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Abstract

It is shown that the symmetry Lie algebra of a quantum system with accidental degen-

eracy can be obtained by means of the Noether's theorem. The procedure is illustrated by

considering a generalized anisotropic two dimensional harmonic oscillator, which can have

an infinite set of states with the same energy characterized by an u(1, 1) Lie algebra.

1 Introduction

We are going to study the accidental degeneracy [1,2] of the Hamiltonian

1 Z(p_ + z_)+ ,kM (1.1)
i

which is a two dimensional harmonic oscillator plus the projection of the angular momentum in

the z direction, M. We use atomic units in which h = m = e = 1 and ,k is a constant parameter.

This quantum system, for ,k = 1, describes the motion of an electron in a constant magnetic

field [3, 4] and its corresponding symmetry Lie algebra has been discussed by Moshinsky et al

[4]. A procedure that use the Noether's theorem [5] is established to get the symmetry algebra

of the hamiltonian systems (1.1), for rational values of the parameter lambda. We show that

(1.1) represents a generalization of the degeneracies present in the anisotropic two dimensional

harmonic oscillator [6,7].

For the purpose of the paper it is convenient to introduce appropriate combinations of the

creation r/z and annihilation (i operators, with i = 1, 2, i.e.

1 1

rl-,- = _('7, + i'7_), _+ = _(_1 :F i_=), (1.2)

with the properties

[_a,_b] = [_a,T/b] = O; [_a,,_b] = 6ab, (r_a)t =_a, a---- -{-,-- • (1.3)

It is straightforward to find the expression of the hamiltonian (1.1) in terms of these operators

H = (1 + ,k)N+ + (1 - ,_)N_, (1.4)
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where a constant term was neglected and N,, denotes the number of quanta in direction a. The

eigenstates of (1.4) axe well known [4] and its eigenvalues axe given by E,,n = v + Am; with

[m[ = v, v - 2... 1 or 0 and v denoting the total number of quanta. From this expression, it is

immediate that there is degeneracy for rational values oi'_i whSch can be defined as follows

A = ___Av = v I - vi (1.5)
Am m f -- rni. "

Thus the accidental degeneracy associated to the hamiltonian (1.4) can be classified according

to the strength of the parameter ,_ in three groups

. (1.6a,b,c)

For the cases (ii6a, b), there are an infinite number of levels with the same energy, while for

the ease (1.6c), there is a finite number of levels: with the same energy .

In the second sect!on, we find the classical symmetry Lie algebra of the generalized two-
dimensional anisotropic harmonic oscillator. In the section three, we discuss for all the cases of

the corresponding:symmetry Lie algebras which axe responsible of the accidental degeneracy

of the hamiltonian (1.4). Finally some conclusions and remarks axe made.

2 Classical Symmetry Lie Algebra for the Hamiltonian

In this section we apply Noether's theorem in its active version [8] to the system described by

(1.4), its corresponding lagrangian is given by

1 .2 2 2
L = -  ox,) , (2.1)

where we associate indices 1 and 2 to the labels + and , and we define-)u = 1 + ,_ and

,_2 = i " )_: FrOm now Onwards we adopt the convention: repeated indices axe: Summed except

when oneof them appe_swith:_,. Let us propose a symmetry transformation in termsof an

axbitrary function of coordinates and velocities, 6x, = F_(xb, xb) • The corresponding variation

of the lagrangian (2.1) is given by : _:

" :. OFo . 0n.
6L = (x_ _ + xb _ )-'_x. -- Fo._.x, . (2.2)

Because 6xa is a symmetry transformation, (2.2) must be a total time derivative of a function

l_. This implies that the following system of equations must be satisfied

OFb
O_ 1 . OFb Off 1 :_b&,_- -- F,_)_ox,, . (2.3a,'b)

±; .... :

