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ABSTRACT

A formulation is given for a collection of phonons (sound) in a fluid at a non-zero

temperature which uses the simple harmonic oscillator twice; one to give a stochastic

thermal "noise" process and the other which generates a coherent Glauber state of phonons.

Simple thermodynamic observables axe calculated and the acoustic two point function,

"contrast" is presented. The role of "coherence" in an equilibrium system is clarified by

these results and the simple harmonic oscillator is a key structure in both the formulation

and the calculations.
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1. Introduction

The problem of understanding the thermal properties of a radiation field in a finite

volume is both old and subtle, l-a Here a sound wave propagating in a water will be studied

and the key issue will be the interaction of the sound radiation with the fluid matter and

with the wails of the container. The time scales of sound waves, v = 20 - 2 x 109Hz,

and those of the water molecules lead to adiabatic (isentropic, if approximately reversible)

thermodynamic processes rather than constant temperature transitions. 4 This work is a

special case of a project by one of us (AVN) which addresses the full nonlinear problem of

bubble formation by sound waves. The linearized problem will be studied here, where the

fluid has a coherent interaction with the sound radiation and an incoherent, or stochastic,

interaction with the reservoir.

The harmonic oscillator has played a central role in the coherent states 6-11 and will

be used for the coherent (Poisson) process describing the phonon radiation the sound field.

Since the reservoir is incoherent the total interaction with the fluid is partially coherent J 4'a 5

The reservoir is analogous to Feynman's rest of the universe 12 and Han, Kim and Noz _3

have shown the relation of this idea to quantum squeezed states and time-uncertainty.

The model presented here will use the simple-harmonic-oscillator twice: first to gener-

ate "stochastic or chaotic" noise and second to generate a Glauber coherent state of scalar,

longitudinal phonons. This is a more realistic model of noise, in that it has both coherent

2 ..... "

and a random components. It will be called partially coherent following a standard useage

in quantum optics. _i'he density, entropy free energy and a two-point function which gives

the acoustic contrast are all calculated. The reason that the SHO is so useful is that since

their Gaussian functions are dense in L 2, quantum mechanics guarantees that the crucial

interaction between the fluid and the sound radiation can be approximated by an infinite

collection of oscillators. This is why the approach of Planck 2 was correct even though

quantum mechanics was not yet created. Also, finite energy classical solutions will lie in

L 2 or at least in the Soboler space H 1 = L 2'1, which is the space where the "function"
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and its "gradient" are square integrable.

In Sec. 2 the model will be presented, and the density p, the entropy S, the free

energy F and the pair correlation function g(2) are calculated for both single and N-mode

partially coherent states. In See. 3 the Conclusions and Outlook are presented.

2. The Model

In Fig. i, a schematic is given which shows a source of sound So (treated as a coherent

state of phonons) a fluid F in thermal contact with the reservoir R, which is much larger

than So or F. In general, phonons can enter the fluid from So and the fluid and reservoir

can exchange particles as well as heat but all other exchanges are negligible.

b

Source of Fluid, .i Reservoir, _ p

Phonons, F R

So

Fig. 1. Schematic of the system modeled. The source of a coherent state of phonons

is So, F is the stationary fluid volume and R is the reservoir which is much larger than the

sum of So and F. The wavy lines indicate boundaries which allow particles and energy to

pass.
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The idea is a modification of one due to Kaup 16,1r that cavitons (here bubbles) are

solitons (here solitary waves). In other cases, Williamsson and Wieland is, Glimm 19, and

others have shown that many physically interesting model solutions for plasmas and clas-

sical fluids are nonlinear, coherent exitations of the medium. The formulation given can

easily be generalized to M1 independent random components of noise and Mz indepen-

dent, coherent components. Thus, solitons and some other nonlinear modes could easily

be added to the analysis.

The phonons are bosons so that their creation and destruction operators a*, a satisfy

the canonical commutation relations,

[a,a]= 0 = [a*,a'l, [a,a'] = 1 (1)

and a unique, translationally invariant Fock vacuum ]0 > exist s.t.

---4

a( x ,t){0>= o (2)

The astersik power of an operator is its adjoint (a* and a are not self-adjoint) and on a

complex number is its complex conjugate. Physically, the Fock vacuum is a quantum state

with no phonons. The number operator N is defined as

N = a*a (3)

and a number or Fock states is given by

a*) n
In >= n! 10 >

for each neZ+, the positive integers including zero. They are eigenfunctions of the number

operator with eigenvalues nez+. The Fock representation _'_F of the quantum Hilbert space

7-( is the L 2 closure of the linear span of the In > states. The inner-product of the Hilbert

space will be written as < .,- > and the inner-product compatible norm is written as
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I1 I1= [< , >1-g, For any complex valued zeC' the unitary displacement operator, U(z),

acting on the Fock vacuum yields the minimum uncertainty coherent state [z > given by

Iz>: V(z)10>= e-N'/2Z z-
,=0 "_n! In > (4)

The Fock vacuum is the ground state of the SHO for the minimum uncertainty coherent

states which will be used here.

complex number z is written as

In terms of c-number coSrdinate q and momentum p the

z=(q,p)=q+ip

so that C 1 corresponds to the phase-space of the (1 - d) system.

coherent states are that

alz >-- zlz >

and

Zl,Z2 >_--- e-'ff(zl-z2)(zl-z2)e-_(zlz2-zlz2)

(5)

Two properties of the

(6)

(7)

From eq. (7) it is clear that the coherent are continuous in the label z and therefore are

an overcomplete family of states, OFS. The L2-closure of the linear span of the coherent

states Iz > provides a continuous representation of the physical Hilbert space which will

be written as 7-/c_.

