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Abstract

This paper illustrates the similarity of the functional forms of quantum

mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams.

This functional similarity provides a direct correlation to investigate the spot size of

large-order mode Hermite-Gaussian laser beams. The classical limits of a

corresponding two-dimensional harmonic oscillator provide a definition of the spot
size of Hermite-Gaussian laser beams. The classical limits of the harmonic

oscillator provide integration limits for the photon probability densities of the laser-

beam modes to determine the fraction of photons detected therein. Mathematica is

used to integrate the probability densities for large-order beam modes and to

illustrate the functional similarities. The probabilities of detecting photons within

the classicallimits of Hermite-Gaussian laser beams asymptotically approach unity

in the limit of large-order modes, in agreement with the Correspondence Principle.

The classical limits for large-order modes include all of the nodes for Hermite-

Gaussian laser beams; Sturm's theorem provides a direct proof.

1. Introduction

There are many instances in science where different physical models have

similar or identical functional forms. Scientists often exploit and glean ideas from

other disciplines to better understand new areas of research, especially if the

physical models exhibit similar functional forms. The harmonic oscillator is a

powerful tool for explaining and understanding many similar disciplines of physics.

Since exact solutions exist for the classical and quantum harmonic oscillator,itis a

tool and simple model to understand basic principles of vibrational motion and

normal modes. In addition, the harmonic oscillator is an excellent pedagogical

system to help model and understand the basic properties of quantum mechanics,

quantized radiation fields,quantum optics, and other disciplines of physics. Yes--

the harmonic oscillatorrightfully deserves its place "on a pedestal" [1].

In this paper we will exploit and use the similarity of the functional forms of

quantum harmonic oscillatorsand Hermite-Gaussian laser beams to investigate the
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spot size of laser-beam modes and the fractional energy and photons incident

therein. As a result of two slightly different definitions for Hermite polynomials

[2,3],some references indicate that the spot size,as delimited by the peaks of large-

order Hermite-Gaussian beams, does not include most of the energy [4,5].In view of

the Correspondence Principle, the probability of finding the quantum oscillator

within the classicallimits asymptotically increases to unity for higher-order modes.

Since the functional forms of the quantum oscillator and laser-beam mode are

similar, we should expect the probability of detecting photons within the

corresponding classical limits of Hermite-Gaussian laser-beam modes to similarly

approach unity for higher-order modes. Mathematica [6] is used to integrate the

laser-beam mode probability densities for small- and large-order modes to illustrate

these principles. Sturm's theorem provides a direct proof that the classical limits

also contain all of the probability density peaks. The harmonic oscillator'sclassical

limits, therefore, serve to provide a good measure of large-order mode spot size for

Hermite-Gaussian laser beams.

The classical oscillator, it'sclassical limits, and the classical probability

density are reviewed in Section 2. Section 3 provides a discussion of the quantum

oscillator, the corresponding probability densities, and the Correspondence

Principle. The Hermite-Gaussian laser beam modes are reviewed in Section 4 and

compared to the quantum oscillator. Section 5 provides a discussion of the

Mathematica results from integrating the laser-beam mode probability densities.

Sturm's theorem and its application to the peaks and zeros of the probability
densities are discussed in Section 6.

2. Classical Limits and Probability Densities

Many systems oscillate by small amounts near a point of stable equilibrium.

The motion of a simple system having one degree of freedom and small oscillations

can be described by a simple linear harmonic oscillator. Some systems having more

than one degree of freedom can also be described by a set of coupled or decoupled

harmonic oscillators. Although the Lagrangian formulation is well suited for

developing the theory of small oscillations [7], the Hamiltonian formulation

provides a direct solution for the simple harmonic oscillator of mass m coupled to a

massless spring of force constant k. The force on the mass is given by Hooke's law

F=-kx with the corresponding potential V fkx2/2. The Hamiltonian for a

harmonic oscillator can be written as the sum of a kinetic and a potential energy

quadratic in the momentum p and the position x

_= T+V= 2P--_m+ mw2x 2 (1)

where oJ2 = k/m and W = 2_v is the angular frequency Of oscillation.

