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Abstract

We calculatethe algebra of the observablesfor 2+1 super de Sittergravity,for

one genus of the spatialsurface. The algebra turns out to be an infiniteLie algebra
subject to non-linearconstraints.We solve the constraintsexplicitlyin terms of five

independent complex supertraces.These variablesare the true degrees of freedom of

the system and theirquantized algebrageneratesa new structurewhich we referto as

a =central extension _ of the quantum algebra SU(2)q.

1 Introduction

The discovery by Witten that many gravity theories in 2 + 1 dimensions are equivalent to

Chern Simons theories, and are in principle exactly quantizable, has sparked a great deal of

interest in their study [1]. Perhaps the key obstacle in carrying out this quantization explicitly

has been our poor understanding of the observable phase space. Pure Chern-Simons theories

in vacuum are locally trivial and interesting situations arise either in the presence of sources

or when the topology of the space-time manifold is non-trivial. In either case, the observable

degrees of freedom for the field theory are ihetraces of the holonomies (alternatively called

the integrated connections) associated to non-contractible loops of the space-time manifold

M, which are classified by the fundamental group lrl(M). These traces span the reduced

phase space of the theory in a highly redundant way. Indeed, the group rl (M) is infinite,

while the dimension of the reduced please Space is known to be (2g - 2) × dim(_), where

is the Lie algebra considered in the Chern-Simons action. The traces are subject to non-

linear constraints (NLC) which depend on the characteristic equation for the matrices in the

defining representation. Our approach here is to first reduce the classical system to a finite-

dimensional observable phase space and then quantize. Unfortunately, this is an extremely

difficult task, which has only recently been solved for arbitrary genus in de Sitter gravity _9!
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The reduced phase space iswell-understood for any genus in Poincard gravity [3],but in terms

of inhomogeneous variables which have not yet been generalized to curved spacetimes. The

purpose of thiscontribution isto provide the reduced phase space for one genus in 2+1 super

de Sittergravity.

2 The Algebra of Supertraces

Following previous discussions, we will consider the case when the space-time manifold has

the topology M" - E × R, where R is the time and E is an arbitrary closed, orientable two-

dimensional surface of genus g. Also we will restrict the discussion to only one genus of such

a surface. The Poincard [4,5], de Sitter [6], and conformal [7] cases have been previously

discussed along these lines and the Poisson bracket algebra of the traces calculated. The

quantized version of the algebra of observables for the de Sitter case provides a realization of

a pair of commuting SU(2)q quantum algebras [8].

Witten's formulation of 2+1 dimensional gravity theories as Chern-Simons theories has

been extended to the supersymmetric case in Ref. [9], where the super de Sitter case is studied

by considering the orthosymplectic group OSp(ll2; _ ) as the gauge group. The system is

described by the Chern Simons action [10],

where A = A_,dz_ ( # = 0,i,2) isthe superconnection

A = AATA = eaPa + we J= + xaUa + OaV=, (2)

which takes values on the Lie algebra of OSp(l]2;_ ). Here TA = (Pa, Ja, D'a,Va), where

Pa,Ja(a - O, 1,2) are the bosonic generators and Ua, Va(a - 1,2) axe the fermionic ones. The

fieldsX a,e a are spinors whose components are odd Grassmann numbers.The trace in Eq.(1)

isdefined in terms of the groul>-invariantnon-degenerate bilineartensor

0 tie b 0 0
Tr(TATB) = DAB = _lab 0 0 0

L00 0 -2_...,s 0
0 0 2(,-.8

(3)

where r/_b= diag('l,l, l),ea0 = -e0a, with El2 = +i and ca.Te_ = 6_. The generators

satisfy the superalgebra of 0Sp(112); _) which is given in Ref. [9]. _-

The constraints equations that follow from (1) imply that A is a pure gauge, that is

A = d_ "l where ,_ 6 0sp(112; _). The Poisson brackets of A are easily calculated from the

action (i)[Ii],

{A,(z),Ay(y) }p.v. - -2_'i M 62(z - y), (4a)

where z,y are generic points on the E, i,j - 1,2 are spatialvector indices on E, (_j.= -_j,

with en = +1 and
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I (U= ® U °
M =DABTA ®Ys = P= ®J" + Ja ®p= + 2 - Va ® V °) (4b)

with DAcD cs = 6_.

Let us consider two generic points P, Q on E and a path p joining them, parametrized by

x(t), t E [0,1] with z(0) = P and x(1) = Q. The solution to the diiTerential equation

d_ = A,¢ (5)
dt

subject to the boundary condition ¢(0) = 1, where At - AaT" is a tangent vector along p,

will depend only on the homotopy class of p and it is denoted by ¢(p) (see Ref. [6] for details).

For a second path pt with end points Q, R we have the solution ¢(p') of (5). The solution for

the path p'p, with end points P, R is then

¢(p' p) = ¢(pn)¢(p). (6)

By restricting to closed paths, this equation defines a group homomorphism _b : rl(E) --*

OSp(ll2; dT). The fundamental group of the surface E based on the point B, _rl(E, B), is pre-
I I l I

sented via 2g generators ui, v_ i = 1, ..., g which satisfy the relation ulvlu_" v_" ...ugvgu_ v_ =
1.