A density operator is a positive, self-adjoint operator which satisfies

#=p=p* (s)

The expected value of an observable A = A* in a state ¢e7-/with corresponding density

operator p,# can be expressed as

< A >4=< ¢,A¢ >= Tr(p_A)

And additive thermal noise can be added "by hand."

given by

S = -kBTr[p lnp]

(9)

The entropy of the system, S, is

(10)
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where kB is the Boltzman constant. In information theory, one can set kB = 1�In2 and still

use eq. (10). The entropy is obtained from maximizing eq. (10) subject to the constraints

Tr(p) = 1 (11)

and

Tr(pN) = c (12)

where ceR 1 is a parameter which labels the strength of the thermal state. If the thermal

noise is Gaussian, its density operator can be expressed as

p(c)= --Trcl/d_ze_l_12/Clz ><=1 (13)

In "HF this can be re-written as

_ z2np(c) = l,_c d2zc-I"i'/%-Izl' _ --_-.,1'_>< nl (14)
n----0

Using Fubini's theorem to interchange the integral and the infinite sum and then expressing

z in plane polar coordinates gives

p(c) = (c + 1)(1 + 1/c)"+a

in the Fock representation. A similar calculation of the entropy gives

s = k_[(c + 1)t_(c + 1) - c z_(_)] (16)

Sudarshan 15 and probably byThis sort of caieulation was given by Glanber ]°, Wolfa41 ......... _.... -:_

others. The nth-order correlation function, g(")(X1,..., X,), with Glauber's normalization

convention is

g(")(X_,..., X,) :=
G(",")(X_,. . .X2,)

2n

I-I
k=l

(17)

i
i
!

i
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where the G(i'J)'s are Green's functions or correlation functions. This is a quantum gen-

eralization of the classical coherence degree -_ of Born and Wolf. 2° The visibility v of a

two-slit interference pattern is related to _12 by

v = 1 -t-I_,_(_)1 (18)

which physically represents the extremes in intensity. For the two-point function, g(2)(.),

the G (nm)'s are chosen s.t

Tr[pN(N- 1)] (19)
G(2)(p) = Tr(pN)]2 - 1

This object is proportional to Glauber's g(2) in ref. (10) but is not equal to his function

because of different normalizations..

In the case of the thermal states,

>< hi)=

the Fock representation of g(2) for n :fl 0 is given by

Tr[In >< nlN(N-1)] n 2 - n 1

-1--- n2 l-------n " (20)

Tr([n >< nlN)] 2

A coherent state is very different from eq. (20) since

Tr[Iz >< zlN(N-1)]

[Tr(ln >< nIN)] 2

- I = 0 , (21)g  )(Iz >< zl)=

i.e. the Glauber state is perfectly coherent.

For the thermal states, not surprisingly, g(2) has the opposite behavior from eq. (21)

because

g(2)[pTh(C)]=Th

[_n( 1 t'----a---1_"+l]n >< nN(N- 1)]Tr "_)\l-bl/c]

[ i / n+l

n --1 (22)
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Defining

eq. (22) becomes

1(1)f.(c):= (c+1) 1+1/c

n+l

E f.(c)( n2 - n) - E f.(c)n

(2) . - 1 (23)gTh(c) = 2 -- '

which is perfectly incoherent. Now a partially coherent state has a density operator which

is given by

p(z;c)=U(z)pTh(c)U*(z)= --1 [ d2xe_l.12/Clz +x >< z +x I
7re J

A calculation similar to the one outlined between eqs. (14) and (15) gives

Tr[p(z;c)N] = Tr{ l f d2

= Iz[2 + c

(24)

[(z + z)"(z* + x*)'e_l:+.12121n >< nlN fmn ] }x e -Ixl2/c E,n n!m!
rn

(25)

It is straightfoward to calculate the entropy of the partially coherent state from
=

=

= S(c)

= ka[(c+ 1)In(c+ 1)-cIn(c)] , (26)

where eq, (16) was used in the last two equalities. The pair correlation function, g(2), of a

partially coherent state is given by

g(2)[P(Z;C)] = l- ,z,2 )2c_ c + Izl2 ' (27)

in the coherent state basis. Let m > n with m, neZ+ and form the ninth matrix element

of the partially coherent density operator as

< n,p(z;c)m > = e -I_1_/(1+c) 1 1
1 + c (1 + llc)(m+nl 2)

(n! a/2 z pm
• ([4C Jr- C) n--m C(

Izl2 ) (2s)l+c)
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where Ptm(r) is the polynomial given by

r_ rn!

