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Abstract

The phase ofthe quantum harmonic oscillator,the temporaldistributionofa particlein

a square-weUpotential,and a quantum theoryofanglesarederivedfrom a generaltheoryof

complementarity.Schwinger'sharmonic oscillatormodel ofangularmomenta [1]ismodified

forthe caseofphotons. Angular distributionsforsystems ofidenticaland distinguishable

particlesare discussed.Unitary and antiunitarytime reversaloperatorsare then presented

and appliedto opticalpolarizationstatesin birefringentmedia.

1 General Theory of Complementarity

The fact that linear momentum is the generator of translations in space, leads to the Fourier

transform relations between the momentum and spatial representations of Schrodinger's wave-

mechanics [2]. Similarly, since energy generates translations in time, there are Fourier transform

relations between the energy and temporal representations [3]. For the case of the harmonic

oscillator, the energy eigenspectrum is proportional to the integers n = 0, 1,2... (recall if/ =

5w(h + 1/2), where h = ata is the photon number operator) and this spectrum is aperiodic

(i.e. not periodic). Therefore the temporal distribution of the oscillator will be continuous and

periodic. Indeed, the simplest way (that I have found) to describe the phase (_ = wt) of the

quantum harmonic oscillator is to form the wavefunction

oo

¢(¢) = Z ¢- e-'"_
n=0

(1)

which is the Fourier series of the n-space wavefunction (or number-ket expansion coefficients)

¢,, -- (nl¢), where bin ) = nln ). The probability density for finding ¢ on any 2r interval (the

period of ¢((I))) is then simply 1¢((I))12/2_'. The wavefunction approach circumvents complications

associated with the equally correct perspective [4] that this phase distribution corresponds to the

realizable measurement of the Susskind-Glogower (SG) [5] phase operator.

Suppose we wish to study the temporal behavior of a particle in a one dimensional box (the

"phase of the infinite square well"). We do not have to start all over, we can simply take the

Fourier (series) transform of the discrete energy wavefunction, which underlies the discrete energy

eigenspecta:
_2_2

E,- 2mL2(i)2 (i = 1,2,3...) (2)
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where L is the length of the box and m the mass of the particle. In other words, labeling the energy

eigenstates, {]E,,)}, according to the value of n = (i) 2, we'd use the ¢,, = (E,,[¢) as the Fourier

series coefficients in ¢(_) = _,, _/,,,e-_'_, where • = t(h_r2/2mL2). The temporal distribution is

therefore like that of a harmonic oscillator for which ¢_ = 0 = Cs, ¢5 = 0 = Cs - ¢7 --" Cs, etc.

For a well of finite depth, the bound state eigenenergies will be perturbed from being proportional

to the squares of integers, but they will still be discrete and we would still sum over the (E_ [¢) with

each one weighted by e -_E_t/n, to form ¢(t) which is quasi-periodic (it can't be ezactl v periodic

since the Ei are no longer integer multiples of each other, however the difference between ¢(t)

and _b(t + T) can be made as small as we wish by making T large enough -- hence the term

"quasi-periodic"). The unbound states for this problem, however, have a continuous distribution

in energy and for these we would form the aperiodic

¢(t) = jf dE ¢(E) e (3)

where ¢(E) = (EI¢). Notice that the unbound states exhibit an aperiodic temporal distribution,

i.e. they can be "here today and gone tomorrow" as they zip past the potential well, whereas the

bound states are trapped into quasi-periodic oscillations.

From the general theory of complementarity we can also obtain a quantum theory of angles.

The z component of angular momentum, J,, is (by definition) the generator of translations in

the angle about the z axis, which shah be denoted as ¢. It is well known that J_ has discrete

eigenvalues given by mh where m C {-j,-j + 1,...j - 1,j} and j is the label of the discrete

eigenvalues of the simultaneously measurable j2 = j_ + j_ + j_ which are j(j + 1)h 2. For states

in which each value of m is uniquely represented (the degenerate case will be discussed in the

next section), such as a particle of spin s (i.e. j = s = a fixed number), we can form the angle

representation

= ¢.,e-'"¢ (4)

where Cm -= (j,m[¢) and the angular distribution is p(¢) = [¢(¢)[_/2z'. Since ¢(_)is periodic

its transform ¢,_ must be discrete, i.e. the quantization of angular momentum (projected onto an

axis) is a simple and immediate consequence of the periodicity of the angle (about that axis).

2 Harmonic Oscillator Models of Angular Momenta

In 1952, Schwinger [1] demonstrated a connection between the algebra of two uncoupled harmonic

oscillators and the algebra of angular momenta. The key points of Schwinger's model are as
follows:

where _= and ad denote the annihilation operators for the "up type" and "down type" oscillators.

From this we obtain the fundamental commutation relations of angular momentum:

[J+,J_] = 2hL [L,£] = (6)

where J+ = (J_)t and j.¢ = j_ -4-ij_, so [j,, j_] = ittj_ etc. Since the quanta of these oscillators

behave like spin 1/2 objects (as seen from eq.(5)), yet only totaly symmetrical states are con-
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structedby this method, these quanta are not believed to correspond to actual particles and the

connection is merely within the mathematics [2].

