| Mass Spectrometer                                       | An instrument used to determine components of a solution or gas by analyzing the molecular fragments according to their atomic mass.                     |
| Microbial Preparation System                            | A system which automatically prepares microbial samples for analysis in the Automated Microbic System.                                                   |
| Microscope System (Optical & Stereo Macroscope Subsets) | LSE hardware which provides the functions of an optical microscope and stereo macroscope.                                                                |

## PAGE 7 OF 13

| Microscope System (Stereo Macroscope Subset, Copy 2 of 2) | Stereo macroscope to be used for dissection of various biological specimens.                                                                         |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mitogen Culture Device                                    | A device which bathes incubated cells in a mitogen-rich environment to stimulate mitosis.                                                            |
| Modular Habitat Holding System                            | A system which accommodates the modular habitats used to house live animal subjects.                                                                 |
| Motion Analysis System                                    | Video system used to monitor, record and analyze the motion of crew members during weightlessness.                                                   |
| Multichannel Data Recorder                                | A recorder which can accept and condition signals from various physical parameters, simuttaneously.                                                  |
| Muscle Blopsy Equipment                                   | Tools and instruments required to harvest tissue specimens from rodents and primates.                                                                |
| Neurovestibular ECDI                                      | Experiment Control and Data Interface, a computer-based system that controls and collects data from hardware used in neurovestibular investigations. |
| Neurovestibular Helmet Interface Box                      | Contains EOG signal conditioner that transmits analog signals to the ECDI.                                                                           |
| Neurovestibular Helmet Assembly                           | Highly-modified "motorcycle helmet", instrumented and equipped for neurovestibular studies.                                                          |
| Neurovestibular Helmet Restraint                          | Attaches Helmet to the rotating chair.                                                                                                               |
| Neurovestibular Optokinetic Stimulus                      | Part of the NV helmet assembly which provides the stimulus.                                                                                          |
| Neurovestibular Rotating Chair                            | Chair which revolves at different frequencies in two directions.                                                                                     |
| Osmorneter                                                | Measures the concentration of dissolved particles in a solution.                                                                                     |
| Perfusion & Fixation Unit                                 | A set of chemicals and anciltary hardware required to treat and preserve tissue samples for later examination and study.                             |

LIFE SCIENCES HARDWARE BAJELINE, REV 1, DEFINITIONS

-

## **PAGE 8 OF 13**

| LIFE SCIENCES HARDWARE BL ELINE, REV 1. DEFINITIONS | er<br>types, and with ion-specific electrodes, can measure the ionic<br>concentration of the sample. | ssess Device Device used to measure Central Venous Pressure non-invasively. It utilizes a respiratory flow and pressure meter, in conjunction with doppler, ultrasound. | tem An instrument, similar to a patient monitor, which monitors the cardiovascular system (heart rate, blood pressure, electrocardiograph, body temperature, etc.) | Hardware required for the daily care and maintenance of plant in a microgravity environment. | ass Spectrometer Identifies a substance by sorting a stream of electrified particles (ions) according to their volatility and/or mass, specifically designed for use in plant studies. | Gases used to support the Plant Gas Chromatograph/Mass Spectrometer. | Container wherein plants will be grown in microgravity. | hit A set of specialized instruments to gather and dissect plant specimens. | ph differences and identifies components of a solution by virtue of their differences in sign and magnitude of charge, specifically designed for monitoring plant specimens. | nt System of some and recording the changes in volume of an organ, part or timb and the amount of blood present or passing through it. | stem a system to safely collect sterile blood samples from primate subjects. | t<br>specimens in a microgravity environment. | A device for applying a negative atmospheric pressure to the lower |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|
| LIFE SCIET                                          | ph Meter/Ion Specific Analyzer                                                                       | Physiological Hemodynamic Assess Device                                                                                                                                 | Physiological Monitoring System                                                                                                                                    | Plant Care Unit                                                                              | Plant Gas ChromatographMass Spectrometer                                                                                                                                               | Plant Gas Cylinder Assembly                                          | Plant Growth Module                                     | Plant HarvesvDissection Unit                                                | Plant HPLC Ion Chromatograph                                                                                                                                                 | Plethysmograph Measurement System                                                                                                      | Primate Blood Collection System                                              | Primate Handling Equipment                    | Primate LBNP Device                                                |

 $\sim$ 

PAGE 9 OF 13

.

