
QUANTUM WORMHOLES

AND

HARMONIC OSCILLATORS

v

 93"27338

Luis J. Garay

Instituto de Optica, Consejo Superior de Investigaciones Cientificas,

Serrano 121, E-28006 Madrid, Spain

Abstract

The quantum state of a wormhole can be represented by a path integral over all asymp-

totically Euclidean four-geometries and all matter fields which have prescribed values, the

arguments of the wave function, on a three-surface which divides the spacetime manifold

into two disconnected parts. Minisuperspace models which consist of a homogeneous mass-

less scalar field coupled to a Priedmann-Robertson-Walker spacetime are considered. Once

the path integral over the lapse function is performed, the requirement that the spacetime

be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational mo-

mentum in the remaining path integral. It is argued that there does not exist any wave

function which corresponds to asymptotic field configurations such that the effective gravi-

tational constant is negative in the asymptotic region. Then, the wormhole wave functions
can be written as linear combinations of harmonic oscillator wave functions.

1 Introduction

Wormholes have been considered as instantons, solutions of the Euclidean Einstein equations,

which consist of two asymptotically Euclidean regions connected by a throat [1,2]. These classical

wormholes are saddle points of the Euclidean action and therefore, they allow the Euclidean path

integral to be approximated semiclassically. One makes the dilute wormhole approximation in

which the wormhole ends are far apart from each other, so that one can consider that wormholes

do not interact and then, they can be treated separately. Wormholes on the Planck scale may

affect the constants of nature and, in particular, may provide a mechanism for the vanishing of the

cosmological constant [3,4]. Wormholes may play an important role in solving problems associated

with the complete evaporation and disappearance of black holes [2]. However, classical wormholes

may only exist for very special types of matter, those which allow the Ricci tensor to have negative

eigenvalues [1,5,6]. This may place a strong restriction on the possibility that wormholes have any

role in these processes.

However, we need not restrict ourselves to such a semiclassical treatment and the special types

of matter that it requires. More generally, one can regard wormholes as solutions of the quantum

Wheeler-DeWitt equation with some suitable boundary conditions. Hawking and Page [7] have
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proposed that the boundary conditions are as follows. The wormhole wave function can be repre-

sented as the path integral over all asymptotically Euclidean four-geometries that match a given

compact three-geometry which is the argument of the wave function. This can be interpreted

as saying that there are no gravitational excitations at infinity (i.e., at large distance compared

with the characteristic scale of the wormhole). An extra surface term which eliminates the in-

finite contribution that comes from the asymptotically Euclidean region should be added to the

action. It will be seen that, once the path integrals over the lapse and shift functions have been

performed, the requirement that the spacetime is asymptotically Euclidean is equivalent to the

fixation of the asymptotic gravitational momentum [8]. Also, one must integrate over all matter

fields which have no sources in the asymptotic region. This reflects the fact that there are no

matter excitations at infinity. This is accomplished by requiring that the matter Hamiltonian

must vanish asymptotically. If one considers a coupled scalar field with a potential as the matter

content, this means that, at infinity, the field must approach an homogeneous configuration at

which the potential has a vanishing minimum [8].

In what follows, we shall study a massless homogeneous scalar field minimally and con formally

coupled to a Friedmann-Robertson-Walker (FRW) spacetime. It turns out that, as in many other

physical theories, harmonic oscillators are present in wormhole physics. In fact the wormhole wave

functions, in these models can be written in terms of harmonic oscillators wave functions.

2 Minimal scalar field

We shall consider a massless homogeneous scalar field ¢(r) minimally coupled to a FRW whose

metric can be written

ds 2 = 2G (g2(r)dr 2 )3--7\2q (T) + 2q (r) dflg_, (1)

where N(T) is the lapse function which measures the proper time separation between two neigh-

bouring three-spheres whose radii are represented by _'_. The action for this system takes

the simple form

oo 1 1) 1 _27r2;:/o (2)
whre H is the Hamiltonian and the relations between the canonical momenta zr¢, 7r¢, and the time

derivatives of the variables are given by _'q = -_l/g, _'_ = q2¢/4N. The wormhole wave function

is defined by the path integral over all asymptotically Euclidean four-metrics and over all scalar

fields whose asymptotic configuration is given by a constant Value ¢0. If the four-metric is going t0

