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Abstract

The point form is used as a framework for formulating a relativistic quantum mechanics,

with the mass operator carrying the interactions of underlying constituents. A symp|ectic

Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass

operator is formed. Mass Splittings within the degenerate harmonic oscillator levels arise from

relativistically invariant spin-spin, spin-orbit and tensor mass operators. Internal flavor (and

color) symmetries are introduced which make it possible to formulate a relativistic SU(6)

model of baryons (and mesons). Careful attention is paid to the permutation symmetry

properties of the hadronic wave functions, which are written as polynomials in Bargmann

spaces.

1 Relativistic Introduction

Despite many successes, one of the main difficulties of the old ,5'U(6) theory [1] was that the

underlying quantum mechanics was nonrelativistic. In this paper we combine what Dirac called

the point form of relativistic quantum mechanics [2] with an SU(3) flavor internal symmetry to

formulate a relativistic SU(6) theory. The goal is to be able to get hadronic bound-state wave

functions and then compute form factors, structure functions, decay rates, and even production

scattering amplitudes. In this paper we restrict our attention to formulating a relativistic SU(6)

theory, and then introduce a harmonic oscillator mass operator to obtain bound-state wave
functions.

We will view hadrons as bound states of underlying spin ½ constituents which carry inter-

nal SU(3) flavor and SU(3) color degrees of freedom. Combining a (relativistic) SU(2) spin

with SU(3) flavor then leads to a (relativistic) SU(6) spin-flavor group. The relativistic SU(2)

spin structure comes from properties of the Pauli-Lubanski operator; as will be shown in Sec-

tion 2 properly chosen sets of four vectors dotted into the Pauli-Lubanski operator generate an

SU(2) Lie algebra. Moreover in the point form of relativistic quantum mechanics all Lorentz

transformations are kinematic, n-particle constituent states called velocity states have the prop-

erty that under Lorentz transformations the internal momenta and spins are uniformly rotated

by a Wigner notation, meaning that the relativistic SU(2) spin structure can be extended to

n-particle systems.
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In the point form of relativistic quantum mechanics, the four-momentum operator supplies

the dynamical information. The (interacting) four-momentum operator is written as P_' =

MV _', where M is the mass operator and V u the four-velocity operator. The Hamiltonian is

then H = pO = MV o. Since Lorentz transformations are kinematic and the mass operator

commutes with all P0incar6 operators, the ti_eory is Lorentz coolant. As discussed in Section 3

mass operators are self-adjoint operators on the n-constituent Hilbert space that commute with

Lorentz transformations and the velocity operator. Of particular interest for hadron spectroscopy

are confining potentials; in Section 3 we will show how to construct relativistic harmonic oscillator

potentials algebraically, using generators of an underlying symplectic group.

To obtain a realistic hadronic mass spectrum mass operators that split the degenerate oscil-

lator levels are needed. We show that spin-orbit, spin-spin, and tensor operators are all readily

introduced in the context of point form quantum mechanics. Moreover it is straightforward to

construct mass operators out of internal symmetry generators; these operators can be used to

obtain Gell-Mann-Okubo and Gfirsey-Radicati type mass formulae. Such operators have the

usual internal Symmetry transf0rmation:propert]es, but the mass:spl_ttings'are not given by

Clebsch-Gordan coefficients, but by matrix elements of the approprlate mass operator.

The Hilbert space of n-constituents are tensor products of representation spaces of the

P01ncar6 and interfiaFsymmetry groups, The relativist_c kinematics olin-particle systems is

discussed in Section 2. A hadronic wave function is an appropr!ately symmetrized wave function

containing spatial l spin-flavor, and color pieces, As shown in Sect-4 ]t-is convenient to

carry out the detailed calculations of the wave f-unctions in Bargmann space, rather than the

usual Hilbert space. Thus, the color, spin-flavor, and spatial parts of the wave function are

all realized as polynomials in Bargmann spaces; the connection between these polynomials and

wave functions in the usual Hilbert space is then given in terms of creation operators acting on

a vacuum state.