| LIFE SCIENCES HARDWARE B. ELINE, REV 1. DEFINITIONS | Container wherein primates will be housed in microgravity. | A device used to restrain a primate in positions suitable for surgery. | Tools required (e.g. scalpels, sutures, etc.) for the surgery and dissection of primates. | A system to safely collect sterile urine samples from primate subjects. | A set of instruments and other required materials to ensure the health and safety of primate subjects. | A unit which safely stows the portion of the Pulmonary Function Equipment which is not rack mounted. | A set of compressed gas cylinders containing gases of known composition, used in support of the Pulmonary Function hardware. | A instrument capable of monitoring human pulmonary function, such has total lung volume, reserve, tidal volume, maximum O2 cosumption, etc. | A device that will qualitatively assess levels of compounds or ions (e.g. hydrogen ions, glucose, urea, calcium) present in animal blood or urine. | A locker for the storage of items which will be degraded if exposed to ionizing radiation. | A locker which will accommodate radioactive items which require isolation. | A device which would prepare blood or urine samples, for an immunological procedure in which hormones, antigens, antibodies, drugs and other substances occurring in minute quantities are measured using radioisotopes. | A device in which hormones, antigens, antibodies, drugs and other substances occurring in minute quantities are measured using radioisotopes. |
|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | Primate Module                                             | Primate Surgery Platform                                               | Primate Surgery/Dissection Unit                                                           | Primate Urine Collection System                                         | Primate Veterinary Unit                                                                                | Putmonary Function Equipment Stowage Assembly                                                        | Pulmonary Gas Cylinder Assembly                                                                                              | Pulmonary Monitoring System                                                                                                                 | Qualitative Reagent Strip And Reader                                                                                                               | Radiation Shielded Locker (Copy 1 of 2)                                                    | Radiation Shielded Locker (Copy 2 of 2)                                    | Radioimmunoassay Prep Device                                                                                                                                                                                             | Radioimmunóassay                                                                                                                              |

)

Ξ

-

-

-

# PAGE 10 OF 13

| LIFE SCIENCES HARDWARE BASELINE. REV 1. DEFINITIONS | Pulmonary Function support equipment. Collects and measures exhaled air for rebreathing by subject. | An insulated unit capable of storing various materials at 4 deg. C | A hand held centrifugal air sampler which collects microorganisms upon specific growth media. | A system to safely collect sterile blood samples from rodent subjects. | A device used to warm the talls of rodents in a microgravity environment. | Device for the humane decapitation of rodent specimens. | Container wherein rodents will be housed in microgravity. | A device to safely hold a rat subject during handling. | A device used to restrain a rodent in positions suitable for surgery. | Tools required (e.g. scalpels, sutures) for the surgery and dissection of rodents. | A system to safely collect sterile urine samples from rodent subjects. | A set of instruments and other required materials to ensure the health and safety of rodent subjects. | A device to safely collect saliva specimens from human subjects. | A device which will prepare various biological samples for subsequent analysis, which includes the addition of required reagents. | Measures the light emitted when an x-ray or gamma ray is absorbed by a crystal or liquid radiation detector. It is based on the principal that exposure of certain materials to ionizing radiation results in the conversion of the kinetic energy of the particles or photons into the flashes of light or scintillations. |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIFE SCIENCES                                       | Rebreathing Assembly                                                                                | Refrigerator (4 deg. C)                                            | Reuter Microbiology Air Sampler                                                               | Rodent Blood Collection System                                         | Rodent Caudal Vertebrae Thermal Device (CVTD)                             | Rodent Guillotine                                       | Rodent Module                                             | Rodent Restraint                                       | Rodent Surgery Platform                                               | Rodent Surgery/Dissection Unit                                                     | Rodent Urine Collection System                                         | Rodent Veterinary Unit                                                                                | Saliva Collection Unit                                           | Sample Preparation Device                                                                                                         | Scintillation Counter                                                                                                                                                                                                                                                                                                       |

# PAGE 11 OF 13

| LIFE SCIENCES HARDWARE BA 'LINE. REV 1. DEFINITIONS | A container for storing isotopes which inhibits the transmission of ionizing radiation. | A device which is applied to the surface of the skin to facilitate the collection and analysis of skin cells. | An automated device to fix and stain micro-organisms and blood | A device to safely hold a small primate subject during handling. | A system which provide a two dimensional image of organs and other soft tissues. | An air sampler that continuously deposits trace level air contaminants for tab analysis. | A device capable of automatically labeling containers and specimens,<br>which can be automatically read and entered into a database which<br>contains all the information pertaining to that particular sample or<br>specimen. | A device which measures protons from the trapped belts, heavy lons, and tragmented particles of heavy ions. | An instrument capable of quantitatively measuring light-absorbing components in a solution. | Part of the Pulmonary Function support hardware which measures air inhaled and exhaled from the lungs. | A system which immobilizes part or all of a human subject. | Tools and instruments necessary for surgery or dissection of either rodents or primates. | Pulmonary Function support equipment which is used to calibrate the Bag-in-Box. | Self explanatory.                        |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------|
|                                                     | Shielded Isotope Container                                                              | Skin Window Device                                                                                            | Slide Preparation Device                                       | Small Primate Restraint                                          | Soft Tissue Imaging System                                                       | Solid Sorbent Air Sampler                                                                | Specimen Labeling Tools/Device                                                                                                                                                                                                 | Spectrometer (Proton/Heavy Ion)                                                                             | Spectrophotometer (UV/VIS/NIR)                                                              | Spirometry Assembly                                                                                    | Subject Restraint System                                   | Surgery/Dissection Tools                                                                 | Syringe (3 Liter Calibration)                                                   | Tes/Checkout/Calibration Instrumentation |

~

# PAGE 12 OF 13

2

Ţ

-

~

-

-

# PAGE 13 OF 13