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ABSTRACT

Proper-time relativistic single-particle classical Hamiltonian mechanics is formulated

using a transformation from observer time to system proper time which is a canonical contact

transformation on extended phase space. It is shown that interaction induces a change in the

symmetry structure of the system which can be analyzed in terms of a Lie--isotopic

deformation of the algebra of observables.

1. INTRODUCTION

We begin with some historical remarks. In the transition from nonrelativistic to

e A)2(P--C
relativisticquantum mechanics, the Hamiltonian H - 2m + V isreplacedby

_eA)2+ m2c4]mH = [c2(p _ + V. It was quite natural to expect that the first choice for a

relativistic wave equation would be

i_._t (x,t)= ([c2(p_e A)2 + m2c411/2 + V)g(x,t), (1.1)

241

PRE¢EO!Ng PAGE BLANK NOT F_LlViED



where P = -i_.V.
r_ N

In a survey article on relativistic wave equations, Foldy [1] points out that in the

absence of interaction, equation i. 1 gives a ueffectlv good relativistic wave equation for the

description of a (spin zero) free particle. When _ is not zero, the non-commutativity of P

with _ appeared to make it impossible to give an unambiguous meaning to the radical

operator. Historically, many authors [2] attempted to circumvent this problem by starting

with the relationship(H - V) 2 = m2c 4 + C2(I_ - e/c A)2 which led to the Klein---Gordon

equation. The problems with thisequationwere so great,that allinvolved became frustrated

and itwas dropped from seriousconsiderationfor a few years. Dirac [3]argued that the

proper equation should be firstorder in both the space and time variables,in order to be a

truerelativisticwave equation. This lead to the well-known Dirac equation.

In the same paper that Dirac provided thebasic ideaswhich lead to the Feynman

integral[4],he noted that "the Hamiltonian method isessentiallynon-relativisticin form,

sinceitmarks out a particulartime variableas the canonicalconjugate ofthe IIamiltonian

function."- - _ :- = : _- • _ _ -- - : "

Dirac's position, that the equation should be first order:in the St)ace and time " :2

variables, emphasizes the relativistic invariance point of view in the merging of special

relativity with quantum mechanics. From the ClUantum mechanical point:o_ew, 9n¢couid

_rgue that a proper relativistic wave equation would elevate the time coordinate to the same

level as the space coordinates, so that all become operators. In the relativistic quantum

theory of the present day, the time coordinate does not have equal status with the space

coordinates.

The PropeP--Time Problem .......

If one attempts to implement the successful procedures and methods of noarelativistic

quantum mechanics with the special theory of relativity, it is well-known that problems of
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physical interpretation appear. The problems are weU-known, and discussed by many writers

[5]. In order to clearly see one apparent problem, let us note that the three fundamental

relationshipsof classicalspecialrelativity:

dr_(I-v2'm -v2 -m
,E= mc2(1 ,

E = (c2p2 + m2c4) 1/2,

may be uniquely combined to give dr mc2(c2p2 + m2c4)-I/2/ Ifwe now make the_-=-

dr mc2(--c2_.2A + m2c4) -I/2 Thistransitionto quantum mechanics, P -4-iTtV,we obtain _- = .

reset isconsistentwith auantum mechanics but isinconsistentwith th_ _ attempts 5_ to

treat vrouer time as a parameter.

The Third Postulate Problem

The two postulates of special relativity are:

1. The physical laws of nature and the results of all experiments are independent of the

inertial frame of the observer.

2. The speed of light is independent of the motion of the source.

The first postulate abandons the notion of absolute space, while the second postulate

abandons the concept of absolute time. It is of interest to note that another postulate is:

3. The correct implementation of postulates 1 and 2 is to require that time be represented as

a fourth coordinate (Minkowski space) and to require that the relativistic laws of physics

be invariant or covariant under Lorentz transformations.

This third postulate was proposed by H. Minkowski, a well-known mathematician in the

early part of the 20th century. Most of the physics community of the time did not accept it,
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regarding it as a mathematical obstruction without physical content.

The inability to obtain an alternate approach dictated by physical considerations

forced acceptance of the current implementation. Although the second postulate eliminated

absolute time, the transformation theory associated with postulate 3 revealed a new unique

time variable associated with the observed System, its proper time. The purpose of the

present paper is to show how the use of this variable in place of the observer time variable

leads to a conceptually (and technically) much simpler implementation of the special theory

of relativity. To be sure, the use of this variable is not new. However, we treat the

transformation from observer time to system proper time as a canonical contact

transformation on extended phase space. This approach forces the identification of the

canonical Hamiltonian which generates the Lie Algebra bracket. The problem of interaction

is discussed for two-particle momentum - independent potentials. These include, of course,

the important case of the relativistic harmonic oscillator. We confine our study to the

single-particle classical theory. The many-particle classical theory and the quantum case

will be explored elsewhere.