2 Relativistic Kinematics

The:Hiibert space0f n-constituent particles is the n-fold tensor product of single-particle spaces

which are t_l_e representation-space_i_t-he Polncar6 groupcorrespona_ng to part]c_s 0i'-mass rn
1and spin j(j = -) In thls_paperwe take the masses of the constituents to be nonzero; in a]ater

paper we will investigate the properties 0 f hadron s _ bound states of massless constituents.

For particles of mass m > 0 and spin j the representations of the Polncar6 group are well

known [3], with the representation space 7-t = L_(R 3) x V j. The action of unitary operators

_ corresponding t o Lorentz transformation s and space-time translat!ons is given by

U^[pjaf) = __,[Ap, ja'f)Di_,_(p,A)

V, lpjaf) = eir"lpjaf) (2.1)

where A E SO(l, 3) is a Lorentz transformation, a E F!4 is a space-time translation and p. a :=

pTga is the Lorentz invariant inner product with the metric g = diag(1,-1,-1,-1), a is a spin

projection variable and (p, A) E SO(3) is a Wigner rotation defined by

(p,A) := B-_(Ap)AB(p) E SO(3), (2.2)
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with B(p) a boost (coset representative of S0(1,3)/S0(3)) satisfying p = B(p)p "e'', p,e,t __

(m,0,0,0). Di( ) is an SO(3) matrix element and f is an internal symmetry label to be
discussed below.

The four-vector momentum p satisfies p. p = m 2. There is some ambiguity in specifying p

which corresponds roughly to the different forms of relativistic dynamics. In the instant form

p is written as (E, ig), with E = x/m 2 + iff.iff and wave functions are written as _a(lg, a ). The

kinematic subgroup consists of rotations R E SO(3) and space translations _. Interactions are

introduced in the Hamiltonian _ and pure Lorentz generators. The instant form of dynamics

has been used to obtain hadronic wave functions and form factors by several groups [4,5].

Another possibility is to write p as p± = p= +ipv , p+ = E+p=, so that p_ = [([p± [2+m 2)/p+]

and wave functions are written as _(p+,p±, a). In the front form of relativistic dynamics the

kinematic subgroup is the two-dimensional Euclidean subgroup E(2) of the Lorentz group, along

with the translations a± = a= + lay and a+ = ao + a=. In this case the dynamics is introduced

in the p+ generators, as seen in Refs. [6] and [7].

In the point form of relativistic dynamics to be used in this paper, p is written as p = my,

with v the four-velocity satisfying v • v = 1. In this case wave functions axe written as _(v, a)

and the kinematic subgroup is the full Lorentz group SO(l, 3), while the dynamics is introduced

in the four-momentum operator Po.

Interactions will be introduced in Section 3. To see how they came about, it is first necessary

to get the free mass and spin operators. The infinitesimal transformations of Eq. (2.1) generate

the operators J_a and P0_, the free Lorentz and four-momentum operators. From these it is

possible to form the free mass, velocity, and spin operators:

:= Po "Po ,

-- 2 e_a_J P(o)

•-2 )

(Pauli-Lubanski operator)

(modified Pauli-Lubanski operator)

(2.3)

V(_) is the free four-velocity operator and will be used extensively in the following sections.

Notice that there is no "0" subscript or superscript on the J_ operators, because in the point

form these operators are not modified in the presence of interactions. The labels p, j,A._da

appearing in Eq. (2.1) are now seen to be eigenvalues of the operators P(_) = MoV(_), W. W,

and n. W, respectively, with n a four vector; W. W has eigenvalues j(j + 1) with no mass factor

(see Ref. [3] for details).

Besides the space-time and Lorentz transformations of single-particle constituents given in

Eq. (2.1), there are also internal symmetry transformations which mix charges and other internal

symmetry quantum numbers. Let G be an internal symmetry group (such as SU(2) isospin or

SU(3) flavor or 5'U(3) color or a direct product) for which there is a unitary representation

operator U_, g E G, acting on a vector space V with basis If). Then

UgIpjaf) = _lp, jaf')Df, f(g)

e

(2.4)
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gives the action of g e G on the basis state Ipjaf); Di, l(g) is a matrix element of G. Thus

]pjaf) is a basis state for the one-particle Hilbert space L_([I 3) × V j x V.