In order to establish the integrability conditions for this system, we derive (2'3a) with respect

to zc and (2.3b) with respect to &c, and compare the results. Thus we get

O_ 10Fb 10Fc , OFt

Ozb )_ Ox_ zc + -- --]c¢ - . (2.4)

374

i

|

m

=

=

=

=



Now we set up the equality between the five crossed partial derivatives of f/, and give rise to

the following system of second order partial differential equations

OF. = Orb (2.5,,)
Opb Op._ '

1 _/OF,

5°l- p 

0 (A, OFb
Oxa

where the change from velocities to momenta _,

differential operator

(x¢ 0_
0 = A_ \ Opt

ORb OFb OF.+ + / =°' (2.561
OF,_ OF,. 20Fb "_

o,,  "NJ =°'
= Aap, was made, and have defined the

From Eq. (2.5a) it is immediate that Fk = 0q_ which means that G is the generator of theOp_ '

symmetry transformation. Through the change of variables zk : _(xk + ip_), and its complex

conjugate, z_,, it is straightforward to show that the operator (9 = i(Af-Af'), with A/" = ),_Zk O-_k;
Using these results, we arrive to a set of partial differential equations which has a solution oi
the form

G(Zk,Z_) = z 1"' z 2"' Zl..3 z2..4 , (2.6)

if the ni are integer numbers and satisfy that nl = n3 and n2 = n4 or the condition

(nl - n3) A: Am + Av _a kl

(n= - n4) - /kl -Am + Av -- ek2 '
(2.7)

where the Eq. (1.5) was used. The integers kl and k2 are relatively prime integers, and the

parameter e takes the value 1 or -1. It takes the value 1 when Am + Av and Av - Am have

the same sign, and -1 otherwise. Thus we get, besides the trivial solution, six fundamental

solutions, although only three of them are independent. Then the corresponding conserved

quantities are given by

• • _°kl _*_k2
N1 = zl z_, K3 = z_k'z_ '_2, Ks = z 1 "2 ,

I,, ,-,k_ .kt ..d,, (2.8)N2 = z2z_, K4 -- z I z 2 , K6 =..1 "2 "

From this set we must find a symmetry algebra for the classical system. It is important to realize

that to build the algebra once we select a conserved quantity its complex conjugate must be

included. To do this, we find separately for the cases indicated in Eqs. (1.6) the corresponding

expressions for the constants of the motion and from them select the independent ones which

allows its extension to the quantum case.

For A = 1 and A = -1 the sets are given by {1, N_, z2, z;}_and {1, N2, z_, z_}, respectively.

In order to identify the symmetry algebra, we calculate its Poisson braz.kets, and clearly they

correspond to the direct sum of one-dimensi0nal Weyl and unitary algebras, w(1) $ u(1).
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For A > 1 and A < -1, the constants of the motion are identical and we choose the set

k! _ 1 (NI - N2) ,hi= N1- . N2, ml- kl-k_
(2.9a, b)

, k2K5 = Fb(Yl,N2)z'_ k' z_ _'' K6 = F6(Y_,g2)z_' z 2

The F5 and Fs functions are defined in such a way to obtain that the Poisson bracket

(2.9c, d)

Ks,K6} = iCml, (2.10)

where C is a constant that can be 4-1. This condition implies that

C (NI - N2)2NI"kIN_ "k'. (2.11)
FbF6 - 2(kl - ks) 2

Then it is easy to prove that the set of constants of the motion { hl,rnl,Ks,Ks } constitute the

classical symmetry Lie algebra which, depending on the value of C, can be identified with an

u(2) or u(1,1) algebra.

For -1 < i < 1 we select the following independent constants of the motion:

_ 1 (N_ - Ns),h2= . NI+ Ns, m2= kl+ks

Ks = F3(N1, g2 ) .s,l_k,zl "_2 , K4 = F4(NI,N2) z_'z_ k2,

where as in the previous case the Fa and F4 functions are defi_ed to give the Poisson bracket

(2.12a, b)

(2.12c, d)

{K3, K4 } = iCrn2; (2.13)

with C equal to 4-1. This condition implies that

FaF4 = C (N1 - N2)2NTk'N2 "*'.
2(kl + k2) s

(2.14)

Therefore the set of constants of the motion {hs, ms, Ka, K4 } generates the classical symmetry

Lie algebras u(2) or u(1, 1), depending if the value of C is +1 or -1, respectively.

