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Abstract

The Caldirola-Kanai model of one-dimensional damped oscillator is extended to the chain

of coupled parametric oscillators with damping. The correlated and squeezed states for

the chain of coupled parametric oscillators with damping are constructed. Based on the

concept of the integrals of motion it is demonstrated how squeezing phenomenon arises due

to parametric excitation.

1 Introduction

A number of papers devoted to finding exact solutions of the SchrSdinger equation with explicitly

time-dependent quadratic Hamiltonians were published over the past quarter of a century. Several

different but equivalent approaches are usually exploited for this purpose. In this paper we would

like to present the model of quantum chain of coupled parametric oscillators with damping extend-

ing the model of known one-dimensional damped oscillator, and to demonstrate how squeezing

phenomenon arrives in the chain based on the concept of time-dependent quantum integrals of

motion. This method was elaborated in [1, 2, 3], while a detailed review was given in [4]. The ex-

act formulae for propagators, wave functions, coherent states, density matrices, Wigner function,

transition amplitudes and probabilities were given in [2, 3, 4] in the most convenient and explicit

forms for quite general quadratic systems and numerous special cases.

Here we will apply developed approach to the model describing oscillator chain of coupled

parametric oscillators with damping. This model is the partial case of general problem of multi-

dimensional parametric oscillator, but the dynamics of these systems may be investigated in the

explicit form due to the possibility of using usual normal mode transformation in spite of the

coefficients being time-dependent. It is necessary to note that the problem of different kinds of

quantum closed chains was discussed in recent papers [5 12] and the problem of of unclosed chain

in [13, 14].

2 Integrals of Motion

Let us consider a quantum chain consisting of N coupled harmonic parametric oscillators with

damping. All oscillators vibrate with frequency w0(t) which depends on time and interacts linearly

with neighbors. The interaction constant a_(t) depends on time too. When the distance between

neighbors approaches zero, and number N tends to infinity, the chain turns into the parametric

string.
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The Hamiltonian of this system depends on time and has the form

I__N (p_e_mr(t) )2 rnf_2o(t)e2r(t)q_) (1)fI = 2 _--_ -- + ma2(t)e2r(t)(q,_ -- qn+_ +

where q,, is an operator of a shift from the equilibrium point of a n-th oscillator, p,_ is a momentum

operator of the oscillator, m is the mass of each oscillator, and P is a damping coefficient depending

on time.

In this model, damping is described in the framework of a phenomenological Hamiltonian first

suggested for one-dimensional quantum oscillators with damping by Caldirola [15] and Kanai [16].

In this model, the mass of the oscillator increases exponentially. That dependence models the

interaction of the oscillator with external degrees of freedom. Hamiltonian (1) is an extension of

the Caldirola-Kanai Hamiltonian to the case of quantum chain of coupled parametric oscillators

with damping.

The equations of motion corresponding to Hamiltonian (1) are

p_= 4_e_r('), 4n= fl'(t)(qn+l + %-1- 2%)- _g(t)%- 2/_(t)_. (2)

We take into consideration the closed chain, so we have the condition

ql+N = q_.

A property of this model is that the time-dependence of the coefficients does not prevent from the

application of the usual normal-mode reduction formulae. So, let us introduce new variables

V/-_Eu (2_,m/x), (3)X s -_- m=lq m COS

Vr X ENy, = m:_qm sin (2_rsm/N), (4)

1 N

zN - v_:,qm. (5)

For simplicity, we consider the chain consisting of an odd number of oscillators, so the number

s changes from 1 to p = (N - 1)/2. The normal mode transformation (3)-(5) reduces the system

of N coupled oscillators (2) to a set of N free oscillators vibrating independently according to the

equations
_-2r(t)_+_(t)x_=O,

//, - 2r(t)i_ + a_(t)u_= o,

XN -- 2['(t)XN -t- a20(t)XN = O,

where the frequencies are given by the relation

f_(t) = 4f_2(t)sin _ (_rs/X) + 9tg(t).

(6)

(7)

(S)

(9)

One can see that equations (6)-(8) are the trajectory equations of classical damped oscillators

with frequencies (9).
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Following the usual procedure (see,for example, [4]) "annihilation" operators for variable-

frequency chain with damping can be constructed

i N (Is ise2r(0qm'_;_(t)- V_m=, ehPm l_a_(0) .1 cos(2rcsm/N), (10)

where

/_(t) i N
lfl_(O) ] sin(2rcsm/N),

i N (lOehPm ioe2r(Oqm_A_(t)_ 4_E_:, loao(O)1'

(11)

(12)

m_(o) ' to

The complex functions ¢_(t) and e0(t) are the solutions of the equations of motion of classical

parametric oscillators with damping

_(t) + 2/_(t)i_(t)+ a_(t)_s(t)= o, _o(_)+ 2_(t)_o(t)+ ag(t)_o(t)= o. (13)

"Annihilation" operators and their Hermitian conjugate operators satisfy the boson commutation
relations

and

if the functions c.(t), c0(t) satisfy the additional conditions

e2v(O (_(t)e*_(t) - i*_(t)_(t)) = 2if_,(0), (14)

e2r(t) (_o(t)do(t) - Uo(t)eo(t)) : 2if10(0). (15)

One can check that the full derivatives of operators (10)-(12) and their Hermitian conjugates are

equal to zero, so they are the linear integrals of the motion of the quantum parametric chain with

damping.

