LUMINOSITIES OF H\alpha EMITTING REGIONS IN A PAIR OF INTERACTING GALAXIES IN THE BOOTES VOID

D. Weistrop, P. Hintzen, University of Nevada, Las Vegas, NV

R. Kennicutt, C. Liu, J. Lowenthal, University of Arizona, Tucson, AZ

K.-P. Cheng, R. Oliversen, B. Woodgate, NASA/Goddard Space Flight Center, Greenbelt, MD

Abstract: Luminosities of H α emission from a pair of interacting galaxies in the low density environment of the Bootes void are presented. CG 692 (IRAS 1519+5050) has an H α luminosity of 2 x 10⁴² ergs s⁻¹, indicating a star formation rate of 18.4 M_o yr⁻¹. Individual extranuclear H α regions have luminosities of approximately 10⁴⁰ ergs s⁻¹. These luminosities are similar to those found for H II regions in bright, late-type galaxies in more densely populated parts of the Universe.

Based on spectroscopy and imaging data, we have recently identified a pair of interacting galaxies within the Bootes void (Weistrop *et al.* 1991, Weistrop *et al.* 1992). The brighter galaxy, CG 692 (IRAS 1519+5050) is a spiral undergoing large amounts of star formation, while its companion, CG 693, is a previously unidentified Seyfert 1 galaxy (Figure 1). The galaxies are at the same redshift within the uncertainties of the measurements, z = 0.0574, and have a projected separation of 34 kpc, (H₀=50 km s⁻¹Mpc⁻¹ assumed throughout). The galaxies are within the boundaries of the Bootes void as defined by Kirshner *et al.* (1987). We investigate the luminosity of the H α emission in CG 692 and between the galaxies, to compare with galaxies in denser environments. Almost all the H α emission from CG 693 arises in the nucleus, and is not considered further here.

Images were obtained at the redshifted H α wavelength of the galaxies and a nearby continuum band, using the Goddard Fabry-Perot Imager on the University of Arizona's 90-inch telescope located at Kitt Peak (Weistrop *et al.* 1992). Flux calibration was obtained from observations of HZ 44. The total H α flux for CG 692 is 1.38 x 10⁻¹³ ergs cm⁻² s⁻¹, with an estimated <u>+</u> 25% error due to the uncertainty in the conversion from count rate to flux. Since the galaxies are located at b = 53°, absorption within our galaxy is about 0.02 mag and has been ignored (Kennicutt & Kent 1983). For q₀ = 0, the total H α luminosity of CG 692 is L = 2.06 x 10⁴² ergs s⁻¹, similar to the H α + [NII] luminosities of the brightest interacting galaxies (Kennicutt *et al.* 1987). The star formation rate in CG 692 is 18.4 M_{∞} yr⁻¹ using the conversion given by Kennicutt (1983).

We have determined the luminosity of several extranuclear H α features in this system (Table 1). These regions are not spatially resolved. B and C, which are between the galaxies and may be the result of the interaction, have H α luminosities similar to the luminosities of the brightest H II regions in field spiral and luminous irregular galaxies (Kennicutt 1988). (Values must be converted to H₀=75 km s⁻¹Mpc⁻¹ for comparison with Kennicutt's results.) J and K, the features beyond the end of CG 692's spiral arm, have luminosities similar to those of 'giant' or 'supergiant' H II regions found in late-type normal or peculiar galaxies. The knots within the

Feature	log[L(Hα)]
B	.39.78
С	39.86
J	40.47
К	40.55
	log[L(H α) arcsec ⁻²]
D	39.74
F	39.69
G	39.57
н	39.75

Table 1. H α Luminosities¹

¹H₀=50 km s⁻¹Mpc⁻¹

Fig. 1. Contour plot of the H α image. The outermost contour represents a flux of 8.3×10^{-17} ergs cm⁻² s⁻¹arcsec⁻². Successive contours increase in intervals of 2.76×10^{-16} ergs cm⁻²s⁻¹arcsec⁻².

spiral arm are concentrations of emission embedded in an area of strong, extended H α emission. In Table 1 we give the luminosities per square arcsec for several locations along the spiral arm. The total H α emission from the strongest knot, H, is about 5.3 x 10⁴⁰ ergs s⁻¹.

Kennicutt (1988) finds a relationship between the average luminosity of the brightest H II regions in a galaxy and that galaxy's absolute magnitude and Hubble type. M_B for CG 692 can be calculated from the apparent magnitude estimate given by Sanduleak & Pesch (1987). For CG 692, B = 15, giving $M_B = -22.8$. A discussion of the accuracy of the Case magnitudes is given by Weistrop & Downes (1991). Kennicutt's relationship predicts the mean luminosity of the brightest H II regions to be $\geq 10^{40}$ ergs s⁻¹ for late type field or Virgo cluster spirals with $M_B = -$ 22 ($H_0=75$ km s⁻¹Mpc⁻¹). This is similar to the luminosity we obtain for the brightest extranuclear H II regions in CG 692.

This work was supported in part by NASA grant NAS5-31231.

References

Kennicutt, Jr., R.C. 1983, ApJ, 272, 54.

_____ 1988, ApJ, 344, 144.

- Kennicutt, Jr., R.C., & Kent, S.M. 1983, AJ, 88, 1094.
- Kennicutt, Jr., R.C., Keel, W.C., van der Hulst, J.M., Hummel, E., & Roettiger, K.A. 1987, AJ, 93, 1011.
- Kirshner, R.P., Oemler, A., Schechter, P.L., and Shectman, S.A. 1987, ApJ, 314, 493.
- Sanduleak, N., & Pesch, P. 1987, ApJSS, 63, 809.
- Weistrop, D., & Downes, R.A. 1991, AJ, 102, 1680.
- Weistrop, D., et al. 1991, BAAS, 23,1428.
- Weistrop, D., et al. 1992, ApJL (submitted).