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Abstract

Via the hydrodynamicalformulationof quantum mechanics,a novelapproach to the

problem oftunnelingthroughsharp-edgedpotentialbarriersisdeveloped.Above all,itis

shown how more generalboundary conditionsfollowfromthecontinuityofmass,momentum,

and energy.

1 Introduction

A commonly used assumption inquantum mechanics [1,2,3,4]isthat the boundary conditions

on a surfacecrwhere the potentialundergoes a finitejump reduce to the requirement that both

the wave function(!b)and itsderivative(8_b/ax) be continuous on _. We show below through

the hydrodynamical formulationofquantum mechanics how more generalboundary conditions

followfrom the continuityofmass, momentum, and energy densities.With thesenew boundary

conditions,a novelapproach to tunnelingthrough sharp-edged potentialbarriersispresented.

2 Formulation

Let us considerthe dynamics ofa quantum particledescribedby the coupled hydrodynamical

equations

"_+OP cq(PV)cox-- O, (1)

Ov Ov 10(V + Vq_)
+ v_ + m a_ = 0, (2)

where Equation (1) representsthe mass conservationlaw with mass densityp = qb2 and Equa-

tion (2) describestrajectoriesof a particlewith velocityv = (h/m)(OS/az), subject to an

externalpotentialV and the quantum potentialVqu -- -(h_/2rn4_)(i_q_/Ox2),which accounts
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for quantum-wavefeatures,suchas interferenceand diffraction [5,6]. The wavefunction has
beenexpressedin the polar form ¢ = eexp(iS)i Equations(1) and (2) yield

OS rnv 2

/_-_- + (--_- + V_ + V)= 0, (3)

and the corresponding SchrSdinger equation

_2 02¢i/i = 2m Ox 2 + V¢. (4)

From Equations (1) and (2), we obtain the conservation laws for the momentum and energy

densities as follows:

OJ OP p OV
__ + _ + _wino_ = o, (5)

OU OQ
_-d+5-;=o, (6)

where

j = pv, (7)

P= Pv _ tt 2 [02p 1 (Op_ 2] (8)
4rrt' [O-x"2x2 . \O-'£] J'

U = p (m-_2 + V_ + V) , (9)

g2 ( c9'¢ 0¢0¢) (10)O = vU + 2--_m_ ¢ OzOt Ot Ox

are the momentum, momentum flux, energy, and energy flux densities, respectively. The mo-

mentum density pv appearing in the hydrodynamical equations can be shown to be the real part

of a more general quantum mechanical local momentum field P defined from the momentum-

density operator

p = _¢'_ = rnp(v + iu), (11)

where v = (h/m)(OS/Oz) and u = -(li/2rnp)(Op/Oz).
It follows now that the boundary conditions for the continuity of mass, momentum, and

energy are:

p, pv, pu, andp(-_+V_+V). (12)

In terms of the wave function and from Equation (3) the above conditions are equivalent to:

¢'¢, ¢'(0¢/0z), and (OS/&).
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3 Tunneling

Next consider the stationary flow of particles with incident energy E striking a potential

barrier of height V and width L: V(z) = V for 0 < x < L and zero elsewhere. The wave

functions for z < 0 (incidence region 1), 0 < z < L (tunneling region 2), and x > L (transmission

region 3) are given respectively by

¢l(x,t) = vr_ exp(iS1)

= V/1 + a 2 + 2a cos(2kz - or)

a 1-a
(13)

= ,/_ exp(iS_)

= _[c2e *_" + d2e -2_* + 2dccos(7 - 6)]/q

+ tan-1 [ce-_ + de-_ z
× exp

\

¢3(z, t) = v_ exp(iS3) = b exp i(-wt + kz + _),

where k s = 2mE/_t 2 and -q2 = 2m(V - E)/h 2.

The boundary conditions from (12) where the potential undergoes a finite jump read:

pl(O)=p2(O),

(14)

(15)

(16)

p2(L) = p3(L),

,'1(0)= p'_(0).

I t

p_(L) = pz(L),

(17)

(18)

(19)

p.(0)_:(0)=_(0)._(0). (20)

p2(L)v_(L) = pa(L)v3(L),

0 o

& ]n = \--_-]L"

(21)

(22)

(23)
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By applying the above boundary conditions on Equations (13), (14), and (15), we obtain:

1 + a 2 + 2a cos ct =
c2 + da + 2cdcos(3' - 15)

, (24)

c2e _/" + d2e -_L + 2cdcos('y - 6) = b2 ' (25)

2ak sin a = (c2 - d2), (26)

c = de -sW', (27)

1 - a 2 = 2d=e-2_r" sin('/- 6) (28)
k

2d=e-aL sin(_-2----_! = b'.
k

From Equations (25) and (27), we have

bS = 2d2e-_L[1 + cos('y -- 6)]

which combined with Equation (29) gives

(29)

, (30)

tan = --,
q

2k_

sin('y- 6) = :_s + k s'

cos(_- 6)= _s_ ks"

Equations (29) and (33)allow us to write Equation (30) as

which, in turn, combined with Equations (27) and (33), reduces Equation (24)

1 + a 2 + 2-cos a = bs k "2'_qi 1 + __k--------_ cosh 2"_L .

Equations (28) and (29) imply that

as = 1 - bs,

which inserted into Equation (35) gives

(31)

(32)

(33)

(34)

(35)

(36)
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acosa = b2 (1 + [_2+ k.______2]sinh2_L) _ 1" (37)i Tq2J

By the same procedure above, Equation (26) can be rewritten as

= _ (_' + k'_ b2 sinh2_L. (38)
asina \ _l'k'q ]

Combination of Equations (36), (37), and (38) leads to

[ (-___--'!_ sinh_L] 2 + (_2+k3_ 2 sinh 2 2_qL

1 + (-_)sinh'_L (39)

Using the identity sinh 2 2"_L = 4(sinh 2 _L + sinh4_L), and after dividing the numerator by

the denominator in Equation (39), we arrive at the known result

('q2"+-k_ _' sinh' _L. (40)
b-2=l+\ 2k_ ]

4 Boundary Conditions for Dissipative Systems

Next we show below that the boundary conditions (12) are not only more general but the

assumption that "¢ and (O¢/Ox) are continuous at a" is physically incorrect for dissipative

systems. To this end, let us consider the dynamics of a quantum particle in the tunneling region

described by Equation (1) and

Ov Ov 1 c9(V + Vq_)
+ vo--xx + m Oz = -vv, (41)

where v is the friction coefficient, and the term on the right-hand side of Equation (41) accounts

for the dissipation. By expressing the wave function as before [see Equation (3)] we have

The new boundary conditions now are given by Equations (16) through (21) plus

(42)

o /o

/L L

which shows the discontinuity in the phase of the wave function at q. In an upcoming publi-

cation, we will detail the application of the above boundary conditions and show that friction

on the tunneling of a particle through a single, sharp-edged rectangular barrier diminishes the
transmission coefficient.
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