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Abstract

The internal space-time symmetry and simple supersymmetry of relativistic par-
ticles are briefly discussed in terms of the little group of the Poincar_ group. The
little group generators in a finite-dimensional matrix representation of the N = 1
super-Poincar$ algebra are explicitly constructed. The supergeometry of a massive
case continuously becomes that of a massless case in the infinite-momentum limit.
The origin of the gauge transformations associated with the massless supermultiplets
becomes transparent in that limit.

1 Introduction

The concept of the little group of the Poincar_ group turned out to be very useful in analyzing
the internal space-time symmetries of elementary particles and, hence, in assigning quantum
numbers for them [1,2]. The internal space-time symmetry groups for massive and massless
particles are known to be locally isomorphic to the three-dimensional rotation group 0(3) and
the two-dimensional Euclidean group E(2), respectively. The little group of the massless particle
can also be represented by the cylindrical group, which is isomorphic to the Euclidean group,
when the cylindrical axis being parallel to the momentum [3]. The little groups for massive and
massless particles are in fact related by the Wigner-inonii-type group contraction [4]. As was
explained recently [5], the little group for massless particles is an infinite-momentum zero-mass
limit of the little group for massive particles.

: Our purpose is to extend those observations _othe case of supersymmetry. Here we will restrict
ourselves to the case of simple or N = 1 supersymmetry in four space-time dimensions, though
the extended supersymmetries with or without central charges [6], as well as higher-dimensional
supersymmetries, could also be studied along similar lines. The role of Wigner's little groups in
particle theory and supersymmetry is illustrated in Table I.

We denote the generators for translations and Lorentz transformations by P,_ and M._, re-
spectively, and for global supersymmetry transformations by Qa. The algebra of global simple
supersymmetry is an extension of the ordinary Poincar_ algebra, and it is known as the N = 1
super-Poincar$ algebra [7]. It comprises

= + - - .

I[M_.,,Px]_ = rh,_P_, - 71.xP_ ,

255



. ° _; /: [M._,Q°]_= (_._)°bQb,

{Q.,Qb}+ : (7"C).bP.,

[v_,v_]_= [P_,Q°]_=0, (1)
where the third line means, in particular, that the Q transforms as a spinor under Lorentz
transformations. The most important equation is represented by the fourth line, which allows to
interpret the supersymmetry as the square-root of space-time.

We use the conventions in which x _ =_ (x',t) = (x,y,z,t) and q = diag(+ + +-). In eq. (1)

the _._ denote the Lorentz generators in the spinor representation, _,_ = ½[Tp, %]-, the C is the

four-dimensional charge conjugation matrix, and the 7 _' are Dirac matrices in four dimensions.

2 Matrix Representation of Supersymmetry

An explicit 5 × 5 matrix representation of the N = 1 super-Poincar_ algebra (1) is known due to
Ferrara and van Nieuwenhuizen [8]

_a pv

0 0 0 0

0

0

0

0

,P.=

0

0
7.(1 - 75)

0

0

0 0 0 0 0

Q_ -_-

0 0 0 0 [(1+ 7s)ch.
0 0 0 0 [(1+ 7s)c]2.
0 0 0 0 [(1+ 7_)c5.
0 0 0 0 [(1+ 7s)C],.

(1-75)., (1-7s).2 (1-75).3 (1-7s)o4 0

(2)

In particular, the relation [P,, P,,]_ = 0 easily follows from the definitions 7s = i7_727370, 7_ = 1.

All of the momentum-component operators in eq. (2) are in fact nilpotent and, hence, the repre-
sentation (2) can serve for the massless case only. Clearly, this finite-dimensional representation
of the super-Poincar6 group is not unitary. Another convenient representation of the genera-
tors of the super-Poincar6 group in terms of differential operators is provided by the_supe_space

[7] parametrized by (zv,O°,Oa), where O's represent the Grassmannian anticommuting spinor
coordinates in the two-component notation:

0. = _, , 7, = .--_o'_ 0 _, = (+o_i,1); _ = 1,2

The representation of the super-Poincar6 algebra in superspace reads [7]

P" = -iO" , M "_" = -i(z"O"- z_'O") + ½(O_r"_0 + _&.,. O_) ,
Gt_r O_

(3)
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0 0

Q. = -iTO-_ - (_.o.0)o, _ = i_ + (o_.o.)_,

where the _o and _ are the Grassmannian left derivatives, and

_5-. - °'u&,, - o'v_. , _.. - 5_,(r,. - _,,o'_, .

This representation can be used for both massive and massless cases.

(4)

(5)

3 Little Group and Wigner-Inonii Contraction

According to Wigner [1], the little group is the maximal subgroup of the Poincar4 group whose
transformations leave the four-momentum of a given particle invariant. For a massive point
particle one can choose a Lorentz frame in which the particle is at rest. In this frame, the little
group is clearly the three-dimensional rotation group. The whole group of Lorentz transformations
is generated by these three rotation generators di and, in addition, three Lorentz boost generators
Ki [1,2]. Hence, the little group of the moving (say, along the z direction) massive particle can be
obtained by boosting with the operator B(r/) = exp(-r/Ks). Then the little group is generated
by

d_ =(cosh 7/),/1 + (sinh r/)K2,

J_ =(cosh r/)J2 - (sinh r/)K_ , (6)

J; =J_.