P'm(r)= _ k!(Z+ k)!(m- k)!rk
k=O

The thermal or noise density can be found from the c --* 0 limit of the previous equation

and is given by the familiar expression

< _,p(z;0)m>= _-JzJ'z"(z*)r" (29)

By calculating another Gaussian integral, an overlap of two partially coherent states is

found to be

TF[p(z 1;e 1)p(Z 2;c 2)] =

Clearly as C 1 ---t. C2 = C, eq. (30) reduces to

(1 + c 1 -3t- c2)
(30)

1

Tr[p(O;c)p(O;c)] = 1 + 2"-------_ (31)

Remark: The non-zero part of the entropy S(c) = S(z; c) and the non-unit part of

Tr[(p(z,c)) 2] give ameasure of the nagnitude of the departure from apure coherent state.

The generalization to M modes, with M a positive, finite integer is straightforward. Let

(a, z) be M x 1 matrices, let (a*, z*) be 1 x M matrices, 1 the M x M unit matrix where

k = 1, 2,..., M labels which mode. Let B be a given non-singular, Hermitian, M x M,

positive, covariance matrix and express the M-mode Fock state as

M

I_,,... ,-m >= II (a*)-kl0>
k=l _

(32)

where nk is the occupation number of the kth-mode. The M-mode thermal density operator

is given by

PTh(13)=
e-a* ln( l +B-1)a

det(1 + 13) (33)

det(13) d2x'e-_"8-"xlx >< _[ ' (34)
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where x = (zl,... ,aM) is the M-component, complex, coherent state amplitude. The

entropy of an M-mode phonon packet is given by

S(B) = kBTr[(t + B)In(1 + B) - 131nB] = S(x;B) (35)

for both the incoherent and the partially coherent cases. The pair correlation function g(2)

for an M-mode partially coherent system is

Tr[I3. B + 2z* -Bz]

¢_)(z;B) = (Tr(_) + Iz12)_ (3c)

which has the limits

g(2)(O,B) = 1 (37a)

and

¢2)(z,0) = 0 (37b)

To find the partition function for the partially coherent system one needs the mode energy

ek for the kth-mode which is real

e k = e k

and the M-mode vector

(38)

--_ e2

e = . (39)

eM

which is a vector-valued, intensive variable. The mode energies for the k th mode is

Ek = nkek = E_ (40)

where nk is the occupation number for the k th mode and

g= (EI,...,Em) (41)

is a real, vector-valued, extensive variable dual to eq. (39). In this more general case the

density operator p(z; 13) which maximizes the entropy

7 :

S = -kBTr[p Inp]
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is subject to the constraints

and

T_(p) = I ,

Tr(pa) = z ,

Tr(pa*) : z*

(42@

(42b)

(42c)

Tr(pa" 7 a)= z* _e z+ e (42d)

Let _ be an m-vector with the value fl = 1/kBT for each component and express the

given covariance matrix for bosons as

--4---4

_J = _J(fl) = (e- fi' t: _ 1)-1 = (e-fiE _ 1)-' (43)

( A similar argument for Fermi-Dirac particles would replace -1 by +1 in eq.

this is not needed here.) The partition function Z(fl, V) is now

(1)Z(fl, V) = det 1- e -fiE

(43) but

(44)

at thermal equilibrium and V is the volume of the fluid plus radiation. From eq. (44) all

of the equilibrium thermodynamic quantities can be calculated, for example the average

energy g is

when classically

__, Ere -fl E_

g = _ _ ran(z) (45a)
z Off

Z(fi, V) = E e-fiE" (45b)
T

and in quantum statistical mechanics a Trace over matrix elements of e -fill is taken. The

pressure p is

10ln(Z) (45c)
P-_ ov
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and the (reversible) differential work dW is

dW = -pdV (45d)

and the previous equation can be used to obtain

dW = - l Oln( Z) dv
fl OV

The entropy of eq. (10) can also be written as

s = kB[t,,(Z)+ Ze-] (45e)

and the Helmholtz free energy is

F(/_, V) = -_In[Z(_, V)] (45f)

The coherent state density operator can be given as

p(z) = det [(1- e-[tE)e -(a'-z')_E(a-z)] (46)

Near equilibrium, a Kubo linear response theory 21 can be established by studying small

deviations from equilibrium where the fluctuations will be equal to the dissipations. This

exercise will be left to a future project.

3. Conclusions and Outlook

A two-component thermodynamics was formulated for a fluid in thermal equilibrium

with a reservoir radiated by a coherent state of phonons. One future project will be to

derive the Kubo fluctuation-dissipation theorem for this system, another will be to compare

and contrast these results with both the Langevin equation and the stochastic quantization

approaches. These future studies should illuminate (or simplify) the lattice Monte Carlo

methods.

Much remains to learned from harmonic, SHO, systems.
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