The equations of motion for the harmonic oscillator are obtained from

Hamilton's canonical equations [7]
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Using Hamilton's equations (2) with the Hamiltonian given in (1),

derivatives for the canonical variables x and p are obtained

the time

Jc= -- - -- ,c7__ p p =-_--_-=-rneo2x. (3)
m _x

Differentiating x with respect to time and substituting for p in (3), we obtain the

standard harmonic oscillator equation

J/+ o)2x = 0. (4)

The solution of this harmonic oscillator equation can be written as

x( t ) = x ocos(ot + ¢). (5)

The totalenergy E c of the classicalharmonic oscillatoris a constant of the

motion. Using the oscillatorHamiltonian (1) and the relationship between the

momentum and velocity,p = m£, the energy can be written as

Eo= ½rnSc_+½rnw_x_ .t _=2m(@ x o . (6)

For the classical harmonic oscillator, the amplitude Xo = (2E c / k) y2 is a continuous

variable. The energy is, therefore, also a non-negative continuous variable; the

energy can be zero or a positive value. Solving (6) for the speed of the particle

Ixl=(2Eo/m-o  x )w = (x2- (7)

we see that the particle oscillates between the classical limits. The particle obtains

maximum velocity at x = 0 and zero velocity at the outer limits of its motion. From

(5) we also see that the particle does not classically exceed ±x o.

If we measure the oscillator's position x at random, any value within the
classical limits could be observed in principle. The probability for finding the

particle between x and x + dx is equal to the ratio of the time spent between x and

x + dx to the total time for one oscillation period T = 2z/(o. Noting that the particle

passes the same position twice per oscillation, we obtain the classical probability

density
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foc(x)dx=--2dt -_ 2dx 1 = 2dx co = dx

T [xlT lxl2_ _(X_o_X_)_2

. 1

_¢<x)= _(x2-x:)_ ' Ixl_xo

0 , [xf>Xo.

(8)

(9)

We are certain to find the classical harmonic oscillator within the classical

limits ±xo; classically, the oscillator will not be observed outside the classical limits

(see Fig. 1). The probability for finding the particle within the classical limits is

unity and the probability for finding the particle outside the classical limits is zero,

as noted by integration of(9)

f::o foc(x)dx = f::o dx
,. x° z(X2o _ x2)1/2 = 1

(10a)

_:'So,(x)dx= 0 (10b)

f: fo c (x)dx - 0. (10c)

1

0.8

0.2

I

0 1

Oscillator position (X/Xo)

Figure I. Classicalharmonic oscillatorprobabilitydensity foe(x).
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3. Quantum Mechanical Probability Densities

The quantum mechanical harmonic oscillator energy levels and eigenstates

are derived from the Schr_dinger equation

ihdl ) =HIV) (11)

using the same Hamiltonian (1) where the canonical variables (x,p) are replaced

with operators (X, P)

H = _(x -_ X, p -, P) = --
p2 1

+-mco2X 2. (12)
2m 2

The eigenstates and discrete energies of the quantum harmonic oscillator are

derived and discussed in many older and newer references [1,8-15]. 0nly the salient

features are presented here in order to compare the classical and quantum

oscillator probability densities with the Hermite-Gaussian laser-beam mode photon

probability densities presented in Section 4.

The time-independent SchrSdinger equation, as written in the X-basis

representation,

2rn dx 2 + m°j2x2 _f = E_/ (13)

is solved for normalized solutions alter tedious operations [I]

m (o V4 m (0x 2 Hn x
Ign (x) = _22n (n !)2 exp 2h

(14)

If we use a = meo/h

probability amplitude _n(_) for finding the quantum oscillator

+ dE can be written in a simplified form [9,16]

zY22,n ! exp - H,(_).

and introduce a new dimensionless variable _ = _rax, then the

between _ and

(15)

The Hermite polynomials Hn(_) are nth-degree orthogonal polynomials relative to

the standard weighting function w(_) = e-{_
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_" H.,(_)H.(_)e- d_ = 5.n_22"n!. (16)

The Hermite polynomials (first four listed here)

Ho(_) = 1

Hz(_) = 2_

also satisfy the differential equation [3]

y"+(2n+l-x2)y=O

y(x) = e-X2_H.(x).
(17)

In contrast to the continuous energy levels (6) of the classical harmonic

oscillator, the energies of the quantum harmonic oscillator are discrete. The

quantized energy values E. correspond to the eigenstates (14) of the Schrbdinger

equation (13)

E. = (n + 1/2)h¢o. (18)

Using (6), we see that the corresponding classical limits can be written as

Xo = (_/m_)Y2(2n + 1) _2. (19)

The smallest energy value hw/2 of the quantum oscillator corresponds to the zero-

state lYo(X); the energy increases incrementally by AE. _hw. The probability

density ]_.[2 = _r_: for observing the quantum harmonic oscillator between _ and

+ d_ is obtained from (15)

\z--z nl/

The classical (9) and quantum (20) probability densities are plotted together in Fig.