As shown in Ref. [3] (j, a) are eigenvalues of relativistic operators that form a Lie algebra

of SU(2). Let n, n+ be four vectors such that n. W, n+. W form the Lie algebra of SU(2) with

a the eigenvalue of n. W and j(j + 1) the eigen_alue of W. W. If j is chosen to be ½, the spin

of the constituents, and G is chosen to be SU(3),avo,, the two algebras, relativistic SU(2) and

SU(3)_, can be combined to give a larger algebra, namely SU(6). The labels (a, f) in the basis

state are jointly transformed under the action of SU(6); that is

,1 , e su(6), (2.5)U_Ip, j= 1 1 , ,7,a, fl = __, IP, J = g
o'l f I

so that the group element g of SU(6) mixes the relativistic spin variable a and the flavor variable

f. D_,s, aI(g ) is the six-dimensional SU(6) matrix element. It is the infinitesimal actions of Ug
that will be used in Section 3 to obtain mass splitting operators.

Hadrons are bound states of confined constituents. An n-particle constituent particle space

is defined to be the n-fold tensor product of single-particle constituent spaces, with basis and

group actions given by

n

• I • I jl

U^lpljlalfl,... ,pnj,,a,f,,) = II (APl,jialfl,"" 'AP"'3"a"f'_)D"; °° (pi'A)

U,.Ipljlalfl, . . . ,p,j,a,,f,) = e i E° P"'"lpljlalf_,. . . ,p,j,a,f,)

V,_lpljla_fl, . . . ,p,_j,,a,f_) := 17r(p_j_al£,. . . ,p,j,a,,£ )) , (2.6)

where in the last equation rr is an element of the permutation group On n letters, S,; permutation

symmetry will play an important role in the hadronic wave functions to be discussed in Section 4.

To develop the point form of relativistic dynamics, it is useful to define n-particle "velocity

states" that are eigenstates of the free velocity operator V(_). Define

Iv, k,_j,_#,_fo,} := Ua(olkj  ,fl,... ,knj,#,f,) (2.7)

with Y'_:=_/_, = 6. We want to show that the spin labels Pa transform like nonrelativistic

variables. To see this, c0nside r a Lorentz transformations: A acting on the boost B(v)_ defined in

Eq. (2.2)ff:
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UA Iv, k_,J,_P,_A> = Ua UB(,,)Ik_jal_afl, . . . , k,j,_nf,)

-- UB(A,,) UR._ Ik_j_l f_,..., k,,j,_,,f,)

n

• ? ja

= UB(Av) ___.lR,_kl,ja,_fl,...,R_,k.,J,,p.f,,) 1-I Du,,.(ko, R_)

n

Z IA ,R ko, o.ofo/I1 j°= D....(R_)

p_ ot=l

(2.8)

where use has been made of the fact that the boosts defining the Wigner rotation (k_, R_)

are canonical boosts, so that (k_,, Rw) = R_ (see Ref. [3]). R,o is itself the Wigner rotation

B-_(Av)AB(v) as defined by Eq. (2.2)•

Equation (2.8) states that for velocity states, Eq. (2.7), the internal momenta/_a and internal

spins (ja#a), transform like nonrelativistic variables. If they were nonrelativistic variables, the

Wigner rotation R,_ determined by v and A would be replaced by R E SO(3). But since the

Wigner rotations appearing in the velocity state are all the same rotation,_ the spins jl""jn

can all be coupled together to give an overall spin, the internal momenta ka can be replaced

by kagornt., the magnitude of k and the orbital and orbital projection quantum numbers of

the ath constituent, and these coupled together to give the overall orbital angular momentum

of the n-particle constituents, exactly as is done nonrelativistically. Thus the external variables

v, and j, a (if the spin and orbital angular momentum are coupled to give the total angular

momentum of the n-particle system) transform as relativistic variables [see Eq. (2.1)] while the

internal variables transform as though they were nonrelativistic variables.