3 Squeezed Correlated and Fock States

The ground state of the parametric chain with damping can be constructed with the help of the

integrals of motion (10)-(12) using the relations

^ .._

A_(t)¢6(q,t) ^ _. = =B,(t)¢g(q,t) ^ _,= Ax(t)Og(q,t) O, (16)
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where q'= (q_, ..., qN). So the normalized ground state satisfying the SchrSdinger equations with

Hamiltonian (1) has the following wave function in coordinate representation

_26(q_ [) = 7F-N/4( loCo)-I/2II p .(ls_s) -1

\2(_)/0: + _='%Nf_,(O)l_ cos(2_rs(m- m')/N) . (it)

Constructing with the help of integrals of motion (10)-(12) the displacement operator

- fl_B_A u - {'Ax),

where components of the vector

_7= (_,,..., o_,5,,..-, 9_,_)

are complex numbers, and acting by displacement operator on ground state g,6(t)((,t) the en-

tire family of correlated squeezed states can be obtained. So the wave functions in coordinate

representation have the form

, - _ j" I_ I_ _:_5
ga(q,t) = _6(q'/)exp [ 2 2%

V/--_/5 N , 1_ t:+ ?2 q_ + _2[ 1-_ i/3_
0 m=l _--1 2 2

2 N }+ _ e_l_v_ _ qm[a_ cos (27rsm/N) + fl_ sin (27rsrn/N)] .
s=l m=l

(18)

The correlated squeezed states satisfy the Sdlr6dinger equation with Hamiltonian (1) and are

eigenstates of the integrals of motion (10)-(12), and components of the vector c7 are eigenvalues

of operators ( 10)-(12)

&(0¢'_(O',t) = fl_¢s(0",0,

_iN(t)_/,_(_',t) = _f's(0",t).

One can see that the wave function of the ground state (17) and squeezed correlated states (18)

are gaussian states with time-dependent coefficients in quadratic form of exponent function.

Using the property of squeezed correlated states (18) to be a generating function for Fock
states

2 2_(1_ +lfl_l 2) _ _w_tq, t),
s=l _----0 ----
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where vector 77 has the components ff = (n0, nl, ...,np, ml, ...,my), the Fock states of quantum

parametric chain with damping can be constructed, and are of the form

¢_(¢t)_ 1 (_;_O/_H. 0(\2_o/ I

P 1 ( ¢: ._(,_,+m,)/2

s=l

H_,([

IN)
m=l

( )Hn" ](is IV/_" m=12 qmcos(2rcsm/N)

)(:s ] X//_- rn=lE qmsin(27rsrn/N) t_d(q . t),
(19)

where Hi(x j) are Hermite polynomials.

The Fock states (19) are the eigenstates of the integrals of motion ft_(t)fls(t),Bt(t)Bs(t) and

fttN(t)ftN(t) and components of the vector 77 are eigenvalues of these operators.

A_(t)A.(t)¢,_(¢t) = ..¢_(¢ t),

B_(t)B_(t)'F_(q,t) = m_'¢,_(q, t),

^,_ ^ .__ ,__
AN(t)AN(t)On(q, t) = no_'_(q, t).

4 Squeezing and Correlated Coefficients

Let us calculate the dispersions of coordinates and momenta in squeezed correlated states (18).

We define the dispersions and correlations by the formulae

%_ = (Oa(¢t) lO_OkI Os(¢ t)) - (¢s(¢t) lO_I Cs(¢t))(¢_(¢t) I OkI d,_(¢t)),

_,.. = _(d,_(¢t) 1_ + ,_0,I¢_(q',t)) - (¢a(q',t) IeliI d'_(q-',t))(ea(q-',t) [PkI d'_(¢t)).

So one can calculate that the corre]ation of coordinates and momenta of different oscillators are

not equal to zero and have the form

Ig,l_01_ ' _ 1_
,_=I N

-- cos(27rsm(i - k)/N),

h%_r(')l_ot_ _ t_%_r(')l_sI_
°p, pk = 2Nl_fto2(0) + z..., N 2 2 cos(2rcsm(i- k)/N).

One has for the dispersions of coordinate and momenta of the same oscillator

_o_1_ot_ @ _ i_
O'q_

s=l _'rf '

(20)
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h2e4r(t) l_o 12 x-L tde4r(_)I_ l_
0"2_ ___ 2 2p, 2N/o2f_o2(0) + Nt_f_3(O ) (21)

3=1

The correlated squeezed states (18) and ground state (17) minimize the SchrSdinger-Robertson

uncertainty relation [17, 18]
h 2

O'_2 0"_2 >

_k _k-4(l_r 2)

with the correlation coefficient
-_ -1/2/

equal to

r

1 - N2e -4r(t) [] ¢o 12 l02+ 2 _ t¢_ ]2 l_ [f_02(0)lo2
s=l

-- + 2E 2 2 -1) 1/2 (22)

One can see from (20)-(21) that changing of the frequencies influence the dispersions and the

squeezing coefficient k = _ Namely, by changing the frequencies one can decrease the
2%_(o)"

dispersions of the coordinates due to increasing of the dispersions of momenta, and vice versa, and

make squeezing coefficients less then unity. So the squeezing phenomenon arises due to parametric

excitation of quantum chain of coupled parametric oscillators with damping. It is necessary to

note that due to parametric excitation each oscillator has the additional time-dependent parameter

(22), so-called correlation coefficient which is equal to zero in the stationary regime.
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