2 for a few of the oscillator modes. As the order of the oscillator mode increases, we

observe that the fraction of the area or probability to be outside of the classical

limits decreases; the quantum oscillator'sprobability to be within the classical

limits increases. We also see that the classical probability density is near the

average of the quantum probability densities; this is more apparent for the large-

order modes. The classical limits appear to increase with a corresponding increase

in the mode order such that the outer peaks of the probability densities are always

contained within the classicallimits.

(20)
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The classical and quantum probability densities are quite different yet

similar in a number of ways. In particular, a position measurement of the quantum

oscillatorof energy E, can result in any value between -oo and +_. However, when

measuring the classical oscillator'sposition, only values between -x o =-2,_--_/k

and xo = 2,_-_/k will be obtained. If we consider an oscillator having a small mass

of I gram and oscillating at 1 rad/sec with an amplitude of I cm, then the energy

would be mrn2x2/2 = 0.5 erg. We can compare this to the energy difference between
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Figure 2. Quantum harmonic oscillator probability densities. (The

dashed vertical lines represent the classical limits. The thin curves

correspond to the classicalprobability densities.
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the quantum oscillator levels AE-_co = 10 -27 erg. Experimentally it would be

practically impossible to detect energy differences separated by 10-27 erg. Similarly,

if we invert (18) to determine the mode level for this small oscillator, we see that

n = (Elhm) - 1/2 = 10 27. Because the mode order n is equal to the number of nodes in

the quantum oscillator's probability density, it would be virtually impossible to

observe 10 27 oscillation nodes within the 2 cm interval. We would, instead, only

detect or measure the average of the quantum probability density, which is just the

classical result shown previously in Fig. 1. For large n, the classical and quantum

results become indistinguishable as required by the Correspondence Principle [1].

In the limit of large-order modes, this special case of the Correspondence

Principle illustrates how the classical picture is indeed regained. From the

Correspondence Principle and the limit of large-order modes n--4 _, we should

expect the quantum mechanical probability densities to be functionally similar to

the classical harmonic oscillator probability density. This can be derived in a

number of ways [8,15]. If we examine the quantum oscillator's asymptotic

functional form when the mode order increases to infinity, we find a rapid

oscillatory behavior that averages out to the classical results (9) [8]

.mall x
and

Iv.(x)I2 >
.(X,o c°s 

2 1

for even n

for odd n.

(21)

4. Hermite-Gaussian Laser Beam Modes

We now consider an Hermite-Gaussian laser beam propagating along the z

direction. The laser beam considered can have different beam waists along the x

and y directions. The Hermite-Gaussian laser-beam intensity or irradiance at some

+z direction is obtained from a scalar wave equation [17,18]. The irradiance

distribution of an Hermite-Gaussian laser beam that is focused at z = 0 can be

written as [4,19]

E(x,y,z)=E o _exp .'_2 y9 2
W x 1,Uy

(22)

The beam waists wx and wy are the distances at which the lowest-order mode

intensity drops to e-z times the value on the optical axis (some references use an e-2

factor to define a beam waist). The x-axis beam waist
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I Z2 I U2w (z)=w (O)I+ j
(23)

depends on the beam parameter zo. that is a function of the wavelength _.

27_ 2

zo, = -_-w x (0) (24)

with similar results for the y-axis waist and beam parameter.

We see that (22) is similar to the quantum harmonic oscillator density (20).
The functional form of the Hermite-Gaussian laser-beam mode is similar to a two-

dimensional quantum harmonic oscillator probability density. Equation (22)

provides the irradiance at some position in the laser beam; with proper

normalization, (22) could also be interpreted as the probability density to detect

photons at some position in the laser beam. If we divide (22) by the total power in

the laser beam, then the result is interpreted as a probability density to detect a

photon at the corresponding position.

To determine the spot size for large-order beam modes, we consider the

mean-squared value (second moment) of x and y. As an example, we look at the

mean-squared value ofx

u2(z) --
;..I;.. x2E(x' Y' z)dxdy

S'-.. S'-.. E(x, y, z)dxdy (25)

Substituting (22) into (25) we see that the integral is separable

,,Ixl,lyl
u2(z),_ = wx wyJ (26)

and reduces to a simpler form by canceling the y-dependent factors

u_(z)_ = S'-. x2H_ wjz) exp -_2-x2 dx

2 X X 2
f.H:(---mm_lexp(-_.-_.21dx
- \w, tzJ) _, w, )

(27)
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with a similar result obtained for the y direction. The integrals in the numerator

and denominator of (27) occur frequently in quantum mechanics in relation to the

harmonic oscillator problem and are readily solved using the generating function

for the Hermite polynomials [13,16]