Similarly the action of a space-time translation a on a velocity state gives

U,Iv,k=JoPaf_) - U.UB(_)lkajlplfl,... ,k,j,p,fn)

= ei_'B(_)Ek,.Iv,E,jo#,_f,_)

= ei"'"m"lv,_o,jo,pofo) (2.9)

which means that

Pi"_)I,:,L.o/,.)= v"m,,l,:,f:o.o/o)

V_)I_,L.jo) = ,:Iv,L.ofo)

Molv,fc,_/hj,_)= re.Iv,ko,#af_) (2.10)

where E,_k,_ = Z(w_,k_) = (Ewe,0) = (mn,{_), with w,_ := v/rn_ +k,_.L andre, :=

Y_ w_. It is the free mass operator M0 acting on the n-particle space of constituents that will be

modified to give the interacting mass operator•
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The connection between velocity states, Eq. (2.7) and n-particle constituent states is

Iv, Lj,_f,_) = UB(,,)lkljl_lf_ , . . . , k,_j,d-t.f,,)

Itl

= _ Ip,J,,,f,,... ,p,j,a,f,) H DJ_:_'o (ko, B(v)) (2.11)

where p_ = B(v)k,_, Y-]_:=I k_ = O.

In the following sections we will set jo = 3, and suppress the label ja in the velocity states.

#,_ is the eigenvalue of na • W_, and together with n+,_ • W_ forms an SU(2) algebra. Hence as

seen in Eq. (2.5) for single-particle states, an S'U(6) element mixes the (ga, f_,) labels:

ltl

u,Iv,L.o:o Iv,;"'"'.= H D,, (9),
l l

9 • su(6).

3 Relativistic Dynamics

In the point form of relativistic dynamics the free four-momentum operator is modified to include

interactions. The six Lorentz generators do not change when interactions are included and

hence the unitary operators UA representing Lorentz transformations retain their form as given

in Eqs. (2.6) or (2.8). The easiest way to modify the free four-momentum operator, P(_) =

M0 V(_), is to change the free mass operator M0 to the interacting mass operator M while leaving

V(_) unchanged:

pt, := MV(_) . (3.1)

As shown in a succeeding paper dealing with electromagnetic currents and form factors, it is also

necessary to modify the free velocity operator, but when dealing with hadronic wave functions

it suffices to use only V(_). M must commute with U^ and V(_), for then

UA PgU_ 1 = U^ MV(_o)U; _

= MU^V:o V;

= M(A-1)_'vV(_ )

= (A -l)_'_P" , (3.2)

which along with [PU, P_] = 0 guarantees the commutation relations of the Poincar6 group.

The condition that M commute with U^ and V(_) is easily satisfied on velocity states. Since

UA transforms v to Av and k'_ to Rw/_o [see Eq. (2.8)], it follows that if the kernel of M on the

velocity state is independent of v and rotationally invariant, M will commute with U^ and Vt':

v )K(k,_.J',,,k,l.t,f_) (3.3)tv,_,_o:olMlvk#p#f#)= v°63(_'- -" -" ' ' -" ,
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where K( ) is rotationally invariant. Since SU(6) spin-flavor transformations can be made

rotationally invariant, it is clear that mass operators can be formed out of SU(6) generators,

resulting in relativistic SU(6) mass splitting terms.

To analyze mass operators more carefully, it is convenient to make all the internal momentum

variables independent. The internal momenta satisfy }"_-_=I k'`, - _ and the Hilbert space norm

is given from

_i, / day dSkl dSk,-1 a (3.4)J1 + g. g wl w,,-i

where k,_ n-1- - }-']_`,=1/_`," Wave functions are now written in independent variables as _0(k`,, pc, f,,),

where it is understood that a -- 1... n - 1 for the internal momenta, while for spin and flavor,

a = 1... n. With n - 1 independent internal momenta, the action of the permutation group

S,, changes its form from Eq. (2.6); for transpositions in which the a _ and n t_ momenta are

interchanged the representation matrix is

_r

-6 -j..
_kn-- 1

/1 //!/ /!/""11

= -1 - ...-1 =5(3)

"'" 1 k,-1 \k,-1

(3.5)

where r = (a, n) E Sn. All of the representation matrices /)(Tr) involving the n _ label are

nonorthogonal; nevertheless, they form an irreducible representation of 5',, with Young diagram

(n - 1,1) (n - 1 boxes in the first row, 1 box in the second row).