We put some physics into this connection by considering a rotation of a single frequency

electromagnetic wave about the z axis (along which the k vector lies) which leads to the well known

result that a right handed circularly polarized photon is an eigenstate of Jz/h with eigenvalue

m = +1. Similarly, a left handed photon is associated with m = -1 and since we need only

consider transverse components of the vector potential, the photon is said to be a particle of "spin

1 with m=0 missing" [6]. Since the photon is a boson which resembles a spin 1/2 object in the

sense that its spin space is two dimensional, it seems reasonable to attempt to reconstruct the

algebra of angular momenta from these physically significant photonic primitives. Indeed, taking

L = 2 ala. a.d L = (7)

where it, and itl are the annihilation operators for the right and left circularly polarized modes of

a single frequency, z propagating, electromagnetic wave, we obtain

[L,3_] = 4hL and [L,3±] = (s)

where as before J+ = (j+)t and _ = L + iJu, so [L, Ju] = 2ih_ etc. This is the same group,

however J_ now lowers m by 2 (rather than by 1) which is exactly what we want for photons.

Notice that a differential phase shift between these circularly polarized modes (or between the

up and down oscillators for the case of fermions and ordinary, i.e. "non-photonic", bosons) is

equivalent to a rotation about the z axis:

= (9)

We can relable our two-mode number states according to the values of j = n, + n_ (or j =

(n,, + he)/2) and m = nr - nl (or m = (n,, - he)/2). To obtain the angle representation for the

case of identical particles (e.g. all these states are photons, or they are all electrons, etc.) we

should allow for quantum interference of all these states (i.e. we should add amplitudes rather

than probabilities) and therefore simply use

-
J

in eq.(4) for these cases. Since the _b,,_defined in eq.(10) are no longer normalized (for m states

degenerate in j) we must renormalize:

f_" 2 1¢( (11)

For bosons or photons the minimal non-zero value of tml is one therefore the period of _,(_b) is

at most 2_', and since Arrt,_i,_ = 1 the period of p(4') is at most 2_r. For fermions m can be 1/2 so

the period of _b(_b) can be 4a'. This indicates the rotational Berry's phase "for fermions"[7], which

we now see to be more correctly stated as being "for fermions which have non-zero overlap with

rn = +1/2 states." Since Arn,_,, for fermions is still one, p(_b) is still mod 27r, indicating that
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observation of the "mod 4_r Berry's phase" requires interference of this state with another one, as

is well known.

Notice that if we allowed for particles comprised of mixtures of integer and half-integer spin

we could have Arnm,, = 1/2 so that p(¢) (not just 9(¢)) would be periodic mod 4r! Since no

interference with another state is required, the existence of proposed particles of this type would

radically alter our conceptualization of space (each point like a Mobius strip?). Alternatively, we

might argue that it is physicaly reasonable to require that p(¢) have at most a period of 2r and

therefore we would have a theoretical explanation of the "... empirical fact that a mixed symmetry

does not occur" [2]. If however, we had a system comprised of a fermion and a boson (e.g. an

electron and a photon) then since these distinguishable particles do not interfere, the angular

distribution should be (at most) mod 2_.

For the case of distinguishable particles we should add probabilities (rather than amplitudes),

i.e. rather than the procedure defined by eq.s (4), (10), and (11), we should do the following. For

each distinguishable particle we should form an angular wavefunction, then square its magnitude

and divide by 2_r to form each different particle's individual angular distribution, then add these

individual distributions to form the angular distribution of the entire system. When these distin-

guishable particles have distinct values of spin (such as a system comprised of a spin 1/2 electron

and a spin 1 photon for example) this proceedure is as follows. For each fixed value of j = s we
form

_b(J)(_b) = _ _bj,,,,e -i''_ and pU)(qS) = (12)
Iw*

from which we obtain the system's angular distribution: p(_b) = _¢p(J)(_b). This procedure

corresponds to the measurement of 2 - (j2 _ ?2 _ hj,)-l/2j_ where the leading term obviates

the ¢(j + m)(j - m + 1) factor from ?_ so that the lowering of 2 is "pure": 21j, m) = Ij, m- 1).

3 Unitary and Antiunitary Time Reversal

Although in the literature to date [2] it has been argued that a time reversal operator must be

antiunitary (so that kinetic energy, for example, remains non-negative) it is more appropriate for

our purposes to define a unitary time reversal operator since we are mainly interested in relative

(rather than absolute) time and relative time (e.g differential phase) is complementary to the

relative energy (e.g. photon number difference) which can be negative.

For a quantum mechanical operation to conserve probability the corresponding operator must

either be unitary or antiunitary [8] (or some combination thereof). In either case it is reasonable

to require that a time reversal operator, T, should satisfy [2]

0(t)¢ = Cr)(-,), (13)

Equivalently,we could requirewhere 8(1) denotes (unitary) time evolution of an amount t.