The idea is to consider the rapidly moving massive particle for large values of 7?. Then after
renormalizing the generators J; and J_ as N1 = -(coshr/)-lJ_ and N2 = (coshr/)-lJ;, in the
infinite-r/limit one obtains

N1 =K1 - J_ ,
(7)

N2 =K2 + J1 •

These operators and ,/3 satisfy the commutation relations of the E(2)-like little group for massless
particles [1,2,9] and, hence, the massless case is not needed to be considered as independent.
The supersymmetry representation theory was usually considered separately for the massive and
massless cases, while the Wigner-Inonfi group contraction provides a connection between them.

In case of the representation (2) of the super-Poincar4 algebra, let /5 _ P0 + P3 be the fixed

momentum. Then it is easy to check that the associated little group is generated by the threegenerators amongM._: r_l, 7_'r_, (r_0_+ _) "_ (% + "r_)71and (_o, + _) _--(% + "r_)'r_.
Taking the convenient representation of the 4 x 4 7-matrices, in which

(0i) (10)7i= -io'i 0 , 7o= -i 0 , 7s= 0 -1 ' (8)

where we have introduced the standard 2 × 2 Pauli matrices as

(Ol) (oi)(lo)0"1 = 1 0 , o'2 = =-i 0 , _3 , (9)0 -1

257



we have

C= i727o =

T
to satisfy the defining equation C7_ = -7_ C
we find

71C =
0 0 -i 0 /

0 0 0 i

-i 0 0 0

0 i 0 0

73C =
O00i)

OOiO

OiO0

i000

Now it is easy to calculate the square root

algebra:
4

0: Z doO.,
°=1

i.e. find the appropriate numerical coefficients

ia2 0 )0 -i_r2

for the charge conjugation matrix C.

0 0 1 0)

,72C= 0 0 0 1
1 0 0 0 '

0 1 0 0 "

0 00 -i)

,7oC= 0 0 i 0
0 i 0 0

-i 0 0 0

(10)

Therefore,

(11)

of the given momentum /5 in the supersymmetry

4

: Z dodb('r"C)obP.: 2P,
a,b=l

d°. The result is given by

= 2e-i'/4(Q2 + Qs) = 2e-i"/4

(12)

f0000-1

00000

00000

00000

00100

(13)

so that 0 2 = /5 indeed. One should emphasize that no such notion as the little group of Q,
can be introduced, since the Q-operators are defined in the spinor representation space and that

group would be trivial. Now it becomes clear why the generators of the little group of/5 do not

commute with its square root Q.

With each massless particle one can associate a circular cylinder whose axis is parallel to
the momentum. Then one can rotate a point on the surface of this cylinder around the axis or
translate along the direction of the axis. As is well known, the rotational degree of freedom is
associated with the helicity, while the translation corresponds to a gauge transformation [3,9].
This translational degree of freedom is shared by all massless particles. In case of supersymmetry,
we can extend the contents of gauge transformations to all massless supermultiplets by considering
again the massive supermultiplets in the infinite-momentum limit.

Taking the mass value to be equal to 1 for convenience, the massive particle at rest is charac-
terized by the four-momentum Pm_r = (0, 0, 0, 1). The same particle moving with the momentum

p along the z direction, has the four-momentum Pro" = (0,0,p, V/_'+ 1). Renormalizing this

operator as P$ --, p-1 p_, = Prt', we obtain in the infinite-p: limit that P_ = (0, 0, 1, V_ + p-2) __,

P_' = (0, 0, 1, 1), which is just the conventional choice of the four-momentum in the massless case.
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These very simple observations are still very useful in the case of supersymmetry. The super-
symmetry algebra can conveniently be represented for our purposes here in the two-dimensional
notation of eq. (3) as

{Q., 0_}+ = a_P.,

{Q,,Q_}+ = {O_,O_} = 0. (14)

Now, on the one hand, we immediately see that in the massive case at rest we obtain a Clifford
algebra of the form

{Q,,Q_}+ = 1,_, (15)

where all of the Q-operators are active. They can be interpreted as the operators of creation and
destruction, and then used to develop the massive supermultiplets structure [6,7].

On the other hand, in the massless case we obtain instead

{Q.,Qz}+ = (1 +

2 0 ) (16)l+as:
0 0

which means the degeneracy of the supersymmetry algebra. Eq. (16) can be obtained from
eq. (15) in the infinite-momentum limit after the renormalization Q,nas, ---, Qm,,s_es, induced by the

transition P_._ _ P_ discussed above. This gives rise to the reduced supermultiplets structure
since only a half of the Q-operators are now active. The rest represents the supersymmetric
gauge transformations which always accompany the massless supermultiplets containing photino
or gravitino in this picture (their role is to kill the redundant degrees of freedom), just like
the invariance under the translational gauge symmetry is associated with photons and gravitons
[2,10].

The main point of our brief discussion is that the massive and massless cases in supersymme-
try should be considered on equal footing, the connection between them being provided by the
Wigner-Inonfi contraction, which has a clear physical meaning. Of course, this fact is already
known and can be read off, in particular, from the contents of Refs. [11,12]. Nevertheless, we
would like to stress its conceptual simplicity in this paper, and give it in the most obvious way,
which was not presented in the past.
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TABLE I. Symmetries of massive and rnassless particles

The first two rows display the unification of the energy-momentum relations and the internal
symmetries of massive and massless particles, as given in Ref. [5]. The third row means that
supersymmetry can also be included into this picture.
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