In Section 2 we formulate proper-time Hamiltonian dynamics for a single classical

massive particle and discuss some properties of the group of proper-time transformations on

extended phase space. Section 3 is devoted to the discussion of the case of particle interaction

for two-body potentials independent of the particle momenta, and Section 4 contains some

concluding remarks.

2. SINGLE--PARTICLE FORMULATION

The dynamics of a classical observable can be conveniently studied by Hamiltonian

_A o_ _A ,_
mechanics using the Poisson bracket {A(p,q), B(P,q)} = _-_--_-_ _1_-. The Hamilton

equations ensure that the time development of an arbitrary classical function W(q,p,t) is

given by
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_tW-{q,P,t)--{H, W(q,P,t)} + _-----{q,P,t).

H dr, the proper-time evolution of the function
Defining the proper time r by dt -

W is given by the chain rule:

dW=dWdt_ H_/_+a-c o, •
mc

(2.1)

An energy functional K which is conjugate to the proper-time r will be defined by

{K,W} -- ---_H,W} with K - mc 2 when H -- mc 2. If the mass m remains invariant during
mc

the evolution, this functional can be directly determined to be

(2.2)

and the evolutionofthe functionW in terms of r can be expressedas

dW {K,W}+ W¢
g'_= 3"7""

Consider the behavior of a singlenoninteractingparticleofmass m, with momentum p

as measured in some inertialframe. The usualform ofthe Hamiltonian representingthis

system isH = _/c2p2 + (mc2)2. For thisexample, the conjugate proper energy isgiven by

p2
K = _ + mc 2. Severalinterestingpointsshould be noted:

a. The functionalform ofthe energy K isthe same as that of the nonrelativisticenergy ofthe

system, even though the system isfullyrelativistic.

b. The momentum parameter in the functionalform of the energy K isthe momentum as

measured in the originalinertialframe, not the proper frame of the particle(which of

coursewould measure zero momentum). This emphasizes the form of the transformation

as a canonicaltime transformation,ratherthan as a Lorentz transformation.
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c. If the particle were to interact with external influences, the proper frame would not be an

inertial frame, but the proper time is always defined.

Transformation Group

We noted earlier that the proper time is invariant for all inertial observers. However,

different observers will use different Hamiltonians to describe the phase flow of the system. In

order to relate the phase flows for different inertial observers, we note that the proper-time

transformations form a subgroup of the full group of transformations on the extended phase

space which, since they do not transform the time, include the group of symplectic

diffeomorphisms.

Consider two inertial observers in frames X,X' with extended phase space coordinates

(p,q,t), (p',q',t') respectively. Let L denote the set of Lorentz transformations on

space-time reference frames, L(X,X'): X -, X', and denote by T the set of canonical

proper-time transformations defined on extended phase space. We denote the map

(P,q,t) _-* (P,q,r) by T(q,t,v).

THEOREM. The proper-time coordinates on X are related to those on X' _ th.__ee

tran_f0rmatign:

Sm( q" ,q,v) = T(q' ,t' ,v) Lm(X,X' )T-l(q,t,r).
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Proof. The proof follbws from the commutativity of the following diagram.

L

X(q,P,t) , X'(q',P',t')

T X T x ,

(q,P,r) ....... > (q',P',r)
S

It is easy to prove that, for each fixed system, the set of proper-time transformations

between inertial observers is a group which relates the dynamics as viewed by one observer to

the dynamics as viewed by any other observer.

We have used the particle mass in the statement of the above theorem to fix the

observed system. The group of proper-time transformations depends on 14 parameters

(m,P,q,P ',q" ,r). It follows that the free-particle laws will be the same for all inertial

observers and will be form invariant under a similarity group action on the Lorentz group.

COROLLARY. There exist Poincar¢ tr_,nsformation_ that prescrv¢ the time coordinate.

Proof. We note that, in the proof of the above theorem, both (_q,P,r) and (.q" ,P',r) are

inertial frames in the free-particle case.

Lie-Isotopic A19ebrss

Prior to studying the case of interactions, we introduce the essential ideas concerning

Lie-isotopes and their properties. For a complete review of these objects, we refer to [6]. Let

G denote a given Lie algebra with bracket [A,B] = AB - BA and let T be an invertible

element in G. A Lie-isotope of G is then defined as G with the bracket

[A,B]* = A.B - B.A _=ATB - BTA. It is easy to show that [, ]* is a Lie bracket and that
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(G, [, ]*) is a Lie algebra. It turns out that two nonisomorphic groups may have isotopic Lie

algebras. The standard example concerns the groups SO(3), SO(2,1). These are symmetry

groups for the following respective Hamiltonians:

: + ÷ q2+

These Hamiltonians lead to the same equations of motion and to the same conservation laws

(via Noether's theorem) for the components of angular momentum Lb(b = 1,2,3). Using the

4-T-,
notation ATB = ATB - BTA, we have

and

[Lb'Lc]='_i 6j_j, 0 0 1 '

[Lb'Lc] -_i _j_j' 0 0 1 '

for the respective Lie algebras of the groups SO(3) and SO(2,1).