[;(t)_O(t)_ = ] and we are neglecting (as we did in eq.(13)) any overall phase which might be

aquired in getting back to the "same" state.

Any antiunitary operator can be expressed as a product of a "complex conjugator" (of c-

numbers) and a unitary operator [8]. Thus the unitary time reversal operator, T_, is simply the
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unitary part of the antiunitary time reversal operator

_o= _, (14)

where C denotes complex conjugation. It has previously been demonstrated that the auxiliary (a)

mode (associated with the realizable measurement of the SG operator) must be "time reversed"

with respect to the original system (s) mode [9]. Therefore, T_, should permute these modes so

that To acting on a two-mode state, I¢) - _,,. _.. °n.,,_.Ino)olna)a, yields

role) = E E ¢'.,o.i-o).i-.)o = E E ¢'.,o. i-.l.ln.}..
n° i_,_ n° n a

(15)

Subsequent time evolution (i.e. absolute phase shift) of this state results in

O(t)_ol¢)= E x-'.,,, e-'_".+"-+')_',n._.,.a_o
'_/"na_n° I / I / ,

n° _a

(16)

where _r(t) = e-i(a,+a-+l) _'t. If instead, we first propagated the initial state I¢) "backwards" in

time, and then time reversed we'd obtain ToU(-t)[¢) =

¢,,_ _ ¢,,.,,,.e+'("'+"'+')"l_.). I,_o)_- Z Z,/,",,.,.°,,,.:--'(".+"°+')'_"- ' '- ',,_,_,,,_.._.., (17)
n$ TI,a Irl.,j TI-O

which is the same state as in eq.(16) and therefore the requirement of eq.(13) is satisfied.

For unitary time reversal, we simply omit the complex conjugation of the expansion coefficients

and we find that in order to satisfy eq.(13) we must consider a differential (rather than absolute)

phase shift _rd(t) -- e -_(a.-e'')_'t. Explicitly, we have

Od(t)_',,l¢>= _.,(t)_ _ ¢,,.,,,.1_.).1_"),,= Z Z ¢"-,".e-'("'-"°)"tl_o)'l'_")", (18)

which is equivalent to g"_(-t)l¢) =

(19)

Thus the "time" to be associated with unitary time reversal is the difference time, translations in

which are generated by the energy difference _(_o - _,).

We have already demonstrated that the differential phase between the two oscillators of our

angular momenta model is equivalent to the angle ¢. Therefore T, corresponds to angle inver-

sion (¢ _ -¢) when we take the s and a modes to be the right and left circularly polarized

electromagnetic modes (or the up and down oscillators), i.e. under T,, we have:

¢..,., -_ ¢.,,.. or °j,_ --+°j,_.. so ¢(¢) _ ¢(-¢) (20)

(in the antiunitary case, we'd have ¢(¢) _ ¢'(¢) under To). A _'_ eigenstate (¢(¢) = ¢(-¢)) will

therefore have an angular distribution symmetrically centered about ¢ = 0, so that any vector
associated with this state can only be along the x axis. Indeed, from ¢_,., = ¢.,,,_. we can show
((a.)_} = {(az)_) Vp e {0, 1,2,...} and from the p = 1 result we have (_) = 0. The f. eigenstates

113



(in the cicularly polarized basis) therefore correspond to polarization which is linear in terms of

the polarization "signal" (i.e. the (_)) so that they resemble (and include) the case of putting

one linear polarized mode in the vacuum state, but they can achieve this with a reduction in

polarization "noise" (e.g. A2E= or A_Eu). These states therefore provide a foundation for the

study of quantum limits on the performance of devices which utilize circularly birefringent media

(e.g. Faraday rotators, optical isolators, etc.).
As a simple example, compare these two T_, eigenstates: one an x polarized coherent state (with

the y polarization unexcited), = and the other (ta)_[0), + 10)_la)t)/v/2 + (1 -

v )e-tot2/210) 10)l, which I'll refer to as the pseudo-coherent state. Both states yield similar

polarization "signals" </_,) __ -2a sin(_t) and (E_) = 0, yet, the polarization "noise" of the

pseudo-coherent state (A2E= = 1/2) is 3 dB below the shot noise limit of the coherent state

(A2E= = 1), where we assume [al 2 >> 1 (else the pseudo-coherent and coherent states both tend

towards the vacuum).

We can also use the phase representation to describe the measurement of the differential phase

shift of two linearly polarized modes which is germane to optical polarization states propagating

through linearly birefringent media. The sense in which ¢(¢) would describe the polarization state

for the linear mode set would be different however since we lose the connection with the angular

measurement as the energy eigenstates in the linear basis are not eigenstates of angular momenta.

Nonetheless, the mode exchange eigenstates in this basis correspond to an expected value of the

electric field operator that resembles circular polarization and these states provide a foundation

for the study of quantum limits on the performance of quarter-wave plates, etc.
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