" 2 X X 2

(28)

(29)

Using (28) and (29) in (27) we obtain

u_(z)m =w_(z)(m + 1/2). (30)

Taking the square root of twice the mean-squared value, we then obtain

2u2(z)m s w_(z)_ =w_(z)(2m + I) (31)

w,,(z),,, =w,,(z)(2m + 1) V2 (32a)

Wy (z), = wy (z)(2n + 1) 1/2. (32b)

Equations (32) define the beam waists for large-order modes and depend on the

order rn, n of the mode. We see that the beam waists (32) have a mode order

dependence that is identical to that of the classical limits of the harmonic oscillator

(19). To illustrate the beam waist, two laser-beam modes are plotted in Fig. 3 along

with the corresponding limits (32) that define the rectangular region and size of the

laser-beam spot.

: ! l ! I
m,n - 1,1 m.n - 3,2

m

m

I ! I I

Figure 3. Photon probability density plots and classical limits for

TEMll and TEM32 modes. (The vertical and horizontal ticks represent

the classical limits wx(z)_ and wy(z),.)
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We again see that the corresponding beam waists or "classical limits" seem to

increase such that the intensity peaks are always contained therein. Since the

photon probability density for an Hermite-Gaussian laser beam is identical to a

two-dimensional quantum oscillator, it is expected that the probability of detecting

photons within the corresponding classical limits of I-Iermite-Gaussian laser-beam

modes will also asymptotically approach unity as the laser-beam mode order

increases to infinity, that is as m,n _ 0o.

5. Fractional Power and Photon Probabilities

In Section 3 and 4, we saw that the classical limits seem to contain most of

the probability to detect the quantum oscillator and the photons for the Hermite-

Gaussian laser beams. For the large-order mode spot size to be meaningful and

useful, it should contain a large portion of the power or photons of the laser beam.

The probability to detect photons within the corresponding classical limits that

define the spot size of the laser beam should similarly increase for large-order

beams, just as in the quantum oscillator case and in agreement with the

Correspondence Principle. To investigate the fraction of the power or the photon

probability within the classical limits, as illustrated in Fig. 3, an integration over

the classical limits is performed

Classical I.,indts

fro,= ff H2(_)exp(__2)H2(_)exp(__.)d_d _ (33)

¢m

where _ = x/wx(z) and _ = y/wy(z). Using (16) in (33) we obtain

(34)

The photon probabilities (34) were computed using Mathematica and are

presented in Table 1 for the low-order modes. Mathematica was also used to

compute the photon probabilities for higher-order modes. Figure 4 illustrates the

asymptotic behavior anticipated for the higher-order Hermite-Gaussian laser beam

modes. As the order of the laser-beam mode increases to infinity, we see that the

probability to detect photons within the corresponding classical limits

asymptotically approaches unity, as expected from the quantum oscillator problem

and the Correspondence Principle. In particular, we see from Table 1 and Fig. 4

that fm,. --) 1 as m,n --_ oo.
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Table 1. Probability fro,.

m-01 '12
nffi0 0.710 0.748 0.762

1 0.748 0.789 0.803

2 0.762 0.803 0.818

3 0.770 0.812 0.827

4 0.776 0.818 0.833

5 0.780 0.822 0.837

6 0.783 0.826 0.841

7 0.786 0.828 0.844

8 0.788 0.831 0.846

9 0.790 0.833 0.848

10 0.792 0.835 J 0.850

of detecting photons within the classical limits.

I I I

[ 3 [ 4 ] 5 6 7 8 9 10

0.770 [ 0.776 0.780 0.783 0.786 0.788 0.790 0.792
[

0.812 0.818 0.822 0.826 0.828 0.831 0.833 0.835

0.827 0.833 0.837 0.841 0.844 0.846 0.848 0.850

0.836 0.842 0.846 0.850 0.853 0.855 0.857 0.859

0.842 0.848 0.852 0.856 0.859 0.861 0.863 0.865

0.846 0.852 0.8{$7 0.861 0.863 0.866 0.868 0.870
L

0.850 0.856 0.861 0.864 0.867 0.870 0.872 0.873

0.853 0.859 0.863 0.867 0.870 0.872 0.875 0.876

0.855 0.861 0.866 0.870 0.872 0.875 0.877 0.879

0.857 0.863 0.868 0.872 0.875 0.877 0.879 0.881

0.859 0.865 0.870 0.873 0.876 0.879 0.881 0.883

6. Probability Density Nodes, Peaks, and Sturm's Theorem

It is not entirely obvious that all probability density peaks of the quantum

oscillator or of the large-order Hermite-Gaussian laser beams are contained within

the corresponding classical limits. The Hermite functions y(x)ffie-=V2H.(x)

determine the nodes (zeros) of both the quantum oscillator densities and the

I-Iermite-Gaussian laser-beam intensities for all modes. The nodes of orthogonal

0.9

0.8 .