3 Quantum Symmetry Lie Algebra for the Hamiltonian

To quantize the system we replace the classical variables x and p by the corresponding quantum

operators in definitions (2.8), and Poisson brackets by commutators, i.e., {} ---* ÷[]. Then the

classical variables zk and z_ are replaced by the operators

1 . 1 .

= + = (3.1)
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which satisfy the standard commutation relations of creation and annihilation operators.
We choose as a base for the physical space the simultaneous eigenstates of {N1, N2}, which

we label as ]nl,n2 >, because they form a complete set of commuting operators. This let us

see that not all operators in (2.8) make sense all the time. According to the previous section

we consider three cases:

(i) For A = q-l, we have two sets of operators, (I,-_1,;_2,;_2 t} and (I, N2,;_i,;_}, whose

commutation relations correspond to the direct sum w(1) _Bu(1).

(ii) When A > 1 and A < -1, the set of constants of the motion (2.9), must be replaced by

its quantum version, however this is ambiguous for the constants (2.9c,d) and so we eliminate

from them the Fs and F6 functions. It is easy to evaluate their commutators and get an algebra

but to identify a Lie algebra a redefinition of the constants of the motion must be done. This

is achieved by constructing the new operators [7]

-t (N,)! ) (3.2a)k,)' ½

= (L J (N,)! /

where [xJ denotes the largest integer < x. From (3.2) it is easy to check that

(3.3)

Then the Lie algebra is identified by considering the following 4pperators

hi N1 N2 /_'5 -t-t /_'6 ;_1;_2 CI = 1 (N1 + N_ + 1) (3.4)
__ -- , _-- Zl Z 2 , -_ , "_ •

that satisfy the commutation relations

= [I;,,K0] = -2C, (3.5)

These were evaluated by using that [;_,, £,J] = 6o., which is valid for any state In_, n2 > of

the Hilbert space of the system, and they are the generators of a u(1, 1) Lie algebra, with hi

generating the invariant subalgebra.
({ii) Finally for -1 < A < 1, the symmetry algebra can be found by considering the

operators

Evaluating the commutation relations between these operators we have

(3.7)
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and the operator h_ is the ideal of the algebra. Thus we get for this case a u(2) symmetry Lie

algebra.

4 Conclusions

We have established a procedure that uses Noether's theorem to find the symmetry Lie algebra

of a quantum system with accidental degeneracy. First, we solve the differential equations
that determine the constants of the motion. Second, once we have chosen the minimal set of

constants of the motion that close under Poisson brackets, to identify the classical Lie algebra

we need in generalto form combinations of the selected Noether charges. And third, to find the

corresponding quantum counterparts. Afterwards, the identification of the quantum symmetry

Lie algebra can be done immediately by making the s_tand_d replacement of Poisson brackets by

commutators. However, this is true if there are not ambiguities in establishing the associated

quantum operators for the constants of motion whicla form a Lie algebra under the Poisson

bracket operation. If this is not the case, it ismore convenient , t0 ch_oose the minimal set of
constants of the motion that allows a quantum extension, and make the necessary redefinitions

to build the associated Lie algebra of thesystem. Following this procedure we get for the

generalized anisotropictwo dimensional harmonic oscillator (1.4) the symmetry algebra which
determine the degeneracy of the system. The symmetry Lie algebras are, depending on the

value for ),,w(1) @ u(i_),u(2), and u(1,1). However with-the generators of the fi_rst one a

Holstein-Primakoff realization [4] of a u(1, 1) Lie algebra can be obtained.
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