ENABLER I AND II ENGINE SYSTEM DESIGN MODELING AND COMPARISONS

23 OCTOBER 1992

PRESENTED BY:

DENNIS G. PELACCIO AND CHRISTINE M. SCHEEL SCIENCE APPLICATIONS INTERNATIONAL CORPORATION ALBUQUERQUE, NM 87123

PRESENTED AT:

1992 NUCLEAR PROPULSION - TECHNICAL INTERCHANGE MEETING NASA LEWIS RESEARCH CENTER SANDUSKY, OH

1

NTP: System Concepts

10-5

N

Science Applications International Corporat

OBJECTIVE/APPROACH

OBJECTIVE / APPROACH

3

• Objective:

- Define a Near-Term Solid-Core NTP Engine System Scaling Database
- -- Identify/Document Unified Set of Performance, Weight and Size Scaling Data
- -- Results Should Be Useful to Meet Initial Mission and Concept Design Study Requirements

Approach:

- Acquire/Review Past Rover/NERVA Engine Design Work
- Assess Current Engine System Data
- Conduct Preliminary NTP Engine System Design Trades Using the NESS Design Program
 - -- Establish Operating Range of Interest and Technology Design Approach
 - -- Design Analysis Responsibilities
 - SAIC Engine System
 - Westinghouse Reactor and Internal Shield (ENABLER Reactor)
- Establish a Catalog of Enabler I and II Engine System Design for a Range Configurations and Operating Conditions

NTP: System Concepts

印/三

NP-TTM-92

FUEL AND SUPPORT ELEMENTS PARAMETERS				
Fuel Element Composition	Graphite	Composite	Carbide	
Temperature Range K	2200 - 2500	2500 - 2900	2900 - 3300	
Fuel	Coated Particle	UC + ZrC Solid Solution and Carbon	(U, Zr) C Solid Solution	
Coating	ZrC	ZrC		
Unfueled Support Element Composition	Graphite	ZrC-Graphite Composite	ZrC	
	7,0	7:0		

NP-TIM-92

NTP: System Concepts

Science Applications International Corporation A Copport Course Company

4

REACTOR PARAMETERS/CHARACTERISTICS
AS A FUNCTION OF THRUST LEVEL

Thrust (1000 lbl)	15	25	>50
Reactor Power Range (MW)	275 - 400	460 - 670	920 - 6700
Fuel and Support Element Length [m (inch)]	0.89 (35)	0.89 (35)	1.32 (52)
Pressure Vessel Length [M(Inch)]	2.10 (82.6)	2.13 (84)	2.58 (101.6)
Fuel Element Power (MW)	0.629	0.808	1.20
Relative Fuel Element Power Density	0.778	1.0	1.0
Ratio of Fuel Elements (N) to Support Elements	2:1	3:1	6:1
Pressure Vessel Material	Aluminum	Aluminum	Aluminum
Reflector Material	Beryllium	Beryllium	Beryllium
Internal Shield Material	BATH*/Lead	BATH/Lead	BATH/Lead

RADIATION LEAKAGE LIMITS CRITERIA ASSUMED - AT A PLANE 160 CM (63 INCHES) FORWARD OF THE CORE CENTER -

13

Type of Radiation	Radiation Leakage Limits Within Pressure Vessel Outside Radius		
Gamma Carbon KERMA Rate	1.8 x 10 ⁷ rad (c)/hr		
Fast Neutron Flux	2.0 x 10 ¹² n/cm ² - sec, E _n > 1.0 MeV		
Intermediate Neutron Flux	3.0 x 10 ¹² n/cm ² - sec, 0.4 eV ≤ E _n ≤ 1.0 MeV		
Thermal Neutron Flux	6.0 x 10 ¹¹ n/cm ² - sec, E _n < 0.4 ev		

Science Applications international Corporation

Science Applications International Corporations

Design/Technology Feature(s)	Comment(s)
Gimbal Engine Mount	Based on the Space Shuttle Main Engine (SSME) Design Approach
Turbopunp Assembly - Dual Feed System Legs with Dual Valving - 80% Punping Capability per Feed Leg - Centrifugal Turbopumps - Pump Material: Inconnet - Turbine Material: IMAR-M246	- Based on NERVA Design Approach (Redundancy Considerations) - Based on the SSME
Solid-Core NERVA Type Reactor Design	Uses State of the Art Reactor System Fuels/ Technologies/Materials (Westinghouse ENABLEN Design) Based on NERVA Design Approach and Recultaments
Nozzle Assentily	
 119% High Area Ratio RAC Contour 200 and 500:1 Three Section Assombly Threat Region 2:11 Ubstaam In 5:1 Downsteam 	Conservative, High Parlormance Design, Common in the Propulsion Community Based on the SSME and State-of-the-Art Rocket Propulsion Technology Base Based on SSME
Stotted Regen Watt Construction of Copper Intermetilate Region e 8:1 to 150:1 Downstream	· Based on SSMF
Itogen Cooled Inconnel Tube Pundles Exit Nozzle Extension 150:1 to Exit Radiation Cooled Carbon-Carbon	Uses State-of-the-Art Rocket Propulsion Materials Technology Base
Miscellaneous Hardware - Propellant Lines - Valves - Electronics/instrumentation/Processors	 State of the Art Technologies Employed Reduced Weight, Size, and Increased Capability