0.7 *

0.6_
0

!

• • • • • Q • •

26o ' o '400 600 8 0 1000

Laser beam order (m)

Figure 4. Plot of the probability fm,m of detecting photons within the

classical limits of an Hermite-Gaussian laser beam.
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polynomials are all real, distinct, and lie within the interior of the orthogonality

region [20]. Figure 5 illustrates that the nodes of the Hermite functions also

determine the nodes of the quantum oscillator and the Hermite-Gaussian laser

beam modes.

The orthogonality region of Hermite polynomials extends from minus infinity

to plus infinity as seen from the integral (16). Some method is, therefore, desired

that will provide a limit to the extent of the nodes of the Hermite polynomials, the

Hermite functions, and consequently the nodes of the probability densities of the

quantum harmonic oscillator and of the Hermite-Gaussian laser-beam modes.

Sturm's classic work on differential forms and the zeros of functions is one such

method for analysis of the nodes of the Hermite functions. Sturm's theorem

provides a useful method to determine the limits of the nodes in many functions,

especially the classical orthogonal polynomials such as the Hermite polynomials.

Direct application of Sturm's theorem [20] and (17), shows that all nodes lie within

the classical limits for the quantum oscillator (19) and the Hermite-Gaussian laser

beam (32).

In addition to Sturm's method, the concavity and convexity of a function is

also usehtl. Equation (17) can be rewritten as

y"/y = x 2 - (2n + 1) (35)

where

: O, is concave forY"/Y O, is convex for

Ix[ < (2n + 1) !/2

Ix[ > (2n + 1) V2
(36)

determines the concavity or convexity of the Hermite functions as illustrated in Fig.

6 for orders n = 3 and n = 4.

-0.2

-0.4

-0.6

Quantum

order

I
I

I
I
I

I

I

,
oscillator

n = 10. (The

Figure 5. Hermite

function of to the

I

A,

liii/:
I
I

0 2 4 6

probability density and

thick curve corresponds

probability density. The light curve is the corresponding normalized

Hermite function. Dashed lines correspond to the classical limits.)

167



t5

10

5

0

-5

-10

-15

.=3

I
I
I

I
I
I

,i I

-4 -2 0 2

!

I
I
I

I

I
I
I

' i

1

-10

-15

n,=4

-4

I I
I I
I I

I I
1 I

-2 0 2
L

4

Figure 6. Concavity and convexity of the Hermite functions. (Thick

curves denote the Hermite functions; thin curves iUustrate equations

(35) and (36).)

Noting the regions of concavity and convexity for the Hermite functions in

(36) and Fig. 6, we see that the classical limits separate the concave and convex

regions of the Hermite functions. The concave region lies between the classical

limits while the convex regions lie outside of the classical limits. The classical limits

always reside at inflection points of the Hermite functions and the peaks always

reside within the concave region, that is, within the classical limits. We can

therefore assert that the beam waists for large-order Hermite-Gaussian laser beams

contain most of the laser beam power and all intensity peaks, as expected from

comparison with the quantum harmonic osciUator and the Correspondence

Principle.

7. Conclusions

The harmonic oscillator is indeed a useful tool to help model physical systems

and, as shown in this paper, to help clarify and better understand some aspects of

the probability densities of Hermite-Gaussian laser beams. In particular, the

probability densities for two-dimensional quantum harmonic oscillator modes are

functionally similar to the probability densities of Hermite-Gaussian laser beam

modes. This functional similarity and the Correspondence Principle provide

guidance to determine that the corresponding classical limits for Hermite-Gaussian

laser beams define a spot size that contains a large portion of the laser beam's

power. As computed with Mathematica, the portion of the Hermite-Gaussian laser-

beam power or photons contained within the classical limits or beam waists

asymptotically increases to unity as the laser-beam order increases to infinity. The

classical limits and the corresponding laser-beam spot, as delimited by the beam

waists, contain all nodes and probability density peaks of the quantum oscillator

and the Hermite-Gaussian laser beams.
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