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Abstract

Via the hydrodynamical formulation of quanturn mechanics, a novel approach to the
problem of tunneling through sharp-edged potential barriers is developed. Above all, it is
shown how more general boundary conditions follow from the continuity of mass, momentum,
and energy.

1 Introduction

A commonly used assumption in quantum mechanics [1,2,3,4] is that the boundary conditions
on a surface & where the potential undergoes a finite jump reduce to the requirement that both
the wave function (¢) and its derivative (84 /8z) be continuous on ¢. We show below through
the hydrodynamical formulation of quantum mechanics how more general boundary conditions
follow from the continuity of mass, momentum, and energy densities. With these new boundary
conditions, a novel approach to tunneling through sharp-edged potential barriers is presented.

2 Formulation

Let us consider the dynamics of a quantum particle described by the coupled hydrodynamical
equations

)

ot o O ()
v O  10(V+Va)
ot +v6:c + m Or =0 (2)

where Equation (1) represents the mass conservation law with mass density p = ¢ and Equa-
tion (2) describes trajectories of a particle with velocity v = (h/m)(8S/8z), subject to an
external potential V and the quantum potential V,,, = —(h?/2m¢)(8*¢/0z?), which accounts
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for quantum-wave features, such as interference and diffraction [5,6]. The wave function has
been expressed in the polar form ¥ = ¢exp(iS). Equations (1) and (2) yield

85  mv?
et (— + V@ +V)=0
and the corresponding Schrédinger equation
] 81,b hz 62,¢,
— = ——— + V.
hat = amaz TV “)

From Equations (1) and (2), we obtain the conservation laws for the momentum and energy

densities as follows:

o1 OP  pov

5 Bz T moz (5)
U  6Q
&t + dr 0, (6)
where
J = pv, (7)
K2 8% 1 (0p
— 2 _ - | _ =
P=pv 4am? | 8x2 p(az)}’ (8)
2
U:p(mzv +VW+V), (9)
B2 8% 08¢ 8¢
Q=vU+o5 (‘ﬁamat —55’;) (10)

are the momentum, momentum flux, energy, and energy flux densities, respectively. The mo-
mentum density pv appearing in the hydrodynamical equations can be shown to be the real part
of a more general quantum mechanical local momentum field P defined from the momentum-

density operator

h
P:;;ﬁ‘% = mp(v + tu), (11)

where v = (k/m)(8S/8z) and u = —(h/2mp)(dp/0z).
It follows now that the boundary conditions for the continuity of mass, momentum, and

energy are:

,
p, pv, pu, andp (12"_ + Vo + V) . (12)

In terms of the wave function and from Equation (3) the above conditions are equivalent to:

B, (8 /z), and (8S/8t).
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3 Tunneling

Next consider the stationary flow of particles with incident energy E striking a potential
barrier of height V and width L: V(z) = V for 0 < £ < L and zero elsewhere. The wave
functions for z < 0 (incidence region 1), 0 < z < L (tunneling region 2), and ¢ > L (transmission
region 3) are given respectively by

¥i(z,t) = /p1 exp(iSy)
= \/1 + a? + 2a cos(2kz — a)
(ot g+ ton” [ tenlhe = 5]
X expz( wt+2+tan [1+atan(k:c 2) , (13)
$a(z,t) = /o2 exp(iS:)
= \ﬂczeﬁ’ + d?e~%* 4 2dccos(y — 8)] /g
. y+6 _y [c€® — de~" vy—2§

X exp z( wt+—— + tan [Ce& e tan(— )D , (14)
YP3(z,t) = /ps exp(iS3) = b exp i(—wt + kz + 3), (15)

where k? = 2mE/h? and §* = 2m(V — E)/R%.
The boundary conditions from (12) where the potential undergoes a finite jump read:

p1(0) = p2(0), (16)
pa(L) = pa(L), (17)
£1(0) = p}(0), (18)
pa(L) = ps(L), - (19)
p1(0)01(0) = p2(0)u2(0), (20)
n(Lyon(L) = (Lo D), (21)
(2).(3),
(2).-(5)-
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By applying the above boundary conditions on Equations (13), (14), and (15), we obtain:

¢ + d® + 2cd cos(y — 8)
g
c?eBL 4+ d?e~%L 4 2cdcos(y — 6)
q

1+ a®+2acosa= ,

b2
2aksina = (¢ — d?),

c=de AL,

| a? = 2d%e~ %L sin(y — §)
= - .

2d%e~ %L sin(y — §) _
T .

From Equations (25) and (27), we have

_ 2d%e"BL[1 + cos(y — §))]
a b

b2

which combined with Equation (29) gives

2 q
2kg
-2 1.2
7 -k
cos(y —8) = 7k

Equations (29) and (33) allow us to write Equation (30) as
49
2_ (49 \ o _mL
b= (6’+k2)de o
which, in turn, combined with Equations (27) and (33), reduces Equation (24)

52 _ k2 52 4 k2
1+ a®+2acosa = b (q ) (1+32—+—cosh2'¢jL).
7’ —k?
Equations (28) and (29) imply that
a®=1-"%,

which inserted into Equation (35) gives
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2 2

F+k
acosa = b (1 + {q 2__;2 ] sinhz?gL) - 1. (37)

By the same procedure above, Equation (26) can be rewritten as
4kg
Combination of Equations (36), (37), and (38) leads to

asina = — ( ) b? sinh 2GL. (38)

P+ o n2=7]2 o (P2 12
42 [1 + (g-i-‘s—2§ )smh-qL] +( e ) sinh Z'éL' (39)
1+ (%’3) sinh?GL
Using the identity sinh? 2GL = 4(sinh? gL + sinh*gL), and after dividing the numerator by
the denominator in Equation (39), we arrive at the known result

=2 2\ 2
b2 =1+ (q 2';; ) sinh? L. (40)

4 Boundary Conditions for Dissipative Systems

Next we show below that the boundary conditions (12) are not only more general but the
assumption that “i and (8 /8x) are continuous at ¢” is physically incorrect for dissipative
systems. To this end, let us consider the dynamics of a quantum particle in the tunneling region
described by Equation (1) and

v v 16V +V,)

R iy
where v is the friction coefficient, and the term on the right-hand side of Equation (41) accounts
for the dissipation. By expressing the wave function as before [see Equation (3)] we have

—vv, (41)

as mu?
h<E+VS)+(—2—'+VW+V)=O. (42)
The new boundary conditions now are given by Equations (16) through (21) plus
05\ _ (0S;
(at)o_(at +Vs,)0, (43)
85, 85,
( Bt +V52)L = ( Bt >L, (44)

which shows the discontinuity in the phase of the wave function at ¢. In an upcoming publi-
cation, we will detail the application of the above boundary conditions and show that friction
on the tunneling of a particle through a single, sharp-edged rectangular barrier diminishes the
transmission coefficient.
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