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Abstract

Electron transfer is studied using a multi-level system coupled to a bosonic bath. Two-

body correlation functions are obtained using both exact enumeration of spin paths and
Monte Carlo simulation. We find that the phase boundary for the coherent-incoherent tran-

sition lies at a smaller friction in the asymmetric two-level model than in the symmetric
two-level model. A similar coherent-incoherent transition is observed for three-level system.

1 Introduction

Electron transfer in liquids is an important phenomenon in chemistry and physics. Following

Marcus' picture [1], we use the spin boson model, which is a multi-level system coupled to a

harmonic bath. The case of symmetric two-level model has been studied by many people, in the

context of the Kondo problem and electron transfer in liquids[2]. It is not an exactly solvable

model, except for the case of an adiabatic bath. In Section 3, we analyze the model with Feynman

path integral which we evaluate with the exact enumeration of spin paths and Monte Carlo

simulation. In Section 4, we present the results for an asymmetric two-level system and compare

the results with the symmetric two-level system [3, 4, 5]. We also discuss the results for a three-

level system. Finally, in Section 5, we summarize our results.

2 Model Hamiltonian

The Hamiltonian which defines our system is given by:

H = Ho + HB + Hi,_t. (1)
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Here Ho is the the Hamiltonian for the free three-level system,

El Jl_ J13)
H0= J12 E2 J23 , (2)

\ J13 J23 E3

where Ei gives the energy for an electron localized on site i, and Jij gives the electronic coupling

between sites i and j. HB is the Hamihonian of the harmonic bath. Hi,_ is the coupling

between the three-level system and the bath, and is given by

H;nt = £nal_ + $23a_3 + £13a13. (3)

Here c_k (k = (12), (23), (13)) is defined by

_,____i o -1 oI ,_.= I o _ o l
\0 0 0/ _o 0 ,1/

,_13 _ _i0 0 ,

0 0

(4)

and the field Sk is a linear combination of the bath modes, $k k= _.j cjxj. Harmonic baths linearly

coupled to spin systems can be defined by the spectral density:

eke J

J_(_) = _ . mj._j

Here, k and l are the pairs, (12), (23) or (13). For electron transfer in a liquid, an Ohmic spectral

density gives a good model for the environment surrounding the electron. [2, 4]

gkt (w) = r/a w exp(-w /w_ z) (6)

3 Numerical Methods
!- ii : :

The quantity we are interested in is the following two-body time correlation function.

1

< n_(O)n,(t) >= -_Trexp(-_H)n_ exp(iHt/h)nx exp(-iHt/t O, (7)

where nl is the population operator for being on site 1. Since Hi,_t does not commute with H0

and HB, we use the following Suzuki-Trotter formula to do the path integral evaluations.

exp(-/3H) = lim {exp(-iSHo/p)exp(-/3HB/p)exp(-_SHi,_,/p)} p.
p.-*OO

(s)

Expanding this equation in a path integral representation and performing the Gaussian bath

integrals analytically leads to:

i

< n,(O)n,(t) >= 5 _ exp(_({a,}))n,(ap+,)n,(ap+q+l), (9)
{o,)

366



where p and q, sometimes called Trotter numbers, are the numbers of partitions the path has been
divided into the thermal and real time part of the path. The sum goes over 3 y states of S=1 Ising

system, where N is the total Trotter number, N = p + 2q. The action qo in Eq. 9 consists of two

parts,
= 40 + iPi_t. (10)

The first part, _o, comes from the free three-level system Hamiltonian, and second part, cp;_t,

results from the interaction between the system and the bath which we have already integrated

out. The action _,t is given by:

1 O.i O. j kl (11)

• kl is expressed by the spectral density jkl(_)where fk(a _) is a quadratic function of a', and the Xij
as follows.

f0 ° w Akt _ Jkt(w) coshT( Li- Aji). (12)Xij = _"

Here,
j-1

a,_ = X; a_, (13)
k=i

where Ak = B/p, --it/q or it/q, depending on the location of a _ on the path.

Thus, the original three-level system coupled to a bath is now transformed into a S=I Ising

model with infinite-range interactions. This model is exactly solvable for the case of an adiabatic

bath[6]. This case corresponds to Ising magnets in a very slow Gaussian field. In the general case,

the analytic solution of this model is unknown.
To do the numerical calculation on this model for small Trotter number, we used the exact

enumeration of the path integral by adding all the 3 N states of the Ising spin system. For example,

exact enumeration of N=17 spins (1.29 x l0 s states) takes 3 minutes on a Cray X-MP.

We also used Monte Carlo simulation. Some filtering method[5] was necessary to overcome

the so-called sign-problems [7, 8, 9, 10, 11, 12], which is often seen in quantum calculations of

fermionic systems or spin models.

4 Results

To check the validity of our calculations, we have studied a free three-level system (i.e., coupling

between the spin system and the bath is turned off), and a three-level system coupled to an

adiabatic bath. For these systems, we computed the following correlation functions.

c,(t) = Re < .,(0).,(t) >, c2(t)= Re < n,(0)_(t) >, c_(t)= R_ < n,(0)._(_) > (14)

Our results give good agreement with analytic results in these limits.