In analogy with nonrelativistic Hamiltonians, interacting mass operators can be written as

perturbations of the free mass operator:

M = M0 + V, (3.6)

225



where the "potential" V satisfies Eq. (3.3). As in the nonrelativistic case there are one-body,

two-body, ... n-body interactions. From Eq. (3.6) it is possible to define a relativistic Lippman-

Schwinger equation, generated by the time translation operator H = V°M:

e-imCt= 0 = ¢,

.0¢t
= Ot - Her

¢ = ¢p+ GoV¢ (3.7)

where the free Green function Go(Z) := (1/z - Mo). Mo is of course more complicated than its

nonrelativistic counterpart; in internal momentum variables it is _ v/rn_ + k_ • ;o.
Because mass operators are any (self-adjoint) operators that commute with V(_) and are

rotationally invariant, spin-spin, spin-orbit, and tensor forces of the kind defined in nonrelativistic

quantum mechanics can all be defined in an analogous fashion for relativistic n-body systems.

The relative orbital angular momentum operator is

and if generators of SU(6) for the a _ particle are written A(A_), a-5_)A(A_), _(_), A = 1...8,

where A(A'_) are the SU(3) generators and y(a) Pauli matrices, then for example spin-orbit mass

operators of the form

MLS =/_" g('_)A(A'_) (3.9)

are rotationally invariant.

Mass operators may also be obtained from Lie algebra elements which commute with the

orbital and spin angular momentum. Since one of the goals of this paper is to formulate a rela-

tivistic SU(6) model and harmonic oscillator wave functions have been used for the unperturbed

energy levels (see Ref. [1]), we wish to obtain relativistic harmonic oscillator mass operators.

Consider the operators

0 0 0
0k_' 0f_,_ 0kz (3.10)

with a, _ -- 1 i..n- 1. These operators form a representation of the Lie algebra of Sp(2(n- i)i R).

The middle operators in Eq. (3.10) come from the action of the general linear group GL(n - 1, R),

which is a subgroup of Sp(2(n - 1), R):

(ug )(Zo, fo) , g ecL(,- 1,n);

note that though the permutation group representation/9(r), _r E S, [Eq. (3.5)] is a (nonorthog-

onal) representation of S,, the action of ,5', on wave functions _ is unitary as seen in Eq. (3.11)

with g = 2)(7r).
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The Lie algebra of Sp(2(n - 1), R) is more evident if the creation and annihilation operators

1 0

"- + (3.12)

replace the k,_ and c3/c3k,_ operators. Define

:= =

xo+ := =

:= =

1 0

1 0 O

(3.13)

Then X°,_ is a harmonic oscillator operator that commutes with/_ and S, and hence is a possible

mass operator; it is not of the form M0 + V, as is the case nonrelativistically, but nevertheless

has an equally spaced discrete spectrum.

With this Lie algebra of mass operators and mass operators of the form Eq. (3.9) breaking

the degenerate harmonic oscillator levels, it is possible to formulate a relativistic SU(6) model

in which the mass operators are not given just in terms of their transformation properties under

SU(6), but as actual mass operators as defined in Eq. (3.3).

4 Relativistic SU(6)

To formulate a relativistic SU(6) theory, it is necessary to pay particular attention to the permu-

tation group properties of the spatial, spin-flavor, and color parts of the overall wave function. A

hadronic wave function should be (anti)symmetric under interchange of all constituent particle

labels. Though the color degrees of freedom have only been implicitly included in the discussion

on internal symmetries, we assume that the color part of a hadronic wave function must be a

color singlet under 5'U(3)c with a definite permutation symmetry. The possible permutation

symmetries for n-body color singlets, labeled by the Young diagram Y_ are given in Ref. [8].