T - [_i; - T-1.

In the latter case we have

In order to understand the requirement that T be invertible, recall that the group

SO(3) leaves the standard inner product <.a,b> 3 = a!b 1 + a2b 2 + a3b 3 invariant while the

group SO(2,1) leaves <a,b>2,1 - alb 1 - a2b 2 + a3b 3 invariant, We can write

<a,b> 3 = (ua) t I(ub) = (a) t I(.b) = (a) t (b) so that utIu - I if ut = u-1, u e SO(3); while

<a,b>2,1 = (ua) t I(ub) - (a) t I(b) if ut Iu = i for u e SO(2,1) with i = T -1.
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3. Intemction

The question of where to put the potential energy was essentially resolved when it was

found to fit perfectly as the scalar component of a four-vector. Since this point of view is

being questioned in our approach, we must revisit this issue.

Consider the following Hamiltonians:

Case 1. H = [c2p2 ÷ (mc 2 ÷ V)21I/2,

Case 2. H = [c2p2 % m2c4] I/2 + V,

corresponding to two differentways ofdescribingparticleinteractions.Here, V isassumed to

be independent of the momenta.

In case I we obtain

d_ c 2 dt _- H
_'="_-P'_]'_ mc 2 + V

so that

dP

and _ = -VV.

_t P = (mc2H+ H) (-VV),

d9 __)-i_]7= (m + P (3.1)
C

We note from (3.1)that,when V << mc 2,

the corresponding nonrelativisticform relativeto the time I".

We take K as in (2.2)so that,by an analogue of (2.1),we have

dW H {H,W} or
- mc 2 + V

HaH v -1 OHdW m__._ _. (1 + - (1+ _p-]._'_"- - m--"_c) _ _ me
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Thus, if we set T = (1 + ___)-1, which we note is comparable to unity in the nonrelativistic
mc

regime (3.2), we obtain

dw 0w ow_= _r4- _ _rP-=

demonstrating that the proper-time dynamics is described by an isotopic Lie algebra. We

infer from the above discussion that the interaction induces a change in the symmet_ structure

of the s_/stem.

We can formalize this result as follows. Define i = T-1 and replace the complex

number field C by £ = {ci: c e £}, so that £ is an example of an _sofield for which I is the unit

[6]. For example, the multiplication of two isonumbers is defined as

m

c,t,= (ci)T(bi)= cbl - (cb)" forc,b_ £.

In a similar manner, a Lie algebra G can be "deformed" to obtain a Lie-isotope of G as

discussed in Section 2.

For case 2 we obtain

d_] c2p dP

_R-= IVr-V, gi-=-vV,.

itS= _ me

and the analogue of (3.3):

d_] P dP=(H -V)(_VV),
g_ = _, gY _ -

mc
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H aH 1dw v 8w

In the present case we set T = 1 _ ,r_[and I = T -1 so that T = T -1 - I in the region V << H.

The operator K is again given by (2.4), and we find

p2 I . P,2 v2
K=-_-_-+mc2+V 1 + (_--_-) +2m--_c"

(3.4)

For purposes of comparison, we note that forcase 1 we obtainfrom (2.4):

p 2 V2

K=-_-_-+mc2+V+2m---_c •
(3.5)

We note that the two Hamiltonians (3.4),(3.5)agree in the nonrelativisticlimitbut differ

from each other in the ultrardativistic regime.

4. CONCLUDING REMARKS

We have discussed a formulation of single-particle classical relativistic Hamiltonian

mechanics in terms of a proper-time implementation of special relativity using a

transformation from observer time to system proper-time which is a canonical contact

transformation on extended phase space. The problem of interaction was investigated for

two-body potentials independent of the particle momenta. It was shown that the interaction

induces a change in the symmetry structure of the system which can be analyzed in terms of a

Lie-isotopic deformation of the (Lie) algebra of observables.

In both cases considered in Section 3, the total energy of the system is conserved. In

the first case we find an easy physical interpretation; viz., the partide is interacting with a

comoving force. The second case does not seem to have a simple interpretation. We infer
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from it the possibility that the particle can tell the difference between a change in mass at

each point and an external comoving force which does not depend on its clock. We believe

that our approach makes the four-vector concept unnecessary and solves the interpretational

problems associated with the second case.
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