Dbe asymptotically Euclidean, then the variable q must have the behaviour q(r) ,,_ r N(r) when

r _ _, as can be seen from the expresslon forthe line element. This means that the asymptotic

condition must be _'q(_) = -1. Since we have to fix the asymptotic momentum rather than the

canonical variable q, it will be necessary tO introduce the term _rqql,___-_ in the action, so that the

variational problem associated to it, subjected to the boundary conditions mentioned above, be

well posed. Therefore, the action will have the form I = I - _'qql,----_-
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Under time reparametr_zations defined by the transformations

_N(v) = _(v), _( = {_,_H}, _Tr_ = {_r_,_H}, (( = q, _b) (3)

¢_ r=O r=oo

conditions ensure that Hl_-=o = 0 and, therefore, the action will be invariant under transformations

such that _(0) = O, i.e., that do not change the arguments of the wave function, which are defined

at r = O: q(O) = q', _(0) = _'. The wave function can, then, be written as

qJ(q',¢') =/DN/c.h 1-_ D_Z)_r¢6(F) AFPe-I[''_¢'N], (4)
_=q,_

where Cwh is the set of histories which satisfy the boundary conditions, F is the gauge fixing

condition that singles out a representant of each equivalence class under time reparametrizations

and AFp is the Fadeev-Popov determinant which ensures that the path integral does not depend

on this choice. It is easily seen that the simplest admissible [9] gauge fixing condition is N = 1.

Any other history N(r) can be obtained from this one by means of the time reparametrization

whose coefficient _(r) is the only solution to the equation N(r) - 1 = _(r), subjected to the

/:condition e(0) = 0. This solution is e(r) = -r + drN(r). The Fadeev-Popov determinant is

independent of the integration variables and, therefore, the wave function acquires the form [8]

(q', _b') =/c DqD_rqD_bD_'_e-1[q'#]' (5)
wh

where I [q, _b]=/o°dr (lr,(_ + Ir#q_ - H) - qzrq ]_=oo, and Cwh is the set of histories such that

q(0) = q', qi(0) = _b', Zrq(oo) = -1, (;b(oo) = qSo. (6)

With the change of variables [10]

q (x 2 t2)½ 1 t= - , ¢ = _ tanh-1 -x

the action takes the simple form

, q% = xzq: + t_r,, _¢ = 2(xTrt + t_'_), (7)

The boundary conditions (6) transform into

H=_I (-lr_ + 7r_ + 1) (8)

x(O) = q'cosh2_b', t(O) = q'sinh2_b', _'_ (o¢) = - cosh2_b0, _'t (o0) = sinh2d0. (9)

and the measure into DzDtDzc=DTrt, because the Jacobian is equal to one.

To do the path integral

qJ_o (q', ¢') - /DxDtD_r_Dvrt e-1[_'t], (10)
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with the boundary conditions (9), it is convenient to shift the integration variables

= = (11)

where _: and t" correspond to the classical solution of the variational problem associated with (8)

which satisfies the boundary conditions (9). Explicitly, this solution is

_ (r) = r cosh 2¢o + q'cosh 2¢', _(r)=rsinh2¢o+q'sinh2¢'. (12)

The new variables X and T satisfy the conditions: X (0) = T (0) = 0,

Then, the action (8) splits into two parts

Px = pr = o.

I[z,t]= Io[_,t-]+ I2[X,T], (13)

where .To[_, t-] = q' cosh (¢' - ¢o) is the action for the classical solution (12) and

1 (-P_c + P:_)} (14)

The linear term h [_, t, X, T] vanishes identically due to the fact that (12) is a saddle point of

the action (8). The measure in the path integral (10) is directly changed into DXDPxDTDPT.

Io does not depend on X or T and then, can be taken out of the integral. The remaining path

integralbecomes/1_X1_Texp{-_fo_dr(-X'+T')}whichisindependentofq'and¢ 'and

therefore, it turns out to be a numerical factor [10]. Thus, up to numerical prefactors,

_¢o (q, ¢) = exp {-q cosh 2 (¢ - ¢0)}, (15)

which had already been found as a solution of the Wheeler-DeWitt equation [11]. This wave

function can also be written as a linear combination of harmonic oscillator wave functions

sinh" ¢o

_*o(q,¢) = _ c_(¢o)_,(q, ¢), c,_(¢o) - cosh,,+ , ¢o (16)
n=-O

where @,,(q, 4)= ¢. (vr_cosh ¢)¢,, (v[_sinh ¢) and ¢,,(x) are the harmonic oscillator eigen-

functions.