Science Applications International Corporatio

-74 //E

INITIAL ENGINE COMPONENT WEIGHT COMPARISON* - 75,000 lbf NTP ENGINE CASE -

Parameter	NERVA	Rockoldyne	SAIC ELES-NTP	Adjustments/Comments
Chamber Temperature (°K)	2500	2700	2700	
Chamber Pressures (p sia)	450	1000	1000	
Area Ratio	100	500	500	
Specific Impulse - Vac (sec)	850	923	922.8	
Reactor (kg)	5890	5824	5823	
Internal Shield (kg)	1583		1523	
Nozzle Assembly (kg)	1051	440	421	ELES NTP Value Increased by 5% Rocketdyne Weight Considered a Good Baseline
Turbopump Assembly (kg)	243	304	104	ELES NTP Value Increased by 30% Rocketdyne Considered Conservative for SOA Designs
Nonnuclear Support Hardwaro (kg) - Lines, Values, Actuators, Instrumentation Thrust	2425	1815	1264	ELES NTP Value Increased by 40% Rocketdyne Weight Considered a Good Baseline - Scaled From Previous Design Work

Parameter	NERVA	Rocketdyne	SAIC ELES-NTP	Adjustments/Comments
Chamber Temperature (°K)	2500	2700	2700	—
Chamber Pressures (psia)	450	1000	1000	
Area Ratio	100	500	500	_
Specific Impulse - Vac (sec)	850	923	922.8	
Reactor (kg)	5890	5824	5823	
Internal Shleid (kg)	1583	-	1523	
Nozzle Assembly (kg)	1051	440	421	ELES N1P Value Increased by 5% Rocketdyne Weight Considered a Good Baseline
Turbopump Assembly (kg)	243	304	104	ELES NTP Value Increased by 30% Rocketdyne Considered Conservative for SOA Designs
Nonnuclear Support Hardware (kg) - Lines, Values, Actuators, Instrumentation Thrust Structure	2425	1815	1264	ELES NTP Value Increased by 40% Fockeldyne Weight Considered a Good Baseline - Scaled From Previous Design Work

INITIAL ENGINE COMPONENT WIEGHT COMPARISON*

INITIAL ENGINE CYCLE PARAMETER COMPARISON* - 75,000 lbf NTP ENGINE CASE -

Parameter	Rocketdyne	SAIC - ELES NTP
Pump Flowrate (kg/s)	36.7	36.9
Pump Discharge Pres. (psia)	1544	1538.3
Turbine Flowrate, % Pump	50	50
Turbine Inlet Temp. (°K)	555.6	555.3
Turbine Inlet Pres. (psia)	1412	1416.8
Turbine Pressure Ratio	1.25	1.295
Reactor Inlet Pres. (psia)	1130	1255.4
Reactor Power, (MW)	1645	
Reactor Core Flowrate (kg/s)	36.7	36.9
Nozzle Chamber Temp (°K)	2700	2700
Nozzle Chamber Pres. (psia)	1000	1000
Nozzle Exit Diameter (m)	4.15	4.15
Nozzle Expansion Ratio	500	500
Specific Impulse-Vac (sec)	923	922.8
Pump Speed (rpm)	37,500	34,913

* Rocketdyne uses their Mark 25-type axial turbopump (4 stages); ELES-NTP used a single-stage centrilugal pump.

vience Applications ernalional Corpore

3//

INITIAL ENGINE CYCLE PARAMETER COMPARISON* - 75,000 lbf NTP ENGINE CASE -

Parameler	Rocketdyne	SAIC - ELES NTP
Pump Flowrate (kg/s)	36.7	36.9
Pump Discharge Pres. (psia)	1544	1538.3
Turbine Flowrate, % Pump	50	50
Turbine Inlet Temp. (°K)	555.6	555.3
Turbine Inlet Pres. (psia)	1412	1416.8
Turbine Pressure Ratio	1.25	1.295
Reactor Inlet Pres. (psia)	1130	1255.4
Reactor Power, (MW)	1645	
Reactor Core Flowrate (kg/s)	36.7	36.9
Nozzle Chamber Temp (°K)	2700	2700
Nozzle Chamber Pres. (psia)	1000	1000
Nozzle Exit Diameter (m)	4.15	4.15
Nozzle Expansion Ratio	500	500
Specific Impulse-Vac (sec)	923	922.8
Pump Speed (rpm)	37,500	34,913

ELES-NTP used a single-stage centrifugal pump.