Wave functions in the n-constituent particle Hilbert space can thus be written as

_(v0; k,,, #_f,_, c_), where v0 is the overall four velocity of the n-constituents, k,, a = 1... n - 1

are the internal momenta, #_f_, a = 1 ... n the spin and flavor labels transforming under SU(6)

transformations, and ch the color label transforming under SU(3) transformations. Under a

Lorentz transformation, v0 goes to Av0, k'_ ---* Rwf_ and p_ ---, p', as seen in Eq. (2.8); thus

#_, the internal spin label transforms differently under Lorentz and SU(6) transformations, a

property which can be used to generate mass splittings for different spin particles with SU(6)

multiplets.
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We now wish to compute relativistic harmonic oscillator wave functions with the appropriate

spin-flavor and color symmetry:

Iv; NYsgmt ; Xsu(_)YI,Xsv(3)f, ss3 ; lye)

Sp(2(n - 1),R) x 0(3) SU(6) D SU(3).,," x SU(2) SU(3)c

= 63(V- VO)_NYotmt(_Ca)_Xsu(n)ylxsu(s)fssa(_tafa)_lyc(Ca) (4.1)

where v is the four velocity of the hadron, N is the harmonic oscillator eigenvalue label, Yo

is the Young diagram giving the spatial permutation symmetry, and g, mt are the orbital and

orbital projection quantum numbers. Similarly Xsu(6) are the S'U(6) multiplet labels, with basis

labels including the flavor (Xsu(3), f) and spin (s, s3) labels. YI is the Young diagram giving the

spin-flavor permutation symmetry. Finally, "1" designates an 5'U(3) color singlet, and Yc is the

color permutation symmetry. To obtain an overall antisymmetric (for baryons) or symmetric

(for mesons) wave function, the permutation types must be coupled together, Y0 ® YI ® Y_ ..o A

(baryons) or S (mesons). Once these wave functions are known, mass operators arising from

spin-orbit, spin-spin, tensor and SU(6) type forces of the kind discussed in Section 3 can be

introduced to split the degenerate harmonic oscillator mass spectrum.

Though the wave functions described in Eq. (4.1) may seem complicated, we want to show

that they can be readily computed when realized as polynomials in Bargmann spaces. Refer-

ence [8] shows how to realize the spin-flavor and color parts of the wave function as polynomials

in Bargmann spaces. Here we show how to realize harmonic oscillator wave functions as poly-

nomials in a Bargmann space.

The holomorphic Hilbert (or Bargmann) space B(C,-z ×3) needed for the spatial part of the

wave function consists of holomorphic functions F(z) in n- 1 x 3 complex variables, z E C,-z x3,

with the norm given by

IIF]I2= F F e B(C.-,×3), (4.2)

where F(O/Oz) means replacing the entries in F(z) by the differential operators O/Oz. Creation

and annihilation operators are particularly simple, in that

t
Coil --- Z vt i

0

Co, i = ¢gzai

a=l-..n-1

i = 1,2,3

(4.3)

B(C,-z ×3) is isomorphic to the Hilbert space of internal momenta ka [see Eq. (3.4)] and the cre-

ation and annihilation operators, Eq. (3.12), can be used to transform the polynomial harmonic

oscillator wave functions to wave functions in the internal momenta; examples will be given at

the end of this section.
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There are two natural group actions on elements of B that will be needed for permutation

group and orbital angular momentum operators. Write

(RgF)(z):=F(zg) ,

(LhF)(z) := F(h-lz) ,

[Rg,L,,] = O. (4.4)

That is, g G U(3) restricted to elements of S0(3) gives the orbital angular momentum opera-

tors. Infinitesimal operators coming from Lh give the harmonic oscillator operators defined in

Eq. (3.13):

x b = c _c#i= zo, 0--__ ,
i---1 i=l

which along with the other two sets of operators,

3 3

t t =
Xa-t_ = _ co,ic#i Z zaiz#i

i=1 i=1

_ 0 0 (4.6)
Xg# = c,_ic#i = Oz,_i Oz#i '

i=1 i=1

give the Lie algebra action of Sp(2(n - 1), R) on B, and commute with Rg, g • SO(3), Eq. (4.4).