For the special case of an asymmetric two-level system, we have calculated the time-correlation

functions, and compared the results with the symmetric case[4]. Figure 1 shows the results

for an asymmetric case with the parameters E_ = 0, E2 = 2K, E3 = oc, and J12 = -K,

J_3 = J2z = 0. We find from Figure 1 that the coherent-incoherent transition occurs around
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r]/fi = 0.4, or a = 2rl/fi_r = 0.25. For a symmetric two-level system[4], the phase boundary for

this temperature was at c_ = 0.4. Thus, the whole phase boundary is expected to lie at smaller

a for the asymmetric case than for the symmetric case. In the asymmetric case, the symmetry is

already broken, thus the coherence is easier to break than in the symmetric case.
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FIG. 1 The correlation function Cl(t) for an asymmetric two-level model of E2 =

2K, _K = 2.5, with rl/h =0.3 (circles), 0.4(squares), 0.5 (triangles) obtained by exact

enumeration of spin paths with p=2 and q=7.
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FIG. 2 The correlationfunctionsC1(t) (circles),C2(t) (squares)and C3(t) (trian-

gles)for a three-levelsystem in the coherent region,J12 = J23 = -2K, J13 = -I(,

E_ = 0.51:,E, = ]:,E3 = o,_K = 0.25,_Ic3= 2,t'c_= t__= o,(to= K/_,),
V13/h = 1,r/l_/h = rt23/h = 0._

Figures 2 and 3 show resultsfor a three-levelsystem. The calculationswere done by Monte

Carlo simulation,with the Trotternumbers p=2 and q=10. As has been found in quantum Monte
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Carlo simulation of spin systems[8], for systems having sign problems, it is usually more efficient

to define 1 Monte Carlo step (MCS) to be a small subset of all the possible flips than to define it

as all the possible flips. In our simulation, we define 1 MCS as 1 single spin-flip, 1 double spin-

flip, 1 global spin-flip (i.e., flips all the spins), and 1 spin-flip of random length. We determine

whether the spins should be flipped by the standard Metropolis algorithm, using the modulus

of the complex weight exp(_o) for the transition probability. In this way, we have carried out

simulation of 106 MCS, taking about 14 minutes on the Cray X-MP. To estimate the degree of

sign cancellation, we measured the quantity r, the remaining ratio (related to the negative ratio

defined in [8]).
Z+ - Z_

r - (15)
Z+ +Z_

Here Z+ denotes the sampled sum of the positive real parts of the weights, and Z_ denotes the

same for absolute values of negative real parts of the weights. If r is small, the cancellation of the

signs is large, leading to inaccuracy in the data. If r is large, the cancellation is small, thus giving

more accurate results. In this definition, we are ignoring the effect of the cancellation due to the

imaginary parts of the weights.
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FIG. 3 The correlation functions C1 (t), C_(t) and C3(t) for a three-level system in

the incoherent region. Jj, Ej and _ are same as in Fig. 2. t_ 3 = 2, t_: = t_3 = l,

_13/h = 1, T/l_/h = r/23/h = 2.

For the free three-level Hamiltonian H0, we assume the parameters, J12 = J23 = -2K, ,/13 = -K,

E1 = 0.hK, E2 = K, E3 = 0. This could correspond to a system of redox-sites 1, 2 and 3, where

distance between states 1 and 2, or 2 and 3 is shorter than the distance between 1 and 3. The

correlation function < nl(O)n2(t) > approximately tells the rate of the electron transfer starting

at state 1 and reaching 2 after time t. The energy of the state 2, E2, is assumed to be highest,

followed by the energy of the state 1, El. Starting from the state 1, the electron moves to state 2,

since the exchange Jl_ is stronger than ,]13, then gradually goes to state 3. In Fig. 3, the bath has

the role of dephasing the coherence, preventing the electron population from going back to the
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original state. This is a very brief picture of electron transfer over 3 states, with the intermediate

state strongly coupled to_ t hejnitial a_d terminal states. ....
As for the effect of the sign cancellations, the remaining ratio r defined in Eq. 15 is 3% for

Fig.2 and 13% for Fig.3. The magnitude of error is about 0:1 in Fig.2 and 0.02 in Fig.3 The
incoherent case has less effect of the exchange K, thus leading to less sign cancellations.

5 Summary

\_% have briefly described the numerical calculations of the time-correlation functions of an asym-

metric two-level system and a three-level system. For an asymmetric two-level system, we find that

the coherent-incoherent transition_ occurs at smaller friction 77 than for the symmetri.c case. For

a three-level system, we calculated the population transfer of_ the electron when there is an inter-

mediate high-energy state. We observed__a coherent-incoherent transition_ _ similar.... to the_ two-level

system. Further application of this model will be discussed elsewhere.
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