Let _,¢ be generic elements of OSp(ll2;_ ). The Poisson brackets of the integrated

connections ¢(p), ¢(a) of two elements of _rl(E), with base points P, Q respectively, which

have a single intersection may be calculated from (4) by a procedure already established in

Refs. [4,6]. The result is

{¢=_(p), ¢,, "(<,)}p.s.= 2s(-z) [(g¢_)-_(',))(g(")-g¢',))+(gc,')-gc°))cg(_')-gc°))]
M_0"_¢. _(p,)¢° _(Pl)¢_ _(o,)¢. 'Cos) (7)

where M'_0 "_ = DAB(T.4)_" (TB)e _'. The subindex i (f) labels that part of the path before

(after) the intersection and s = s(p,o) = -s(o,p) = +1 is called the intersection number.

The integrated connection ¢(p) is not gauge invariant, but the supertrace C(p) -

st_¢(p) = (-1)g(_)_° - is, namely:

c(p) = C(_p_-_) (s)

with p E rl(a) and _, being any open path. Equation (8) expresses the invariance of C(p)

under a change of the base point of _rl (o). Thus, one can calculate the Poisson bracket of two

closed paths p and a based on two different points P and Q respectively and make P = Q after

the calculation, so that p, a become elements of _r_(o; Q). By supertracing (7) one obtains [13]

(co,), c(o) }P.B.= i_,v_ (C(po)- C(po-_)), (0)

for paths with a single intersection or with no intersection (s = 0). This result is the same

that has been obtained for the de Sitter, Poincar_ and conformal groul_ [4-7].
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By repeated use of (7) and with the help of (6) we obtain the following general formula

for the Poisson brackets of elements p, a of _ri(E;Q) with n intersections

Fi

<c(p),c(_)}._ = iv__._ (C(pk_)- c(_p_')), (10)
k=1

where sk isthe intersectionnumber of the k-th intersectionand the subindex k on each path

means that the product of them is constructed by taking the k-th intersectionpoint as the

base point, instead of the point Q.

Any matrix _(p) which is an element of 0Sp(1[2; _) satisfiesthe generalized Cayley-

Hamilton identity

_;(/)- (c(.)+2)(_(p_)- _(.))- i= o.

Multiplying (11) by _(_p-i) and supertracing one obtains the non linearconstraint

(il)

i

R(p,_)- C(p)C(,_,)- C(p)C(_)- C(p'_)+ C(,_-')+ 2C(p_,)-2C(a)= O. (12)
i L ....

In order to obtain the algebra of observables we must take into account the relation (12). This

relation appears to be an ideal of the traces algebra. Although we were not able to obtain an

algebraic proof, computer calculationsin various examples indicate that R has zero Poisson

bracket with the traces,as in the ordinary de Sittercase [6].This implies that the relations

(12) hold "strongly",i.e.that they can be used within the Poisson brackets (10).

Fortunately, it is possible to solve the relations R(u,v) = 0 explicitly,by expressing

all traces on one genus in terms of fivefundamental ones, which can be chosen as C(u) =

A, C(v) = B,C(uv) = C, C(uv 2) = D and C(uvu2v 2) = E. This property can be shown

to be a directconsequence of the identity (12). _:

Finally,we can calculate the algebra satisfiedby these variables. To this end itis more

convenient to definethe followingcombinations of the basic traces previously introduced

I+A I+B l+O
X=-- Y=--, Z=--,

2 ' 2 2

V=_\ _- +X-2Y , (13)

U= I+E Z(I+SXYZ-4X 2-4Y 2
2

+ 8(X + Y)V + 4V).

This choice isdictated by the property that in the de Sitterlimit (fermionic variablesequal to

zero) X, Y and Z go into the variablesused in Ref. [6],while U and V go to zero. The Poisson

brackets of these variablescan be computed with the help of (10),assuming that the relations

(12) are indeed an idealof the algebra. We find

{X,Y}p.B" = isv/-A(Z - XY - V), (14)

{X,V}p.B" "- (X,U}p.B" = {[f,V}p.B" --0,
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plus cyclicalpermutations of X, it,Z.

We quantize the above system using the correspondence principle XY- YX =

{X, Y}P.B. and symmetrising the XY product. The resultcan be written as

ihx

ei°/2XY - e-i°/2YX = 2isinO/2 (g - V), (15)

and cyclical,where tanO/2 - _ and U,V are central elements. The de Sitterlimit (U =2

V = 0) on Ref. [6]is clearly recovered from Eqs. (15) now in terms of arbitrary complex

variables X,Y and Z. The algebra (15) provides a central extension of SO'(2)q [14],with V

being the central charge.

3 The NLC Constraints

These are relationsamong the supertraces (see for example Eq. (12)), which constitute

the basic tool for reducing the originalinfinitedimensional supertraces algebra to a finiteone.

A general way of obtaining such relationsis starting from a Cayley-Hamilton type identity

satisfiedby the matrix. In the case of a supermatrix M, the characteristicpolynomial isnot

given by p(x) = Sdet (M- xI), and the problem of constructing such polynomial in the general

case seems to be stillan open one. The basic definitionisp(x) = IIi(Ai- x), where ki are the

eigenvalues of M and the idea isto translatethisinto "simpler" operations which would bypass

the explicitcalculationof the eigenvalues. In the case of an arbitrary 2 x 2 supermatrix with

entries M12 = a, M12 = a, M21 =/_, M2_ = b, where a,b (a,/_) are even (odd) Grassmann

numbers, the characteristic polynomial is

p(x) = Ca- b):_:I- Ca 2 -b 2 -1-2_)x -I-(ab(a- b) -I-Ca -l-b)_), (16)

and one can verify that p(M) - 0 as a matrix identity. Another explicitexample of such

polynomials isEq. (11) which corresponds to a particularcase of a 3 x 3 supermatrix.
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