It is convenient to transform from a Cartesian basis, with i = 1, 2, 3 to a spherical basis

with # = 4-1, 0. The transformation is

1

(4.7)

Then

xb = + +  oC#o

X¢-t- t t Ct Ct t t= %,+c#_ + a- #+ + CaoC#o

S_# = ca+c#- + ca-c#+ + caoc#o • (4.8)
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In the spherical basis the orbital angular momentum operators are

n--I

cr=l

n--1

L+= Z
ol=l

L_ =(L+) t . (4.9)

We now want to construct a relativistic harmonic oscillator mass operator out of the op-

erators in Eq. (4.8) that commutes with the permutation group So and the orbital angular

momentum operators, Eq. (4.9), for then spatial wave functions will be polynomials in z labeled

by N, Y,, £, and mr, P[NV.tmt)(z), as required from Eq. (4.1). By construction the X°_ commute

with the angular momentum operators, Eq. (4.9); we now show that the symmetric group action

is a subgroup of U(n - 1), so that if the harmonic oscillator mass operator MHo is chosen to be

MHO = rnX °

n--I

= m x°o, (4.10)
ot_l

it will automatically commute with S,. The factor m in Eq. (4.10) is a constant having the

dimensions of mass, and sets the mass scale for the hadronic mass spectrum.

As shown in Eq. (3.5), the action of permutation group elements 7: E S, on internal mo-

mentum vectors k_, c_ = 1... n - 1 results in nonorthogonal n - 1 dimensional representation

matrices; nevertheless, as can be ascertained by taking traces of these matrices and using char-

acter formulae [9], the S,, representation matrices are irreducible, with Young tableau (n - 1, 1).

The corresponding orthogonal matrices will be denoted by D(Tr), so that

7r • S. --* D(Tr) C 0(n- 1) C U(n - 1)

(L_F)(z) = F(D-l(Tr)z) , F • B(C,-lx3) • (4.11)

That is, the orthogonal representation matrices of dimension n- 1 of the group S, act on elements

F in B via the U(n-1) action defi_ed in Eq. (4.4). Since the L,_ action is generated by orthogonal

matrices D(r), L,_ will not only commute with X ° = )-_ X_°_, but with X + := _,_ X+,_, and

X- := _'-_ X_,_. Thus, we have Sp(2, R) x S, embedded in Sp(2(n - 1),R) in which each

eigenvalue of X ° carries a definite permutation symmetry and X + raise and lower the polynomial

eigenfunctions of X ° .

X- acts as a lowering operator on X ° eigenfunctions. The simplest polynomial correspond-

ing toN=0, Y,=.5',andg=0isp(z)=l:

PIN=O,Y.=SS=O)( )= 1(= 10)). (4.12)
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There is then a tower of eigenstates generated by the raising operator X + = _"]_a,_,za_,z_,_,:

Pi_N,s,t=o>(z)= (x+)NIo)

(z,o.zo.)
or,D

(4.13)

Similarly there is a tower of e = 1 states, starting with N = 1, given by the polynomials za,,

with z,_+ the polynomials with L3 = +1. At higher levels in the angular momentum towers,

states cannot be uniquely labeled by Y,; additional operators commuting with X ° and .5', must

be introduced; the construction of these operators is given in Ref. [10].

Constituent quark models assume that baryons are bound states of three quarks. To con-

clude this section we exhibit polynomials for baryons consisting of three constituents. The

relevant permutation group is $3, and the representation matrices D(Tr) are given on page 224 of

Ref. [9]. There are three types of irreducible representations, ]I, = S (symmetric), A (antisym-

metric) or M (mixed, two dimensional). We list here some low N polynomials for g = 0, 1, 2 and

L3 = g. (The other angular momenta can be obtained from the lowering operator L_, Eq. (4.9),

which means differentiating the given polynomials in a prescribed way):

plN,v,,t,t>(z) = c*. . . ¢*1o)
IO,S,o,o) = 1 = IO)

12,M,O,O> = {

("-"z2 ,, z_.) = _ E %, - %, Io>
/1

f Zl+

I1, M, 1, 1) =
t, Z2+

{2, A, 1, 1) = :_2 (Z,oZ2+ - z,+z20)

12,s,2,2>= ½(zL +

(_,+z_+)

= _+1o>

= c_'+IO)

=  l+c-lo);O>
-- _ t"_' (cl .+-- 2

1 t2 t== _ (c,+ - _=+)1o>

= _I+_I+Io>
(4.14)

The coefficients appearing in front of the harmonic oscillator polynomials normalize the polyno-

mials to one; these factors are easily computed using the differentiation inner product, Eq. (4.2).