This wave function behaves in a regular way when the three-geometry degenerates. However,

the linear combination
.+c_ 'k

qJk (q,¢)= (q,¢) (17)

is an eigenfunction of the operator re with eigenvalue k and therefore, has non zero flux through

each three-surface. This wave function cannot close off with a four-geometry and will oscillate

an infinite number of times when the three-geometry collapses to zero. In fact, once the integral

over ¢0 is performed, the wave function (17) takes the form

_k (q, ¢) = K_ (q)e -ik#, (18)

276



where Kikl2 (q) is a modified Bessel function of imaginary order. This wave function will oscillate

for q < Ik/2J, while for q > Ik/2l, it will decrease exponentially. Thus, Ik/2[ can be considered

as the throat radius of the wormhole [7]. Since (17) is a Fourier transform, it suggests a kind

of uncertainty relation between the asymptotic field and the wormhole throat radius. This could

be expected because k does not only represent the throat size but it is also the eigenvalue of the

momentum conjugate to the scalar field and therefore, k and _b0 naturally satisfy an uncertainty

relation [11].

3 Conformal scalar field

When an homogeneous scalar field _ (r) is conformally coupled to a FRW spacetime, the path

integral which defines the wormhole wave function can also be done explicitly in a similar way.

The FRW metric can be written in the convenient form

2G _ (dr _ d_). (19)(r) +

With the field redefinition _ (r) = X (r) a -1 (r), the Euclidean action for this system becomes

I = _ - + + X_) + 2a (aS- X2) 1¢=oo • (20)

The boundary conditions are, in this case,

a (0) = a', _ (0) = _' = X--
at,

a 1, x (21)
a a

The conditions at r = 0 indicate which are the arguments of the wave function. The conditions at

r _ oo mean that the spacetime is asymptotically Euclidean and that the field _ takes the value

_o at infinity. The wormhole wave function will be labeled by the asymptotic field value q_0:

_P_,0(a', X') =/,,h _DaDxe-I[a'×]' (22)

where C,,h is the class of histories that satisfy (21).
Let

1 + _ {a' 2_,0 X,' _ sinh r,
a(r) = a' cosh r + _1 k - 1 + qa'------_]

_(r) = X' cosh r + 1 - _'---"_ a' - X' sinh r (23)

be the solution of the classical equations of motion that satisfies (21). Then, as in the case of

a minimal coupling and due to the fact that the action is also quadratic, under the shift of the

integration variables a = _ + A, X = 2 + X, where the new variables A and X ere such that

A x
A(0) = X(0) = 0, _(_) = 1, _-(c¢) = _0, (24)
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the path integral (22) transforms into

(a', X') = e-l°(a"x') / DADXe-I2[A'X],al_o (25)

where I2 [A, X] does not depend on a' or X' and I0 (a', X') is the action of the classical solution

(23). Then, up to numerical factors,

,0_
+ X2 4_o ax _17 7 J}" (26)

As it was expected, this wave function is also a solution of the Wheeler-DeWitt equation. The

condition

_o_ < 1 (27)

must be fulfilled by the asymptotic field in order to have a positive effective gravitational constant

in the asymptotic region [8]. Then, (26) will represent the wormhole wave function. Condition

(27) will also allow us to write this wave function as a linear combination of those obtained in [2]

and [7], as it happens in the previous section:

oo

%0(a,x) = E (1- ,,, (a,x), (2s)
n----O

where _,, (a, X) = ¢,,(a)¢,_(X).

4 Summary and conclusions

In the context of the minisuperspace models which consist of a homogeneous massless scalar field

minimally and conformally coupled to a FRW spacetime, it has been performed the path integral

that defines the wormhole wave function. The wormhole boundary conditions require that the

spacetime be asymptotically Euclidean. This implies that the asymptotic gravitational momentum

must have a given value at infinity. Therefore, a surface term which takes this fact into account

must be added to the action. The path integral over the lapse function can be interpreted as

a sum over all proper time separations between the asymptotic region and the surface in which

the arguments of the wave function are defined. This separation is infinite and, therefore, the

whole sum is trivially reduced to a single contribution. The action is quadratic and this allowed

us to perform the whole path integral. The problem of the unboundedness from below of the

action is harmless in these models, since the unbounded part can be isolated in a term which

does not depend on the arguments of the wave function and can, therefore, be factored out of the

wave function. In the case of a conformal scalar field, one must also impose the condition that

the asymptotic gravitational constant be positive. When this physical requirement is satisfied,

the wormhole wave functions can be written as linear combinations-of harmonic oscillator wave

functions.
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