## MULTI-FILTER SPECTROPHOTOMETRY SIMULATIONS

Kim A. S. Callaghan, Brad K. Gibson & Paul Hickson

- University of British Columbia -

# Introduction

To complement both the multi-filter observations of quasar environments described by Craven *et al.* in these proceedings, as well as the proposed UBC 2.7m Liquid Mirror Telescope (LMT) redshift survey (Hogg *et al.* these proceedings; Gibson & Hickson 1992), we have initiated a program of *simulated multi-filter spectrophotometry*. The goal of this work, still very much in progress, is a better *quantitative* assessment of the multiband technique pioneered by Baum (1962) and Oke (1971), as a viable mechanism for obtaining useful redshift and morphological class information from large scale multi-filter surveys.

# Methodology and Preliminary Results

The methodology utilized in our study is qualitatively straightforward (a full quantitative discussion is forthcoming - Callaghan *et al.*, in preparation): multi-filter spectrophotometric observations are simulated by adding a representative spectrum for a given galaxy's morphological class and redshift to the sky spectrum and sampling with some specified filter transmission curves. Photon noise is added and a reduced  $\chi^2$  minimization routine implemented - *i.e.*,  $\chi^2$  is computed by comparing the simulated galaxy spectra against a library of galaxy and stellar templates, the type and redshift leading to the minimum in the  $\chi^2$  distribution is assigned as that best representing the physical nature of the object.

The library of comparison templates used here consists of the seven Hubble types included in the Rocca-Volmerange & Guiderdoni (1988) atlas (RVG88), as well as the 81 stellar templates in the Gunn & Stryker (1983) catalog. Unlike previous work, which has rested solely upon comparing against local (*i.e.*, z=0) galaxy templates, we have given the user the option of using a set of templates (again based on the RVG88 atlas) which evolve as a function of lookback time based upon the standard scenarios of spectral evolution as a function of Hubble type, outlined in Guiderdoni & Rocca-Volmerange (1987). The impact of galaxy evolution upon the multi-filter technique is neglected here, but will be detailed in the later Callaghan *et al.* paper.

Our  $\chi^2$  program is in many ways akin to the cross-correlation technique so successfully employed by Tonry & Davis (1979) and Ellingson & Yee (1992, in preparation), the primary difference being the latter pair use the continuum-subtracted emission/absorption line spectra in the cross-correlation, whereas the former is optimal for intermediate-band (~ 100 - 400Å) filter set observations (e.g. the 40 filters being used for the UBC 2.7m LMT redshift survey - Gibson & Hickson 1992; the 24 filters utilized in the Craven *et al.* study discussed elsewhere in this volume) for which most of the line information is lost and the continuum is the essential component in the  $\chi^2$  calculation.

A series of simulations has been completed, complementing the Craven *et al.* and UBC LMT observations. For brevity, we discuss here some of the preliminary findings from our "Craven" runs: the characteristics of this sample include low signal-to-noise (s/n = 5.0), intermediate redshift (z = 0.4), and simulated spectrophotometry through the same 24 narrow-band filters as used in the true observations.

The 24-point simulated spectral energy distributions (SEDs) were compared against the set of galaxy templates generated by simply shifting the z = 0 templates linearly in log  $F_{\nu}$  space, the magnitude of the shift necessary to minimize the  $\chi^2$  yielding the estimated redshift. In other words, the shape of the SED remains invariant with redshift (*i.e.*, no spectral evolution). Parallel to the simulation-galaxy template  $\chi^2$  computation, a simulation-stellar template  $\chi^2$  is also generated and a best assigned stellar type calculated. Late-type stars are invariably assigned as the "best-fit" stellar template, but the  $\chi^2$  is always greater than that for the galaxy assignment.

Early-type galaxy redshift assignments accurate to <2% were consistently found, as were type assignment accuracies to a fraction of a Hubble type. Later-type galaxies posed a somewhat more difficult problem in that they possess inherently flatter SEDs, making the determination of redshift more challenging. This was reflected in redshift uncertainties of  $\sim20\%$ , an order of magnitude or so larger than that encountered with the ellipticals. Morphological classification was still accurate to within a Hubble type. This seems reasonable given the similarities between the Sa, Sb, Sc, and Sd (Types 2, 3, 4, and 5, respectively) templates in the RVG88 atlas.

## **Comments and Summary**

Despite apparent similarities between the late-type stellar templates and the galaxy templates, we have not encountered a situation thus far in which a galaxy has been confused with a star. Obviously this is due in part to the number of filters with which we are working (24 for the "Craven" runs). Morphological classification accurate to plus/minus a fraction of a Hubble type seems feasible, even at this low s/n = 5.0. Early-type galaxy redshifts accurate to 2%, or better, and late-types to ~20% are also found. Simulations run at signal-to-noise ratios of ~10 indicate that redshifts accurate to a fraction of a percent are obtainable, independent of Hubble class. Because the Craven *et al.*'s filter set has been "tuned" to the redshift of the clusters, their first filter is centered at ~4500Å. Due to this lack of "blue" filters, the all-important 4000Å break in local galaxies will be missed. Our simulations show that at low signal-to-noise ratios, it is possible to assign an anomalously high redshift to any local  $z \approx 0$  galaxies that may lie in their cluster fields. Fortunately, the  $\chi^2$  is usually poor enough to make the redshift suspect. Future papers in this series will provide a more detailed quantitative error analysis.

#### **References**

Baum, W.A. 1962, in *Problems of Extragalactic Research*, ed. G.C. McVittie (New York: MacMillan), p. 390

Gibson, B.K. & Hickson, P. 1992, in *The Space Distribution of Quasars*, ed. D. Crampton (San Francisco: ASP), p. 80.

Guiderdoni, B. & Rocca-Volmerange, B. 1988, A&A, 186, 1

Gunn, J.E. & Stryker, L.L. 1983, ApJS, 52, 121

Oke, J.B. 1971, ApJ, 170, 193

Rocca-Volmerange, B. & Guiderdoni, B. 1988, A&AS, 75, 93

Tonry, J. & Davis, M. 1979, AJ, 84, 1511