Moreover the polynomial eigenfunctions are easily transformed to harmonic oscillator wave
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functions in internal momentum variables. In this case the vacuum state ]0) is realized as
1 2

e-5 )'-_a,l, k_, and the creation operators in the right-hand column of Eq. (4.14) are given in

Eq. (3.12).

When the spatial polynomial wave functions with permutation symmetry Yo are combined

with the spin-flavor and color (for which Y¢ = A) wave functions, the resulting symmetry type

must be antisymmetric. For a given Ys this fixes Yf, namely

_ dim SU(6)

M M 70

S S 56

A A 20

5 Conclusion

We have shown how to construct a relativistic quantum mechanics using Dirac's "point form," in

which Lorentz transformations are kinematic and interactions appear in the mass operator. The

four-momentum operator is then the product of the mass operator and the four-velocity operator.

For eigenstates of the four-velocity operator, mass operators are rotationally invariant self-adjoint

operators. Mass operators corresponding to spin-orbit, spin-spin, and tensor forces are readily

constructed because the internal coordinates of velocity states transform like nonrelativistic

coordinates. Nevertheless, the theory is covariant in that four vectors transform in the usual

way under the kinematic Lorentz group. A modified Pauli-Lubanski operator, in which the

four-velocity operator replaces the four-momentum operator, when dotted into appropriate four

vectors, forms a relativistic SU(2) spin algebra. The eigenvalue of the spin Casimir operator

is j(j + 1). Combining this SU(2) algebra with an internal symmetry into a larger symmetry

produces mixing between spin and internal symmetry quantum numbers in a relatlvistically

invariant way.

When the internal symmetry is SU(3) flavor, and the spin of the constituents is !, the result

is a relativistic SU(6) theory. In such a theory there are many ways of choosing mass operators

(such as QCD inspired mass operators), but the simplest choice is a harmonic oscillator mass

operator with equally spaced mass eigenvalues. Such a mass operator is not constructed like

its nonrelativistic counterpart, with r 2 potentials between each of the constituents, but rather

is constructed algebraically using a symplectic algebra. By using Bargmann spaces it is possi-

ble to realize the harmonic oscillator wave functions as polynomials with definite permutation

properties. Moreover, the harmonic oscillator mass operator can be modified without changing

the polynomial eigenfunctions by adding on the operator X+X -, in which case the eigenvalues

N = 0, 1, 2,... become (N - t)(N + 3e + 1), where l is the orbital angular momentum.

Mass operators can also be formed out of SU(6) generators, which then give Giirsey-Radicati

type mass formulae [11]. By adding such mass operators to spin-orbit or tensor mass operators,

it should be possible to reproduce the observed baryon mass spectrum. And if constituents and

their antiparticles are combined into a larger internal symmetry, it should also be possible to fit

the meson spectrum, as well as the spectrum of some of the low-mass nuclei.
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Once realistic relativistic wave functions for mesons and baryons are available, it should be

possible to compute form factors, structure functions, decays, and the like for hadrons viewed

as bound states of spin ½ constituents. In a succeeding paper [12] we show how to formulate a

point form relativistic quantum mechanical impulse approximation, wherein the electromagnetic

properties of the hadrons are determined by the electromagnetic properties of their constituents.

It is possible to generalize the relativistic SU(6) theory to a Fock space theory, where the

Fock space is formed by taking the direct sum of the n-constituent Hilbert spaces discussed in

this paper from n equals zero to infinity. Such a Foek space is the appropriate space on which

to compute decays of excited baryons, such as the A _ 7r + N decay which was forbidden in the

old SU(6) theory. Finally, we mention that mass operators need not commute with the number

operator; for such mass operators hadrons consist of a direct sum of an indefinite number of

constituents and correspond to the current quarks in QCD, in contrast to constituent quarks.
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