CYCLE PARAMETER COMPARISON* - 75,000 lbf ENABLER I, EXPANDER CYCLE -

21

Parameter	Rocketdyne	SAIC - ELES NTP	SAIC NESS
Total Flowrate (kg/s)	36.7	36.9	37.27
Pump Discharge Pres. (psia)	1,544	1,538.3	2,298.3
Turbine Flowrate, % Pump	50	50	50
Turbine Inlet Temp. (°K)	555.6	555.3	622.3
Turbine Inlct Pres. (psia)	1,412	1,416.8	1,969.0
Turbine Pressure Ratio	1.25	1.295	1.739
Reactor Inlet Pres. (psia)	1,130	1,255.4	1,132.1
Reactor Power, (MW)	1,645		1,587
Reactor Core Flowrate (kg/s)	36.7	36.9	36.2
Nozzle Chamber Temp (°K)	2,700	2,700	2,700
Nuzzle Chamber Pres. (psia)	1,000	1,000	1,000
Nozzle Exit Diameter (m)	4.15	4.15	4.22
Nozzle Expansion Ratio	500	500	500
Specific Impulse-Vac (sec)	923	922.8	912.9
Pump Speed (rpm)	37,500	34,913	40.583

Rocketdyne uses their Mark 25 type axial turbopump (4 stages); SAIC ELES-NTP used a single-stage centrifugal pump; SAIC NESS, Sample Case No. 8, uses a 5-stage axial pump.

N'IP: System Concepts

NP-TTM-92

Science Applications International Corporation

Application

Parameter	Rocketdyne	SAIC Eles-NTP	SAIC NESS
Specific Impulse - Vac (sec)	923	922.8	912.9
Reactor (kg)	5,824	5,823	4,783
nternal Shield (kg)		1,523	1,108
iozzle Assembly (kg)	440	421	535
urbopump Assembly (kg)	304	104	221
Nonnuclear Support Hardware (kg)	1.815	1.264	1,493
Lines, Values, Actuators, Instrumen- tation Thrust Structure			
Lines, Values, Actuators, Instrumen- tation Thrust Structure Rocketdyne uses their Mark 25 type an single-stage centrifugal pump; SAIC N	ial turbopunp (4 st IESS, Sample Case	ages); SAIC ELES No. 8, uses a 5-sta	S-NTP used a ge axial pump.

CYCLE PARAMETER COMPARISON* - 75,000 lbf ENABLER I, EXPANDER CYCLE -

Wall Temperature (°R)	Barrier Temperature (°R)	Isp (Sec.)	Fuel Film Cooling Fraction
1460	1630	912.9	0.03
1800	2106	915.9	0.03
2000	2429	917.5	0.02
2400	2892	919.4	0.02
2800	3418	921.2	0.02
3000	3651	921.9	0.02
3200	3864	922.4	0.02

* Core Temperature = 4000°M (2700°k)

Science Applications International Corporation An Employee Orened Company 4 / 廣

37724

NP-11M-92

ENABLER ENGINE SYSTEM DESIGN TRADE SPACE ANALYZED

Fuel Type/Chamber Temperature (oK)	Thrust (lbf)	Chamber Pressure (psia)	Nozzle Area Ratio
Graphite/2500	15,000	500	200:1
Composite/2700	40,000	750	500:1
Carbide/3100	75,000	1,000	
	125,000	1,500	
	200,000	2,000	
	250,000		

NP-11M-92

NP-11M-92

CONCLUDING REMARKS

CONCLUDING REMARKS

48

- A Near-Term (ENABLER I and II) NTP Solid-Core System Database has Been Established
 - Based on the Well Documented/Anchored SAIC NESS Design Program
 - Incorporates Westinghouse's SOA Reactor System Design Correlations
 - Database is Organized, Documented and is Available Through NASA Lewis
- Future Recommendations
 - Perform a Comparative Assessment of the Database
 - -- Past Engineering Data Generated
 - -- Technology Sensitivity Studies
 - Initiate a Similar Study Activity With Engine Systems Using Different Reactor Types